2023 Vol. 50, No. 1
Article Contents

ZHAO Xinna, YANG Zhongfang, YU Tao. 2023. Review on heavy metal pollution and remediation technology in the soil of mining areas[J]. Geology in China, 50(1): 84-101. doi: 10.12029/gc20220702001
Citation: ZHAO Xinna, YANG Zhongfang, YU Tao. 2023. Review on heavy metal pollution and remediation technology in the soil of mining areas[J]. Geology in China, 50(1): 84-101. doi: 10.12029/gc20220702001

Review on heavy metal pollution and remediation technology in the soil of mining areas

    Fund Project: Supported by China University of Geosciences (Beijing) Geological Survey Achievement Transformation Fund (No.202001, No.2020002), the project of China Geological Survey (No.DD20211574, No.DD20211414) and Health Geological Survey and Evaluation in Qinling-Bashan Mountain region (No.202201)
More Information
  • Author Bio: ZHAO Xinna, female, born in 1997, master candidate, majors in geochemistry, engaged in environmental geochemistry research; E-mail: 2949659149@qq.com
  • Corresponding author: YANG Zhongfang, female, born in 1961, professor, majors in environmental geochemistry and ecological geochemistry related teaching and research; E-mail: yangzf@cugb.edu.cn 
  • This paper is the result of environmental geological survey engineering.

    Objective

    Soil heavy metal pollution is the main factor that causes the decline of soil ecological environment quality, crop heavy metal exceeds the national standard and even endangers human health. Mining and smelting activities are the primary source of soil heavy metal pollution. China's domestic metal mines have relatively low-grade and are expensive to process. The mining process produces a large amount of toxic and harmful heavy metals into the soil, which causes severe soil heavy metal pollution due to mining activities. At present, finding suitable methods to remediate heavy metal contaminated soils in mining areas is a hot issue and complex research area in environmental science.

    Methods

    This paper reviews the characteristics, hazards and remediation technology of heavy metal pollution in mining soils by many relevant literatures.

    Results

    The current remediation methods for soil heavy metal pollution in mining areas include: (1) engineering remediation technology: guest soil method; (2) physical remediation technology: electro kinetic remediation, vitrification method and heat treatment method; (3) chemical remediation techniques: soil leaching and fixation; (4) bioremediation technology: phytoremediation and microbial remediation method.

    Conclusions

    The guest soil method is the most widely used and effective treatment technique, and phytoremediation technology is the best application prospect. A single remediation technique often has certain limitations in the actual remediation of heavy metal contaminated soil in mines. It cannot meet the remediation needs, so a combined remediation method combining multiple remediation techniques can complement each other to achieve the best remediation effect.

  • 加载中
  • Acar Y B, Alshawabkeh A N. 1993. Principles of electrokinetic remediation[J]. Environmental Science and Technology, 27(13): 2638-2647. doi: 10.1021/es00049a002

    CrossRef Google Scholar

    Ali H, Khan E, Sajad M A. 2013. Phytoremediation of heavy metals——concepts and applications[J]. Chemosphere, 91(7): 869-881. doi: 10.1016/j.chemosphere.2013.01.075

    CrossRef Google Scholar

    Amin M S, Hashem F S, Mohamed M R. 2012. Solidification/stabilization of Zn2+ ions in metakaolin and homrablended cement matrices[J]. Advances in Cement Research, 24(4): 239-248. doi: 10.1680/adcr.11.00023

    CrossRef Google Scholar

    Aoshima K. 2016. Itai-itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium-historical review and perspectives[J]. Soil Science and Plant Nutrition, 62(4): 319-326. doi: 10.1080/00380768.2016.1159116

    CrossRef Google Scholar

    Asadollahfardi G, Sarmadi M S, Rezaee M, Khodadadi-Darban A, Yazdani M, Paz-Garcia J M. 2021. Comparison of different extracting agents for the recovery of Pb and Zn through electrokinetic remediation of mine tailings[J]. Journal of Environmental Management, 279: 111728. doi: 10.1016/j.jenvman.2020.111728

    CrossRef Google Scholar

    Asensio V, Vega F A, Singh B R, Covelo E F. 2013. Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils[J]. Science of the Total Environment, 443: 446-453. doi: 10.1016/j.scitotenv.2012.09.069

    CrossRef Google Scholar

    Baker A J M, McGrath S P, Sidoli C M D, Reeves R D. 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants[J]. Resources, Conservation and Recycling, 11(1/4): 41-49.

    Google Scholar

    Baldissarelli D P, Vargas G D L P, Korf E P, Galon L, Kaufmann C, Santos J B. 2019. Remediation of soils contaminated by pesticides using physicochemical processes: A brief review[J]. Planta Daninha, 37.

    Google Scholar

    Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Mingshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625-1636 (in Chinese with English abstract).

    Google Scholar

    Bolan N S, Par J H, Robinson B, Naidu R, Huh K Y. 2011. Phyto stabilization: A green approach to contaminant containment[J]. Advances in Agronomy, 112: 145-204.

    Google Scholar

    Boughattas I, Hattab S, Boussetta H, Viarengo A, Banni M, Sforzini S. 2016. Biomarker responses of Eisenia andrei to a polymetallic gradient near a lead mining site in North Tunisia[J]. Environmental Pollution, 218: 530-541. doi: 10.1016/j.envpol.2016.07.033

    CrossRef Google Scholar

    Burges A, Epelde L, Benito G, Artetxe U, Becerril J M, Garbisu C. 2016. Enhancement of ecosystem services during endophyteassisted aided phytostabilization of metal contaminated mine soil[J]. Science of the Total Environment, 562: 480-492. doi: 10.1016/j.scitotenv.2016.04.080

    CrossRef Google Scholar

    Cai Zongping, Wang Wenxiang, Li Weishan. 2016. Effects of electrode material on electrode remediation of lead-contaminated soil near a mine tailing[J]. Environmental Science and Management, 41(5): 108-111 (in Chinese with English abstract).

    Google Scholar

    Cao Mingchao, Ren Yupeng, Zhang Yanyan, Zeng Yu, Chen Wenhao, Zhou Huiguang. 2019. Research progress in remediation of heavy metal contaminated soil by in-situ flushing method[J]. Applied Chemical Industry, 48(3): 668-672, 676 (in Chinese with English abstract).

    Google Scholar

    Chen Guirong, Zeng Xiangdong, Li Wei, Yuan Yanmei, Zhou Yuanyuan. 2010. Overview on current situation of heavy metal pollution in soils and remediation technology of contaminated soils in metal mines[J]. Conservation and Utilization of Mineral Resources, (2): 41-44 (in Chinese with English abstract).

    Google Scholar

    Chen Minjie, Liu Xuefeng, Li Bowen, Li Yafei, Zhao Dingran, Zheng Chunli. 2021. Electric remediation of radioactive thorium contamination soil around mining area with auxiliary reagents[J]. Non-ferrous Metals (Smelting), (3): 36-42, 50 (in Chinese with English abstract).

    Google Scholar

    Chen N S, Huang Q Y, Liu L N, Cai P, Liang W, Ming L I. 2010. Poultry manure compost alleviates the phytotoxicity of soil cadmium: Influence on growth of pakchoi (brassica chinensis L. )[J]. Pedosphere, 20(1): 63-70. doi: 10.1016/S1002-0160(09)60283-6

    CrossRef Google Scholar

    Chen T, Wei C, Huang Z, Huang Q, Lu Q, Fan Z. 2002. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation[J]. Chinese Science Bulletin, 47(11): 902-905. doi: 10.1360/02tb9202

    CrossRef Google Scholar

    Chen Qiang, Ma Mingjie, You YuanHang, Yang Di. 2020. Cadmium input flux in farmland soil near the Dabaoshan mining area of Guangdong Province[J]. Geology and Mineral Resources of South China, 36(2): 147-152 (in Chinese with English abstract).

    Google Scholar

    Chen Sanxiong, Chen Jiadong, Xie Li, Liao Jianwen, Zhang Jinchi, Yang Qunliang. 2011. Heavy metal accumulation characteristics of plants in Dabaoshan mine in Guangdong Province[J]. Journal of Soil and Water Conservation, 25(6): 216-220 (in Chinese with English abstract).

    Google Scholar

    Chen Yiping. 2008. Research trends on heavy metals hyperaccumulators[J]. Environmental Science and Management, 33(3): 20-24(in Chinese with English abstract).

    Google Scholar

    Cheng H X, Li M, Zhao C D, Li K, Peng M, Qin A H, Cheng X M. 2014. Overview of trace metals in the urban soil of 31 metropolises in China[J]. Journal of Geochemical Exploration, 139: 31-52. doi: 10.1016/j.gexplo.2013.08.012

    CrossRef Google Scholar

    Cheng Rui. 2020. Pollution characteristics and health risk assessment of heavy metals in farmland soil downstream of a copper mine slag dumps[J]. Journal of Environmental Engineering Technology, 10(2): 280-287 (in Chinese with English abstract).

    Google Scholar

    Christou A, Theologides C P, Costa C, Kalavrouziotis I K, Varnavas S P. 2017. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plants species in Limni abandoned copper mining site, Cyprus[J]. Journal of Geochemical Exploration, 178: 16-22. doi: 10.1016/j.gexplo.2017.03.012

    CrossRef Google Scholar

    Cui Xiao, Zhou Yanru, Liu Xiaoyang, Bai Zhongke. 2021. Comprehensive evaluation of rock and soil quality of different geological stratum groups in Pingshuo opencast coal mine reclamation area[J]. Hydrogeology & Engineering Geology, 48(2): 164-173 (in Chinese with English abstract).

    Google Scholar

    Cui Zhaohao. 2018. Combined Remediation and Improvement Techniques of Plant-microorganism in Utilization of Iron Tailings[D]. Jinan: Shandong University, 1-82 (in Chinese with English abstract).

    Google Scholar

    Deng Min, Cheng Rong, Shu Rongbo. 2021. Exploration of chemicalmicrobial remediation technology for typical heavy metal contaminated soils in Panxi mining area[J]. Multipurpose Utilization of Mineral Resources, 4: 1-9 (in Chinese with English abstract).

    Google Scholar

    Derakhshan N Z, Jung M C, Kim K H. 2018. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology[J]. Environmental Geochemistry Health, 40(7): 927-953.

    Google Scholar

    Dong Hui, Kong Jiaoyan, He Liping, Qin Li, Wang Miao, Zhao Yanbo, Wei Zhonghua, Li Guotai, Wu Jianxun, Kang Shaoguo. 2021. Pilot-scale study on solid classification and stabilization of multiple heavy metals[C]//2021 Science and Technology Annual Conference of Chinese Society for Environmental Sciences——Environmental Engineering Technology Innovation and Application Session (Ⅲ), 7 (in Chinese with English abstract).

    Google Scholar

    Fernández-Caliani J C, Giráldez M I, Waken W H, Del Río Z M, Córdoba F. 2021. Soil quality changes in an Iberian pyrite mine site 15 years after land reclamation[J]. Catena, 206: 105538. doi: 10.1016/j.catena.2021.105538

    CrossRef Google Scholar

    Guan Liang, Guo Guanlin, Wang Qunhui, Li Fasheng. 2010. Immobilization of heavy metal contaminated soil by different cementation materials[J]. Research of Environmental Sciences, 23(1): 106-111 (in Chinese with English abstract).

    Google Scholar

    Guan Xin. 2016. Preliminary analysis on the recovery and management of mine ecological environment in inner Mongolia area——A case study of Shendong coal group[J]. The Chinese Journal of Geological Hazard and Control, 27(3): 143-147 (in Chinese with English abstract).

    Google Scholar

    Guo Chao, Wen Yubo, Yang Zhongfang, Li Wei, Guan Dongxing, Xi Junfeng. 2019. Factors controlling the bioavailability of soil cadmium in typical karst areas with high geogenic background[J]. Journal of Nanjing University (Natural Science), 55(4): 678-687(in Chinese with English abstract).

    Google Scholar

    Guo Weijun, Jiang Xiaowen, Chen Wenjun, Yang Mingxian, Chen Shuwen, Qin Shifu. 2010. Research on soil remediation technology of heavy metal pollution abandoned land in metal mine[J]. Journal of Anhui Agricultural Sciences, 38(22): 11954-11956 (in Chinese with English abstract).

    Google Scholar

    Hao Hanzhou, Chen Tongbin, Jin Menggui, Lei Mei, Liu Chengwu, Zu Wenpu, Huang Limi. 2011. Recent advance in solidification/stabilization technology for the remediation of heavy metals contaminated soil[J]. Chinese Journal of Applied Ecology, 22(3): 816-824 (in Chinese with English abstract).

    Google Scholar

    Hao Q, Jiang C. 2015. Heavy metal concentrations in soils and plants in Rongxi Manganese mine of Chongqing, southwest of China[J]. Acta Ecologica Sinica, 35(1): 46-51. doi: 10.1016/j.chnaes.2015.01.002

    CrossRef Google Scholar

    He Fang, Xu Youning, Qiao Gang, Liu Riuping. 2010. Regional distribution characteristics of mine environmental geological problems in China[J]. Geology in China, 37(5): 1520-1529 (in Chinese with English abstract).

    Google Scholar

    He Fang, Qiao Gang, Liu Ruiping, Chen Huaqin. 2013. Discussion for mining land reclamation models[J]. Northwestern Geology, 46(2): 201-209 (in Chinese with English abstract).

    Google Scholar

    He Suqi, Xiao Yao, Zhong Anliang, Guo Danhua, Hu Jiehua. 2010. Synergistic leaching of Cd and Pb from contaminated soil using sapindus saponins and citric acid[J]. Environmental Protection of Chemical Industry, 41(1): 196-201 (in Chinese with English abstract).

    Google Scholar

    He Yujun, Sun Menghe, Shen Yatin, Shuai Qin, Luo Liqiang. 2020. Research progress on the interaction mechanism between hyperaccumulator and heavy metals and its application[J]. Rock and Mineral Analysis, 39(5): 639-657 (in Chinese with English abstract).

    Google Scholar

    He Zhenjia. 2020. Analysis on the harm of heavy metal pollution in coal mine area and its treatment technology[J]. Shaanxi Coal, 39(2): 73-75, 137 (in Chinese with English abstract).

    Google Scholar

    Hou Liyun, Zeng Xibai, Zhang Yangzhu. 2015. Application and outlook of alien earth soil-improving technology in arseniccontaminated soil remediation[J]. Chinese Journal of EcoAgriculture, 23(1): 20-26 (in Chinese with English abstract).

    Google Scholar

    Huang Chunxiao. 2011. Microbial remediation of soils polluted by heavy metal[J]. Journal of Zhongyuan University of Technology, 22 (3): 41-44 (in Chinese with English abstract).

    Google Scholar

    Huang Yizong, Hao Xiaowe, Lei Ming, Tie Boqing. 2013. The remediation technology and remediation practice of heavy metalscontaminated soil[J]. Journal of Agro-Environment Science, 32(3): 409-417 (in Chinese with English abstract).

    Google Scholar

    Huang Yongquan, Wei Chao, He Jingyuan. 2012. Environmental quality evaluation of mines in Jiangxi Province based on grey correlation analysis[J]. East China Geology, 33(4): 268-273 (in Chinese with English abstract).

    Google Scholar

    Huang Y T, Hseu Z Y, Hsi H C. 2011. Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals[J]. Chemosphere, 84(9): 1244-1249. doi: 10.1016/j.chemosphere.2011.05.015

    CrossRef Google Scholar

    Jing Pei, Li Guangde, Liu Kun, Zhang Zhongwen, Zhang Shiyuan, Jiao Wei. 2009. Effect of earthworm on bio-availability of Pb and Cd in soil[J]. Journal of Soil and Water Conservation, 23(3): 65-68, 96 (in Chinese with English abstract).

    Google Scholar

    Johansson L, Xydas C, Messios N. 2005. Growth and cuaccu cyprus[J]. Applied Geochemistry, 20: 101-107. doi: 10.1016/j.apgeochem.2004.07.003

    CrossRef Google Scholar

    Isosaari P, Sillanpää M. 2012. Effects of oxalate and phosphate on electrokinetic removal of arsenic from mine tailings[J]. Separation and Purification Technology, 86: 26-34. doi: 10.1016/j.seppur.2011.10.016

    CrossRef Google Scholar

    Khalid S, Shahid M, Niazi N K, Murtaza B, Bibi I, Dumat C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 182: 247-268. doi: 10.1016/j.gexplo.2016.11.021

    CrossRef Google Scholar

    Khan S R, Singh S K, Rastogi N. 2017. Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil[J]. Environmental Monitoring and Assessment, 189(4): 1-19.

    Google Scholar

    Kumar R N, Nagendran R. 2007. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans[J]. Chemosphere, 66(9): 1775-1781. doi: 10.1016/j.chemosphere.2006.07.091

    CrossRef Google Scholar

    Lan Nan. 2014. Urgent attention needs to be paid to the drinking water safety in mining area: Reflection on the cancer cases of Guangdong Dabaoshan[J]. The Environmental Protection, 42(13): 49-51 (in Chinese with English abstract).

    Google Scholar

    Li Feili, Shao Luze, Wu Xingfei, Lu Minying. 2021. Research progress of enhanced phytoremediation for heavy metals and intercropping technique[J]. Journal of Zhejiang University of Technology, 49(3): 345-354 (in Chinese with English abstract).

    Google Scholar

    Li Guozheng. 2019. Upgrading and reshaping of mine geological restoration model in new era: Conceptual analysis based on "Geological Restoration 3.0"[J]. Northwestern Geology, 52(4): 270-278 (in Chinese with English abstract).

    Google Scholar

    Li T, Lin G Y, Podola B, Melkonian M. 2015. Continuous removal of zinc from wastewater and mine dump leachate by a microalgal biofilm PSBR[J]. Journal of Hazardous Materials, 297: 112-118. doi: 10.1016/j.jhazmat.2015.04.080

    CrossRef Google Scholar

    Li Xiaolong, Wang Xuedong. 2018. Geological environment characteristics of abandoned limestone mines in Shandong: Exploration of management and restoration[J]. Geology and Resources, 27(1): 89-92 (in Chinese with English abstract).

    Google Scholar

    Liao Xiaoyong, Chen Tongbin, Yan Xiulan, Xie Hua, Zhai Limei, Nie Canjun, Xiao Xiyuan, Wu Bin. 2007. Heavy metals in plants growing on Ni/Cu mining areas in desert, Northwest China and the adaptive pioneer species[J]. Journal of Natural Resources, (3): 486-495 (in Chinese with English abstract).

    Google Scholar

    Lin Jin, Liang Wenjing, Jiao Yang, Yang Li, Fan Yaning, Tian Tao, Liu Xiaomeng. 2021. Ecological and health risk assessment of heavy metals in farmland soil around the gold mining area in Tongguan of Shaanxi Province[J]. Geology in China, 48(3): 749-763 (in Chinese with English abstract).

    Google Scholar

    Liu Li, Zhang Jiawen, Chen Fenfei, Sheng Sheng, Tian Ziqiang, Wang Jian. 2020. Pollution characteristics and ecological risk assessment of heavy metals in the sediment of Hengshui Lake[J]. Journal of Environmental Engineering Technology, 10(2): 205-211 (in Chinese with English abstract).

    Google Scholar

    Liu L W, Li W, Song W, Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environmental, 633: 206-219. doi: 10.1016/j.scitotenv.2018.03.161

    CrossRef Google Scholar

    Liu R P, Xu Y N, Zhang J H, Wang W K, Rafaey M E. 2020. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China[J]. China Geology, 3(3): 402-410.

    Google Scholar

    Liu R P, Xu Y N, Rui H C, El-Wardany R M, Dong Y. 2021. Migration and speciation transformation mechanisms of mercury in undercurrent zones of the Tongguan gold mining area, Shaanxi Loess Plateau and impact on the environment[J]. China Geology, 4(2): 311-328.

    Google Scholar

    Liu Xiaoyuan, Liu Pinzhen, Du Qilu, Shen Qiandi, Wu Di. 2019. Evaluation of heavy metal pollution in soil of lead-zinc mine wasteland with geological high background[J]. Non-ferrous Metals (Smelting), (2): 76-82 (in Chinese with English abstract).

    Google Scholar

    Liu Yongguang, Sun Xiangyang, Li Jinhai, Zhang Guozhen, Yang Jiandong, Wang Hongli, Liu Kefeng. 2012. Restoration effect analysis of abandoned coal mine engineering of Mentougou in Beijing based on soil physicochemical properties[J]. Chinese Agricultural Science Bulletin, 28(14): 246-251 (in Chinese with English abstract).

    Google Scholar

    Luo Yongming, Teng Ying. 2018. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of Chinese Academy of Sciences, 33(2): 145-152 (in Chinese with English abstract).

    Google Scholar

    Ma F, Zang Q, Xu D, Hou D., Li F, Gu Q. 2014. Mercury removal from contaminated soil by thermal treatment with FeCl3 at reduced temperature[J]. Chemosphere, 117: 388-393. doi: 10.1016/j.chemosphere.2014.08.012

    CrossRef Google Scholar

    Mahar A, Wang P, Ali A, Awasthi M K, Lahori A H, Wang Q, Zhang Z. 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review[J]. Ecotoxicology and Environmental Safety, 126: 111-121. doi: 10.1016/j.ecoenv.2015.12.023

    CrossRef Google Scholar

    Mallampati S R, Mitoma Y, Okuda T, Simion C, Lee B K. 2015. Dynamic immobilization of simulated radionuclide 133Cs in soil by thermal treatment/vitrification with nanometallic Ca/CaO composites[J]. Journal of Environmental Radioactivity, 139: 118-124. doi: 10.1016/j.jenvrad.2014.10.006

    CrossRef Google Scholar

    Mo Liangyu, Fan Zhilian, Chen Haifeng. 2013. Effect of different ammonium salt on metal-contaminant removal from field soil[J]. Southwest China Journal of Agricultural Sciences, 26(6): 2407-2411 (in Chinese with English abstract).

    Google Scholar

    Morillo E, Villaverde J. 2017. Advanced technologies for the remediation of pesticide-contaminated soils[J]. Science of the Total Environment, 586: 576-597. doi: 10.1016/j.scitotenv.2017.02.020

    CrossRef Google Scholar

    Navarro A, Canadas I, Martinez D, Rodriguez J, Mendoza J L. 2009. Application of solar thermal desorption to remediation of mercurycontaminated soils[J]. Soil Energy, 83(8): 1405-1414. doi: 10.1016/j.solener.2009.03.013

    CrossRef Google Scholar

    Navarro A, Canadas I, Rodriguez J A T. 2014. Thermal treatment of mercury mine wastes using a rotary solar kiln[J]. Minerals, 4(1): 37-51. doi: 10.3390/min4010037

    CrossRef Google Scholar

    Navarro A, Cardellach E, Canadas I, Rodríguez J. 2013. Solar thermal vitrification of mining contaminated soils[J]. International Journal of Mineral Processing, 119: 65-74. doi: 10.1016/j.minpro.2012.12.002

    CrossRef Google Scholar

    Nouri M, Goncalves F, Sousa J P, Römbke J, Ksibi M. 2014. Metal concentrations and metal mobility in ait ammar moroccan mining site[J]. Moroccan Mining Site, 5(1): 271-280.

    Google Scholar

    Nouri M, Haddioui A. 2016. Assessment of metals contamination and ecological risk in ait ammar abandoned iron mine soil, Morocco[J]. Ekológia (Bratislava), 35: 32-49. doi: 10.1515/eko-2016-0003

    CrossRef Google Scholar

    O'Day P A, Vlassopoulos D. 2010. Mineral-based amendments for remediation[J]. Elements, 6(6): 375-381. doi: 10.2113/gselements.6.6.375

    CrossRef Google Scholar

    Qi Zheng, Qi Yue, Yang Hong, Zhang Tielin, Ling Na. 2020. Status, harm and treatment measures of heavy metal cadmium pollution in soil[J]. Journal of Food Safety and Quality, 11(7): 2286-2294 (in Chinese with English abstract).

    Google Scholar

    Qiu R L, Fang X H, Tang Y T. 2006. Zinc hyperaccumulation and uptake by Potentilla griffithii Hook[J]. International Journal of Phytoremediation, 8: 299-310. doi: 10.1080/15226510600992865

    CrossRef Google Scholar

    Ok Y S, Lim J E, Moon D H. 2011. Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells[J]. Environmental Geochemistry and Health, 3: 83-91.

    Google Scholar

    Ryu B G, Park G Y, Yang J W, Baek K. 2011. Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb-contaminated soil[J]. Separation and Purification Technology, 79(2): 170-176. doi: 10.1016/j.seppur.2011.02.025

    CrossRef Google Scholar

    Shah V, Daverey A. 2020. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil[J]. Environmental Technology and Innovation, 18: 100774. doi: 10.1016/j.eti.2020.100774

    CrossRef Google Scholar

    Shen Zhenguo, Chen Manhuai. 2020. Bioremediation of heavy metal polluted soils[J]. Journal of Ecology and Rural Environment, 16(2): 39-44 (in Chinese with English abstract).

    Google Scholar

    Shui Xinfang, Zhao Yuanyi, Wang Qiang. 2021. Progress and prospect of remediation technology of heavy metal contaminated soil in mines[J]. Geological Review, 67(3): 752-766(in Chinese with English abstract).

    Google Scholar

    Sierra M J, Millán R, López F A, Alguacil F J, Cañadas I. 2016. Sustainable remediation of mercury contaminated soils by thermal desorption[J]. Environmental Science and Pollution Research, 23(5): 4898-4907. doi: 10.1007/s11356-015-5688-8

    CrossRef Google Scholar

    Singh A, Karmegam N, Singh G S, Bhadauria T, Chang S W, Awasthi M K, Sudhakar S, Arunachalam K D, Biruntha M, Ravindran B. 2020. Earthworms and vermicompost: An eco-friendly approach for repaying nature's debt[J]. Environmental Geochemistry and Health, 42(6): 1617-1642. doi: 10.1007/s10653-019-00510-4

    CrossRef Google Scholar

    Solisio C, Lodi A. 2002. Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans[J]. Waste Management, 22(6): 667-675. doi: 10.1016/S0956-053X(01)00052-6

    CrossRef Google Scholar

    Song Wei, Chen Baiming, Liu Lin. 2013. Soil heavy metal pollution of cultivated land in China[J]. Research of Soil and Water Conservation, 20(2): 293-298 (in Chinese with English abstract).

    Google Scholar

    Song Wen, Cheng Shaoping, Chi Xiaojie, Ai Yanjun, Gu Haihong. 2021. Research progress on remediation of heavy metal contaminated soil monitored by remote sensing[J]. Multipurpose Utilization of Mineral Resources, (4): 21-28 (in Chinese with English abstract).

    Google Scholar

    Sun Tao, Lu Kouping, Wang Hailong. 2015. Advance in washing technology for remediation of heavy metal contaminated soils: Effects of eluants and washing conditions[J]. Journal of Zhejiang A&F University, 32(1): 140-149 (in Chinese with English abstract).

    Google Scholar

    Sylvain B, Mikael M H, Florie M, Emmanuel J, Marilyne S, Sylvain B, Domenico M. 2016. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine techno sols[J]. Catena, 136: 44-52. doi: 10.1016/j.catena.2015.07.008

    CrossRef Google Scholar

    Tan Yanke, Wang Zhe, Cai Jingyi, Chen Yanfang, Wang Zhuo, Liu Jiuchen, Tang Qifeng, Yuan Xin, Yang Hong. 2017. The application of geochemical engineering technology to the remediation of a Pb polluted abandoned farmland in Jiangxi Province[J]. Acta Geoscientia Sinica, 38(6): 953-960 (in Chinese with English abstract).

    Google Scholar

    Tian Jie, Luo Lin, Fan Meirong, Wei Jianhong, Hu Bo, Liu Yan. 2012. Effects of red mud on the morphology of Cd, Pb and Zn in contaminated soil and rice growth[J]. Chinese Journal of Soil Science, 43(1): 195-199 (in Chinese with English abstract).

    Google Scholar

    Timofeev I, Kosheleva N, Kasimov N. 2018. Contamination of soils by potentially toxic elements in the impact zone of tungstenmolybdenum ore mine in the Baikal region: A survey and risk assessment[J]. Science of the Total Environment, 642: 63-76. doi: 10.1016/j.scitotenv.2018.06.042

    CrossRef Google Scholar

    Tiwari S, Kumari B, Singh S. 2008. Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps[J]. Bioresource Technology, 99(5): 1305-1310. doi: 10.1016/j.biortech.2007.02.010

    CrossRef Google Scholar

    Vocciante M, Bagatin R, Ferro S. 2017. Enhancements in electrokinetic remediation technology: Focus on water management and wastewater recovery[J]. Chemical Engineering Journal, 309: 708-716. doi: 10.1016/j.cej.2016.10.091

    CrossRef Google Scholar

    Wang D H, Zhao Z, Yu Y, Dai J J, Deng M C, Zhao T, Liu L J. 2018. Exploration and research progress on ion-adsorption type REE deposit in South China[J]. China Geology, 1(3): 415-424.

    Google Scholar

    Wang F, Wang H, Al-Tabbaa A. 2014. Leachability and heavy metal speciation of 17 year old stabilised/solidified contaminated site soils[J]. Journal of Hazardous Materials, 278: 144-151. doi: 10.1016/j.jhazmat.2014.05.102

    CrossRef Google Scholar

    Wang Hongbo, Gou Wenxian, Wu Yuqing, Li Wei. 2021. Progress in remediation technologies of heavy metals contaminated soil: Principles and technologies[J]. Chinese Journal of Ecology, 40(8): 2277-2288 (in Chinese with English abstract).

    Google Scholar

    Wang Hua, Tang Shumei, Liao Xiangjun, Cao Qian, Yang Anfu, Wang Tingzhong. 2007. A new Manganese-hyperaccumulator: Polygonum hydropiper L[J]. Ecology and Environmental Sciences, 16(3): 830-834 (in Chinese with English abstract).

    Google Scholar

    Wang J, Feng X, Anderson C W N, Christopher W N. 2012. Remediation of mercury contaminated sites-A review[J]. Journal of Hazardous Materials, 221: 1-18.

    Google Scholar

    Wang Rui, Yu Zongling, Guan Yang. 2013. Overview on phytoremediation of nickel contaminated soil[J]. Environmental Science and Management, 38(8): 111-114 (in Chinese with English abstract).

    Google Scholar

    Wang Xin, Jia Yongfeng. 2007. Contamination and remediation of arsenic in soil[J]. Environmental Science and Technology, (2): 107-110, 121 (in Chinese).

    Google Scholar

    Wei Chaoyang, Chen Tongbin, Huang Zechun, Zhang Xueqing. 2002. Cretan Brake (Pteris cretica L): An arsenic accumulating plant[J]. Acta Ecologica Sinica, 22(5): 777-778 (in Chinese with English abstract).

    Google Scholar

    Wei Shuhe, Zhou Qixing, Wang Xin. 2005. Cadmium-Hyperaccumulator solanum nigrum L. and its accumulating characteristics[J]. Environmental Science, 24(3): 167-171 (in Chinese with English abstract).

    Google Scholar

    Wen D G, Zhang F C, An Y H. 2020. Support service of geological technology in lifting residents of endemic disease area out of poverty[J]. China Geology, 3(4): 656-660. doi: 10.31035/cg2020074

    CrossRef Google Scholar

    Wilson-Corral V, Anderson C W N, Rodriguez-Lopez M. 2012. A review of the relevance of this technology to mineral extraction in the 21st century[J]. Journal of Environmental Management, 111: 249-257. doi: 10.1016/j.jenvman.2012.07.037

    CrossRef Google Scholar

    Wu C, Tuo J, Zhang M, Sun L, Qian Y, Liu Y. 2016. Sedimentary and residual gas geochemical characteristics of the lower Cambrian organic-rich shales in Southeastern Chongqing[J]. Marine and Petroleum Geology, 75: 140-150. doi: 10.1016/j.marpetgeo.2016.04.013

    CrossRef Google Scholar

    Wu Guanghai, Wang Chensheng, Chen Honghan. 2020. Ecoenvironmental assessment and genetic analysis of heavy metal pollution in the soil around the abandoned tungsten-molybdenum mine area in Inner Mongolia[J]. Geology in China, 47(6): 1838-1852 (in Chinese with English abstract).

    Google Scholar

    Wu J, Wei B, Lü Z, Fu Y. 2021. To improve the performance of focusing phenomenon related to energy consumption and removal efficiency in electrokinetic remediation of Cr-contaminated soil[J]. Separation and Purification Technology, 272: 118882. doi: 10.1016/j.seppur.2021.118882

    CrossRef Google Scholar

    Wu Shuangtao, Wu Xiaofu, Hu Yueli, Chen Shaojin, Hu Jingzhao, Chen Yifei, Xie Ningzi. 2004. Studies on soil pollution around PdZn smelting factory and heavy metals hyperaccumulators[J]. Ecology and Environmental Sciences, 13(2): 156-157, 160 (in Chinese with English abstract).

    Google Scholar

    Xiao Pengfei, Wu Dedong. 2021. Econometric analysis of global phytoremediation literature[J]. Acta Ecologica Sinica, 41(21): 8685-8695 (in Chinese).

    Google Scholar

    Xiao R, Wang S, Li R, Wang J J, Zhang Z. 2017. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi[J]. Ecotoxicology and Environmental Safety, 141: 17-24. doi: 10.1016/j.ecoenv.2017.03.002

    CrossRef Google Scholar

    Xie Dong, Li Siyu, He Sen, Pan Tao, Dong Wei. 2019. Research advances on rhisopheric microecology of phytoremediated soil contaminated by heavy metals[J]. Journal of Jiangxi University of Science and Technology, 40(5): 64-71 (in Chinese with English abstract).

    Google Scholar

    Xu Youning, Zhang Jianghua, Ke Hailing, Liu Runping, Chen Huanqing. 2013. Cd contamination of farmland soil in a gold mining area and its environmental effects[J]. Geology in China, 40(2): 636-643 (in Chinese with English abstract).

    Google Scholar

    Xue Shengguo, Chen Yingxu, Lin Qi, Xu Shengyou, Wang Yuanpeng. 2003. Phytolacca acinosa Roxb (Phytolaccaceae): A new manganese hyperaccumulator plant from Southern China[J]. Acta Ecologica Sinica, (5): 935-937 (in Chinese with English abstract).

    Google Scholar

    Yan Demin, Zhao Fangying, Sun Jianxin. 2013. Characters of the vegetations with different restoration age on a mining site of Shouyun Iron Ore Mine, Beijing[J]. Chinese Journal of Ecology, 32(1): 1-6 (in Chinese with English abstract).

    Google Scholar

    Yang Qiong, Yang Zhongfang, Zhang Qizuan, Liu Xu, Zhuo Xiaowei, Wu Tiansheng, Wang Lei, Wei Xueji, Ji Junfeng. 2021. Ecological risk assessment of Cd and other heavy metals in soil-rice system in karst geological high background region of Guangxi, China[J]. Scientia Sinica (Terrae), 51(8): 1317-1331 (in Chinese). doi: 10.1360/SSTe-2020-0168

    CrossRef Google Scholar

    Yang S X, Liao B, Yang Z H, Chai L Y, Li J T. 2016. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China[J]. Science of the Total Environment, 562: 427-434. doi: 10.1016/j.scitotenv.2016.03.208

    CrossRef Google Scholar

    Yang S, Ge W Y, Chen H H, Xu W L. 2019. Investigation of soil and groundwater environment in urban area during post-industrial era: A case study of brownfield in Zhenjiang, Jiangsu Province, China[J]. China Geology, 2(4): 501-511.

    Google Scholar

    Yang Weishan, Yu Fang, Zhao Dan, Li Meng. 2018. Characteristics of heavy metals in reclaimed soils of a phosphorite-mining area around Dianchi Lake[J]. Ecology and Environmental Sciences, 27(6): 1145-1152 (in Chinese with English abstract).

    Google Scholar

    Yang Xiumin, Hu Zhenqi, Li Ning, Yang Xiuhong, Zhang Yingchun. 2009. Adsorption of heavy metals Cu2+, Zn2+ and Cd2+ in Nabentonite[J]. Journal of China Coal Society, 34(6): 819-822 (in Chinese with English abstract).

    Google Scholar

    Yang Z F, Yu T, Hou Q Y, Xia X Q, Feng H Y, Huang C L, Wang L S, Lü Y Y, Zhang M. 2014. Geochemical evaluation of land quality in China and its applications[J]. Journal of Geochemical Exploration, 139: 122-135. doi: 10.1016/j.gexplo.2013.07.014

    CrossRef Google Scholar

    Yao Z, Li J, Xie H, Yu C. 2012. Review on remediation technologies of soil contaminated by heavy metals[J]. Procedia Environmental Sciences, 16: 722-729. doi: 10.1016/j.proenv.2012.10.099

    CrossRef Google Scholar

    Ye Panye, Wang Yang, Liu Kehui, Zhou Zhenming, Chen Menglin, Liu Hua, Su Yinping, Yu Fangming. 2016. Effects of amendments on manganese uptake and antioxidant enzyme system of Polygonum breviflora, a manganese superenrichment plant[J]. Soils, 48(1): 109-116 (in Chinese with English abstract).

    Google Scholar

    Yildirim D, Sasmaz A. 2016. Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kutahya Turkey)[J]. Journal of Geochemical Exploration. 182: 228-234.

    Google Scholar

    Yu Chunhao. 2019. Review of soil pollution in petrochemical industry[J]. Contemporary Chemical Industry, 48(10): 2385-2387, 2423 (in Chinese with English abstract).

    Google Scholar

    Yu Tianhong, Li Yuashou. 2014 Mechanism of bioremediation in arsenic contaminated soil land its research progress[J]. Environmental Pollution and Control, 36(12): 77-82 (in Chinese with English abstract).

    Google Scholar

    Zhang X, Xia H, Li Z, Zhuang P, Gao B. 2010. Potential of four forage grasses in remediation of Cd and Zn contaminated soils[J]. Bioresource technology, 101(6): 2063-2066. doi: 10.1016/j.biortech.2009.11.065

    CrossRef Google Scholar

    Zhang Xiaojiang, Zong Zhiqing, Ye Jinghong, Qin Yan, Peng Cheng, Wang Dongfang, Cai Dongqing. 2021. Research progress on enhanced electrokinetic remediation of heavy metal contaminated soil[J]. Journal of Donghua University (Natural Science), 47(6): 91-99 (in Chinese with English abstract).

    Google Scholar

    Zhang Xinyan, Wang Qichao. 2009. Recent advances in stabilization/solidification technology for treatment of Hg-containing hazardous wastes[J]. Environmental Science and Technology, 32(9): 110-115 (in Chinese with English abstract).

    Google Scholar

    Zhang Xuehong, Luo Yaping, Huang Haitao, Liu Jie, Zhu Yinian, Zeng Quanfang. 2006. Leersia hexandra Swartz: A newly discovered hygrophyte with chromium hyperaccumulator properties[J]. Acta Ecologica Sinica, (3): 950-953 (in Chinese with English abstract).

    Google Scholar

    Zhang Yongshuang, Sun Lu, Yin Xiulan, Meng Hui. 2017. Progress and prospect of research on environmental geology of China: A review[J]. Geology in China, 44(5): 901-912 (in Chinese with English abstract).

    Google Scholar

    Zhao F J, Ma Y B, Zhu Y G, Tang Z, McGrath S P. 2015. Soil Contamination in China: Current status and mitigation strategies[J]. Environmental Science and Technology, 49(2): 750-759. doi: 10.1021/es5047099

    CrossRef Google Scholar

    Zhao Lei. 2009. Screening of Hyperaccumulators and Tolerance Research in Baiyinuoer Lead-Zinc Mine[D]. Hohhot: Inner Mongolia Agricultural University, 1-41 (in Chinese with English abstract).

    Google Scholar

    Zhao Shuhua, Chen Ziliang, Zhang Taiping, Peng Xiaochun, Zhang Yuenan, Ding Zong, Lei Guojian. 2013. Advances in solidification/stabilization technology treatment of heavy metal in contaminated soils[J]. Chinese Journal of Soil Science, 44(6): 1531-1536 (in Chinese with English abstract).

    Google Scholar

    Zhao Yunfeng, Zhang Tao, Tian Zhijun, Wu Dapeng, Liang Kaixuan, Han Juanjuan. 2020. Research progress on phytoremediation technology of heavy metal contaminated soil around mining area[J]. Urban Geology, 15(1): 22-33 (in Chinese with English abstract).

    Google Scholar

    Zheng Taihui, Wang Lingyun, Chen Xiao'an. 2015. Research progress and trends in phytoremediation technology of heavy metal contaminations in mining area[J]. Environmental Engineering, 33(6): 148-152 (in Chinese with English abstract).

    Google Scholar

    Zhou M, Wang H, Zhu S, Liu Y, Xu J. 2015. Electrokinetic remediation of fluorine-contaminated soil and its impact on soil fertility[J]. Environmental Science and Pollution Research, 22(21): 16907-16913. doi: 10.1007/s11356-015-4909-5

    CrossRef Google Scholar

    Zhou Lianbi, Wang Qiong, Yang Yueqing. 2021. Progress in research and practice of ecological restoration of contaminated soil in typical metal mining areas[J]. Nonferrous Metals (Extractive Metallurgy), (3): 10-18 (in Chinese with English abstract).

    Google Scholar

    Zhou Zhiquan, Zhang Yuge, Xu Huanhuan, Gu Yan. 2016. Research progress on the remediation of heavy metal contaminated soil by chemical washing[J]. Journal of Green Science and Technology, 24: 12-15 (in Chinese with English abstract).

    Google Scholar

    Zhu Danni, Zou Shengzhang, Zhou Changsong, Lu Haiping, Xie Hao. 2021. Hg and As contents of soil-crop system in different tillage types and ecological health risk assessment[J]. Geology in China, 48(3): 708-720 (in Chinese with English abstract).

    Google Scholar

    Zhu Jianlong, Li Ting, Xiao Yueqi, Wang Kai. 2021. Research progress on remediation of Pb contaminated soil by chemical washing[J]. Energy and Environment, (5): 20-22 (in Chinese with English abstract).

    Google Scholar

    鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625-1636.

    Google Scholar

    蔡宗平, 王文祥, 李伟善. 2016. 电极材料对电动修复尾矿周边铅污染土壤的影响研究[J]. 环境科学与管理, 41(5): 108-111.

    Google Scholar

    曹明超, 任宇鹏, 张严严, 曾俞, 陈文浩, 周慧广. 2019. 原位淋洗法修复重金属污染土壤研究进展[J]. 应用化工, 48(3): 668-672, 676.

    Google Scholar

    陈桂荣, 曾向东, 黎巍, 袁艳梅, 周圆圆. 2010. 金属矿山土壤重金属污染现状及修复技术展望[J]. 矿产保护与利用, (2): 41-44.

    Google Scholar

    陈敏洁, 刘雪峰, 李博文, 李亚飞, 赵丁冉, 郑春丽. 2021. 辅助试剂强化电动修复矿区周边土壤中放射性钍污染[J]. 有色金属(冶炼部分), (3): 36-42+50.

    Google Scholar

    陈强, 马明杰, 游远航, 杨棣. 2020. 广东大宝山矿区附近农田土壤镉元素输入通量研究[J]. 华南地质与矿产, 36(2): 147-152.

    Google Scholar

    陈三雄, 陈家栋, 谢莉, 廖建文, 张金池, 杨群良. 2011. 广东大宝山矿区植物对重金属的富集特征[J]. 水土保持学报, 25(6): 216-220.

    Google Scholar

    陈一萍. 2008. 重金属超积累植物的研究进展[J]. 环境科学与管理, 33(3): 20-24.

    Google Scholar

    程睿. 2020. 铜矿弃渣场下游农田土壤重金属污染特征及健康风险评价[J]. 环境工程技术学报, 10(2): 280-287.

    Google Scholar

    崔潇, 周妍如, 刘孝阳, 白中科. 2021. 平朔露天煤矿复垦区不同地质层组岩土质量综合评价[J]. 水文地质工程地质, 48(2): 164-173.

    Google Scholar

    崔照豪. 2018. 铁尾矿土壤化利用植物-微生物联合修复与改良技术研究[D]. 济南: 山东大学, 1-82.

    Google Scholar

    邓敏, 程蓉, 舒荣波. 2021. 攀西矿区典型重金属污染土壤化学-微生物联合修复技术探索[J]. 矿产综合利用, 4: 1-9.

    Google Scholar

    董慧, 孔娇艳, 和丽萍, 秦立, 王苗, 赵彦波, 魏中华, 李国泰, 吴见珣, 康绍果. 2021. 云南某化工厂重金属复合污染土壤固化稳定化修复中试[C]//中国环境科学学会环境工程分会, 中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(三), 7.

    Google Scholar

    关亮, 郭观林, 汪群慧, 李发生. 2010. 不同胶结材料对重金属污染土壤的固化效果[J]. 环境科学研究, 23(1): 106-111.

    Google Scholar

    关锌. 2016. 内蒙古地区矿山地质环境恢复治理浅析——以神东煤田为例[J]. 中国地质灾害与防治学报, 27(3): 143-147.

    Google Scholar

    郭超, 文宇博, 杨忠芳, 李伟, 管冬兴, 季峻峰. 2019. 典型岩溶地质高背景土壤镉生物有效性及其控制因素研究[J]. 南京大学学报(自然科学), 55(4): 678-687.

    Google Scholar

    郭维君, 蒋孝文, 陈学军, 杨明显, 陈书文, 覃世福. 2010. 金属矿山重金属污染废弃地土壤修复技术研究[J]. 安徽农业科学, 38(22): 11954-11956.

    Google Scholar

    郝汉舟, 陈同斌, 靳孟贵, 雷梅, 刘成武, 祖文普, 黄莉敏. 2011. 重金属污染土壤稳定/固化修复技术研究进展[J]. 应用生态学报, 22(3): 816-824.

    Google Scholar

    何芳, 徐友宁, 乔冈, 刘瑞平. 2010. 中国矿山环境地质问题区域分布特征[J]. 中国地质, 37(5): 1520-1529.

    Google Scholar

    何芳, 乔冈, 刘瑞平, 陈华清. 2013. 矿山土地复垦模式探讨[J]. 西北地质, 46(2): 201-209.

    Google Scholar

    何苏祺, 肖尧, 钟安良, 郭丹花, 胡杰华. 2021. 无患子皂苷与柠檬酸协同洗脱污染土壤中镉铅[J]. 化工环保, 41(1): 196-201.

    Google Scholar

    何玉君, 孙梦荷, 沈亚婷, 帅琴, 罗立强. 2020. 超富集植物与重金属相互作用机制及应用研究进展[J]. 岩矿测试, 39(5): 639-657.

    Google Scholar

    何振嘉. 2020. 煤矿区重金属污染的危害及其治理技术分析[J]. 陕西煤炭, 39(2): 73-75, 137.

    Google Scholar

    侯李云, 曾希柏, 张杨珠. 2015. 客土改良技术及其在砷污染土壤修复中的应用展望[J]. 中国生态农业学报, 23(1): 20-26.

    Google Scholar

    黄春晓. 2011. 重金属污染土壤原位微生物修复技术及其研究进展[J]. 中原工学院学报, 22(3): 41-44.

    Google Scholar

    黄益宗, 郝晓伟, 雷鸣, 铁柏清. 2013. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 32(3): 409-417.

    Google Scholar

    黄永泉, 危超, 何景媛. 2012. 基于灰色关联分析法的江西省矿山环境质量评价[J]. 资源调查与环境, 33(4): 268-273.

    Google Scholar

    敬佩, 李光德, 刘坤, 张中文, 张世远, 焦伟. 2009. 蚯蚓诱导对土壤中铅镉形态的影响[J]. 水土保持学报, 23(3): 65-68, 96.

    Google Scholar

    蓝楠. 2014. 矿区村民饮水安全亟待关注——广东大宝山矿区废水污染40余年致沿河400余人患癌案引发的思考[J]. 环境保护, 42(13): 49-51.

    Google Scholar

    李非里, 邵鲁泽, 吴兴飞, 陆敏英. 2021. 植物修复重金属强化技术和间套种研究进展[J]. 浙江工业大学学报, 49(3): 345-354.

    Google Scholar

    李国政. 2019. 新时代矿山地质修复模式的升级与重塑: 基于"地质修复3.0" 的概念分析[J]. 西北地质, 52(4): 270-278.

    Google Scholar

    李小龙, 王雪冬. 2018. 山东废弃石灰岩矿山地质环境特征与治理恢复探索[J]. 地质与资源, 27(1): 89-92.

    Google Scholar

    廖晓勇, 陈同斌, 阎秀兰, 谢华, 翟丽梅, 聂灿军, 肖细元, 武斌. 2007. 金昌镍铜矿区植物的重金属含量特征与先锋植物筛选[J]. 自然资源学报, (3): 486-495.

    Google Scholar

    刘利, 张嘉雯, 陈奋飞, 盛晟, 田自强, 王俭. 2020. 衡水湖底泥重金属污染特征及生态风险评价[J]. 环境工程技术学报, 10(2): 205-211.

    Google Scholar

    刘晓媛, 刘品祯, 杜启露, 沈乾杰, 吴迪. 2019. 地质高背景区铅锌矿废弃地土壤重金属污染评价[J]. 有色金属(冶炼部分), (2): 76-82.

    Google Scholar

    刘永光, 孙向阳, 李金海, 张国祯, 杨建东, 王红利, 刘克锋. 2012. 基于土壤理化性状的北京市门头沟区废弃煤矿工程恢复效果分析[J]. 中国农学通报, 28(14): 246-251.

    Google Scholar

    林荩, 梁文静, 焦旸, 杨莉, 范亚宁, 田涛, 刘晓萌. 2021. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 48(3): 749-763.

    Google Scholar

    骆永明, 滕应. 2018. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 33(2): 145-152.

    Google Scholar

    莫良玉, 范稚莲, 陈海凤. 2013. 不同铵盐去除农田土壤重金属研究[J]. 西南农业学报, 26(6): 2407-2411.

    Google Scholar

    綦峥, 齐越, 杨红, 张铁林, 凌娜. 2020. 土壤重金属镉污染现状、危害及治理措施[J]. 食品安全质量检测学报, 11(7): 2286-2294.

    Google Scholar

    曲磊, 石琛. 2019. 土壤重金属修复技术研究进展[J]. 中国金属通报, (9): 178-179.

    Google Scholar

    曲永军. 2021. 土壤重金属污染修复技术[J]. 乡村科技, 12(10): 97-98.

    Google Scholar

    沈振国, 陈怀满. 2000. 土壤重金属污染生物修复的研究进展[J]. 农村生态环境, 16(2): 39-44.

    Google Scholar

    水新芳, 赵元艺, 王强. 2021. 矿山重金属污染土壤修复技术进展及展望[J]. 地质论评, 67(3): 752-766.

    Google Scholar

    宋伟, 陈百明, 刘琳. 2013. 中国耕地土壤重金属污染概况[J]. 水土保持研究, (2): 293-298.

    Google Scholar

    宋文, 成少平, 迟晓杰, 艾艳君, 谷海红. 2021. 重金属污染土壤修复遥感监测研究进展[J]. 矿产综合利用, (4): 21-28.

    Google Scholar

    孙涛, 陆扣萍, 王海龙. 2015. 不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J]. 浙江农林大学学报, 32(1): 140-149.

    Google Scholar

    谭科艳, 王喆, 蔡敬怡, 陈燕芳, 王卓, 刘久臣, 汤奇峰, 袁欣, 杨宏. 2017. 地球化学工程技术修复江西某Pb超标耕地的应用[J]. 地球学报, 38(6): 953-960.

    Google Scholar

    田杰, 罗琳, 范美蓉, 魏建宏, 胡波, 刘艳. 2012. 赤泥对污染土壤中Cd, Pb和Zn形态及水稻生长的影响[J]. 土壤通报, 43(1): 195-199.

    Google Scholar

    邬光海, 王晨昇, 陈鸿汉. 2020. 内蒙古废弃钨钼矿区周围土壤重金属污染生态环境评价及成因分析[J]. 中国地质, 47(6): 1838-1852.

    Google Scholar

    王泓博, 苟文贤, 吴玉清, 李伟. 2021. 重金属污染土壤修复研究进展: 原理与技术[J]. 生态学杂志, 40(8): 2277-2288.

    Google Scholar

    王华, 唐树梅, 廖香俊, 曹启民, 杨安富, 王汀忠. 2007. 锰超积累植物——水蓼[J]. 生态环境, 16(3): 830-834.

    Google Scholar

    王锐, 于宗灵, 关旸. 2013. 土壤镍污染植物修复的研究概况[J]. 环境科学与管理, 38(8): 111-114.

    Google Scholar

    王新, 贾永锋. 2007. 土壤砷污染及修复技术[J]. 环境科学与技术, (2): 107-110, 121.

    Google Scholar

    韦朝阳, 陈同斌, 黄泽春, 张学青. 2002. 大叶井口边草——一种新发现的富集砷的植物[J]. 生态学报, 22(5): 777-778.

    Google Scholar

    魏树和, 周启星, 王新. 2005. 超积累植物龙葵及其对镉的富集特征[J]. 环境科学, 24(3): 167-171.

    Google Scholar

    吴双桃, 吴晓芙, 胡曰利, 陈少瑾, 胡劲召, 陈宜菲, 谢凝子. 2004. 铅锌冶炼厂土壤污染及重金属富集植物的研究[J]. 生态环境, 13(2): 156-157, 160.

    Google Scholar

    肖鹏飞, 吴德东. 2021. 全球植物修复研究文献计量分析[J]. 生态学报, 41(21): 8685-8695.

    Google Scholar

    谢东, 李丝雨, 何森, 潘涛, 董伟. 2019. 重金属污染土壤修复植物根际微生态的研究进展[J]. 江西理工大学学报, 40(5): 64-71.

    Google Scholar

    徐友宁, 张江华, 柯海玲, 刘瑞萍, 陈华清. 2013. 某金矿区农田土壤镉污染及其环境效应[J]. 中国地质, 40(2): 636-643.

    Google Scholar

    薛生国, 陈英旭, 林琦, 徐圣友, 王远鹏. 2003. 中国首次发现的锰超积累植物——商陆[J]. 生态学报, (5): 935-937.

    Google Scholar

    闫德民, 赵方莹, 孙建新. 2013. 铁矿采矿迹地不同恢复年限的植被特征[J]. 生态学杂志, 32(1): 1-6.

    Google Scholar

    杨琼, 杨忠芳, 张起钻, 刘旭, 卓小雄, 吴天生, 王磊, 韦雪姬, 季峻峰. 2021. 中国广西岩溶地质高背景区土壤-水稻系统Cd等重金属生态风险评价[J]. 中国科学: 地球科学, 51(8): 1317-1331.

    Google Scholar

    杨威杉, 於方, 赵丹, 李猛. 2018. 滇池周边磷矿复垦区土壤重金属污染特征研究[J]. 生态环境学报, 27(6): 1145-1152.

    Google Scholar

    杨晓琼. 2017. 单纯植物修复重金属铬(Cr)污染土壤的研究进展[J]. 种子科技, 35(5): 113+116.

    Google Scholar

    杨秀敏, 胡振琪, 李宁, 杨秀红, 张迎春. 2009. 钠基膨润土对重金属离子Cu2+, Zn2+, Cd2+的吸附实验[J]. 煤炭学报, 34(6): 819-822.

    Google Scholar

    叶攀骅, 王洋, 刘可慧, 周振明, 陈孟林, 刘华, 苏银萍, 于方明. 2016. 改良剂对锰超富集植物短毛蓼锰吸收及抗氧化酶系统的影响[J]. 土壤, 48(1): 109-116.

    Google Scholar

    余春浩. 2019. 石油泄漏对土壤的污染[J]. 当代化工, 48(10): 2385-2387, 2423.

    Google Scholar

    余天红, 黎华寿. 2014. 砷污染土壤微生物修复机制及其研究进展[J]. 环境污染与防治, 36(12): 77-82.

    Google Scholar

    张小江, 宗志强, 叶静宏, 秦艳, 彭程, 王冬芳, 蔡冬清. 2021. 土壤重金属污染强化电动修复研究进展[J]. 东华大学学报(自然科学版), 47(6): 91-99.

    Google Scholar

    张新艳, 王起超. 2009. 含汞有害固体废弃物的固化/稳定化技术研究进展[J]. 环境科学与技术, 32(9): 110-115.

    Google Scholar

    张学洪, 罗亚平, 黄海涛, 刘杰, 朱义年, 曾全方. 2006. 一种新发现的湿生铬超积累植物——李氏禾(Leersia hexandra Swartz)[J]. 生态学报, (3): 950-953.

    Google Scholar

    张永双, 孙璐, 殷秀兰, 孟晖. 2017. 中国环境地质研究主要进展与展望[J]. 中国地质, 44(5): 901-912.

    Google Scholar

    赵磊. 2009. 白音诺尔铅锌矿铅超富集植物筛选及其耐性研究[D]. 呼和浩特: 内蒙古农业大学, 1-41.

    Google Scholar

    赵述华, 陈志良, 张太平, 彭晓春, 张越男, 丁琮, 雷国建. 2013. 重金属污染土壤的固化/稳定化处理技术研究进展[J]. 土壤通报, 44(6): 1531-1536.

    Google Scholar

    赵云峰, 张涛, 田志君, 吴大鹏, 梁凯旋, 韩娟娟. 2020. 矿区周边重金属污染土壤植物修复技术研究进展[J]. 城市地质, 15(1): 22-33.

    Google Scholar

    郑太辉, 王凌云, 陈晓安. 2015. 矿区重金属植被修复研究进展和趋势[J]. 环境工程, 33(6): 148-152.

    Google Scholar

    周连碧, 王琼, 杨越晴. 2021. 典型金属矿区污染土壤生态修复研究与实践进展[J]. 有色金属(冶炼部分), (3): 10-18.

    Google Scholar

    周智全, 张玉歌, 徐欢欢, 顾燕. 2016. 化学淋洗修复重金属污染土壤研究进展[J]. 绿色科技, (24): 12-15.

    Google Scholar

    朱丹尼, 邹胜章, 周长松, 卢海平, 谢浩. 2021. 不同耕作类型下土壤-农作物系统中汞、砷含量与生态健康风险评价[J]. 中国地质, 48(3): 708-720.

    Google Scholar

    朱健泷, 李婷, 肖月琦, 汪凯. 2021. 化学淋洗修复Pb污染土壤的研究进展[J]. 能源与环境, (5): 20-22.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(2594) PDF downloads(70) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint