What is the subtribe Glossonematinae (Apocynaceae: Asclepiadoideae)? A phylogenetic study based on cpDNA spacer

SIGRID LIEDE* FLS, ULRICH MEVE and ANGELIKA TÄUBER

Lehrstuhl f. Pflanzensystematik, Universität Bayreuth, Bayreuth, Germany
Received June 2001; accepted for publication February 2002

Abstract

Evidence from the chloroplast $\operatorname{trn} \mathrm{T}$ - L spacer, $\operatorname{trn} \mathrm{L}$ intron and $\operatorname{trn} \mathrm{L}-\mathrm{F}$ spacer shows the subtribe Glossonematinae of the tribe Asclepiadeae, hitherto composed of the Arabian and North African genera Glossonema, Odontanthera and Solenostemma, not to be monophyletic. While the affinities of Solenostemma cannot be determined with certainty at present, molecular, karyological and morphological evidence suggests that Glossonema and Odontanthera are closely allied to Pentarrhinum, an African genus of five species, belonging to the Cynanchinae. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 139, 145-158.

ADDITIONAL KEYWORDS: Asclepiadeae - classification - DNA-sequences - karyology - morphology - trnT-L spacer - trnL intron - trnL-F spacer.

INTRODUCTION

The Asclepiadeae, characterized by hanging pollinia, constitute a large (c. 100 genera), well-defined monophyletic tribe that has held up in recent molecular analyses (Sennblad, 1997; Civeyrel et al., 1998; Sennblad \& Bremer, 2000). Schumann (1895) circumscribed five subtribes in the Asclepiadeae, solely based on corona characters. In his system (Schumann, 1895), the subtribe Glossonematinae was defined by the presence of a corolline corona and accommodated 16 genera with a wide geographical range. However, a corona attached to the corolla is generally thought to be a plesiomorphic character in the Asclepiadeae (Liede \& Kunze, 1993), unless a secondarily corolline position of the corona can be argued for. One such example can be found in Metastelma (e.g. M. parviflorum (Sw.) R. Br. ex Schult.), a genus of the Metastelminae in which the corona is normally gynostegial. True to his philosophy, Schumann (1895) placed Irmischia, a segregate genus for Metastelma species with a corolline corona, in the Glossonematinae, while he placed Metastelma in the Asclepiadinae. To remedy such apparent incongruencies without abolishing the

[^0]subtribal category altogether, Liede (1997a) attempted to define natural subtribes for the tribe Asclepiadeae based on morphological characters. Of the 16 genera of Schumann's (1895) Glossonematinae (Table 1), two are not even members of the tribe Asclepiadeae. Conomitra was recognized as a member of the tribe Ceropegieae (Field, 1982), and Sacleuxia as a Periplocoideae (Liede \& Albers, 1994). Of the 14 remaining genera, Liede (1997a) transferred one (Parapodium) to Asclepiadinae, a position supported both by its erect habit and corona structure (Kunze, 1997). Two genera (Araujia, Turrigera) were transferred to Oxypetalinae (Liede, 1997a) because of their long corolla tube combined with a pronounced stylar head. Three genera (Fischeria, Macroscepis, Schubertia) were transferred to Gonolobinae (Liede, 1997a) because they possess the crested pollinarium and gynostegial structure typical for this subtribe (see Kunze, 1995). Four genera, the palaeotropical Oxystelma and the neotropical Irmischia, Philibertia and Rhyssostelma, were transferred to Metastelminae (Liede, 1997a). Both Philibertia and Oxystelma were included in Sarcostemma R. Br. by Holm (1950) because of their almost identical corona structure, but recent morphological, karyological and molecular analysis (Liede, 1996c; Liede \& Täuber, 2000) has shown that Oxys-

Table 1. Glossonematinae sensu Schumann (1895)

Genus	Currently accepted name	Tribal and subtribal affiliation ${ }^{1}$
Araujia Brot. ${ }^{2}$		Asclepiadeae - Oxypetalinae
Conomitra Fenzl		Ceropegieae
Fischeria DC.		Asclepiadeae - Gonolobinae
Glossonema Decne. ${ }^{2}$		Asclepiadeae - Glossonematinae
Irmischia Schltdl. ${ }^{2}$	Metastelma R. Br.	Asclepiadeae - Metastelminae
Macroscepis Kunth		Asclepiadeae - Gonolobinae
Oxystelma R.Br. ${ }^{2}$		Asclepiadeae - unclassified as to subtribe
Parapodium E. Mey.		Asclepiadeae - Asclepiadinae
Philibertia Kunth ${ }^{2}$		Asclepiadeae - Metastelminae
Prosopostelma Baill.		Asclepiadeae ${ }^{3}$
Rhyssostelma Decne.		Asclepiadeae - Metastelminae
Sacleuxia Baill.		Periplocoideae
Schubertia Mart. ${ }^{2}$		Asclepiadeae - Gonolobinae
Solenostemma Hayne ${ }^{2}$		Asclepiadeae - Glossonematinae
Steinheilia Decne. ${ }^{2}$	Odontanthera Wight	Asclepiadeae - Glossonematinae
Turrigera Decne.	Tweedia Hook. \& Arn.	Asclepiadeae - Oxypetalinae

${ }^{1}$ Based on Liede \& Albers, 1994; Liede, 1997a, 2001; and Liede \& Täuber, 2002.
${ }^{2}$ Genera included in this study.
${ }^{3}$ Baillon (1890) neither indicated a species nor a specimen for Prosopostelma, thus making the name a nomen invalidum. In the Baillon herbarium in P a specimen annotated 'Prosopostelma angolense Welw.' (a species never published) in Baillon's handwriting is extant, representing a species of Tylophora R. Br. (Asclepiadeae - Tylophorinae). The later application of the name to the succulent Madagascan Cynanchum - relative Folotsia Costantin \& Bois (Asclepiadeae: Cynanchinae) by Jumelle \& H. Perrier (Rev. gén. Bot. 23: 256 (1911) et Compte Rend. Hebd. Séances Acad. Sci.152: 1017 (1911) for Folotsia madagascariense (Jum. \& H. Perrier) Jum. \& H. Perrier clearly represents a misinterpretation of Baillon's (1890) description.
telma occupies an isolated position in Old World Asclepiadeae and Philibertia is more closely related to other New World genera than to either Sarcostemma or Oxystelma. One genus (Prosopostelma) is a nomen invalidum (see Table 1 for authors and current placement of genera).

Only three genera, Glossonema (five species, one with two subspecies, according to Bullock, 1955; Raimondo \& Fici, 1993), and the monotypic genera Odontanthera and Solenostemma, remained in the smallest subtribe Glossonematinae. All three genera occur in Arabia, with Glossonema extending as far as Pakistan and northern Kenya. Glossonema is the only genus of Asclepiadoideae for which andromonoecy has been reported (Ali \& Ali, 1996). Solenostemma is of potential medicinal value (Tharib, El-Migirab \& Veitch, 1986). As a possible synapomorphy for the Glossonematinae, Liede (1997a) suggested the plump, often mottled fruits, which can be arranged in a morphological series from smooth (Solenostemma) to tuberculate (Odontanthera) to possessing soft spines
(Glossonema). Bruyns (1999) has argued that mottled fruits cannot constitute a synapomorphy because they are frequent in the Ceropegieae; however, they are exceedingly rare in Asclepiadeae and thus might constitute a synapomorphy within this tribe.

The present paper continues the effort started by Liede (1999, 2001) to examine the monophyly of the six subtribes suggested by Liede (1997a) based on morphological considerations. In this study, the smallest subtribe, Glossonematinae, is studied in detail, integrating all available morphological and karyological information. An independent molecular dataset not only provides a means to test the monophyly of the subtribe, but also to assess the value of specific morphological (corona, fruits and seeds) and karyological characters as synapomorphies. CpDNA spacers (trnTL spacer, the $\operatorname{trn} \mathrm{L}$ intron and $\operatorname{trn} \mathrm{L}-\mathrm{F}$ spacer, Taberlet et al., 1991) have been used widely to clarify phylogenies at the subfamiliar and subgeneric level, while resolution is often too low for species level problems (for literature and discussion, see Gielly \& Taberlet, 1996).

In the Asclepiadoideae this region has been used successfully to address phylogenetic problems at the generic and (sub-) tribal level as well (e.g. Liede \& Täuber, 2000; Meve \& Liede, 2001).

MATERIAL AND METHODS

DNA SEQUENCE ANALYSIS

Taxa

Material was available for analysis of all three genera of Glossonematinae sensu Liede (1997a) (for authors of species and vouchers, see Table 2). Of the five Glossonema species, material suitable for sequencing was available only for the widespread G. boveanum (ssp. boveanum). However, these five species are very similar in the morphological structure of all organs, none is considered of doubtful generic affiliation and none is geographically isolated. Species delimitation is based on quantitative characters (such as floral size or number of flowers per inflorescence, Raimondo \& Fici, 1993) or the shape of corona lobes and leaves (Bullock, 1955). Therefore, in a study focusing on generic relationships, one representative species can be considered sufficient.

Secamone R. Br. of the Secamoneae was chosen as a most distant outgroup, and Gymnema R. Br. as representative of the Marsdenieae and Ceropegia L. as a member of the Ceropegieae. In the Asclepiadeae, representative members of all subtribes were selected. As far as material availability would permit, representatives of genera placed in the Glossonematinae by Schumann (1895), but attributed to other subtribes by Liede (1997a), were selected, resulting in a total of eight of the original 16 genera. Calotropis R. Br. and Pergularia L. were selected as representatives for the Asclepiadinae, Astephanus R. Br. and Microloma R. Br. for the Astephaninae s.str., Schubertia for the Gonolobinae, Araujia for the Oxypetalinae, Tylophora R. Br. and Pentatropis R. Br. for the Tylophorinae. For the subtribe Metastelminae, four representatives were selected, one species each of Blepharodon Decne., Funastrum E. Fourn., Metastelma and Philibertia. For the Cynanchinae, which have been split from the Metastelminae recently following molecular study (Liede \& Täuber, 2002), several representatives of the large genus Cynanchum L. were selected to cover the whole geographical range of the genus. Of section Cynanchum, C. ellipticum, an African species, C. obovatum, a leafy Malagasy species, and C. compactum, a leafless Malagasy species, were chosen. The Asian C. auriculatum and the widespread South American C. montevidense were selected to represent sect. Rhodostegiella (Pobed.) Tsiang and subgen. Mellichampia Sundell, respectively. Of the African Pentarrhinum E.Mey. and the Asian Metaplexis R. Br. one species
of each was chosen as further representatives of Cynanchinae. After an initial analysis showed close and well-supported relationships between Pentarrhinum, Glossonema and Odontanthera, sampling was extended so that four of the five Pentarrhinum species were included in the final analysis; the fifth species, P. balense (Liede) Liede is only known from the type specimen and could not be included. In addition, Oxystelma, an Asclepiadeae genus not affiliated with any of the presently recognized subtribes according to recent molecular results (formerly Metastelminae, but see Liede \& Täuber, 2000), was included. Of the 29 taxa studied, 14 were sequenced for the present study, the remaining 15 were part of previous studies.

DNA extraction and PCR

DNA was isolated from fresh or dried leaf tissue according to Doyle \& Doyle (1987). PCR primers and protocol for the plastid $\operatorname{trn} \mathrm{T}-\mathrm{L}$ and $\operatorname{trn} \mathrm{L}-\mathrm{F}$ spacers and the trnL intron followed Taberlet et al. (1991).

Sequences were obtained on an ABI Prism Model 310 Version 3.0 sequencer. All sequences have been deposited at EMBL (Table 2).

Data analysis

Sequences were prealigned with Perkin Elmer Sequence Navigator Version 1.0.1; the alignment was cleaned manually. The alignment [TreeBASE study accession number S704, matrix accession numbers M1125, M11226, Sanderson et al., 1994) and available from the authors] comprises 29 taxa and 2153 characters [1109 sequence characters and 16 indels in the trnT-L spacer (primers a-b), 572 sequence characters and 7 indels in the trnL-intron (primers c-d), and 440 sequence characters and 9 indels in the $\operatorname{trnL-F}$ spacer (primers e-f)]; three data cells are unknown, affecting the beginning of the trnL intron in Cynanchum obovatum.
Phylogenetic analysis and tests for clade support were performed using PAUP* version 4.0 (Swofford, 1998) on a MacIntosh Powerbook G3.

In a first analysis, indels were coded as 'missing', but all sequence characters were analysed, regardless of gaps and potential ambiguities (dataset 1). In a second analysis, indels were excluded by deletion of 'missing/ambiguous' characters. In addition, the ambiguously aligned region between $692-780 \mathrm{bp}$ (poly A in the trnT-L intron) was removed (dataset 2). Finally, potentially parsimony-informative indels were coded separately following the 'simple gap coding' method of Simmons \& Ochoterena (2000) and added to dataset 2 . In the ambiguous region of the trnT-L spacer between 692 and 780 bp no separate gap
Table 2. Species included in molecular analysis (tribal and subtribal affiliation of genera is based on Liede \& Albers, 1994; Liede, 1997a and updated following Liede, 2001 and Liede \& Täuber, 2002)

Species	Origin		Voucher	EMBL acc. number		
				$\operatorname{trn} \mathrm{T}-\mathrm{L}$ spacer	$t r n \mathrm{~L}$ intron	$t r n \mathrm{~L}-\mathrm{F}$ spacer
OUTGROUPS						
${ }^{1}$ Secamone alpinii Schult. (Secamoneae)	South Africa	Liede 2931	UBT	AJ428828	AJ428829	AJ428830
${ }^{1}$ Gymnema sylvestre (Retz.) Schult. (Marsdenieae)	Cameroon	Meve 919	B, UBT	AJ402118	AJ402137	AJ402142
${ }^{1}$ Ceropegia juncea Roxb. (Ceropegieae)	India	Hanaček et al. 92	UBT	AJ428798	AJ428799	AJ428800
Asclepiadeae						
Araujia hortorum E. Fourn. (Oxypetalinae)	Argentina	Liede \& Conrad 3007	ULM	AJ428792	AJ428793	AJ428794
Astephanus triflorus R.Br. (Astephaninae)	South Africa	Williams 659	MO	AJ410187	AJ410188	AJ410189
Blepharodon grandiflorum Benth. (Metastelminae)	Venezuela	Liede \& Meve 3318	UBT	AJ290836	AJ290837	AJ290838
${ }^{1}$ Calotropis procera (Ait.) Ait.f. (Asclepiadinae)	Gambia	Huber s.n.	UBT	AJ428795	AJ428796	AJ428797
${ }^{1}$ Cynanchum auriculatum Royle (Cynanchinae)	China	ex hort. Nanjing	in cult. Bayreuth	AJ410196	AJ410197	AJ410198
${ }^{1}$ Cynanchum compactum Choux (Cynanchinae)	Madagascar	Barad s.n.	UBT	AJ290842	AJ290843	AJ290844
${ }^{1}$ Cynanchum ellipticum (Harv.) R.A. Dyer (Cynanchinae)	South Africa	Liede 2933	UBT	AJ290847	AJ290846	AJ290845
${ }^{1}$ Cynanchum montevidense Spreng. (Metastelminae)	Argentina	Liede \& Conrad 3100	ULM	AJ290848	AJ290849	AJ290850
${ }^{1}$ Cynanchum obovatum (Decne.) Choux (Cynanchinae)	Madagascar	Mangelsdorff 14	UBT	AJ428801	AJ428802	AJ428803
${ }^{1}$ Funastrum clausum (Jacq.) Schult. (Metastelminae)	Mexico	Liede \& Conrad 2599	MO, MSUN	AJ290860	AJ290861	AJ290862
${ }^{1}$ Metaplexis japonica Makino (Cynanchinae)	Russia	ex BG Tartu s.n.	UBT	AJ428810	AJ428811	AJ428812

Metastelma linearifolium A. Rich. (Metastelminae)	Cuba	Urquiola, Zizka \& Dressler 561	FR	AJ428807	AJ428808	AJ428809
${ }^{1}$ Microloma tenuifolium K.Schum. (Astephaninae)	South Africa	Albers s.n.	MSUN	AJ410220	AJ410221	AJ410222
${ }^{1}$ Oxystelma bornouense R.Br. (presently unclassified as to subtribe)	Kenya	Liede \& Newton 3210	UBT	AJ290883	AJ290882	AJ290881
Pentarrhinum abyssinicum Decne. (Cynanchinae)	Tanzania	Bidgood, Mbago \& Vollesen 2240	K (MWC 8418)	AJ428816	AJ428817	AJ428818
Pentarrhinum gonoloboides (Schltr.) Liede (Cynanchinae)	Kenya	Liede \& Newton 3157	UBT	AJ428819	AJ428820	AJ428821
${ }^{1}$ Pentarrhinum insipidum E.Mey. (Cynanchinae)	South Africa	Liede 2940	UBT	AJ410232	AJ410233	AJ410234
Pentarrhinum somaliense (Schltr.) Liede (Cynanchinae)	Ethiopia	Mesfin \& Vollesen 4238	UPS	AJ428822	AJ428823	AJ428824
${ }^{1}$ Pentatropis nivalis (J.F. Gmel.) D.V. Field \& J.R.I. Wood (Tylophorinae)	Kenya	Meve 949	B, UBT	AJ410238	AJ410239	AJ410240
${ }^{1}$ Pergularia daemia (Forssk.) Chiov. (Asclepiadinae)	Kenya	Masinde 888	in cult. Bayreuth	AJ290891	AJ290892	AJ290893
${ }^{1}$ Philibertia gilliesii Hook. \& Arn. (Metastelminae)	Argentina	Liede \& Conrad 3098	ULM, MSUN	AJ290897	AJ290898	AJ290899
Schubertia grandiflora Mart. \& Zucc. (Gonolobinae)	Argentina	Liede \& Conrad 3033	ULM, MSUN	AJ428825	AJ428826	AJ428827
${ }^{1}$ Tylophora indica (Burm.f) Merrill (Tylophorinae)	India	Bruyns s.n.	MSUN	AJ410262	AJ410263	AJ410264
INGROUP (Glossonematinae s. Liede, 1997a) ${ }^{1}$ Glossonema boveanum (Decne.) Decne. ssp. boveanum	Kenya	Liede \& Newton 3239	ULM	AJ428804	AJ428805	AJ428806
Odontanthera radians (Forssk.) D.V. Field	Yemen	Müller-Hohenstein \& Deil 1967	UBT	AJ428813	AJ428814	AJ428815
Solenostemma oleifolium (Nect.) Bullock \& E.A. Bruce ex Bullock	Egypt	Aziz s.n.	MO	AJ428831	AJ428832	AJ428833

[^1]150 S. LIEDE $E T$ AL.
coding was performed (dataset 3). Contrary to the from Kenya (Voucher: Liede \& Newton 3225) were investigated. The investigations were carried out

 Carnoy's solution for 24 h at $20^{\circ} \mathrm{C}$ and stained with carmine for 24 h at $60^{\circ} \mathrm{C}$ (Snow, 1963).

RESULTS

> SISATVNV สonanoas vNa
 less of gaps and ambiguities (dataset 1, 183 parsimony
informative characters) resulted in 78 most parsimonious trees if uninformative characters are excluded CI 90 trees for all characters (length $=322$ steps,
and $=0.795, \mathrm{RC}=0.553$); the strict consensus tree is shown in Figure 1A.
Parsimony analysis of dataset 2 (156 parsimony informative characters) resulted in 240 most parsimo-
nious trees (length $=272$ steps, $\mathrm{CI}=0.688, \mathrm{RI}=0.797$, nious trees (length $=272$ steps, $\mathrm{CI}=0.688, \mathrm{RI}=0.797$,

Separate coding of indels (dataset 3, 186 parsimony informative characters; indel 6 in the trnL L-F spacer
 informative) yielded 132 most parsimonious trees
(length $=322$ steps, $\mathrm{CI}=0.678 \mathrm{RI}=0.8, \mathrm{RC}=0.544$).

 subclades of the New World clade weakly supported by dataset 1 are collapsed and so is the Solenostemma - Oxystelma clade, that was also only weakly

 nested in Cynanchum, although with weak support.

The maximum likelihood analysis under the HKY85 model (Hasegawa et al., 1985) yields one most likely
tree (- Ln likelihood $=6739.57$). This tree (Fig. 2) tree $(-$ Ln likelihood $=6739.57)$. This tree $($ Fig. 2)
corresponds in most respects to the strict consensus
 Cynanchum ellipticum is sister to Metaplexis - C. auriculatum, and C. montevidense is sister to the two Malagasy Cynanchum species (Fig. 2).

גొOTOHd甘ON VNOצOD

Figure 2. Maximum likelihood tree (- Ln likelihood $=6739.57$). Single underlines mark Glossonematinae genera sensu Schumann (1895), double underlines, Glossonematinae genera sensu Liede (1997a). Thick lines indicate monophyletic subtribes. The black square indicates the group of taxa with thick-walled, ornamented fruits and a gynostegial corona displaced toward the corolla. Asterisks denote the taxa for which a large chromosome pair has been found. Classification according to Liede \& Albers (1994), Liede (1997a, 2001) and Liede \& Täuber (2002) is indicated.
might lead to the conclusion that they are rather dissimilar. In Odontanthera the corona appears to be of true corolline origin, because the corona lobes, that are fused in a ring-like fashion, are placed on and fused with the upper parts of the corolla tube (see plate 'Odontandra reniformis' in Wight, 1838). In Glossonema (e.g. G. varians, Miller \& Morris, 1988: 44, 45E), and in Pentarrhinum gonoloboides (Fig. 3A) the corona is basally fused with the corolla, while in P. insipidum the corona is completely separate from the corolla (Kunze, 1990: Fig. 110; Nicholas \& Liede, 1992). However, careful dissections revealed (Kunze, unpubl.) that all coronal structures have been initiated by the gynostegium either in staminal position alone (Glossonoma), or in both staminal and intersta-
minal position (Odontanthera, Pentarrhinum: Fig. 3A; Kunze, 1997: fig. 7) to form a gynostegial corona of staminal and interstaminal parts [C(is) sensu Liede \& Kunze, 1993], the typical coronal structure of Cynanchinae. However, in all three genera the C(is) has undergone a centrifugal shift to fuse either with the corolla base (G. varians, P. gonoloboides), or with (almost) the basal half of the corolla tube (Odontanthera, see plate in Wight, 1838), so that the gynostegial origin of the corona is obscured. The lack of corolline vascular bundles in the corona lobes (Fig. 3A; Kunze, 1990: fig. 110 for Pentarrhinum insipidum) and the considerable distance of the corona lobes to the sinus of the corolla lobes, in which a true corolline corona originates, support a gynostegial rather than a

Figure 3. Pentarrhinum gonoloboides. A. Longitudinal section of flower. B. Pollinarium in frontal view, when attached to the stylar head. C. Pollinarium after removal from the stylar head. D. Section of gynostegium showing a guide rail with apical tooth and one pollinarium naturally attached to the stylar head. (A-D from Liede \& Newton 3157 (UBT); A-D drawn by U. Meve, A from a sketch provided by H. Kunze. (A, anther; C, corolla; C(is), corona of fused interstaminal and staminal parts; ce, caudicle; GR, guide rail; K, corpusculum; N, nectary; S, stylar head; t, anther wing extended in a tiny tooth).
corolline origin of the corona in Pentarrhinum, Glossonema and Odontanthera.

The name Odontanthera refers to the little tooth atop each anther wing (see plate in Wight, 1838), a structure also found in Pentarrhinum gonoloboides (Fig. 3D), but not in any other Cynanchinae known to us. Interestingly, both O. radians (l.c) and P. gonoloboides (Fig. 3B-D) also possess very similar, quite unusual pollinaria with long, frog-leg-shaped caudicles and small pollinia that are ovate in lateral view (Fig. 3B, D) and almost spherical in apical view (Fig. 3C).

Fruit and seed morphology

The follicles in Glossonema and Odontanthera are usually single and ovate to thick-fusiform (Figs 4, 5).

The pericarp is characteristically sculptured at least with pronounced tubercles but usually with soft spines, which can be become hard and sharp during fruit ripening (e.g. Glossonema). The broadly ovate seeds, which are lined by a broad, more or less dentate seed wing are very similar in the two genera (Fig. 6C, D). Their surface is rather smooth, but the testa on the seed body bears papillae and short hairs. The possession of thick-walled fruits with tubercles or spines was the main reason for the transfer of three former Cynanchum species to Pentarrhinum by Liede (1997b), increasing the number of species in Pentarrhinum from two to five. As far as is known, all species develop single follicles, however, complete fruits consisting of two follicles can be found occasionally (see Nicholas \& Liede, 1992). Except for P. balense (see Liede, 1996a) they all possess soft spines

Figure 4. Glossonema boveanum, an annual plant from northern Kenya (Liede \& Newton 3239, ULM); note the widely spaced soft spines of the follicle.
Figure 5. Pentarrhinum insipidum (Liede 2941, UBT) during the dry season near Pretoria; note the tuberculate follicle.
or at least protuberances formed by the pericarp (Figs 4, 5, 6A). Seed morphology, too, broadly conforms to that of Glossonema and Odontanthera, but the testa can be either smooth (e.g. Pentarrhinum insipidum, Fig. 6D) or pubescent (e.g. P. abyssinicum, see Nicholas \& Liede, 1992: 5b).

KARYOLOGY

The Pentarrhinum insipidum individuals studied were not homogeneous with regard to chromosome number; three showed $2 n=22$, while the other two, one from Kenya and one from South Africa, are (predominantly) dysploid with $2 n=24$ chromosomes. Glossonema boveanum showed $2 \mathrm{n}=22$ in all prepared metaphase plates (Fig. 7). However, much more conspicuous, the genomes of the two species are not homogeneous in size. Both taxa possess one pair of exceptional large chromosomes in each chromosome set contrasting to the rest of more or less equally sized chromosomes (Fig. 7). These large chromosomes
measure c. $1.12 \mu \mathrm{~m}$ in length, the regular chromosomes only $c .0 .75 \mu \mathrm{~m}$. Such a size anomaly of a single (or a few) chromosomes has been found in none of the other karyologically investigated species in this study (see Table 2), nor in any of the more than 600 species of Asclepiadoideae hitherto studied karyologically (see Albers \& Meve, 1991, 2001).

DISCUSSION

The gene tree derived from the chloroplast trnT-L spacer, the $t r n \mathrm{~L}$ intron and the $t r n \mathrm{~L}-\mathrm{F}$ spacer does not support the Glossonematinae sensu Liede (1997a) as a monophyletic subtribe of the Asclepiadeae. It shows that Glossonema and Odontanthera are indeed closely related, but they show strong affinities with the Cynanchinae, in particular with Pentarrhinum (Figs 1, 2).

Support for the close relationship of Glossonema, Odontanthera and Pentarrhinum is derived from morphological and karyological observations. The super-

Figure 6. A. Odontanthera radians, follicle (drawn from a photograph in Collenette (1985: 70); B. seed, dorsal side (Turner 41, BM). C. Glossonema boveanum, seed, dorsal side (Liede \& Newton 3239, ULM). D. Pentarrhinum insipidum, seed, dorsal side (Liede 3224, ULM).
ficially different corona structure of these three genera has been shown to follow the same basic pattern of organization, but with a different degree of fusion with the corolla. The 'corolline corona' defined as synapomorphy of the Glossonematinae by Schumann (1895) is in most cases a misinterpretation of a gynostegial corona displaced toward the corolla and fused with it to a variable degree. Such a displacement alone cannot be considered synapomorphous in the Asclepiadeae because it has been observed several times (e.g. Parapodium E. Mey., Asclepiadinae, Kunze (1997); or Macroscepis Kunth, Gonolobinae [U. Meve, unpubl.]).

Glossonema, Odontanthera and Pentarrhinum seem to be better characterized by thick-walled fruits with soft spines. However, in a wider Asclepiadeae context, soft-spined fruits and broadly ovate, dentate seeds are not unique, they also occur in, e.g. Pergularia, Calotropis or Gomphocarpus R. Br., members of the subtribe Asclepiadinae (Liede, 1996b). Fruit morphology, as well as corona morphology, thus shows a considerable degree of parallel evolution within the Asclepiadeae. Within the Cynanchinae, the combination of a gynostegial corona displaced toward the corolla and thick walled fruits characterizes the Glossonema - Odontanthera - Pentarrhinum clade well.

A chromosome number of $2 n=22$ is the typical condition for Asclepiadoideae and has been found in c. 96% of the over 600 species investigated (based on Albers \& Meve, 2001; unpublished counts of Albers \& Meve). The basic chromosome number of $x=11$ is regarded as the primary condition in Apocynaceae as a whole (Van der Laan \& Arends, 1985; Albers, Liede \& Meve 1993). Decreasing basic chromosome numbers deviating from $x=11$ occur rarely in Asclepiadoideae (e.g. $x=10$ in Microloma, Funastrum; Albers et al. 1993) and so do increasing ones (e.g. $x=12$ in Vincetoxicum Wolf, Pergularia, Heterostemma Wight \& Arn.; see Albers et al., 1993; Albers \& Meve, 2001). However, in all reported cases, including Pentarrhinum insipidum, the dysploid $2 n=24$ are restricted to individual plants. The occasional occurrence of the two additional chromosomes marks them as 'accessory chromosomes', so-called B-chromosomes (Rees, 1974), even though they do not show the smaller size characteristic for B-chromosomes. Meiotic studies could clarify their nature; however, such studies could not be conducted due to the lack of appropriate material (e.g. flower buds). The typical variation in B-chromosome frequency among different populations, as in Pentarrhinum insipidum, can be regarded as an adaptative response to varying envi-

Figure 7. Mitotic metaphase plates. A. Glossonema boveanum, $2 n=22$ (Voucher: Liede \& Newton 3239, ULM). B. Pentarrhinum insipidum, $2 n=24$ (Voucher for B: Liede \& Newton 3225, UBT). C. Pentarrhinum insipidum, $2 n=22$ (Voucher: Liede 2940, UBT); photograph published in Albers et al. (1993; fig. 3), there erroneously identified as 'Cynanchum virens'). Arrows mark the pair of large chromosomes.
ronmental conditions (see Rees, 1974). Therefore, the occurrence of accessory chromosomes does not represent a useful character for taxonomic considerations.

Pentarrhinum and Glossonema share a karyological character so far not observed in other Asclepiadoideae, namely, one pair of chromosomes surpassing all other chromosomes by almost a third of total length. Throughout the thousands of metaphase plates of six hundred different species investigated by Albers \& Meve, 2001, and unpublished counts), chromosome size variation within each genome is very low (e.g. Albers \& Meve, 1991). The reason for the enlargement of a pair of chromosomes in Glossonema and Pentarrhinum is unknown. Because the remaining 20 (or 22) chromosomes are fairly homogeneous in size, translocation or fusion events are unlikely, so that additional heterochromatin is most likely responsible for the chromosomal enlargement. While it would be highly desirable to test the remaining species of the Pentarrhinum - Glossonema - Odontanthera clade for this enlarged chromosome pair, the lack of living material or viable seeds has thus far prevented a complete study. Nevertheless, the uniqueness of this karyological peculiarity is a corroboration for a close relationship between Pentarrhinum and Glossonema.

In light of the combined results of the molecular, morphological and karyological investigations, two possibilities exist for the subtribe Glossonematinae sensu Liede (1997a). First, the composition of the subtribe Glossonematinae could be changed to include Glossonema, Odontanthera and Pentarrhinum. Second, the subtribe could be dissolved and Glossonema and Odontanthera could be included in the Cynanchinae to which they undoubtedly are closely related. For the present, the latter solution is preferred because the chromosomal abnormality needs further testing as possible synapomorphy for a subtribe.

Taking the gene tree resulting from the present analysis as the best currently available reflection of phylogenetic relationships between the genera studied, it becomes clear that Solenostemma belongs to none of the subtribes presently recognized in the Asclepiadeae. The idea that it might be related to the Asclepiadinae with which it shares the erect growth form (see Collenette, 1985) is not supported by the sequence data. The clade of Solenostemma and Oxystelma, very weakly supported by the results of parsimony analysis of the sequence data alone (Fig. 1A) is not retrieved if the indels are added (Fig. 1B). Other morphological characters do not give clues as to the affinities of Solenostemma; karyological data are not available at present. Again, several possibilities exist: (1) Solenostemma could be understood as sole member of a subtribe in its own right, leaving its affinity still unknown; (2) a subtribal concept in the Asclepiadeae could be abolished altogether; (3) Solenostemma could be treated as a genus of uncertain placement in the Asclepiadeae. While the first solution would be nomenclaturally correct, the data at hand (Liede, 1999; Liede \& Täuber, 2000; Liede, 2001) show that there are several genera (e.g. Oxystelma) that cannot be linked at present to any larger group of genera. Thus, the number of subtribes might soon become inflationary. Conversely, abolishing subtribes altogether reduces the information on the relationships within the tribe Asclepiadeae, because subtribes are a useful category to identify closely related groups of genera. To identify and name well-circumscribed groups of taxa and to leave the remaining ones unclassified is a practice that has been used lately in the interpretation of molecular data (e.g. Bremer, Bremer \& Thulin, 1997). In the present case, a preliminarily unclassified position in the Asclepiadeae is preferred for Solenostemma until all Asclepiadoideae genera have been analysed for several DNA regions so that monotypic subtribes are at least very well supported.

Therefore, the question as to the monophyly of the Glossonematinae sensu Liede (1997a) has to be answered in the negative. The Glossonematinae sensu Schumann (1895) fare even worse if his concept is
judged from the scattering of the eight genera included in this study over several clades (Fig. 2).

With regard to the other subtribes suggested by Liede (1997a, 2001; Liede \& Täuber, in press), the present gene tree lends support to the suggestion of Liede (1996b), who, mainly based on chemical evidence, transferred Pergularia to the Asclepiadinae, in close relationship to Calotropis (Figs 1, 2), and also Gomphocarpus (not included here).

The exclusion of the predominantly Old World Cynanchinae from the Metastelminae sensu Liede (1997a), suggested by Liede \& Täuber (2000) and executed by Liede \& Täuber (2002), is well supported by the present results. However, the strongly supported New World clade comprises not only the four Metastelminae s. str. genera, but also Araujia of the Oxypetalinae and Schubertia of the Gonolobinae, so that Metastelminae s. str. might be paraphyletic without Oxypetalinae and Gonolobinae. A study exploring the relationships of these New World genera (S. Liede \& D. Goyder, unpubl. data) is currently in progress.

ACKNOWLEDGEMENTS

For the permission to extract DNA from dried material, we owe thanks to the Missouri Botanical Garden (Astephanus triflorus, Solenostemma oleifolium), the Botanical Museum Uppsala (P. somaliense) and to Prof. Müller-Hohenstein, UBT (O. radians). For one DNA sample, we thank Prof. Mark Chase, Kew. Dr Henning Kunze, Minden, provided us with unpublished data and Figure 3A. For the permission to use Figure 6C we thank Prof. F. Albers, Münster. We thank the directors of all herbaria mentioned for either access to their collections or long-term loans.

REFERENCES

Albers F, Liede S, Meve U. 1993. Deviating chromosome numbers in Asclepiadaceae. Nordic Journal of Botany 13: 37-39.
Albers F, Meve U. 1991. Mixoploidy and cytotypes: a study of possible vegetative species differentiation in stapeliads (Asclepiadaceae). Bothalia 21: 67-72.
Albers F, Meve U. 2001. A karyological survey of Asclepiadoideae, Periplocoideae and Secamonoideae, and evolutionary considerations in Apocynaceae s.l. In: Endress M, Stevens WD, eds. Proceedings of the International Botanical Congress (IBC, St Louis 1999). Annals of the Missouri Botanical Garden 88: 624-656.
Ali T, Ali SI. 1996. Andromonoecy in Glossonema varians (Stocks) Hook.f. (Asclepiadaceae). Pakistan Journal of Botany 28: 25-29.
Baillon HE. 1890. XCII Asclépiadacées. Histoire des plantes, Vol. 10. Paris: Hachette, 221-304.

Bremer K. 1988. The limits of Amino Acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795-803.
Bremer K, Bremer B, Thulin M. 1997. Introduction to phylogeny and systematics of flowering plants. Uppsala: Department of Systematic Botany, Uppsala University, 1-95.
Bruyns PV. 1999. Subtribes and genera of Asclepiadeae: a response to Liede. Taxon 48: 23-29.
Bullock AA. 1955. Notes on African Asclepiadaceae VII. Kew Bulletin 292: 611-626.
Civeyrel L, Le Thomas A, Ferguson K, Chase MW. 1998. Critical reexamination of palynological characters used to delimit Asclepiadaceae in comparison to molecular phylogeny obtained from plastid matK sequences. Molecular Phylogenetics and Evolution 9: 517-527.
Collenette S. 1985. Asclepiadaceae. An illustrated guide to the flowers of Saudi Arabia. London: Scorpion, 69-74.
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.
Eriksson T. 1999. AutoDecay, Version 4.0. (Program Distributed by the Author). Stockholm, Sweden: Bergius Foundation, Royal Swedish Academy of Sciences.
Field DV. 1982. The identity of Odontanthera Wight (Asclepiadaceae) with notes on Glossonema Decne. \& Conomitra Fenzl. Kew Bulletin 37: 341-347.
Gielly L, Taberlet P. 1996. A phylogeny of the European gentians inferred from chloroplast $\operatorname{trn} \mathrm{L}$ (UAA) intron sequences. Botanical Journal of the Linnean Society 120: 57-75.
Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 21: 160-174.
Holm RW. 1950. The American species of Sarcostemma R. Br. (Asclepiadaceae). Annals of the Missouri Botanical Garden 37: 477-560.
Holmgren PK, Holmgren NH, Barnett LC. 1990. Index Herbariorum. Part 1. The Herbaria of the World. Regnum Vegetabile. New York: Botanical Garden, 120pp.
Kunze H. 1990. Morphology and evolution of the corona in Asclepiadaceae and related families. Tropische und Subtropische Pflanzenwelt 76: 1-51.
Kunze H. 1995. Floral morphology of some Gonolobeae (Asclepiadaceae). Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 117: 211-238.
Kunze H. 1997. Corona and nectar system in Asclepiadinae (Asclepiadaceae). Flora 192: 175-183.
Liede S. 1996a. A revision of Cynanchum (Asclepiadaceae) in Africa. Annals of the Missouri Botanical Garden 83: 283-345.
Liede S. 1996b. On the position of the genus Pergularia (Asclepiadaceae). In: Van Der Maesen LJG, Van der Burgt KM, Van Medenbach de Roy JM, eds. The biodiversity of African plants. Proceedings Xivth AETFAT Congress, 22-27 August 1994. Wageningen, The Netherlands: Kluwer Academic Press, 481-488.
Liede S. 1996c. Sarcostemma (Asclepiadaceae) - a controversial generic circumscription reconsidered: morphological evidence. Systematic Botany 21: 31-44.

Liede S. 1997a. Subtribes and genera of the tribe Asclepiadeae (Apocynaceae: Asclepiadoideae): a synopsis. Taxon 46: 233-247.
Liede S. 1997b. Phylogenetic study of the African members of Cynanchum (Apocynaceae: Asclepiadoideae). Systematic Botany 22: 347-372.
Liede S. 1999. New considerations on the subtribe Astephaninae Endl. (Apocynaceae: Asclepiadoideae). XVI. St Louis: International Botanical Congress (Poster-Abstract) 356: 352.
Liede S. 2001. New considerations on the subtribe Astephaninae Endl. (Apocynaceae - Asclepiadoideae). In: Endress M, Stevens WD, eds. Proceedings of the International Botanical Congress (IBC, St Louis 1999). Annals of the Missouri Botanical Garden 88: 657-668.
Liede S, Albers F. 1994. Tribal disposition of Asclepiadaceae genera. Taxon 43: 201-231.
Liede S, Kunze H. 1993. A descriptive system for corona analysis in Asclepiadaceae and Periplocaceae. Plant Systematics and Evolution 185: 275-284.
Liede S, Täuber A. 2000. Sarcostemma R. Br. (Apocynaceae: Asclepiadoideae), controversial generic circumscription reconsidered: evidence from trnL-F spacers. Plant Systematics and Evolution 225: 133-140.
Liede S, Täuber A. 2002. Circumscription of the genus Cynanchum (Apocynaceae: Asclepiadoideae). Systematic Botany in press.
Meve U, Liede S. 2001. Reconsideration of the status of Lavrania, Larryleachia and Notechidnopsis (Asclepiadoideae: Ceropegieae). South African Journal of Botany 67: 161-168.
Miller AG, Morris M. 1988. Plants of Dhofar. Sultanate of Oman: Office of the Adviser for Conservation of the Environment.
Nicholas A, Liede S. 1992. A revision of the genus Pentarrhinum E. Meyer (Asclepiadaceae). Kew Bulletin 47: 475-490.
Raimondo FM, Fici S. 1993. A new species of Glossonema (Asclepiadaceae) from Somalia. Webbia 47: 145-148.
Rees H. 1974. B chromosomes. Science Progress (Oxford) 61: 535-554.

Sanderson MJ, Donoghue MJ, Piel W, Eriksson T. 1994. TreeBASE: a prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life. American Journal of Botany 81: 183.
Schumann K. 1895. Asclepiadaceae. In: Engler A, Prantl K, eds. Die natürlichen Pflanzenfamilien, Vol. 4.1. Leipzig: Engelmann, 189-305.
Sennblad B. 1997. Phylogeny of the Apocynaceae s.l. Acta Universitatis Upsaliensis, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 295.
Sennblad B, Bremer B. 2000. Is there a justification for differential a priori weighting in coding sequences? A case study from rbcL and Apocynaceae s.l. Systematic Biology 49: 101-113.
Simmons MP, Ochoterena H. 2000. Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49: 369-381.
Snow R. 1963. Alcoholic hydrochloric acid-carmine as stain for chromosomes in squash preparations. Stain Technology 38: 9-13.
Swofford DL. 1998. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates Inc.
Taberlet P, Gielly L, Pautou G, Bouvet J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105-1109.
Tharib SM, El-Migirab S, Veitch GBA. 1986. A preliminary investigation of the potential antimicrobial activity of Solenostemma argel. International Journal of Crude Drug Research 24: 101-104.
Tjio JH, Levan A. 1950. The use of oxyquinoline in chromosome analysis. Anales Estación Exprimental Aula Dei 2: 21-64.
Van der Laan FM, Arends JC. 1985. Cytotaxonomy of the Apocynaceae. Genetica 68: 3-35.
Wight R. 1838. On a new genus of Asclepiadeae. Madras Journal of Literature and Science 7: 142-143.

[^0]: *Corresponding author. E-mail: sigrid.liede@uni-bayreuth.de

[^1]: ${ }^{1}$ Species for which karyological study was carried out, though not necessarily on the same voucher specimen.

