
Spatial Guilds in the Serengeti Food Web Revealed by a
Bayesian Group Model
Edward B. Baskerville1*, Andy P. Dobson2,3, Trevor Bedford1,4, Stefano Allesina5, T. Michael Anderson6,

Mercedes Pascual1,4

1 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America, 2 Department of Ecology and Evolutionary

Biology, Princeton University, Princeton, New Jersey, United States of America, 3 Santa Fe Institute, Santa Fe, New Mexico, United States of America, 4 Howard Hughes

Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America, 5 Department of Ecology and Evolution, Computation Institute, The University of

Chicago, Chicago, Illinois, United States of America, 6 Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America

Abstract

Food webs, networks of feeding relationships in an ecosystem, provide fundamental insights into mechanisms that
determine ecosystem stability and persistence. A standard approach in food-web analysis, and network analysis in general,
has been to identify compartments, or modules, defined by many links within compartments and few links between them.
This approach can identify large habitat boundaries in the network but may fail to identify other important structures.
Empirical analyses of food webs have been further limited by low-resolution data for primary producers. In this paper, we
present a Bayesian computational method for identifying group structure using a flexible definition that can describe both
functional trophic roles and standard compartments. We apply this method to a newly compiled plant-mammal food web
from the Serengeti ecosystem that includes high taxonomic resolution at the plant level, allowing a simultaneous
examination of the signature of both habitat and trophic roles in network structure. We find that groups at the plant level
reflect habitat structure, coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore
groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial pattern, in
contrast to the standard compartments typically identified. The network topology supports recent ideas on spatial coupling
and energy channels in ecosystems that have been proposed as important for persistence. Furthermore, our Bayesian
approach provides a powerful, flexible framework for the study of network structure, and we believe it will prove
instrumental in a variety of biological contexts.
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Introduction

Food webs, networks of feeding relationships in ecosystems,

connect the biotic interactions among organisms with energy flows,

thus linking together population dynamics, ecosystem function, and

network topology. Ecologists have been using this powerful

conceptual tool for more than a century [1–3]. One particularly

relevant aspect of food webs is the subdivision of species into

compartments or modules, a feature that has been proposed to

contribute to food web stability by constraining the propagation of

disturbances through a network [4]. In this definition, compart-

ments are alternately referred to as modules, clusters, or

‘‘communities’’ [5], and are defined by high link density within

groups and low link density between them. A large literature has

considered the presence of compartments of food webs, with early

work concluding that compartmentalization results primarily from

habitat boundaries, not from dynamical effects [6], although

continuing theoretical work has shown that compartmentalization

can affect stability [7,8]. One recent study shows that niche

structure can result in compartmentalization [9], but the relation-

ship between compartments and spatial habitat structure remains

the strongest empirical pattern identified [10,11].

Although compartmental structure may be significant at one

scale of analysis, compartments alone do not account for much of

the topological structure in food webs. Recent work with a

probabilistic model considers a more flexible notion of groups,

allowing link density to be high or low within any group or

between any pair of groups [12]. Groups can thus represent

compartments in the previous sense, but can also represent trophic

guilds or roles [13,14], sets of species that feed on, and are fed on,

by similar sets of species. By fitting models of this type to data, the

dominant topological pattern in the network can be found, which

may include compartments, trophic guilds, or some combination

of the two. The initial application of this model to empirical food

webs from different ecosystems has revealed a predominance of

trophic guilds rather than compartments [12].

Two major challenges limit the application of this model in

resolving the group structure of food webs and interpreting its
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biological basis. First, most food webs have poor resolution of

primary producers; plants in terrestrial systems and phytoplankton

in aquatic ones are typically represented by a few nodes that are

highly aggregated taxonomically. Some are aggregated at multiple

trophic levels, e.g., the Coachella Valley web [15]; others

aggregate only the primary producers, e.g., the El Verde rainforest

[16], which identifies basal taxa as categories of plant parts.

Another recently published Serengeti food web includes highly

aggregated primary producers and varying levels of aggregation at

other trophic levels [17]. Some webs that do include high

resolution of plants include plant-herbivore bipartite networks,

notably one lowland food-web from Papua New Guinea [18], and

plant-insect-parasitoid ‘‘source webs’’ [19,20]. Because primary

producers form the base of the food web, high resolution in those

groups can facilitate a much better understanding of how spatial

organization and habitat type percolate up the web, and how

higher trophic levels cut across the habitat structure at lower levels.

Second, some technical problems have hindered the use of

probabilistic models in analyzing group structure. Early food web

models served as null models for food web structure and were

tested by generating model webs and comparing summary

statistics against data from real webs [21,22]. More recently, a

more rigorous approach for measuring the goodness of fit of a

model has been provided by maximum likelihood and model

selection [12,23]. Two problems still remain within this frame-

work. One is technical: standard model-selection criteria are not

applicable to ‘‘discrete parameters’’ such as group membership.

The second problem is more fundamental: there are many almost

equally good arrangements, and it is desirable to extract

information not just from a single best arrangement, but also

from the rest of the ensemble.

The Bayesian approach is gaining popularity in ecological

modeling due to the philosophical and conceptual appeal of

explicitly considering uncertainty in parameter estimation as well

as its methodological flexibility [24]. This approach is especially

well-suited for handling uncertainty in complex food web models,

and allows us to overcome the limitations of the previous

implementation of the group model. In network inference, there

are only a few examples of complete Bayesian models [25,26] and

a few examples of MCMC for maximum-likelihood inference

[27,28], but Bayesian inference in phylogenetics has been long

established [29,30], and provides a clear methodological analogue.

In this paper, we address the group structure of a newly

assembled food web for the large mammals and plants of the

Serengeti grassland ecosystem of Tanzania by applying a

computational approach to the identification of groups based on

Bayesian inference. We specifically ask whether the structure that

emerges reflects the underlying spatial dimension, as delineated by

the different plant communities that characterize different sub-

habitats within the ecosystem, or whether it is determined by

trophic dimensions in the form of species guilds that share

functional roles.

The Serengeti has been studied as an integrated ecosystem for

almost five decades [31–33], and because of widespread popular

familiarity with the consumer-resource dynamics of lions, hyenas,

wildebeest, zebra and grasses, it provides a strong intuitive test for

probabilistic food web models. Furthermore, all the primary

producers in this Serengeti web are identified to the genus or

species level. The plant diversity encompasses a number of distinct

grass, herb, and woody plant communities on different soils and

across a rainfall gradient [34]. This well-documented structure

allows us to examine the extent to which habitat structure defines

network topology at multiple trophic levels. Although not yet a

comprehensive community web, with the addition of more taxa,

such as those in another recently published Serengeti web [17],

this data set can become the most highly-resolved terrestrial web

available.

Results

The Serengeti Food Web Data Set
We compiled the Serengeti food web from published accounts

of feeding links in the literature [34–47] along with some links

known from personal observation. With a few exceptions, the taxa

included are large mammalian carnivores and herbivores and the

plant diets of the herbivores. In its current form it is not a

comprehensive community web, nor does such a terrestrial web

yet exist. Another recently published Serengeti food web is largely

complementary, containing many bird, mammal, and invertebrate

species not included here, but without high resolution of plants

[17]. We have not included invertebrates (insects and parasitic

helminths) or birds, but are adding data for these groups for future

studies.

The compiled food web (Tables S1 and S2) consists of 592

feeding links among 161 species (129 plants, 23 herbivores, and 9

carnivores). 507 of the links are herbivorous, and 85 are predatory.

The fraction of all possible links (connectance, C~L=S2), ignoring

all biological constraints, is equal to 0.023. We attribute the low

connectance, as compared to other existing food-web data sets, to

the high taxonomic resolution of the plant community.

Performance of Model Variants
We compared marginal likelihood estimates of different model

variants to determine which one best describes the Serengeti food

web (see Methods). First, we find unequivocal support for the use

of group-based models in describing the Serengeti food web, as

compared with simple null models that ignore group structure,

either by treating each species as its own group or by combining all

species into a single group (Table 1). We also find that a flexible

group model that allows for high or low connectance between and

within groups vastly outperforms a compartmental model that

Author Summary

The relationships among organisms in an ecosystem can
be described by a food web, a network representing who
eats whom. Food web organization has important
consequences for how populations change over time,
how one species extinction can cause others, and how
robustly ecosystems respond to disturbances. We present
a computational method to analyze how species are
organized into groups based on their interactions. We
apply this method to the plant and mammal food web
from the Serengeti savanna ecosystem in Tanzania, a
pristine ecosystem increasingly threatened by human
impacts. This web is unusually detailed, with plants
identified down to individual species and corresponding
habitats. Our analysis, which differs from the compart-
mental studies typically done in food webs, reveals that
functionally distinct groups of carnivores, herbivores, and
plants make up the Serengeti web, and that plant groups
reflect distinct habitat types. Furthermore, since herbivore
groups feed across multiple plant groups, and carnivore
groups feed across multiple herbivore groups, energy
represents a wider range of habitats as it flows up the web.
This pattern may partly explain how the ecosystem
remains in balance. Additionally, our method can be easily
applied to other kinds of networks and modified to find
other patterns.

Spatial Guilds in the Serengeti Food Web
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restricts between-group connectance to be lower than within-

group connectance, with a posterior odds ratio (Bayes factor) of

9:4|10306 against the compartmental model.

Additionally, the use of flexible priors vastly improves the fit of

the basic model, for both link probability parameters and network

partitions. The model variant with beta prior for link probabilities

and Dirichlet process prior for partitions performed best. Next, in

order, were (1) the model with beta link probability prior and

uniform partition prior, (2) the model with uniform link probability

prior and Dirichlet process partition prior, and (3) the model with

both uniform priors. The strongest variant surpassed its closest

competitior by 133 units of (natural) log-likelihood, corresponding

to a posterior odds ratio of 3:4|1057 against the worse one, and

surpassed the model with both uniform priors by 439 units of log-

likelihood, a posterior odds ratio of 1:1|10191. In all cases, 95%

confidence intervals on the marginal likelihood estimates were less

than one unit of log-likelihood, far less than the differences

between models. Given this unequivocal support, we consider

results only from the best model variant.

Identification of Model Parameters
We used samples from the posterior distribution to summarize

model hyperparameters controlling link probabilities and parti-

tions. The posterior mean number of groups K is 14:1 (95%

credible interval 12,17), and the mean value of the Dirichlet

process parameter x is 3:0 (1:5,5:1) (Figure 1). The prior

expectation of x was 1.0 and the prior expectation of K was 5:3.

The finding of posterior values substantially greater than prior

values strongly supports the presence of detailed group structure in

the Serengeti food web.

Table 1. Marginal likelihood estimates and Bayes factors relative to best model.

Group model Partition prior Link prior Log MLE DMLE Bayes factor

One group — Uniform 22828.60 21556.82 1:5|10{676

161 groups — Beta 22828.60 21556.82 1:5|10{676

161 groups — Uniform 217967.07 216695.28 5:2|10{7251

Compartmental groups Dirichlet process Beta 21978.76 2706.97 1:1|10{307

Flexible groups Uniform Uniform 21710.83 2439.04 9:0|10{192

Flexible groups Uniform Beta 21404.32 2132.53 2:9|10{58

Flexible groups Dirichlet process Uniform 21455.32 2183.54 2:9|10{80

Flexible groups Dirichlet process Beta 21271.78 0 1

doi:10.1371/journal.pcbi.1002321.t001

Figure 1. Posterior distributions and prior expectations of aggregation parameter x and group count K.
doi:10.1371/journal.pcbi.1002321.g001

Spatial Guilds in the Serengeti Food Web
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Mean values for beta distribution parameters are a~0:044
(0:027,0:067) and b~0:80 (0:43,1:30) (Figure S2). The corre-

sponding beta prior has support concentrated near 0, since most

species do not feed on most other species (Figure S3).

Consensus Partition
The posterior output includes 30,000 partitions of the Serengeti

food web into groups, nearly all distinct from each other. One

partition appears 6 times; two partitions appear 3 times; 14

partitions appear 2 times, and the rest appear only once. For the

sake of interpretation, we formed a consensus partition (Table S3)

of 14 groups from the affinity matrix (Figure 2), which represents

the fraction of partitions in all posterior samples in which pairs of

species appear in the same group. On average, the consensus

partition differs from sampled partitions by 5.6%, calculated as the

fraction of species pairs that are assigned to the same group in one

partition but to different groups in the other. By comparison, on

average, individual sampled partitions differ from other sampled

partitions by 7.9%. In addition, every sampled partition differs on

average from the others by more than the consensus partition

does, indicating the value of the consensus approach.

Groups Identified in the Serengeti Food Web
The groups identified in the Serengeti food web in the

consensus partition contain trophically similar species, with all

groups restricted to a single trophic level (plants, herbivores, or

Figure 2. Affinity matrix. Species are identically ordered top to bottom and left to right according to the consensus partition as listed in Table 2.
Hue indicates group identity; color saturation indicates the fraction of partitions in which species occupy the same group. Note that this image
conveys information about group membership, not network connectivity.
doi:10.1371/journal.pcbi.1002321.g002

Spatial Guilds in the Serengeti Food Web
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carnivores). The consensus partition, with 14 groups, is shown in

Table 2. The partition includes 2 groups of carnivores (groups 1–

2), 4 groups of herbivores (groups 3–6), and 8 groups of plants

(groups 7–14). On average, plant groups contain more species

than herbivore and carnivore groups (16.1, 5.8, and 4.5,

respectively). As evident in the affinity matrix, the carnivore and

herbivore groups are well-defined, including several individual

species or pairs of species with distinct diets. Plant groups

demonstrate mild overlap, indicating a partially hierarchical

relationship between smaller groups and larger groups. Figures 3,

4, and S1 show three alternate views of the food web, organized by

the 14 -group consensus partition. Except for carnivore group 1,

there are no connections within groups, and partitions are defined

by targeted, directed connections between specific pairs of groups.

For actual link densities between groups in the consensus partition,

see Table S4.

Habitat Signature and Food-Web Structure
Overall, plants of the same habitat type are significantly more

clustered in groups than random according to weighted Shannon

entropy. (Lower values of weighted entropy indicate higher levels

of clustering; see Methods.) Mean weighted entropy across all

posterior partitions is 1.25 , compared to a randomized mean

value of 1.39 (pv0:0005).

Furthermore, the four largest plant groups reflect significant

overrepresentation of four different habitat types, and either

significant underrepresentation or no significant signal for other

habitat types. In group 13, kopje plants are significantly

overrepresented, comprising 36.7% of the group, compared to a

random expectation of 18.1% (p&0). Group 9 contains 60.4%

grassland plants compared to a random expectation of 41.5%

(p~0:02), and includes 40.4% of individual species records in the

plot data. All of the identified riparian species occur in group 11,

comprising 31.8% of the group, compared with a 6.3% random

expectation (p&0). Finally, woodland plants comprise 66.7% of

group 8, compared with a random expectation of 25.6%

(p~0:01). This result holds across all individual sampled partitions

in the posterior output; each one includes four different groups

with significant overrepresentation of kopje, grassland, riparian,

and woodland habitat.

Plant groups are coupled by groups of herbivores, which are in

turn coupled by groups of carnivores. Large migratory grazers

(group 4, wildebeest, zebra, and gazelles) feed plant groups that

include the dominant grass species in the ecosystem (group 9),

predominantly riparian species (group 11), and a mixture of

woodland species (Combretum molle, Digitaria diagonalis, Duosperma

kilimandscharica, and others) and less common species (group 8).

Group 7 represents a specific case where very high trophic

similarity brings two spatially separate plants into the same group.

Hyparrhenia rufa is found mainly in the north, and is a significant

component of zebra and wildebeest diets during the dry season; in

contrast, Digitaria scalarum dominates much of the plains and is

eaten in large amounts by migrants during the rainy season when

their nutritional needs are at a maximum due to calving and

lactation. However, they are grouped together because of their

mutual inclusion in the diets of the migratory species. Herbivores

Table 2. Groups identified in the Serengeti food web using a 14-group consensus partition.

Group 1 Acinonyx jubatus, Crocuta crocuta, Lycaon pictus, Panthera leo, Panthera pardus

Group 2 Canis aureus, Canis mesomelas, Caracal caracal, Leptailurus serval

Group 3 Damaliscus korrigum, Hippopotamus amphibius, Kobus ellipsiprymnus, Ourebia ourebi, Pedetes capensis, Phacochoerus africanus, Redunca
redunca, Rhabdomys pumilio, Taurotragus oryx, Tragelaphus scriptus

Group 4 Aepyceros melampus, Alcelaphus buselaphus, Connochaetes taurinus, Equus quagga, Nanger granti, Eudorcas thomsonii

Group 5 Heterohyrax brucei, Procavia capensis

Group 6 Giraffa camelopardalis, Loxodonta africana, Madoqua kirkii, Papio anubis, Syncerus caffer

Group 7 Digitaria scalarum, Dinebra retroflexa, Hyparrhenia rufa

Group 8 Chloris gayana, Combretum molle, Digitaria diagonalis, Duosperma kilimandscharica, Eragrostis cilianensis, Microchloa kunthii, Sporobolus festivus,
Sporobolus fimbriatus, Sporobolus spicatus

Group 9 Acacia tortilis, Andropogon greenwayi, Aristida spp., Balanites aegyptiaca, Bothriochloa insculpta, Brachiaria semiundulata, Croton macrostachyus,
Cynodon dactylon, Digitaria macroblephara, Eragrostis tenuifolia, Eustachys paspaloides, Grewia bicolor, Harpachne schimperi, Heteropogon
contortus, Hibiscus spp., Hyparrhenia filipendula, Indigofera hochstetteri, Panicum coloratum, Panicum maximum, Pennisetum mezianum, Sida
spp., Solanum incanum, Sporobolus ioclados, Sporobolus pyramidalis, Themeda triandra

Group 10 Pennisetum stramineum

Group 11 Acacia seyal, Acacia xanthophloea, Andropogon schirensis, Chloris pycnothrix, Chloris roxburghiana, Crotalaria spinosa, Cymbopogon excavatus,
Digitaria milanjiana, Digitaria ternata, Echinochloa haploclada, Eragrostis exasperata, Euphorbia candelabrum, Hyperthelia dissoluta, Kigelia africana,
Lonchocarpus eriocalyx, Olea spp., Panicum deustum, Panicum repens, Phragmites mauritianus, Psilolemma jaegeri, Sarga versicolor, Setaria
pallidefusca, Setaria sphacelata, Typha capensis

Group 12 Acacia senegal

Group 13 Abutilon spp., Acalypha fruticosa, Acacia robusta, Achyranthes aspera, Albizia harveyi, Albuca spp., Allophylus rubifolius, Aloe macrosiphon, Aloe
secundiflora, Blepharis acanthodioides, Capparis tomentosa, Pennisetum ciliare, Cissus quadrangularis, Cissus rotundifolia, Commelina africana,
Commiphora merkeri, Commiphora schimperi, Cordia ovalis, Croton dichogamus, Cyperus spp., Cyphostemma spp., Digitaria velutina,
Diheteropogon amplectens, Emilia coccinea, Eragrostis aspera, Eriochloa nubica, Ficus glumosa, Ficus ingens, Ficus thonningii, Grewia fallax, Grewia
trichocarpa, Heliotropium steudneri, Hibiscus lunariifolius, Hoslundia opposita, Hypoestes forskaolii, Iboza spp., Indigofera basiflora, Ipomoea
obscura, Jasminum spp., Kalanchoe spp., Kedrostis foetidissima, Kyllinga nervosa, Lippia ukambensis, Maerua cafra, Ocimum spp., Pappea capensis,
Pavetta assimilis, Pavonia patens, Pellaea calomelanos, Phyllanthus sepialis, Pupalia lappacea, Rhoicissus revoilii, Sclerocarya birrea, Senna
didymobotrya, Sansevieria ehrenbergii, Sansevieria suffruticosa, Solanum dennekense, Solanum nigrum, Sporobolus pellucidus, Sporobolus
stapfianus, Tricholaena teneriffae, Turraea fischeri, Ximenia caffra, Ziziphus spp.

Group 14 Boscia augustifolia, Commiphora trothae

doi:10.1371/journal.pcbi.1002321.t002

Spatial Guilds in the Serengeti Food Web
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feeding in the longer grasslands, woodlands and in riparian

habitats (group 3) couple groups 9 and 11. The hyraxes (group 5)

and group 6 (giraffe, elephant, buffalo, and others) couple group

13, which bears a strong kopje signature, to groups biased toward

other habitats. At the highest trophic level, the large carnivores

(group 1) integrate across all the herbivore groups; smaller

carnivores (group 2) show more specialized diets, reflecting the

more distinct habitats in which they are usually found.

Discussion

Spatial Guilds in the Serengeti Food Web
In order to analyze the group structure of the Serengeti food

web, we used a flexible Bayesian model of network structure that

includes no biological information aside from a set of nodes

representing species and links representing their interactions. The

groups that emerge from an otherwise blind classification of

species make remarkable biological sense, and moreover reveal

detailed patterns between habitat structure and network topology

that expert intuition alone cannot. Species are divided into trophic

guilds that reveal a strong relationship between the habitat

structure of plant, herbivore, and carnivore groups and the

structure of the network. At the coarsest scale, the groups in the

Serengeti food web correspond to carnivores, herbivores, and

plants. The further subdivisions that emerge within the trophic

levels reveal connections between habitat types and feeding

structure. This deeper analysis is made possible by high resolution

at the plant level along with information about the habitat

occupancy of different plants. Since different habitat types occupy

distinct spatial locations in the Serengeti, the group structure thus

reflects in part the flow of energy up the food web from different

spatial locations, with herbivores integrating spatially separated

groups of plants, and carnivores integrating spatially widespread

herbivores. A priori, it was not clear precisely what kind of group

structure would emerge in the Serengeti web from the use of the

group model. In general, the more complex the web, the more

useful these methods will be in helping to disentangle the

complexity.

Figure 3. The Serengeti food web. The network is shown organized and colored by group according to the consensus partition listed in Table 2,
and arranged by trophic level from left (plants) to right (carnivores). Plants are identified by the first letter of identified habitat type, if available:
(G)rassland, (W)oodland, (R)iparian, (K)opje, (S)hrubland, (T)hicket, and (D)isturbed. Plant groups are labeled by significantly overrepresented habitat
types, and species assigned to the overrepresented type are labeled with black borders. An interactive version of this figure will be made available at
http://edbaskerville.com/research/serengeti-food-web/.
doi:10.1371/journal.pcbi.1002321.g003

Spatial Guilds in the Serengeti Food Web
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The food web presented here included only plants and

mammals, but we hypothesize that the general conclusions will

be largely robust to the addition of more species. Although the

addition of birds, reptiles, invertebrates, and pathogens will likely

add a significant number of new groups, they should not

significantly modify the derived structure for mammals, since the

Figure 4. Network layout of aggregated groups. Nodes in the network are aggregated and colored by group according to the consensus
partition listed in Table 2, and arranged by trophic level from left (plants) to right (carnivores). Line thickness indicates the link density between
groups. Node area increases with the number of species in a group.
doi:10.1371/journal.pcbi.1002321.g004

Spatial Guilds in the Serengeti Food Web
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insect-bird links reflect an almost parallel food web. To the extent

that insect herbivores further differentiate plants, plant groupings

may be affected, but we expect that the larger tendency for groups

to reflect habitat structure will remain.

Recently, interesting theoretical and empirical work has

highlighted the relationship between observed patterns of food-

web structure and energy flow that seemingly relates to the

trophic guild structure in the Serengeti. Rooney and colleagues

[48] give evidence that real ecosystems may be dominated by

nested sets of fast and slow ‘‘energy channels, ’’ each of which

represents a food chain of trophic guilds. They suggest that this

pattern may have a strong stabilizing effect, based on theoretical

work by McCann on spatially coupled food webs [49]. The group

structure for the Serengeti web that emerges from our analysis

supports a pattern of spatial coupling at multiple trophic levels:

the grasslands have very high turnover rates compared to those of

the kopjes and woodlands. This suggests a similar pattern of fast

and slow energy channels to those described by Rooney and

colleagues, with fast energy flow up through the highly seasonal

but very productive grasses of the short-grass plains. These are

almost completely consumed by wildebeest and zebra during their

peak calving season, which are then in turn consumed by large

predators (lions and hyenas). Although the migratory species of

wildebeest and zebra form a crucial and major component of the

diet of the predatory species, their high abundance and presence

in open habitat places them at a lower per capita risk of predation.

In contrast, the resident herbivore species living on kopjes and in

the woodlands reproduce at slower rates and are consumed at

higher per capita rates by large carnivores during the time when

the carnivores are unable to feed on migratory wildebeest and

zebra.

These patterns emerge directly from the topology of the food

web without being explicitly labeled as different habitats upfront as

was done in previous empirical work [48], showing that

topological analysis can reveal structures that may be very

significant for food-web dynamics. They are subtly different,

however, from the proposed pure fast and slow chains, in that they

incorporate the migration of the keystone species in the ecosystem,

so the fastest energy chain is seasonally ephemeral and may only

operate for three to four months in any year. We suspect that even

within the sub-habitats of kopjes and woodlands there are similarly

nested faster and slower chains that involve species for which we

are still collating data (e.g., birds, small mammals, and insects).

More generally, we see the identification of important structures in

empirical food webs via probabilistic models as important for

grounding future investigations into the relationship between

structure and dynamics in empirical pattern.

Bayesian Analysis of Food-Web Structure
In this paper, we used a probabilistic model to analyze the

structure of a single food web, an approach we have seen in only

one other study based on a probabilistic version of the niche

model [28] (see supporting text S1 for more discussion of

probabilistic modeling of food webs). This approach has proved

fruitful in Bayesian phylogenetics, where the combinatorial

challenges are similar. Moreover, we view the group model as

only a starting point for richer modeling efforts to help identify

relevant processes that influence the structure of ecological

communities.

In fact, the Bayesian approach described here provides a

powerful general framework for encoding hypotheses about the

structure of food webs and comparing models against each other,

and we see it as a natural next step in the current trend of

representing food-web models in a common way. Simple abstract

models such as the niche model and the group model used here act

as proxies for the high-dimensional trait space that determines

feeding relationships in an ecosystem. The identification of actual

traits that correspond to groups (or niche dimensions) is another

valuable direction, so far followed primarily by finding correlations

between compartments/groups [11] or niche values [22] and traits

such as body size or phylogenetic relatedness. A more sophisti-

cated, rigorous approach is to directly incorporate such traits into

the probabilistic models themselves, either as predictors or as

informed Bayesian model priors. Although the current work does

not employ that approach, the results from the habitat analysis

suggest that including additional information directly in the model

would be a valuable approach.

The use of flexible, hierarchical priors for model parameters is

another useful innovation of the Bayesian framework. The number

of groups identified by the model increases dramatically with the

use of a flexible beta prior distribution for link probability

parameters. In that model variant, we effectively introduce two

degrees of freedom to the model (the beta distribution parameters)

but dramatically reduce the effective degrees of freedom of the link

probability parameters. Note that we penalize parameters by using

the marginal likelihood for model selection, so that the model

selection represents a balance between goodness of fit and model

complexity. Moreover, this structure makes intuitive sense: since

most link probability parameters are simply zero, they should not

be penalized. An alternate approach is to remove and add

parameters to the model, but this hierarchical technique is much

easier to implement in practice.

Advanced Markov-chain Monte Carlo methods make it possible

to accurately estimate marginal likelihoods for probabilistic

network models. Unlike information criteria such as AIC or

BIC, an accurate estimate of the marginal likelihood provides a

direct measurement of goodness of fit that takes into account the

degrees of freedom in a model without making any asymptotic

assumptions about parameter distributions [50], and can handle

discrete parameters such as partitioning into groups that are not

properly handled by AIC and BIC.

Additionally, the Bayesian approach also serves as a means to

avoid fundamental issues inherent in network models with a large

parameter space. One recent study has shown that, even in

relatively small networks, a large number of good solutions exist

for the standard modularity criterion [51,52]. A maximization

algorithm is thus guaranteed to find a single local maximum of

many—possibly even the best one, but certainly not one that

captures the full range of good solutions. This problem arises

whether the quantity to be maximized is a heuristic such as

modularity or a likelihood value. The group model and other

parameter-rich models presumably suffer from similar degeneracy

problems. In the present case, we find that nearly every partition

sampled from the posterior distribution is unique. Although

MCMC sampling cannot reproduce the full posterior distribution,

it is an important step in the right direction. Philosophical

arguments aside, one of the main reasons for maximizing

likelihood or modularity is simply that a single solution is far

more tractable than a distribution. The consensus partitioning

heuristic used here is an attempt to find a single partition that

represents the posterior distribution reasonably well for the sake of

interpretation and presentation (see Methods). More sophisticated

approaches to collapsing partitions will be welcomed. However,

since the Bayesian approach provides direct access to uncertainty

in the form of the posterior distribution, quantitative analyses

should be done across the whole distribution, and we follow that

approach here.
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Conclusion
The group model, based on the simple notion that groups of

species may have similar feeding relationships to other groups,

reveals that trophic guilds are the topologically dominant type of

group in the Serengeti food web. The model also reveals an

interesting relationship between habitat structure and network

structure that corroborates recent ideas on spatial coupling in food

webs. A theoretical study with a dynamical model suggests that this

type of structure may contribute to ‘stability’ in the sense of the

persistence of species [49]. Now, by using group structures directly

inferred from empirical webs, we can better guide investigations

into the relationship between structure and various aspects of

stability, for example robustness to secondary extinctions [53,54].

Although the Bayesian modeling approach is not new to network

analysis in general [25,26], it remains relatively rare. The Bayesian

group model, and, more importantly, the general framework for

modeling and model selection, naturally extend to other kinds of

biological networks, such as metabolic and regulatory networks

[55] and networks describing other ecological interactions such as

pollination [56]. We advocate this framework as a way to build

stronger ties between hypothesis formulation, model building, and

data analysis.

Methods

The Bayesian Group Model
In this work, we use Bayesian probabilistic models to analyze

food webs; for a general introduction to the Bayesian modeling

approach and details on the specific models used here, please see

supporting text S1. We employ a generative model based on

groups that treats the food-web network, represented as the

presence or absence of each possible feeding link, as data. The

group model [12], known as a stochastic block model in the

statistical literature [57], was previously treated in a maximum-

likelihood framework. In a Bayesian framework, both data and

model parameters are treated probabilistically, making the object

of inference a posterior distribution over model parameters rather

than a point estimate. For a general overview of Bayesian

inference, see section 3 of supporting text S1.

The group model (supporting text S1, section 2) divides species

into some number of groups K , thus determining a partition. All

possible links between any pair of groups are assigned the same

probability of existing, pij , for consumer group j and resource

group i. If a between-group link probability pij is close to one, then

there are likely to be many links with a species from group j
feeding on a species from group i. A highly compartmental

network can be generated by having lower between-group link

probabilities pij (for i=j) than within-group link probabilities pii.

Priors and Model Variants
In general, priors may incorporate informed knowledge about

the system, but in this case we simply use them to encode different

variants of the same basic model. We use two distributions for

partitions and two distributions for link probabilities, which are

combined to form four different model variants. We also consider

several null models for comparison.

Partition prior. For partitions, we employ two prior

distributions: (1) a uniform distribution and (2) a distribution

generated by the Dirichlet process, sometimes referred to as the

‘‘Chinese restaurant process’’ [58]. Alternative (2) is controlled by

an aggregation parameter x that is in turn drawn from an

exponential distribution with mean 1. The uniform distribution

assigns equal prior probability to each possible partition,

irrespective of the number of groups. Because there are far more

ways to partition the network at an intermediate, but relatively

high, number of groups, the uniform prior implicitly biases the

model toward that number. For example, for a network of 100

nodes, there is an a priori expectation of 41:9 groups. In contrast,

the hierarchically structured Dirichlet process prior provides

flexibility via the aggregation parameter x. When x is large,

partitions tend to have many small groups; when x is small,

partitions tend to have fewer groups, with a skewed group-size

distribution. See section 3.1 of supporting text S1 for mathematical

details and a fuller discussion.

Link probability prior. The two alternative prior

distributions used for link probabilities pij are (1) a uniform

distribution between 0 and 1, and (2) a beta distribution with shape

parameters a and b, which are in turn governed by exponential

distributions with mean 1. With a and b fixed at their means,

alternative (2) reduces to a uniform distribution; at other values,

the distribution may take a uniform, convex, concave, or skewed

shape. The second alternative is thus structured hierarchically,

with exponential hyperpriors for a and b governing the beta prior for

link probabilities pij . For more details, see section 2.1 of supporting

text S1.

Null models. We also consider two simple models without

groups as null comparisons: (1) a directed random graph model

(i.e., one group) with a uniform prior on a single link probability

parameter p, and (2) a fully parameterized model, with each

species in its own group, and a 161|161 link probability

parameter matrix P, also with a uniform link probability prior.

Finally, in order to explicitly restrict the model to detecting

compartmental structure, we also consider a modification that

requires all between-group link probabilities pij to be less than

corresponding within-group link probabilities pii and pjj . This is

accomplished by adding a parameter qij for each between-group

probability, and setting pij equal to qijmin(pii,pjj).

Markov-chain Monte Carlo Sampling
We sample from the posterior distribution of model parameters

using a Markov-chain Monte Carlo technique known as

Metropolis-coupled MCMC, or (MC)3 [59], which improves

mixing between multiple modes of the posterior distribution, and

also allows improved estimation of the marginal likelihood [60].

Software for performing MCMC sampling was implemented in

Java, and is available from the corresponding author on request. A

full treatment of MCMC is given in supporting text S1, section 4,

including details on applying the method to the group model.

Bayesian Model Selection
In order to select a good model variant, we employ the marginal

likelihood, the probability of data given a model integrated over all

model parameters (partitions and link probability parameters).

This approach extends the use of Bayes’ rule to model selection as

well as inference of parameter values. The ratio of the marginal

likelihoods for two models is often called the Bayes factor [61–63],

and determines the posterior odds ratio of two models given equal

prior odds. For details on marginal likelihood-based model

selection, see text S1, section 5.

Consensus Partitions
The output of an MCMC simulation includes a large number of

network partitions representing draws from the posterior distribu-

tion. As these partitions are potentially all distinct from each other,

but represent similar tendencies of species to be grouped together,

it is useful to try to summarize the information contained in all the

samples in a more compact form. To do this, we construct an

affinity matrix with entries equal to the posterior probability that
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two species are grouped together. We use the affinity matrix to

then form a consensus partition, using an average-linkage

clustering algorithm (see supporting text S1, section 6). The

affinity matrix is akin to the co-classification matrix previously

used to identify uncertainty in end-points in a simulated annealing

algorithm [64].

Habitat Signature
In order to test the overall presence of habitat signature in plant

groups, we assigned plants to habitat types via one of three

methods based on data availability. For plants present in 133 plots

sampled from around the Serengeti [65], we assigned them to the

habitat type of the plot in which they were most abundant; plot

habitat types were assigned via a separately compiled map of

habitat boundaries [66]. Some plants were available from a study

of kopje forbs [67]. Finally, some were assigned from personal

knowledge of the system.

We used a randomization test to measure the overall clustering of

habitat in groups across sampled partitions. The habitat signature of

an individual group i was measured as the Shannon entropy—low

entropy indicates an uneven distribution—of the assignment of

species to habitats, Hi~
P

j

nij

ni

log(nij=ni), where j is the habitat, ni

is the group size, and there are nij species assigned to habitat j within

the group. The overal clustering signature for a partition was the

average of the individual group entropies, weighted by the size of

the groups, �HH~
P

i

ni

n
Hi, for total species count n. The p-value for

the statistic is the probability that a partition drawn from the

posterior distribution has overall clustering greater than or equal to

a randomized partition with groups of identical size.

To test clustering significance of a specific habitat type in a

specific grouping of species, we calculated the p-value as the

probability that a randomized group of the same size would have

as many or more species assigned to the chosen habitat type.

Supporting Information

Figure S1 Adjacency matrix ordered by groups. Species

are identically ordered top to bottom and left to right according to

the consensus partition as listed in Table 2. White matrix entries

indicate that the species in the column feeds on the species in the

row. Columns that would indicate prey of plant groups are

omitted. Note that in a modular network according to the

standard definition, links would be concentrated on the diagonal of

the adjacency matrix, since they occur within groups. By contrast,

here links are concentrated in off-diagonal blocks.

(TIFF)

Figure S2 Posterior distributions of link density pa-
rameters a and b. Color brightness indicates posterior density,

estimated using the ks multivariate kernel density estimation

package for R [68]. Contours indicate cumulative density. The a
parameter is significantly lower than 1, indicating departure from

a uniform distribution.

(TIFF)

Figure S3 Distribution of link probability parameters.
The prior distribution for link probability parameters, integrated

over the priors for beta distribution parameters a and b, is indicated

with a dotted line. The heat map shows beta distributions

corresponding to the posterior distribution for a and b, with

lightness indicating the posterior density of the parameter values.

(TIFF)

Table S1 Species in the Serengeti food web.
(CSV)

Table S2 Feeding links in the Serengeti food web.
(CSV)

Table S3 Consensus partition.
(CSV)

Table S4 Link densities between groups in the consen-
sus partition.
(CSV)

Text S1 In this supplement, we describe the mathematical
details of the modeling approach, including the Bayesian
formulation of the group model, the Markov-chain Monte
Carlo algorithm, and marginal likelihood estimation.
(PDF)
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