Plants of Retention Ponds and Drainage Ditches

The Greater Daytona Beach Area

Bethune-Cookman University

Daytona Beach, FL

AUTHORS, EDITORS, and CONTRIBUTORS

Editor in Chief, Author, Photographer, Illustrator Authors and Editors	Hyun Jung Cho Don Spence
	Raymond Jarrett
B-CU Student Assistant	Indira Prajapati
	Justin Dahl

Copyright © 2015 by Hyun Jung Cho All rights reserved, including the right to reproduce this book in any form.

Plants of Retention Ponds and Drainage Ditches

The Greater Daytona Beach Area

ACKNOWLEDGMENTS

Field Assistants: Joseph White, Ali Simpson, Jared Zurbruegg, Christopher Schlageter **Plant ID Assistant**: Daniel J. Young

Maps: Ali Simpson

All participants of the International speedway Survey Day event on Oct 5, 2013

Donation: Some members of the Paw Paw Chapter of Florida Native Plant Society

The project was supported in part by **funding** from:

- Bethune-Cookman University
- Florida Exotic Pest Plant Council

The views expressed herein do not necessarily reflect the views of any of the above organizations.

BIOSKETCHES OF AUTHORS and CONTRIBUTORS

J. Cho is Professor of Integrated Environmental Science at Bethune-Cookman University. She is easily amazed by plants growing in ditches and loves her cat. She has Ph.D. in Conservation Biology and M.S. in Biology from the University of New Orleans, NOLA and B.S. in Biology from the Sung-shin Women's University, Seoul, Korea.

Don Spence is a native of Daytona Beach and has lived in Central Florida most of his life. After high school he joined the U.S. Coast Guard where he worked with law enforcement, search and rescue, and logistical support services. During his travels he has sailed from Antarctica to the Arctic, Europe and much of the Americas. Don is a Certified Municipal Arborist and through his company, Native Florida Landscapes, LLC, has provided consulting services that range from endangered species and sea grasses surveys, invasive and native plant identification to tree health evaluations. Don earned his Bachelor's of Science in Biology from Stetson University, Master's of Science in Biology from the University of Central Florida, and his Doctorate of Philosophy in Plant Pathology from the University of Florida. Don has authored several peer reviewed journals articles and published in a wide variety of magazines

BIOSKETCHES OF AUTHORS and CONTRIBUTORS

Ray Jarrett is a graduate from the University of Central Florida in 1998 where he earned a BS degree in Biology with emphasis in botany, entomology and Florida ecosystems. Ray is a Certified Arborist by the International Society of Arboriculture (ISA) and a graduate from the Natural Areas Training Academy (NATA), managed by the University of Florida's, Department of Wildlife Ecology and Conservation in partnership with The Nature Conservancy. He is a field biologist with sixteen years of experience and currently works for the University of Central Florida as the Coordinator of Urban Forestry and Natural Lands Programs.

My name is Indira Prajapati. I completed my Bachelor's degree in Chemistry from Bethune-Cookman University. Currently, I am a graduate student in University of Kansas, Lawrence majoring in Pharmaceutical Chemistry.

TABLE OF CONTENTS

Authors, Editors, and Contributors	Ι
Acknowledgments	II
Biosketches of Authors	III
Table of Contents	V
Author's Note to Users	VI
Introduction Storm water and Surface Runoff	VIII
Rotontion / Dotontion Ponds and Drainago Ditchos	v III V
A quatic Plants	
Wetland Indicator Categories of Aquatic Plants	XI
Non-Native & Nuisance Plants	XIII
Management of Retention/Detention Basins and Drainage Ditches	XIII
The Biological Tragedy Caused by Exotic Organisms	XV
What can you do to help?	ΧV
Photos of Ponds and Ditches	XVI
Plants in Zones 1 and 2 (OBL species)	1
Plants in Zone 3 (FACW species)	71
Plants in Zone 4 (FAC species)	93
Plants in Zone 5 (FACU and UPL species)	116
List of Non-Native Plants and Their Easily Confused Plants	155
Index by Scientific Names	156
Index by Common Names	162
References	168

AUTHOR'S NOTE TO USERS

My profession is to study aquatic plants and their habitats and to teach about them. But I believe that I was drawn into inconspicuous plants growing in water bodies since I was much younger.

Yes, most people are interested in the majestic seagrass beds in coastal waters and large mammals that are dependent on them. But the true beauty of aquatic plants, I believe, is in freshwater environment; think about the diversity!

When I moved to Florida in the fall of 2011, I was literally puzzled by the number of urban water bodies most of which were constructed to relieve the cities and towns from potential negative effects from storm water runoffs. Plus, I noticed that the floating, floating-leaved, submerged plants are ubiquitously growing in the urban, primarily man-made water ways.

On my way to work, I couldn't be happier if I get to see flowering *Sagittaria* reflecting the morning sunshine alongside of a road. I stop and take photos of the urban ponds and water ways on the way to work and coming home on regular days as well as my off time running errands. I stop by surrounding ditches and ponds before and after going grocery shopping, strolling around my neighborhood, going to banks, stopping by post offices, and eating out.

I started to have my habit of carrying my rubber boots and camera in my car trunk. Often times, I could be spotted in my Sunday dress with my black rubber boots on in a filthy drainage ditch. This was my passion. I could be labeled many things: Conservation Biologist, Coastal Scientist, Seagrass Biologist, Remote Sensing Scientist, Restoration Ecologist, Professor, and so forth. I would love to be all the labels and titles that I have, but the aquatic plants growing in freshwater bodies waters are one of my utmost inspirations and joy to explore.

First I intended to make this book to include plants from the Greater Daytona Beach area, but I decided to include only freshwater species and exclude seaside plants for this book. Also, some plant surveys were done in DeLand and Deltona areas (Fig. 1). As I look through all the plant photos that I took for the last two and a half years, I regret that I did not include some of the most amazing plants that I found in this area. However, the fieldguide book would never be completed, so I decided to include only approximately 150 species at this time. My humble hope is that the readers may gain some appreciation of the wildlife in our backyard ponds and ditches and enjoy more of little things surrounding our urban life.

Figure 1. Municipalities in which plant surveys were conducted.

INTRODUCTION

Storm Water and Surface Runoff

Storm water is the large quantity of water that results from surface runoff after heavy precipitation. Because of the limited capacity of soil to hold water, excess water from precipitation flows over the land and into water bodies. Impervious surfaces are areas covered by material that impedes the infiltration of water into the soil. These surfaces include rooftops, paved streets, highways, and parking lots. In the absence of impervious surfaces, approximately 10% of precipitation will become storm water runoff. Impervious surfaces can increase the volume of storm water runoff by 50% to75%. Landsat 8 satellite images were used to classify the Daytona Beach ground surface at a 30 m-pixel resolution; and over 70% of the surface within the city limit was classified as impervious surfaces (Table 1 and Fig. 1) where the remaining lands were either vegetated areas, bare soils, wetlands, or open water bodies of water, such as the Halifax River estuary (Fig. 2).

Surface Type	Area (square meters)	Percentage of Coverage
Impervious Surface	51,031,040	70.17%
Natural Surface	21,690,583	29.83%
Total	72,721,623	100%

Table 1. Proportion of impervious surface of the city of Daytona Beach

Impervious surfaces have historically caused significant off-site flooding causing low areas to flood quickly after heavy rains. One of the problems associated with storm water runoff is the ability of moving nutrient-rich or polluted soils into wetlands. When polluted runoff flows directly into rivers, lakes, streams and oceans, water quality is reduced which can degrade aquatic/marine habitats and harm wildlife. Therefore, storm water is seen as a major source of pollution and is responsible for the reduced water quality of Florida's waterways and aquatic ecosystems. To combat storm water runoff, retention and detention ponds have become common components of development to help reduce pollutants such as oil, fertilizers, pesticides, soil, trash, and animal waste.

Retention/Detention Ponds and Drainage Ditches

In expanding urban areas, the threat of flooding is a growing danger to homeowners and businesses. Storm water retention/detention facilities and drainage ditches are constructed to relieve possible flooding and erosion by capturing storm water in contained basins.

Drainage ditches are used to drain water to relieve areas from potential flooding and are can usually be found alongside roadways or fields. Retention ponds hold a specific amount of water indefinitely, while detention ponds are built to temporarily hold large volumes of runoff until the water can drain to another area at a slower, controlled rate. Retention ponds are better suited to allow aquatic and wetland plant growth than detention ponds. Detention ponds act like a channel for water to pass since there is an outlet at the bottom, which discharges the water to another retention/detention area. In addition to slowing water movement across the landscapes, detention ponds also capture sediments and allow them to accumulate which sometimes makes it hard for vegetation to persist. Conversely, retention ponds do not have an outlet and the soil sediments at the bottom make it favorable for the aquatic plants to grow.

Based on the location of their growth, aquatic plants can be divided into five different zones (Table 2).

Table 2. Landscape design principles for storm water basin. Table was modified from the source http://www.ci.farmington-hills.mi.us/services/planningandcommdev/designguidelinesandchecklists/StormWaterDetentionBasins.asp

	Planting zone	Zonation description	Plant type
Zone 1	Deep Water Pool	1 – 6 ft deep pool of water	Submergent and floating
Zone 2	Shallow Water Bench	1 ft below the normal pool	Partially submerged Emergent wetland plants
Zone 3	Lowest Zone	1 ft above the normal pool or lowest zone in a dry detention area	Shrubs Herbaceous
Zone 4	Middle Zone	1-4 ft above the normal pool, periodically inundated	Trees Shrubs Herbaceous
Zone 5	Upland Slopes and Buffer Strip	4 ft and above	Trees, Shrubs, and Herbaceous

Retention/detention areas often only have sod placed on the slopes around the pond. However, there are times when ponds are landscaped. Retention ponds (aka basins) that are designed to have natural wetland plants should be shaped so that they follow the natural topography of wetlands to the greatest extent possible. If specific aesthetic attributes are required by the landscaped pond, plants can be selected based on growth habit or height. When choosing plants, there are five wetland zones to consider when designing the basins. Zone 1 is a deep permanent pool of water up to 6 feet deep that supports the growth of submerged and free-floating plants. Zone 2 occurs on a shallow water edge and is 1 foot below the normal pool,. Plants that are partially submerged with emergent stems will grow in this zone. Zone 3 occurs from one foot above the normal pool or lowest zone area in a dry detention pond. Because zone 3 is frequently flooded, plants must be able to endure flooding and drought. Zone 4 occurs from 1 to 4 feet above the normal pool. Unlike zone 3, zone 4 is only periodically flooded, however, plants must still be able to endure occasional flooding. Zone 5 occurs from 4 feet above the normal pool. Zone 5 includes buffer strips of plants that expand past the middle zone. This zone usually does not flood, so plants here should be selected by soil type, light, and function (Note these zones pertain to basins that are designed to maintain a permanent water level).

Aquatic Plants

Wetlands are characterized by the three components: presence of water, water-logged (hydric) soil conditions, and presence of plants that can tolerate long periods of inundation. Aquatic plants, also called hydrophytes or wetland plants, are the plants adapted to live in aquatic and wetland environments. Because zones 1 through 4 are often flooded, the plants occurring there need to be adapted to survive inundation.

Aquatic and wetland plants that grow in zones 1 through 4 can occur in a range of growing forms. They can be free-floating on the water surface, completely submerged, rooted with floating leaves, or emergent with roots in standing water or permanently water-logged soil.

Free-floating: The leaves and stems are suspended in the water column or float free on the water surface with no roots anchored in the sediment.

Submergent/Submerged: The plant grows completely beneath the surface of water. Most submerged plants are rooted in the soil.

Floating-leaved: The leaves float on the surface of water while the roots are in the sediment.

Emergent: The plant is rooted in the soil beneath the surface of water with aerial stems, leaves, and reproductive organs extending above the surface of the water.

Floating, submerged, and littoral plants associated with storm water ponds play a vital role in ecosystem health. These plants help control erosion and provide habitat and food for wildlife. Most importantly, these plants help filter nutrient runoff from fertilizers and add oxygen to the water. Nitrogen and phosphorous, in part, make up most turf and landscape fertilizers. These elements can become concentrated in ponds, rivers and streams, from runoff, after heavy rains. Vegetation associated with storm water ponds, act as kidneys, filtering and metabolizing some of these elements before they make their way into a larger water body. Native plants planted along the upland margins of storm water ponds, slow down the speed of the runoff, spreading it out and allowing for better ground infiltration. Other plants, that are shallow rooted and found growing along the littoral edge of ponds help stabilize and prevent erosion. Emergent and submersed plants provide habitat and oxygenate the water column. Collectively, these plants clean the water and allow sunlight to penetrate the water column. By keeping nutrient loads lower these wetland plants help prevent harmful algal blooms that can overtake ponds.

Wetland Indicator Categories of Plants

The State of Florida, Department of Environmental Protection defined and standardized wetlands characteristics in 1995 with the development of wetland identification and classification under Section 373.4211 of the Florida Statutes (F.S.), and Chapter 62-340.F.A.C. Each native and non-native plant species were placed in categories that indicate the likelihood of their of occurrence in a wetland.

OBL: Obligate Wetland (99% probability occurrence in wetlands)

FACW: Facultative Wetland (67-99% probability occurrence in wetlands)

FAC: Facultative (34-66% probability occurrence equally in wetlands and non-wetlands)

FACU: Facultative Upland (67-99% probability occurrence in non-wetlands)

UPL: Obligate Upland (99% probability occurrence in non-wetlands)

For the purpose of plant organization in this book, plants have been classified as either OBL in zones 1 and 2; FACW in zone 3; FAC in zone 4; and FACU and UPL in zone 5.

Non-Native & Nuisance Plants

If poorly managed, retention ponds and drainage ditches can become hosts for invasive, non-native plants or native plants that become a nuisance. Invasive exotic species are ones that were introduced into an area where they did not occur naturally and have spread, displacing native plants and animals. Non-natives are species that were not likely present in Florida 500 years ago and include ornamental landscaping and agricultural plants. Nuisance plants can be any native or non-native species that has grown to the point where it requires management or removal. The term is generally used as a special case designation for native plants that have spread to the extent where they inhibit water movement or obstruct the use of a water body.

Whether non-natives species arrived as ornamental landscaping plants, agricultural products, or via an unintentional introduction, they have the potential to invade natural landscapes. Naturalized species are non-natives that occur in natural areas but have not grown to the extent where they are displacing native species.

According to the Florida Exotic Pest Plant Council (FLEPPC), there are two categories of invasive exotic species: Category I and Category II. Category I invasive exotics are affecting native plant communities by changing ecological functions. Category II invasive exotics have not yet changed Florida plant communities to the degree of Category I species. In this book, those plants are denoted EPPC (I) and EPPC (II).

Management of Retention/Detention Basins and Drainage Ditches

Maintaining retention/detention basins and drainage ditches is important and should be considered part of the 'Best Management Practices'. A management plan should be developed to address the types of pollutant discharges and activities necessary to keep the basins operating properly. The management plan should include: maintenance procedures (i.e. mowing and debris control), repairing damage to side slopes, and removing invasive vegetation. In the Greater Daytona Beach area, ponds, canals and retention basins (Table 3; Fig. 3) are largely maintained by the City, Volusia County, or the Florida Department of Transportation. The chief responsibilities of these institutions are to facilitate water flow, eliminate invasive plants, and promote growth of vegetation suitable for flood and drought conditions.

Figure 3. Map showing retention ponds and ditches along the International Speedway Blvd. Daytona Beach. The inset indicates the location of the area shown in relation to the city of Daytona Beach.

Table 3.	Daytona	Beach	hydrology	statistics
----------	---------	-------	-----------	------------

Туре	Total Number (#)	# City or State Owned	# Privately Owned
Canal	40	16	24
Natural Pond	66	25	41
Man-Made Pond	150	18	132
Borrow Pit	3	0	3

The Biological Tragedy Caused by Exotic Organisms

Non-native organisms are a major threat to our urban and natural landscapes. The primary means of movement of invasive plant pests has been through the importation of ornamental plants from other countries and in untreated wood products. In Florida, we are particularly sensitive to exotic organisms since Florida has a tropical/sub-tropical climate, highly disturbed and fragmented habitats (agriculture, roads, and urban sprawl), and because Florida is a gateway for tourist travel and the ports of entry for commodities from around the world.

Billions of dollars are spent each year fighting the effects of these invasive organisms – whether they are exotic plants, animals, insects, or disease-causing microbes. The damage invasive organisms cause to ecosystems and the economic loss due to these pests is significant. It is estimated that approximately 50,000 exotic species are established in the United States, and as of today, Florida has over 1,400 exotic plants established in our urban and natural landscapes. A 2005 study estimated that losses for forest and non-forest products due to exotic species cost the American taxpayers \$138 billion each year.

From the Federal Government's Animal and Plant Health Inspection Service to local initiatives such as the Cooperative Weed Management Areas, invasive species management is being dealt with much better than in the past. However, with so many invasive species present, there is a real concern that a threshold of biological stress might be reached that will either eliminate species outright or cause local extinctions. There could come a point in time where food webs break down and biological diversity declines due to habitat loss and the loss of pollinators. The overwhelming presence of so many invasive birds, fish, reptiles, plants, insects, and fungi makes it hard to find the energy and financial resources to push them back. But, we must. Not only are our natural areas deserving of our assistance, the economic impact of exotic species reinforces the need for them to be monitored, controlled, and their importation be limited.

What can you do to help?

- Do not bring home uncooked food, raw fruit, or untreated plant parts with you when you travel abroad.
- Do not move untreated wood products at all (do not bring untreated wood back with you from trips abroad and do not move firewood or dead trees anywhere, anytime).
- Clean your shoes of dirt and soil from overseas travels.
- Plant native plants instead of ornamental species.
- Participate in exotic plant removal programs such as the Cooperative Invasive Species Management Areas.
- Never release unwanted pets such as frogs, turtles, snakes, or birds into natural areas.

Plants of Retention Ponds and Drainage Ditches

Several species of submerged plants growing in a ditch within a residential area.

Jimmy Ann Drive, Daytona Beach, FL

Sewage discharged into a ditch from an apartment complex.

Thick surface mats of duckweeds make terrestrial insects such as ants possible to walk on them.

Some of the ditch and pond areas are frequently mowed.

International Speedway Blvd., Daytona Beach, FL. The brown areas in the bottom of the ditch is likely due to herbicide use to control and kill unwanted plants.

Plants of Retention Ponds and Drainage Ditches

Some areas with steep bank slopes are not well managed.

International Speedway Blvd., Daytona Beach, FL.

Plants of Retention Ponds and Drainage Ditches

Some ponds are intentionally landscaped to have native plants.

Clyde Morris Blvd. and Beville Rd. Daytona Beach, FL

Although native, cattails can grow fast and take over urban wetlands and shorelines of water ways.

Coraci Park, Port Orange, FL

Some ponds and ditches may not have standing water all the time, but have OBL wetland plants even during the dry periods because of hydric soil conditions.

International Speedway Blvd., Daytona Beach, FL Freshwater ponds can be found very close to saltwater bodies such as Halifax River.

Holly Hill, FL

Some retention ponds are fenced because of safety and liability reasons.

Daytona Beach, FL

Non-native *Salvinia minima* are growing aggressively in urban park ponds. It is easy to transport and spread nonnative invasive plants unintentionally if not cautious.

Tuscawilla Park, Daytona Beach, FL

Effluent from restaurants may provide favorable conditions for this invasive growth of the non-native *Egeria densa*.

Some businesses designated natural ponds/wetlands within their properties conservation area. International Speedway Blvd. and Williamson Blvd., Daytona Beach, FL

Some ditches and ponds may have alligators and/or snakes. They are utilizing those areas as their habitats. It is highly recommended not to molest or feed them. Deltona (above) and Daytona Beach (right), FL.

Some urban water bodies and wetlands are habitats for deadly plants such as *Cicuta maculata* (picture below). Clyde Morris Blvd. and International Speedway Blvd., Daytona Beach, FL.

ZONES 1/2 Deep water pool/Shallow-floating

<u>Free-floating, Floating Leaved, Emergent plants</u> <u>that are obligate wetland plants (OBL)</u>

- Plants that grow floating on or slightly submerged below the water surface and that are not rooted in the substrate.
- Plants that are rooted in sediment with leaves floating on and above surface.
- Plants that grow submerged and become emerged as they mature; Plants that may have distinct submergent and emergent forms.
- Plants that commonly occur emergent, but also found submerged.
- Plants that are rooted in the soil beneath the water surface with aerial stems, leaves, and reproductive organs.

Azolla caroliniana

- Scientific Name: Azolla caroliniana Willd.
- Common Name: Carolina mosquitofern, Waterfern
- Group: Pteridophyta (Ferns)
- Family: AZOLLACEAE (Azolla family)
- Growth Form: Free-floating
- Native
- Comments: *Azolla* grows green in early growing season, then turns red. They are good nitrogen fixers and provide nitrogen to other aquatic plants as they decompose; they are fern.

Salvinia minima (Not Native)

- Scientific Name: Salvinia minima Baker
- Common Name: Water spangles
- Group: Pteridophyta (Ferns)
- Family: SALVINIACEAE (Floating fern family)
- Growth Form: Free-floating
- Not native, EPPC(I)
- Comments: Compare with plants of duckweed family.

Wolffia columbiana

- Scientific Name: Wolffia columbiana H. Karst.
- Common Name: Columbian watermeal
- Group: Monocot
- Family: LEMNACEAE (Duckweed family)
- Growth Form: Free-floating
- Native
- Comments: Compare with other plants of duckweed family. *Wolffia* has no roots.

Lemna minuta

- Scientific Name: Lemna minuta Kunth
- Common Name: Least duckweed
- Group: Monocot
- Family: LEMNACEAE (Duckweed family)
- Growth Form: Free-floating
- Native
- Comments: Compare with other plants of duckweed family. Each leaf of *Lemna minuta* has one faint vein; and the leaves are considerable smaller than other *Lemna* spp.

Lemna valdiviana

- Scientific Name: Lemna valdiviana Phil.
- Common Name: Valdivia duckweed
- Group: Monocot
- Family: LEMNACEAE (Duckweed family)
- Growth Form: Free-floating
- Native
- Comments: Compare with other plants of duckweed family. Leaves of *Lemna valdiviana* are elongated.

Lemna obscura

- Scientific Name: *Lemna obscura* (Austin)Daubs (= *Lemna minor var. obscura*)
- Common Name: Little duckweed
- Group: Monocot
- Family: LEMNACEAE (Duckweed family)
- Growth Form: Free-floating
- Native
- Comments: Compare with other plants of duckweed family. Lower leaf surface of *Lemna obscura* has blotches of red colors and root caps.

Spirodela polyrhiza

- Scientific Name: Spirodela polyrhiza (L.)Schleiden
- Common Name: Common duckweed, Common duckmeat
- Group: Monocot
- Family: LEMNACEAE (Duckweed family)
- Growth Form: Free-floating
- Native
- Comments: Compare with other plants of duckweed family. Each frond has 5 or more pronounced veins; and each frond has more than one root that has root cap.

Riccia fluitans

- Scientific Name: *Riccia fluitans* L.
- Common Name: Crystalwort, Staghorn riccia
- Group: Liverwort
- Family: RICCIACEAE
- Growth Form: Free-floating
- Native
- Comments: Compare with duckweed family; non-vascular.

Wolffiella gladiata

- Scientific Name: Wolffiella gladiata (Hegelm.)Hegelm.
- Common Name: Florida mudmidget
- Group: Monocot
- Family: LEMNACEAE (Duckweed family)
- Habitat: Still water: ponds and lakes
- Native
- Comments: Compare with Wolffiella oblonga.
Wolffiella oblonga

The red box denotes Wolffiella oblonga.

- Scientific Name: Wolffiella oblonga (Phil.)Hegelm.
- Common Name: Saber mudmidget, Saber bogmat
- Group: Monocot
- Family: LEMNACEAE (Duckweed family)
- Native
- Comments: Compare with *Wolffiella gladiata*. The leaves are shorter and wider than those of *Wolffiella gladiata*.

Utricularia sp.

- Scientific Name: Utricularia sp.
- Common Name: Bladderwort
- Group: Dicot
- Family: LENTIBULARIACEAE (Bladderwort family)
- Growth Form: Floating
- Native
- Comments: Carnivorous plants.

Limnobium spongia

- Scientific Name: Limnobium spongia (Bosc) Rich. ex Steud
- Common Name: Frog's bit, American spongeplant
- Group: Monocot
- Family: HYDROCHARITACEAE (Tape-grass family)
- Growth Form: Floating-leaved—Rooted
- Native
- Comments: Compare with *Eichhornia crassipes*.

Eichhornia crassipes (Not Native)

- Scientific Name: Eichhornia crassipes (Mart.) Solms
- Common Name: Common water hyacinth
- Group: Monocot
- Family: PONTEDERIACEAE (Water-hyacinth family)
- Growth Form: Floating-leaved—Rooted
- Not native, EPPC (I)
- Comments: Compare with *Limnobium spongia*; Leaves of *Eichhornia crassipes* are thicker and have inflated petioles. The inflated petioles help the leaves float. Compare the flowers with those of *Pontederia cordata*.

Nuphar lutea

- Scientific Name: *Nuphar lutea* (L.) Sm. ssp. *advena* (Aiton) Kartesz & Gandhi
 Nuphar advena (formerly *Nuphar lutea* (L.) Sibth. & Sm.)
- Common Name: Spatterdock, Yellow pond-lily
- Group: Dicot
- Family: NYMPHEACEAE (Water-lily family)
- Growth Form: Floating-leaved—Rooted
- Native
- Comments: Leaves are heart-shaped.

Nymphaea odorata

- Scientific Name: Nymphaea odorata Aiton
- Common Name: American white waterlily, Fragrant waterlily
- Group: Dicot
- Family: NYMPHAEACEAE (Water-lily family)
- Growth Form: Floating-leaved—Rooted
- Native
- Comments: Leaves are notched with pointy lobes.

Pistia stratiotes (Not Native)

- Scientific Name: *Pistia stratiotes* L.
- Common Name: Water lettuce
- Group: Monocot
- Family: ARACEAE (Arum family)
- Growth Form: Floating-leaved—Rooted
- Comments: Nativity disputed; Not native, EPPC(I) (Atlas of Florida Vascular Plants); Native (US Department of Agriculture).

Elodea sp.

- Scientific Name: *Elodea* sp.
- Common Name: Waterweed
- Group: Monocot
- Family: HYDROCHARITACEAE (Tape-grass family)
- Growth Form: Submergent—Rooted
- Native
- Comments: Compare with *Egeria densa*. *Elodea canadensis* leaves usually occur as 3-whorled and shorter than those of *Egeria densa*.

Egeria densa (Not Native)

- Scientific Name: Egeria densa Planch.
- Common Name: Brazilian waterweed
- Group: Monocot
- Family: HYDROCHARITACEAE (Tape-grass family)
- Growth Form: Submergent—Rooted
- Not Native
- Comments: Compare with *Elodea canadensis*. *Egeria densa* appears to be leafier than *Elodea canadensis*.

Vallisneria americana

- Scientific Name: Vallisneria americana Michx.
- Common Name: Tapegrass, American eelgrass
- Group: Monocot
- Family: HYDROCHARITACEAE (Tape-grass family)
- Growth Form: Submergent—Rooted
- Native
- Comments: Compare with submerged Sagittaria subulata.

Najas guadalupensis

- Scientific Name: Najas guadalupensis (Spreng.)Magnus
- Common Name: Southern waternymph
- Group: Monocot
- Family: NAJADACEAE (Water-nymph family)
- Growth Form: Submergent—Rooted
- Native
- Comments: Compare with *Potamogeton pusillus*. *Najas guadalupensis* appears leafier than *P. pusillus* and has shorter leaves.

Potamogeton pusillus

- Scientific Name: Potamogeton pusillus L.
- Common Name: Small pondweed
- Group: Monocot
- Family: POTAMOGETONACEAE (Pondweed family)
- Growth Form: Submergent—Rooted
- Native
- Comments: Compare with *Najas guadalupensis*. Longer leaves with prominent midrib.

Chara sp.

- Scientific Name: Chara sp.
- Common Name: Muskgrass, Stonewort
- Group: Charophyta (Green algae)
- Family: CHARACEAE
- Growth form: Submergent—Not rooted
- Comments: *Chara* is an algae that resembles vascular submerged plants. Compare with *Ceratophyllum demersum*

Ceratophyllum demersum

- Scientific Name: Ceratophyllum demersum L.
- Common Name: Coontail, Coon's tail
- Group: Dicot
- Family: CERATOPHYLLACEAE (Hornwort family)
- Growth Form: Submergent—Not rooted
- Native
- Comments: Compare with *Chara*; *Ceratophyllum demersum is* a vascular plants that usually grows submerged but not rooted. Leaves have small teeth, in whorl arrangements.

Myriophyllum aquaticum (Not Native)

- Scientific Name: *Myriophyllum aquaticum* (Vell.)Verdc.
- Common Name: Parrot feather watermilfoil
- Group: Dicot
- Family: HALORAGACEAE (Water milfoil family)
- Growth Form: Submergent/Emergent —Rooted
- Not native

Myriophyllum heterophyllum

- Scientific Name: *Myriophyllum heterophyllum* Michx.
- Common Name: Twoleaf watermilfoil
- Group: Dicot
- Family: HALORAGACEAE (Water milfoil family)
- Growth Form: Submergent/Emergent —Rooted
- Native
- Comments: Emerged portion of leaves (not shown in these pictures) are stout and strongly toothed.

Eleocharis baldwinii

- Scientific Name: *Eleocharis baldwinii* (Torr.) Chapm.
- Common Name: Road-grass, Baldwin's spikerush
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Submergent/Emergent —Rooted
- Native
- Comments: Compare with *Eleocharis parvula*; *Eleocharis baldwinii* stems are much more slender and longer than those of *E. parvula*; Occurs in both submergent and emergent forms.

Eleocharis parvula

- Scientific Name: *Eleocharis parvula* (Roem. & Schult.) Link ex Bluff et al.
- Common Name: Dwarf spikerush
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Submergent/Emergent —Rooted
- Native
- Comments: Compare with *Eleocharis baldwinii*. *Eleocharis parvula* can also occur submerged and they commonly occur in brackish waters.

Eleocharis obtusa

- Scientific Name: *Eleocharis obtusa* (Willd.) Schult.
- Common Name: Blunt spikerush
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Native
- Comments: Compare with other *Eleocharis* species.

Luziola fluitans

- Scientific Name: Luziola fluitans (Michx.)Terrell & H.Rob.
- Common Name: Southern watergrass
- Group: Monocot
- Family: POACEAE (Grass family)
- Growth Form: Submerged/Floating leaved—Rooted
- Native
- Comments: Luziola fluitans is the new name for Hydrochloa caroliniensis.

Hygrophila polysperma (Not Native)

- Scientific Name: Hygrophila polysperma (Roxb.) T. Anderson
- Common Name: Indian swampweed
- Group: Dicot
- Family: ACANTHACEAE (Acanthus family)
- Growth Form: Submergent/Emergent
- Not native, EPPC (I)

Ludwigia repens

- Scientific Name: Ludwigia repens J.R. Forst.
- Common Name: Creeping primrose-willow
- Group: Dicot
- Family: ONAGRACEAE (Evening-primrose family)
- Growth Form: Floating leaved/submerged—Rooted
- Native

Sagittaria subulata

- Scientific Name: Sagittaria subulata (L.) Buchenau
- Common Name: Awl-leaf arrowhead
- Group: Monocot
- Family: ALISMATACEAE (Water-plantain family)
- Growth Form: Submergent/Emergent
- Native
- Comments: Compare with Vallisneria americana when submerged.

Sagittaria filiformis

- Scientific Name: Sagittaria filiformis J.G. Sm.
- Common Name: Threadleaf arrowhead
- Group: Monocot
- Family: ALISMATACEAE (Water-plantain family)
- Growth Form: Submergent/Emergent
- Native
- Comments: Compare with Sagittaria subulata.

Marsilea ancylopoda

- Scientific Name: Marsilea ancylopoda A.Braun
- Common Name: Tropical waterclover
- Group: Fern
- Family: MARSILEACEAE (Water-clover family)
- Growth Form: Floating-leaved/Emergent
- Native
- Comments: Compare with *Hydrocotyle ranunculoides*. Populations of *Marsilea* can be as temporary as the open, shallow waterbodies in which they grow

Hydrocotyle ranunculoides

- Scientific Name: *Hydrocotyle ranunculoides* L.f.
- Common Name: Floating marshpennywort
- Group: Dicot
- Family: APIACEAE (Carrot family)
- Growth Form: Floating-leaved/Emergent
- Native
- Comments: Compare with other species of *Hydrocotyle*.

Plants of Retention Ponds and Drainage Ditches

Page 36

Micranthemum umbrosum

- Scientific Name: Micranthemum umbrosum (J.F. Gmel.) S.F. Blake
- Common Name: Shade mudflower
- Group: Dicot
- Family: SCROPHULARIACEAE (Figwort family)
- Growth Form: Submergent/Emergent
- Native
- Comments: Compare with Lindernia grandiflora.

Lindernia grandiflora

- Scientific Name: Lindernia grandiflora Nutt.
- Common Name: Savannah false pimpernel
- Group: Dicot
- Family: SCROPHULARIACEAE (Figwort family)
- Growth Form: Emergent/Submergent
- Native
- Comments: Compare with Micranthmum umbrosum and Bacopa monnieri

Bacopa monnieri

- Scientific Name: Bacopa monnieri (L.) Pennell
- Common Name: Herb of grace
- Group: Dicot
- Family: SCROPHULARIACEAE (Figwort family)
- Growth Form: Emergent/Submergent
- Native
- Comments: Compare with Lindernia grandiflora and Bacopa caroliniana

Bacopa caroliniana

- Scientific Name: Bacopa caroliniana (Walter) B.L. Rob.
- Common Name: Blue waterhyssop, Lemon bacopa
- Group: Dicot
- Family: SCROPHULARIACEAE (Figwort family)
- Growth Form: Emergent/Submergent
- Native
- Comments: Compare with *Bacopa monnieri*; when crushed, the leaves smell lemony.

Hydrocotyle umbellata

- Scientific Name: *Hydrocotyle umbellata* L.
- Common Name: Manyflower marshpennywort
- Group: Dicot
- Family: APIACEAE (Carrot family)
- Native
- Comments: Compare with other species of *Hydrocotyle*; Leaves of *H. umbellata* are smaller than those of *H. bonariensis*. Leaf diameters rarely exceed 1.5 inches.

Eleocharis cellulosa

- Scientific Name: *Eleocharis cellulosa* Torr.
- Common Name: Gulf coast spikesedge
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Forms: Emergent
- Native
- Comments: Round stems are not segmented (not seprate); Compare with *Eleocharis interstincta*.

Eleocharis interstincta

- Scientific Name: *Eleocharis interstincta* (Vahl) Roem. & Schult.
- Common Name: Knotted spikerush
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Forms: Emergent
- Native
- Comments: Stems are seprate with the segments becoming narrower toward the tip; Compare with *Eleocharis cellulosa*.

Fuirena scirpoidea

- Scientific Name: Fuirena scirpoidea Michx.
- Common Name: Southern umbrella-sedge
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Emergent
- Native
- Comments: Compare with similar-looking *Eleocharis* spp.

Polygonum spp.

Polygonum hydropiperoides (Swamp smartweed) has white flowers and lanceolate leaves that are narrow to broad.

- Scientific Name: Polygonum L.
- Common Name: Knotweed
- Group: Dicot
- Family: POLYGONACEAE (Buckwheat family)
- Growth Form: Emergent
- Most *Polygonum* species are native, but some can be nuisance.

Polygonum spp.

Polygonum persicaria (Lady's thumb smartweed) has flowers in bright pink colors and have lanceolate blades. It is not native.

Plants of Retention Ponds and Drainage Ditches

Page 46
Alternanthera philoxeroides (Not Native)

- Scientific Name: Alternanthera philoxeroides (Mart.) Griseb.
- Common Name: Alligatorweed
- Group: Dicot
- Family: AMARANTHACEAE (Amaranth family)
- Growth Form: Emergent
- Not native, EPPC(II)
- Comments: Each white inflorescence is composed of several flowers and has a paper-like texture; Inflorescences are borne terminal or from the leaf axis; Leaves are opposite.

Colocasia esculenta (Not Native)

- Scientific Name: Colocasia esculenta (L.) Schott
- Common Name: Wild taro, Dasheen, Coco yam
- Group: Monocot
- Family: ARACEAE (Arum family)
- Growth Form: Emergent
- Not native, EPPC(I)
- Comments: Compare with *Peltandra virginica*.

Peltandra virginica

- Scientific Name: Peltandra virginica (L.) Schott
- Common Name: Green arrow arum
- Group: Monocot
- Family: ARACEAE (Arum family)
- Growth Form: Emergent
- Native
- Comments: Compare with Colocasia esculenta.

Pontederia cordata

- Scientific Name: Pontederia cordata L.
- Common Name: Pickerelweed
- Group: Monocot
- Family: PONTEDERIACEAE (Water-hyacinth family)
- Growth Form: Emergent
- Native
- Comments: Compare with *Sagittaria lanciflora* and *Canna flaccida* when not flowering.

Sagittaria lancifolia

- Scientific Name: Sagittaria lancifolia L.
- Common Name: Bulltongue arrowhead
- Group: Monocot
- Family: ALISMATACEAE (Water-plantain family)
- Growth Form: Emergent
- Native
- Comments: Compare with *Echinodorus cordifolius*.

Echinodorus cordifolius

- Scientific Name: *Echinodorus cordifolius* (L.) Griseb.
- Common Name: Creeping burrhead
- Group: Monocot
- Family: ALISMATACEAE (Water-plantain family)
- Growth Form: Emergent
- Native
- Comments: Compare with Sagittaria lancifolia.

Canna flaccida

- Scientific Name: Canna flaccida Salisb.
- Common Name: Bandanna of the Everglades
- Group: Monocot
- Family: CANNACEAE (Canna family)
- Growth Form: Emergent
- Native
- Comments: Compare with *Sagittaria lancifolia* and *Pontederia cordata* when not flowering.

Saururus cernuus

- Scientific Name: Saururus cernuus L.
- Common Name: Lizard's tail
- Group: Dicot
- Family: SAURURACEAE (Lizard's-tail family)
- Growth Form: Emergent
- Native
- Comments: Leaves are alternate and heart-shaped.

Typha domingensis

- Scientific Name: Typha domingensis Pers.
- Common Name: Southern cattail
- Group: Monocot
- Family: TYPHACEAE (Cat-tail family)
- Growth Form: Emergent large plant, the tallest of the cattails
- Native, can be nuisance
- Comments: Male flowers occur on upper portion of the spike; Compare with *Typha latifolia*.

Typha latifolia

- Scientific Name: Typha latifolia L.
- Common Name: Broadleaf cattail
- Group: Monocot
- Family: TYPHACEAE (Cat-tail family)
- Growth Form: Emergent
- Native, can be nuisance
- Comments: There is no gap between mail and female flowers; Compare with *Typha domingensis*.

Phragmites australis

- Scientific Name: Phragmites australis (Cav.) Trin. ex Steud
- Common Name: Common reed
- Group: Monocot
- Family: POACEAE (Grass family)
- Growth Form: Emergent
- Native

Schoenoplectus tabernaemontani

- Scientific Name: Schoenoplectus tabernaemontani (C.C.Gmel.)Palla
- Common Name: Softstem bulrush
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Emergent
- Native
- Comments: Can be confused with *Juncus effuses*; Its old name is *Scirpus validus* Vahl.

Rhynchospora latifolia

- Scientific Name: Rhynchospora latifolia (Baldwin) W.W. Thomas
- Common Name: Giant whitetop, Sandswamp white top
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Emergent
- Native

Rhynchospora corniculata

- Scientific Name: Rhynchospora corniculata (Lam.) A. Gray
- Common Name: Shortbristle horned beaksedge
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Emergent
- Native

Juncus effusus

- Scientific Name: *Juncus effusus* L. subsp. *solutus* (Fernald & Wiegand)Hämet-Ahti
- Common Name: Soft rush
- Group: Monocot
- Family: JUNCACEAE (Rush family)
- Growth Form: Emergent
- Native
- Comments: Compare with *Schoenoplectus tabernaemontani* which is much bigger and have inflorescences closer to the tip of stems.

Juncus megacephalus

- Scientific Name: Juncus megacephalus M.A. Curtis
- Common Name: Bighead rush
- Group: Monocot
- Family: JUNCACEAE (Rush family)
- Growth Form: Emergent
- Native

Juncus polycephalos

- Scientific Name: Juncus polycephalos Michx.
- Common Name: Manyhead rush
- Group: Monocot
- Family: JUNCACEAE (Rush family)
- Growth Form: Emergent
- Native
- Comments: Compare with *J. megacephalus*; Laterally compressed hollow blades are septate; base of stems is red colored.

Sabatia calycina

- Scientific Name: Sabatia calycina (Lam.) A. Heller
- Common Name: Coastal rose gentian
- Group: Dicot
- Family: GENTIANACEAE (Gentian family)
- Growth Form: Emergent
- Native
- Comments: Compare with Sabatia stellaris.

Cicuta maculata

- Scientific Name: Cicuta maculata L.
- Common Name: Spotted water hemlock
- Group: Dicot
- Family: APIACEAE (Carrot family)
- Growth Form: Emergent
- Native
- Comments: *Cicuta maculata* is one of the most poisonous plants; Compare with *Oxypolis filiformis* and *Sambucus nigra*.

Oxypolis filiformis

- Scientific Name: Oxypolis filiformis (Walter) Britton;
 (=Tiedemannia filiformis (Walter)Feist & S.R.Downie)
- Common Name: Water cowbane
- Group: Dicot
- Family: APIACEAE (Carrot family)
- Growth Form: Emergent
- Native
- Comments: Compare with Cicuta maculata and Sambucus nigra.

Ludwigia octovalvis

- Scientific Name: Ludwigia octovalvis (Jacq.) P.H. Raven
- Common Name: Mexican primrose-willow
- Group: Dicot
- Family: ONAGRACEAE (Evening primrose family)
- Growth Form: Emergent
- Native
- Comments: Compare with Ludwigia peruviana.

Cephalanthus occidentalis

- Scientific Name: Cephalanthus occidentalis L.
- Common Name: Common buttonbush
- Group: Dicot
- Family: RUBIACEAE (Madder family)
- Native
- Growth Form: Emergent

Taxodium ascendens

- Scientific Name: *Taxodium ascendens* Brongn.
- Common Name: Pond cypress
- Group: Gymnosperm
- Family: CUPRESSACEAE (Cypress family)
- Native
- Growth Form: Emergent
- Comments: Leaf needles are facing upward; Compare with *Taxodium disti-chum*.

Taxodium distichum

- Scientific Name: Taxodium distichum (L.) Rich.
- Common Name: Bald cypress
- Group: Gymnosperm
- Family: CUPRESSACEAE (Cypress family)
- Native
- Growth Form: Emergent
- Comments: Compare with *Taxodium ascendens*.

ZONE 3

1 ft above the normal pool or lowest zone in a dry detention area

Emergent forbes, grasses, sedges, and that are facultative wetland plants (FACW)

• Plants that has FACW status and mostly occur in zone 3.

Hydrocotyle sibthorpioides (Not Native)

- Scientific Name: *Hydrocotyle sibthorpioides* Lam.
- Common Name: Lawn marshpennywort
- Group: Dicot
- Family: APIACEAE (Carrot family)
- Not native
- Comments: Compare with other Hydrocotyle species.

Hydrocotyle bonariensis

- Scientific Name: Hydrocotyle bonariensis Lam.
- Common Name: Largeleaf marshpennywort, Largeleaf pennywort
- Group: Dicot
- Family: APIACEAE (Carrot family)
- Native
- Comments: Compare with other Hydrocotyle species.

Centella asiatica

- Scientific Name: Centella asiatica (L.) Urb.
- Common Name: Spadeleaf
- Group: Dicot
- Family: APIACEAE (Carrot family)
- Native
- Comments: *Centella asiatica* is the new name for *Centella erecta* (L.f.) Fernald; Compare with *Hydrocotyle* species.

Rumex verticillatus

- Scientific Name: Rumex verticillatus L.
- Common Name: Swamp dock
- Group: Dicot
- Family: POLYGONACEAE (Buckwheat family)
- Growth Form: Emergent
- Native

Panicum repens (Not Native)

- Scientific Name: Panicum repens L.
- Common Name: Torpedograss
- Group: Monocot
- Family: POACEAE (Grass family)
- Not native, EPPC(I)

Echinochloa walteri

- Scientific Name: Echinochloa walteri (Pursh)A.Heller
- Common Name: Coast cockspur, Coast cockspur grass
- Group: Monocot
- Family: POACEAE (Grass family)
- Growth Form: Emergent
- Native

Carex intumescens

- Scientific Name: Carex intumescens Rudge
- Common Name: Greater bladder sedge
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Emergent
- Native
- Comments: Previously not recorded in Volusia County

Carex longii

- Scientific Name: *Carex longii* Mack.
- Common Name: Long's sedge
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Emergent
- Native

Cyperus odoratus

- Scientific Name: Cyperus odoratus L.
- Common Name: Fragrant flatsedge
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Emergent
- Native

Cyperus surinamensis

- Scientific Name: Cyperus surinamensis Rottb.
- Common Name: Tropical flatsedge
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Emergent
- Native

Spiranthes vernalis

- Scientific Name: Spiranthes vernalis Engelm. & A. Gray
- Common Name: Spring ladiestresses, Spring lady's tresses
- Group: Monocot
- Family: ORCHIDACEAE (Orchid family)
- Native
Diodia virginiana

- Scientific Name: *Diodia virginiana* L.
- Common Name: Virginia buttonweed
- Group: Monocot
- Family: RUBIACEAE (Madder family)
- Native

Pluchea odorata

- Scientific Name: *Pluchea odorata* (L.)Cass.
- Common Name: Sweetscent
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Native

Vernonia gigantea

- Scientific Name: Vernonia gigantea (Walter)Trel. ex Branner & Coville
- Common Name: Giant ironweed
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Native

Eustoma exaltatum

- Scientific Name: Eustoma exaltatum (L.)Salisb. ex G.Don
- Common Name: Marsh gentian; Catchfly prairie-gentian
- Group: Dicot
- Family: GENTIANACEAE (Gentian family)
- Native

Commelina diffusa

- Scientific Name: Commelina diffusa Burm.f.
- Common Name: Climbing dayflower, Common dayflower
- Group: Monocot
- Family: COMMELINACEAE (Spiderwort family)
- Not native

Cirsium nuttallii

- Scientific Name: Cirsium nuttallii DC.
- Common Name: Nuttall's thistle
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Native

Sabatia stellaris

- Scientific Name: Sabatia stellaris Pursh
- Common Name: Rose of Plymouth
- Group: Dicot
- Family: GENTIANACEAE (Gentian family)
- Native
- Comments: Compare with Sabatia calycina.

Coreopsis leavenworthii

- Scientific Name: Coreopsis leavenworthii Torr. & A. Gray
- Common Name: Leavenworth's tickseed
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Native

Flaveria linearis

- Scientific Name: *Flaveria linearis* Lag.
- Common Name: Narrowleaf yellowtops
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Native

ZONES 4

Middle zone: 1-4 ft above the normal pool, periodically inundated

Emergent plants that are facultative plants (FAC)

• Plants that have 34-66% probability occurrence equally in wetlands and non-wetlands.

Dichondra carolinensis

- Scientific Name: Dichondra carolinensis Michx.
- Common Name: Carolina ponysfoot
- Group: Dicot
- Family: CONVOLVULACEAE (Morning-glory family)
- Native
- Comments: Compare with Centella.

Phyla nodiflora

- Scientific Name: *Phyla nodiflora* (L.) Greene
- Common Name: Turkey tangle fogfruit, Capeweed
- Group: Dicot
- Family: VERBENACEAE (Verbena family)
- Growth Form: Emergent
- Native

Arundo donax (Not Native)

- Scientific Name: Arundo donax L.
- Common Name: Giant reed
- Group: Monocot
- Family: POACEAE (Grass family)
- Growth Form: Emergent
- Not native

Polypogon monspeliensis (Not Native)

- Scientific Name: Polypogon monspeliensis (L.) Desf.
- Common Name: Rabbitfootgrass
- Group: Monocot
- Family: POACEAE (Grass family)
- Growth Form: Emergent
- Not native

Cyperus rotundus (Not Native)

- Scientific Name: Cyperus rotundus L.
- Common Name: Nutgrass
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Emergent
- Not native

Juncus marginatus

- Scientific Name: Juncus marginatus Rostk.
- Common Name: Shorerush, Grassleaf rush
- Group: Monocot
- Family: JUNCACEAE (Rush family)
- Growth Form: Emergent
- Native

Bidens alba

- Scientific Name: *Bidens alba* (L.) DC.
- Common Name: Beggarticks, Romerillo
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Native

Sambucus nigra

- Scientific Name: Sambucus nigra L. subspecies. canadensis (L.) R. Bolli
- Common Name: American elder, Elderberry, American black elderberry
- Group: Dicot
- Family: CAPRIFOLIACEAE (Honeysuckle family)
- Native
- Comments: Compare with Cicuta maculata and Oxypolis filiformis.

Stachys floridana

- Scientific Name: *Stachys floridana* Shuttlew. ex Benth.
- Common Name: Florida hedgenette, Florida betony
- Group: Dicot
- Family: LAMINACEAE (Mint family)
- Native

Erigeron strigosus

- Scientific Name: *Erigeron strigosus* Muhl. ex Willd.
- Common Name: Prairie fleabane
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Native

Sisyrinchium rosulatum (Not Native)

- Scientific Name: Sisyrinchium rosulatum E.P. Bicknell
- Common Name: Annual blue-eyed grass
- Group: Monocot
- Family: IRIDACEAE (Iris family)
- Not native

Ruellia caroliniensis

- Scientific Name: Ruellia caroliniensis (J.F.Gmel.)Steud.
- Common Name: Carolina wild petunia
- Group: Dicot
- Family: ACANTHACEAE (Acanthus family)
- Native
- Comments: Compare with *Ruellia simplex*.

Ruellia simplex (Not Native)

- Scientific Name: Ruellia simplex C.Wright
- Common Name: Britton's wild petunia, Mexican bluebell
- Group: Dicot
- Family: ACANTHACEAE (Acanthus family)
- Not native, EPPC(I)
- Comments: Compare with Ruellia caroliniensis.

Cirsium horridulum

- Scientific Name: Cirsium horridulum Michx.
- Common Name: Purple thistle, Yellow thistle
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Native
- Comments: Compare with Cirsium nuttallii.

Tradescantia ohiensis

- Scientific Name: Tradescantia ohiensis Raf.
- Common Name: Bluejacket, Ohio spiderwort
- Group: Monocot
- Family: COMMELINACEAE (Spiderwort family)
- Native

Sphagneticola trilobata (Not Native)

- Scientific Name: *Sphagneticola trilobata* (L.)Pruski (*=Wedelia trilobata*)
- Common Name: Creeping oxeye
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Not native, EPPC(II)

Calyptocarpus vialis (Not Native)

- Scientific Name: Calyptocarpus vialis Less.
- Common Name: Straggler daisy
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Not native

Toxicodendron radicans

- Scientific Name: Toxicodendron radicans (L.) Kuntze
- Common Name: Eastern poison ivy
- Group: Dicot
- Family: ANACARDIACEAE (Sumac family)
- Native
- Comments: Poisonous

Sapium sebiferum (Not Native)

- Scientific Name: Sapium sebiferum (L.)Dum.Cours.
- Common Name: Popcorntree, Chinese tallowtree, Chinese tallow
- Group: Dicot
- Family: EUPHORBIACEAE (Spurge family)
- Not native, EPPC(I)

Schinus terebinthifolius (Not Native)

- Scientific Name: Schinus terebinthifolius Raddi
- Common Name: Brazilian pepper, Brazilian peppertree
- Group: Dicot
- Family: ANACARDIACEAE (Sumac family)
- Not native, EPPC(I)

4 ft and above normal pool

Facultative Upland (FACU) and Obligate Upland (UPL) plants

• Plants that have > 67% probability occurrence in non-wetlands

Plantago lanceolata (Not Native)

- Scientific Name: Plantago lanceolata L.
- Common Name: English plantain, Narrowleaf plantain
- Group: Dicot
- Family: PLANTAGINACEAE (Plantain family)
- Not native
- Comments: can be confused with some *Eleocharis* species. *Eleocharis* does not have any leaves

Boehmeria cylindrica

- Scientific Name: Boehmeria cylindrica (L.) Sw.
- Common Name: False nettle; Bog hemp
- Group: Dicot
- Family: URTICACEAE (Nettle family)
- Growth Form: Emergent
- Native
Setaria sp.

- Scientific Name: Setaria sp.
- Common Name: Foxtail
- Group: Monocot
- Family: POACEAE (Grass family)
- Growth Form: Emergent
- Native
- Comments: Compare with Polypogon monspeliensis

Imperata cylindrica (Not Native)

- Scientific Name: Imperata cylindrica (L.)P. Beauv.
- Common Name: Cogongrass
- Group: Monocot
- Family: POACEAE (Grass family)
- Not native, EPPC(I)
- Comments: Midvein on leaf is off centered. *Imperata cylindrical* is considered one of the worst weeds in the world.

Cynodon dactylon (Not Native)

- Scientific Name: *Cynodon dactylon* (L.)Pers.
- Common Name: Bermudagrass
- Group: Monocot
- Family: POACEAE (Grass family)
- Not native

Dactyloctenium aegyptium (Not Native)

- Scientific Name: Dactyloctenium aegyptium (L.)Willd. ex Asch. & Schweinf.
- Common Name: Durban crowfootgrass, Egyptian grass
- Group: Monocot
- Family: POACEAE (Grass family)
- Not native, EPPC(II)

Cenchrus sp.

- Scientific Name: *Cenchrus* sp.
- Common Name: Sandbur
- Group: Monocot
- Family: POACEAE (Grass family)
- Growth Form: Emergent
- Native
- Comments: *C. echinatus* if ring of bristle-like spines at base of bur (spur); *C. spinifex* if the rings is absent

Plants of Retention Ponds and Drainage Ditches

Cyperus retrorsus

- Scientific Name: Cyperus retrorsus Chapm.
- Common Name: Shallow sedge
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Emergent
- Native

Kyllinga odorata (Not Native)

- Scientific Name: Kyllinga odorata Vahl.
- Common Name: Fragrant spilesedge
- Group: Monocot
- Family: CYPERACEAE (Sedge family)
- Growth Form: Emergent:
- Not native
- •

Cnidoscolus stimulosus

- Scientific Name: Cnidoscolus stimulosus (Michx.)Engelm. & A.Gray
- Common Name: Tread-softly, Finger-rot
- Group: Dicot
- Family: EUPHORBIACEAE (Spurge family)
- Native
- Comments: Hairs on the plants can cause rashes if touched.

Crinum asiaticum (Not Native)

- Scientific Name: Crinum asiaticum L.
- Common Name: Poisonbulb
- Group: Monocot
- Family: LINIACEAE (Lily family)
- Not native
- Comments: Sap can cause irritating skin on contact.

Richardia scabra (Not Native)

- Scientific Name: *Richardia scabra* L.
- Common Name: Rough Mexican clover
- Group: Dicot
- Family: RUBIACEAE (Madder family)
- Not native
- Comments: Compare with Richardia grandiflora.

Richardia grandiflora (Not Native)

- Scientific Name: Richardia grandiflora (Cham. & Schltdl.)Steud.
- Common Name: Largeflower Mexican clover
- Group: Dicot
- Family: RUBIACEAE (Madder family)
- Not native (EPPC II)
- Comments: Compare with *Richardia scabra*.

Centrosema virginianum

- Scientific Name: Centrosema virginianum (L.) Benth.
- Common Name: Spurred butterfly pea
- Group: Dicot
- Family: FABACEAE (Pea family)
- Native

Mimosa quadrivalvis

- Scientific Name: *Mimosa quadrivalvis* L. var. *hystricina* (Small ex Britton & Rose) Barneby (=*Mimosa hystricina* (Small ex Britton & Rose) B.L. Turner)
- Common Name: Fourvalve mimosa
- Group: Dicot
- Family: FABACEAE (Pea family)
- Native

Portulaca pilosa

- Scientific Name: Portulaca pilosa L.
- Common Name: Pink purslane, Kiss-me-quick
- Group: Dicot
- Family: PORTULACACEAE (Purslane family)
- Native
- Comments: Compare with Portulaca amilis and Portulaca oleracea

Portulaca amilis (Not Native)

- Scientific Name: Portulaca amilis Speg.
- Common Name: Paraguayan purslane
- Group: Dicot
- Family: PORTULACACEAE (Purslane family)
- Not native
- Comments: Compare with Portulaca pilosa and Portulaca oleracea

Oxalis drummondii

- Scientific Name: Oxalis drummondii A. Gray
- Common Name: Drummond's woodsorrel
- Group: Dicot
- Family: OXALIDACEAE (Wood-Sorrel family)
- Native
- Comments: Compare with Oxalis rubra and Oxalis corniculata

Oxalis articulata (Not Native)

- Scientific Name: Oxalis articulata Savigny (=Oxalis rubra A. St.-Hil.)
- Common Name: Windowbox woodsorrel
- Group: Dicot
- Family: OXALIDACEAE (Wood-Sorrel family)
- Not native
- Comments: Compare with Oxalis drummondii and Oxalis corniculata

Monarda punctata

- Scientific Name: Monarda punctata L.
- Common Name: Spotted beebalm
- Group: Dicot
- Family: LAMIACEAE (Mint family)
- Native

Ipomoea purpurea (Not Native)

- Scientific Name: *Ipomoea purpurea* (L.) Roth
- Common Name: Tall morning-glory
- Group: Dicot
- Family: CONVOLVULACEAE (Morning-glory family)
- Not native

Emilia sonchifolia (Not Native)

- Scientific Name: Emilia sonchifolia (L.)DC.
- Common Name: Lilac tasselflower
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Not native
- Comments: Compare with Emilia fosbergii

Emilia fosbergii (Not Native)

- Scientific Name: *Emilia fosbergii* Nicolson
- Common Name: Florida tasselflower
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Not native
- Comments: Compare with Emilia sonchifolia

Gaillardia pulchella

- Scientific Name: Gaillardia pulchella Foug.
- Common Name: Indian blanket, Firewheel
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Native

Erythrina herbacea

- Scientific Name: *Erythrina herbacea* L.
- Common Name: Coralbean, Cherokee bean, Redcardinal
- Group: Dicot
- Family: FABACEAE (Pea family)
- Native
- Comments: Seeds are very poisonous.

Russelia equisetiformis (Not Native)

- Scientific Name: Russelia equisetiformis Schltdl. & Cham.
- Common Name: Fountainbush, Firecracker plant
- Group: Dicot
- Family: PLANTAGINACEAE (Figwort family)
- Not native

Oxalis corniculata

- Scientific Name: *Oxalis corniculata* L. (= *Oxalis stricta* L.)
- Common Name: Common yellow oxalis, Creeping woodsorrel
- Group: Dicot
- Family: OXALIDACEAE (Wood-Sorrel family)
- Native
- Comments: Compare with *Oxalis drummondii* and *Oxalis rubra*. Also compare with *Portulaca oleraceae*.

Portulaca oleracea (Not Native)

- Scientific Name: Portulaca oleracea L.
- Common Name: Little hogweed
- Group: Dicot
- Family: PORTULACACEAE (Purslane family)
- Not native
- Comments: Compare with *Portulaca pilosa* and *Portulaca amilis*. Also compare with *Oxalis stricta*.

Sonchus oleraceus (Not Native)

- Scientific Name: Sonchus oleraceus L.
- Common Name: Common sowthistle
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Not native

Heterotheca subaxillaris

- Scientific Name: *Heterotheca subaxillaris* (Lam.)Britton & Rusby
- Common Name: Camphorweed
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Native

Ludwigia peruviana (Not Native)

- Scientific Name: Ludwigia peruviana (L.) H. Hara
- Common Name: Peruvian primrose-willow
- Group: Dicot
- Family: ONAGRACEAE (Evening primrose family)
- Not native, EPPC(I)
- Comments: Compare with Ludwigia octovalvis

Parthenocissus quinquefolia

- Scientific Name: Parthenocissus quinquefolia (L.) Planch.
- Common Name: Virginia creeper, Woodbine
- Group: Dicot
- Family: VITACEAE (Grape family)
- Native

Euphorbia cyathophora

- Scientific Name: Euphorbia cyathophora Murray
- Common Name: Fire on the mountain
- Group: Dicot
- Family: EUPHORBIACEAE (Spurge family)
- Native

Euphorbia heterophylla

- Scientific Name: Poinsettia heterophylla (L.)Klotzsch & Garcke
- Common Name: Fiddler's Spurge
- Group: Monocot
- Family: EUPHORBIACEAE (Spurge family)
- Native

Dioscorea bulbifera (Not Native)

- Scientific Name: Dioscorea bulbifera L.
- Common Name: Air potato, Air yam
- Group: Monocot
- Family: DIOSCOREACEAE (Yam family)
- Not native, EPPC(I)

Lantana camara (Not Native)

- Scientific Name: Lantana camara L.
- Common Name: Lantana, Shrubverbena
- Group: Dicot
- Family: VERBENACEAE (Verbena family)
- Not native, EPPC(I)

Lepidium virginicum

- Scientific Name: *Lepidium virginicum* L.
- Common Name: Virginia pepperweed
- Group: Dicot
- Family: BRASSICACEAE (Mustard family)
- Native

Lactuca graminifolia

- Scientific Name: Lactuca graminifolia Michx.
- Common Name: Grassleaf lettuce
- Group: Dicot
- Family: ASTERACEAE (Aster family)
- Native
| | Not Native | | Compare with | | |
|------|-----------------------------|------|----------------------------|------|--------------------|
| Zone | Scientific Name | Page | Scientific Name | Page | Scientific Name |
| 1/2 | Salvinia minima | 3 | Spirodela polyrhiza | 8 | |
| 1/2 | Eichhornia crassipes | 14 | Limnobium spongia | 13 | |
| 1/2 | Pistia stratiotes | 17 | | | |
| 1/2 | Egeria densa | 19 | Elodea canandensis | 18 | |
| 1/2 | Myriophyllum aquaticum | 25 | Myriophyllum heterophyllum | 26 | |
| 1/2 | Hygrophila polysperma | 31 | Ludwigia repens | 32 | |
| 1/2 | Polygonum persicaria | 46 | Other Polygonum spp. | 45 | |
| 1/2 | Alternanthera philoxeroides | 47 | | | |
| 1/2 | Colocasia esculenta | 48 | Peltandra virginia | 49 | |
| 3 | Hydrocotyle sibthorpioides | 72 | Hydrocotyle umbellata | 41 | |
| 3 | Panicum repens | 76 | | | |
| 3 | Commelina diffusa | 87 | Tradescantia ohiensis | 108 | |
| 4 | Arundo donax | 96 | | | |
| 4 | Polypogon monspeliensis | 97 | Setaria sp. | 119 | |
| 4 | Cyperus roduntus | 98 | Carex retrosus | 124 | |
| 4 | Sisyrinchium rosulatum | 104 | | | |
| 4 | Ruellia simplex | 106 | Ruellia caroliniensis | 105 | |
| 4 | Sphagneticola trilobata | 109 | Heterantheca subaxillaris | 145 | |
| 4 | Calyptocarpus vialis | 110 | | | |
| 4 | Sapium sebiferum | 112 | | | |
| 4 | Schinus terebinthifolius | 113 | | | |
| 5 | Plantago lanceolata | 117 | | | |
| 5 | Imperata cylindrica | 120 | | | |
| 5 | Cynodon dactylon | 121 | Dactylotenium aegyptium | 122 | |
| 5 | Dactylotenium aegyptium | 122 | Cynodon dactylon | 121 | |
| 5 | Kyllinga brevifolia | 125 | | | |
| 5 | Crinum asiaticum | 127 | | | |
| 5 | Richardia scabra | 128 | Richardia grandiflora | 129 | |
| 5 | Richardia grandiflora | 129 | Richardia scabra | 128 | |
| 5 | Portulaca amilis | 133 | Portulaca pilosa | 132 | Portulaca oleracea |
| 5 | Oxalis articulata | 135 | Oxalis drummondii | 134 | Oxalis corniculata |
| 5 | Ipomoea purpurea | 137 | | | |
| 5 | Emilia sonchifolia | 138 | Emilia fosbergii | 139 | |
| 5 | Emilia fosbergii | 139 | Emilia sonchifolia | 138 | |
| 5 | Russelia equisetiformis | 142 | | | |
| 5 | Oxalis corniculata | 143 | Oxalis articulata | 135 | Oxalis drummondii |
| 5 | Portulaca oleracea | 144 | Portulaca amilis | 133 | Portulaca pilosa |
| 5 | Sonchus oleraceus | 145 | | | |
| 5 | Ludwigia peruviana | 147 | Ludwigia octovalvis | 67 | |
| 5 | Dioscorea bulbifera | 151 | | | |
| 5 | Lantana camara | 182 | | | |

List of Non-Native Species and Similar Looking Species (Red denotes Non-Native)

Plants of Retention Ponds and Drainage Ditches

Index List – Scientific Names

Alternanthera philoxeroides (Mart.) Griseb.	47
Arundo donax L.	96
Azolla caroliniana Willd.	2
Bacopa caroliniana (Walter) B.L. Rob.	40
Bacopa monnieri (L.) Pennell	39
Boehmeria cylindrica	118
Bidens alba (L.) D.C.	100
Calyptocarpus vialis Less.	110
Canna flaccida Salisb.	53
Carex intumescens Rudge	78
Carex longii Mack.	79
Cenchrus sp.	123
Centella asiatica (L.) Urb.	74
Centrosema virginianum (L.) Benth.	130
Cephalanthus occidentalis L.	68
Ceratophyllum demersum L.	24
Chara sp.	23
Cicuta maculata L.	65
Cirsium horridulum Michx.	107
Cirsium nuttallii DC.	88
Cnidoscolus stimulosus (Michx.)Engelm. & A.Gray	126
Colocasia esculenta (L.) Schott.	48
Commelina diffusa Burm. f.	87
Coreopsis leavenworthii Torr. & A. Gray	90
Crinum asiaticum L.	127
Cynodon dactylon (L.)Pers.	121

Cyperus odoratus L.	80
Cyperus retrorsus Chapm.	124
Cyperus rotundus L.	98
Cyperus surinamensis Rottb.	81
Dactyloctenium aegyptium (L.) Willd. ex Asch. & Schweinf.	122
Dichondra carolinensis Michx.	94
Diodia virginiana L.	83
Dioscorea bulbifera L.	151
Echinochloa walteri (Pursh) A.Heller	77
Echniodorus cordifolius (L.) Griseb.	52
Egeria densa Planch.	19
Eichhornia crassipes (Mart.) Solms	14
Eleocharis baldwinii (Torr.) Chapm.	27
Eleocharis cellulosa Torr.	42
Eleocharis interstincta (Vahl) Roem. & Schult.	43
Eleocharis obtusa (Willd.) Schult.	29
Eleocharis parvula (Roem. & Schult.) Link ex. Bluff et al.	28
Emilia fosbergii Nicolson	139
Emilia sonchifolia (L.) DC.	138
Elodea sp.	18
Erigeron strigosus Muhl. ex Willd.	103
Erythrina herbacea L.	141
Euphorbia cyathophora Murray	149
Euphorbia heterophylla (L.)Klotzsch & Garcke	150
Eustoma exaltatum (L.) Salisb. Ex G. Don.	86
Flaveria linearis Lag.	91
Fuirena scirpoidea Michx.	44
Gaillardia pulchella Foug.	140

Heterotheca subaxillaris (Lam.)Britton & Rusby	146
Hydrocotyle bonariensis Lam.	73
Hydrocotyle ranunculoides L.f.	36
Hydrocotyle sibthorpioides Lam.	72
Hydrocotyle umbellata L.	41
Hygrophila polysperma (Roxb.) T. Anderson	31
Imperata cylindrica (L.)P. Beauv.	120
Ipomoea purpurea (L.) Roth	137
Juncus effusus L. subsp. solutus (Fernald & Wiegand)Hämet-Ahti	61
Juncus marginatus Rostk.	99
Juncus megacephalus M.A. Curtis	62
Juncus polycephalus Michx.	63
Kyllinga odorata Vahl.	125
Lactuca graminifolia Michx.	154
Lantana camara L.	152
Lemna minuta Kunth	5
Lemna obscura (Austin) Daubs (= Lemna minor var. obscura)	7
Lemna valdiviana Phil.	6
Lepidium virginicum L.	153
Limnobium spongia (Bosc) Rich. ex Steud	13
Lindernia grandiflora Nutt.	38
Ludwigia octovalvis (Jacq.) P.H. Raven	67
Ludwigia peruviana (L.) H. Hara	147
Ludwigia repens J.R. Forst.	32
Luziola fluitans (Michx.) Terrell & H. Rob.	30
Marsilea ancylopoda A. Braun	35
Micranthemum umbrosum (J.F. Gmel.) S.F. Blake	37

Mimosa quadrivalvis L. var. hystricina (Small ex Britton & Rose) Barneby	131
Monarda punctata L.	136
Myriophyllum aquaticum (Vell.) Verdc.	25
Myriophyllum heterophyllum Michx.	26
Najas guadalupensis (Spreng.) Magnus	21
Nuphar lutea (L.) Sm. ssp. advena (Aiton) Kartesz & Gandhi Nuphar advena (formerly lutea (L.) Sibth. & Sm.)	Nuphar 15
Nymphaea odorata Aiton	16
Oxalis articulata Savigny (=Oxalis rubra A. StHil.)	135
Oxalis corniculata L. (= Oxalis stricta L.)	143
Oxalis drummondii A. Gray	134
Oxypolis filiformis (Walter) Britton	66
Panicum repens L.	76
Parthenocissus quinquefolia (L.) Planch.	148
Peltandra virginica (L.) Schott.	49
Phragmites australis (Cav.) Trin. ex Steud	57
Phyla nodiflora (L.) Greene	95
Pistia stratiotes L.	17
Plantago lanceolata L.	117
Pluchea odorata (L.) Cass.	84
Polygonum L.	45
Polypogon monspeliensis (L.) Desf.	97
Pontederia cordata L.	50
Portulaca amilis Speg.	133
Portulaca oleracea L.	144
Portulaca pilosa L.	132
Potamogeton pusillus L.	22

Riccia fluitans L.	9
Rhynchospora corniculata (Lam.) A. Gray	60
Rhynchospora latifolia (Baldwin) W.W. Thomas	59
Richardia grandiflora (Cham. & Schltdl.) Steud.	129
Richardia scabra L.	128
Ruellia caroliniensis (J. F. Gmel.) Steud.	105
Ruellia simplex C. Wright	106
Rumex verticillatus L.	75
Russelia equisetiformis Schltdl. & Cham.	142
Sabatia calycina (Lam.) A. Heller	64
Sabatia stellaris Pursh	89
Saururus cernuus L.	54
Sagittaria filiformis J.G. Sm.	34
Sagittaria lancifolia L.	51
Sagittaria subulata (L.) Buchenau	33
Salvinia minima Baker	3
Sambucus nigra L. ssp. canadensis (L.) R. Bolli.	101
Sapium sebiferum (L.) Dum. Cours.	112
Schinus terebinthifolius Raddi	113
Schoenoplectus tabernaemontani (C.C.Gmel.) Palla	58
Setaria sp.	119
Sisyrinchium rosulatum E.P. Bicknell	104
Sonchus oleraceus L.	145
Sphagneticola trilobata (L.) Pruski	109
Spiranthes vernalis Engelm & A. Gray	82
Spirodela polyrhiza (L.) Schleiden	8
Stachys floridana Shuttlew. ex Benth.	102

Taxodium ascendens Brongn.	69
Taxodium distichum (L.) Rich.	70
Toxicodendron radicans (L.) Kuntze	111
Tradescantia ohiensis Raf.	108
Typha domingensis Pers.	55
Typha latifolia L.	56
Utricularia L.	12
Vallisneria americana Michx.	20
Vernonia gigantean (Walter) Trel. Ex Branner & Coville	85
Wolffia columbiana H. Karst.	4
Wolffiella gladiata (Hegelm.)Hegelm.	10
Wolffiella oblonga (Phil.)Hegelm.	11

Index List –Common Names

Air potato, Air yam	151
Alligatorweed	47
Amaranth	118
American elder, Elderberry, American black elderberry	101
American white waterlily, Fragrant waterlily	16
Annual blue-eyed grass	104
Awl-leaf arrowhead	33
Bald cypress	70
Bandanna of the Everglades	53
Beggarticks, Romerillo	100
Bermudagrass	121
Bighead rush	62
Bladderwort	12
Bluejacket, Ohio spiderwort	108
Blue waterhyssop, Lemon bacopa	40
Blunt spikerush	29
Brazilian pepper, Brazilian peppertree	113
Brazilian waterweed	19
Britton's wild petunia, Mexican bluebell	106
Broadleaf cattail	56
Bulltongue arrowhead	51
Camphorweed	146
Carolina mosquitofern, Waterfern	2
Carolina ponysfoot	94
Carolina wild petunia	105

Climbing dayflower, Common dayflower	87
Coast cockspur, Coast cockspur grass	77
Coastal rose gentian	64
Cogongrass	120
Columbian watermeal	4
Common buttonbush	68
Common duckweed, Common duckmeat	8
Common reed	57
Common sowthistle	145
Common water hyacinth	14
Common yellow oxalis, Creeping woodsorrel	143
Coontail, Coon's tail	24
Coralbean, Cherokee bean, Redcardinal	141
Creeping burhead	52
Creeping oxeye	109
Creeping primrose willow	32
Crystalwort, Staghorn riccia	9
Drummond's woodsorrel	134
Durban crowfootgrass, Egyptian grass	122
Dwarf spikerush	28
Eastern poison ivy	111
English plantain, Narrowleaf plantain	117
Fire on the mountain	149
Florida hedgenette, Florida betony	102
Floating marshpennywort	36
Florida mudmidget	10
Florida tasselflower	139

Fountainbush, Firecracker plant	142
Fourvalve mimosa	131
Foxtail	119
Fragrant flatsedge	80
Fragrant spilesedge	125
Frog's bit, American spongeplant	13
Giant ironweed	85
Giant reed	96
Giant whitetop, Sandswamp white top	59
Grassleaf lettuce	154
Greater bladder sedge	78
Green arrow arum	49
Gulf coast spikesedge	42
Hairy waterclover	35
Herb of grace	39
Indian blanket, Firewheel	140
Indian swampweed	31
Knotted spikerush	43
Knotweed	45
Lantana, Shrubverbena	152
Largeflower Mexican clover	129
Largeleaf marshpennywort, Largeleaf pennywort	73
Lawn marshpennywort	72
Least duckweed	5
Leavenworth's tickseed	90
Lilac tasselflower	138
Little duckweed	7

Little hogweed	144
Lizard's tail	54
Long's sedge	79
Manyflower marshpennywort	41
Manyhead rush	63
Marsh gentian, Catchfly prairie-gentian	86
Mexican fireplant	150
Mexican primrose-willow	67
Muskgrass, Stonewort	23
Narrowleaf yellowtops	91
Nutgrass	98
Nuttall's thistle	88
Paintedleaf	150
Paraguayan purslane	133
Parrot feather watermilfoil	25
Peruvian primrose-willow	147
Pickerelweed	50
Pink purslane, Kiss-me-quick	132
Poisonbulb	127
Pond cypress	69
Popcorntree, Chinese tallowtree, Chinese tallow	112
Prairie fleabane	103
Purple thistle, Yellow thistle	107
Rabbitfootgrass	97
Road-grass, Baldwin's spikerush	27
Rose of Plymouth	89
Rough Mexican clover	128
Saber mudmidget, Saber bogmat	11

Sandbur	123
Savannah false pimpernel	38
Shade mudflower	37
Shallow sedge	124
Shorerush, Grassleaf rush	99
Shortbristle horned beaksedge	60
Small pondweed	22
Soft rush	61
Softstem bulrush	58
Southern cattail	55
Southern umbrella-sedge	44
Southern watergrass	30
Southern waternymph	21
Spadeleaf	74
Spatterdock, Yellow pond-lily	15
Spotted beebalm	136
Spotted water hemlock	65
Spring ladiestresses, Spring lady's tresses	82
Spurred butterfly pea	130
Straggler daisy	110
Swamp dock	75
Sweetscent	84
Tall morning-glory	137
Tapegrass, American eelgrass	20
Threadleaf arrowhead	34
Torpedo grass	76
Tread-softly, Finger-rot	126

Tropical flatsedge	81
Turkey tangle fogfruit, Capeweed	95
Twoleaf watermilfoil	26
Valdivia duckweed	6
Virginia buttonweed	83
Virginia creeper, Woodbine	148
Virginia pepperweed	153
Water cowbane	66
Water lettuce	17
Water spangles	3
Waterweed	18
Wild taro, Dasheen, Coco yam	48
Windowbox woodsorrel	135

References

- Bridges, J.R. 1995. Exotic Pests: A Major Threat to Forest Health. United States Department of Agriculture Forest Service General Technical Report, Washington, D.C. RM, 105-116
- Bryson, C. T. & M. S. DeFelice. 2009. Weeds of the South. University of Georgia Press. Athens, GA.
- Cho, H. J. 2011. Aquatic Plants of the Mississippi Coast. Jackson State University. MS.
- Cooke, S. S., 2007. A Field Guide to the Common Wetland Plants of Western Washington & Northwestern Oregon. Seattle Audubon Society, Seattle, WA.
- Crow, G. E. & C. B. Hellquist, 2000. Aquatic and Wetland Plants of Northeastern North America *Volume1*. The University of Wisconsin Press, Madison, WI.
- Crow, G. E. & C. B. Hellquist, 2000. Aquatic and Wetland Plants of Northeastern North America *Volume 2*. The University of Wisconsin Press, Madison, WI.
- Eleuterius, L. N., 2000. Tidal Marsh Plants. A Firebird Press Book, Gretna, LA.
- Godfrey R. K. & J. W. Wooten, 1981. Aquatic and Wetland Plants of Southeastern United States *Dicotyledons*. The University of Georgia Press, Athens, GA.
- Godfrey R. K. & J. W. Wooten, 1979. Aquatic and Wetland Plants of Southeastern United States *Monocotyledons*. The University of Georgia Press, Athens, GA.
- Magee, D. W., 1981. Freshwater Wetlands: A Guide to Common Indicator Plants of the Northeast. The University of Massachusetts Press, Amherst, MA.
- Neyland, R. 2009. Wildflowers of the Coastal Plain. Louisiana State University Press. LA.
- Penn, C. J., R. B. Bryant & P. J. Kleinman, A. L. Allen. 2007. Removing dissolved phosphorus from drainage ditch water with phosphorus sorbing materials. *Journal of Soil and WaterConservation*, 62.4, 269-276.
- Perry, A. 2013. Drainage Ditch Research Reveals Opportunities for Cleaning Up Runoff. *Agricultural Research, 61.1,* 8-10.
- Stein, E. D., L. L. Tiefenthaler & K. C. Schiff. 2006. Watershed-based Sources of Polycyclic Aromatic Hydrocarbons in Urban Storm Water. *Environmental Toxicology and Chemistry*, 25.2, 373-85.
- Stutzenbaker, C. D., 1999. Aquatic and Wetland Plants of the Western Gulf Coast. Texas Parks and Wildlife Press. TX

Taylor, B. 1982. Florida Wild Flowers and Roadside Plants. Laurel Hill Press. Pittsboro, NC.

Taylor, W. K., 2009. A Guide to Florida Grasses. University press of Florida, Gainesville, FL.

- Taylor, W. K. 1998. Florida Wildflowers in their Natural Communities. University Press of Florida. Gainesville, FL.
- Tiner Jr, R. W., 1993. A Field Guide to Coastal Wetland Plants of the Southeastern United States. University of Massachusetts Press, Amherst, MA.
- Tiefenthaler, L. L., E. D. Stein & K. C. Schiff. 2008. Watershed and Land Use-Based Sources of Trace Metals in Urban Storm Water. *Environmental Toxicology and Chemistry*, 27.2, 277-87.

Timme, S. L., 2007. Wildflowers of Mississippi. University press of Mississippi, Jackson, MS.

Tingsanchali, T. 2012. Urban flood disaster management. Procedia Eng, 32, 25-37.

- University of New Hampsnhire. 2007. The Impacts of Impervious Surfaces on Water Resources. http://www.prep.unh.edu/resources/pdf/theimpactsof-nhep-04.pdf
- Vaughan, R. E., B. A. Neeedelman, P. J. Kleinman & A. L. Allen. 2007. Spatial Variation Of Soil Phosphorous within a Drainage Ditch Network. *Journal of Environmental Quality*, 36.4, 1096-104.

Wunderlin, R. P & B. E. Hansen, 2003. Guide to the Vascular Plants of Florida. University press of Florida, Gainesville, FL.

- Zubair, A., A. Hussain, M. A. Farooq & N. Haq. 2010. Impact of storm water on groundwater quality below retention/detention basins. *Environmental Monitoring and Assessment*, *162.1-4*, 427-37.
- http://florida.plantatlas.usf.edu/
- http://plants.usda.gov/
- http://plants.ifas.ufl.edu/
- Florida Native Plant Society-fnps.org
- East Coast Cooperative Invasive Species Management Area http:// www.floridainvasives.org/eastcentral/
- http://www.ci.farmington-hills.mi.us/services/planningandcommdev/ designguidelinesandchecklists/StormWaterDetentionBasins.asp

Plants of Retention Ponds and Drainage Ditches

Plants of Retention Ponds and Drainage Ditches

The Greater Daytona Beach Area

Bethune-Cookman University Daytona Beach, FL

Plants of Retention Ponds and Drainage Ditches

Page 170