SEASONAL DIETARY OVERLAP BETWEEN

HARTEBEEST AND ROAN ANTELOPE

IN BURKINA FASO,

WEST AFRICA

By

JAMES R. SCHUETTE
Bachelor of Science

University of Minnesota

Minneapolis/St. Paul, Minnesota

1983

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1991

Shesis
1991
S385

Oklahoma State Univ. Library

SEASONAL DIETARY OVERLAP BETWEEN hartebeest and roan antelope
 IN BURKINA FASO, WEST AFRICA

Thesis Approved:

ACKNOWLEDGMENTS

This study was made possible through the American Peace Corps, who assigned me to the Nazinga Project in June of 1985. I would like to thank the Ministry of Environment and Tourism in Burkina Faso for granting me permission to carry out this study in their country. Huntley Street, with the assistance of the Canadian International Development Association (CIDA), funded the field research through the Association de Developpement de l'Elevage de la Faune Africaine (ADEFA). Dr. George W. Frame, Director of Research at the Nazinga Game Ranch, exhibited unrivaled patience in reducing the overwhelming bureaucracy of this multinational investigation. Mark o'Donoghue, who initiated the fecal analysis studies at Nazinga, provided invaluable investigative and personal support while I was in-country. Awia zibare not only guided the fieldwork but also my approaches to everyday situations.

The Oklahoma Cooperative Fish and Wildlife Research Unit at Oklahoma State University financially supported my efforts after my return to the United States in 1989. Dr. David M. Leslie, Jr. graciously allowed me to adapt this study to partially fulfill the requirements for a Masters of Science Degree and patiently guided this long-distance study. Drs. Robert L. Lochmiller and James H. Shaw contributed valuable comments on the content of this manuscript. Dr. Jonathan A. Jenks, my office-mate, provided plenty of criticism on every aspect of my study, helping to crystallize ideas before they left the room.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
History of the Nazinga Project 1
History of this Study 3
Literature Cited 4
II. A PUNCH-CARD IDENTIFICATION KEY FOR
WEST AFRICAN PLANT EPIDERMII 6
Table of contents 6
I. Abstract 7
II. Introduction 7
III. Study Site 9
IV. Methods 11
V. Key Features 13
VI. Summary 15
VII. Acknowledgments 15
VIII. Literature Cited 16
III. SEASONAL DIETARY SEPARATION BETWEEN HARTEBEEST AND ROAN ANTELOPE IN BURKINA FASO, WEST AFRICA 28
Abstract 28
Introduction 29
Study Area 30
Methods 32
Microhistology 32
Grass vs. Non-grass 33
Plant Species Composition 34
Data Analyses 34
Grass vs. Non-grass 34
Plant Species Composition 35
Results 37
Grass vs. Non-grass 37
Plant Species Composition 37
Dietary Overlap 38
Discussion 39
Grass vs. Non-grass 39
Plant Species Composition 40
Interspecific competition 41
Management Implications 44
Literature Cited 45

APPENDIXES 66

```
APPENDIX A - DIRECTIONS FOR PREPARING A CARD KEY TO
    GRASS EPIDERMAI FRAGMENTS . . . . . . . 67
APPENDIX B - DIRECTIONS FOR PREPARING A CARD KEY TO . . . . . . . 70
APPENDIX C - DESCRIPTIONS OF GRASS EPIDERMAL FRAGMENTS . . . }7
APPENDIX D - DESCRIPTIONS OF NON-GRASS EPIDERMAL FRAGMENTS . . 114
APPENDIX E - AVERAGE COMPOSITION (%, S.E.) AND
    FREQUENCY OF OCCURRENCE FOR IMPORTANT
    FORAGES FOUND IN MONTHLY COMPOSITE
    RAINY SEASON FECAL SAMPLES
    FROM HARTEBEEST AND ROAN ANTELOPE AT THE
    NAZINGA GAME RANCH, BURKINA FASO, 1986-87 . . 147
APPENDIX F - AVERAGE COMPOSITION (%, S.E.) AND
    FREQUENCY OF OCCURRENCE FOR IMPORTANT
    FORAGES FOUND IN MONTHLY COMPOSITE
    COOL DRY SEASON FECAL SAMPLES
    FROM HARTEBEEST AND ROAN ANTELOPE AT THE
    NAZINGA GAME RANCH, BURKINA FASO, 1986-87 . . 151
APPENDIX G - AVERAGE COMPOSITION (%, S.E.) AND
    FREQUENCY OF OCCURRENCE FOR IMPORTANT
    FORAGES FOUND IN MONTHLY COMPOSITE
    HOT DRY SEASON FECAL SAMPLES
    FROM HARTEBEEST AND ROAN ANTELOPE AT THE
    NAZINGA GAME RANCH, BURKINA FASO, 1986-87 . . 155
```


CHAPTER II

1. List of Grass Key Perforations with Their Corresponding Features 20
2. List of Non-grass Key Perforations with Their Corresponding Features 22

CHAPTER III

1. Average Grass Component (\%) of Monthly Fecal Samples from Hartebeest and Roan Antelope at the Nazinga Game Ranch, Burkina Faso, 1986-87 54
2. Matrix of P-values from Tukey's HSD Comparison of the Ranked Percentage of Grasses Found in Hartebeest and Roan Antelope Diets from the Nazinga Game Ranch, Burkina Faso, 1986-1987 55
3. Descriptions of the 8 Forage Categories used to Describe Diets of Hartebeest and Roan Antelope at the Nazinga Game Ranch, Burkina Faso, 1986-1987 . . . 56
4. Average Composition (\%, S.E.) and Frequency of Occurrence for

8 Forage Categories Identified in Monthly Composite Rainy Season Fecal Samples from Hartebeest and Roan Antelope at the Nazinga Game Ranch, Burkina Faso, 1986-87 57
5. Average composition (\%, S.E.) and Frequency of Occurrence for

8 Forage Categories Identified in Monthly Composite Cool Dry Season Fecal Samples from Hartebeest and Roan Antelope at the Nazinga Game Ranch, Burkina Faso, 1986-87 58
6. Average composition (\%, S.E.) and Frequency of Occurrence for 8 Forage Categories Identified in Monthly Composite Hot Dry Season Fecal samples from Hartebeest and Roan Antelope at the Nazinga Game Ranch, Burkina Faso, 1986-87 59
Figure Page
CHAPTER II1. Location of the Nazinga Game Ranch, Burkina Faso,West Africa25
2. Monthly Rainfall Totals Recorded at the Nazinga Game RanchResearch Station, Burkina Faso, March 1986-April 1987 . . 26
3. Example of a Species Card for the Grass Key 27
CHAPTER III1. Location of the Nazinga Game Ranch, Burkina Faso,West Africa61
2. Monthly Rainfall Totals Recorded at the Nazinga Game RanchResearch Station, Burkina Faso, March 1986-April 198762
3. Average Monthly Grass Component (\%) of Fecal Samples
from Hartebeest and Roan Antelope Compared to Monthly Rainfall Totals at the Nazinga Game Ranch, Burkina Faso, (March 1986-April 1987) 63
4. Average Composition (\%) of 8 Forage Categories Identified in Monthly Composite Fecal Samples from Hartebeest and Roan Antelope at the Nazinga Game Ranch, Burkina Faso, 1986-87 64
5. Average Monthly Dietary Overlap (\%) Between Hartebeest
and Roan Antelope at the Nazinga Game Ranch,
Burkina Faso, 1986-87 65

CHAPTER I

INTRODUCTION

This thesis is composed of 2 manuscripts written in formats suitable for submission to selected scientific journals. Each manuscript is complete without supporting materials. The order of arrangement for each manuscript is text, literature cited, tables, and figures. Chapter II, "A Punch-card Identification Key for West African Plant Epidermii," is written in the format of The Botanical Review. Chapter III, "Seasonal Dietary Separation Between Hartebeest and Roan Antelope in Burkina Faso, West Africa," is written in the format of the Journal of Wildlife Management.

History of the Nazinga Project

The Nazinga Project (Projet Pilote pour l'Utilisation Rationelle de la Faune a Nazinga) provided an excellent opportunity for ecological research in West Africa. The Project sought to provide a sustainable harvest of protein from wild animals rather than domesticated cattle or sheep (Lungren 1975). Because wild ruminants are better adapted to the West African environment than are domestic species, the Project attempted to harvest a maximum sustained yield (MSY) from each common ungulate species (Spinage 1983a, b). of 9 antelope found in Nazinga, 5 were considered target species: roan (Hippotragus equinus), hartebeest (Alcelaphus buselaphus), bushbuck (Tragelaphus scriptus), oribi (Ourebia
ourebi), and Grimm's duiker (Sylvicapra grimmia). Warthog (Phacochoerus aethiopicus) were also harvested.

The Project was a cooperative endeavor between the Government of Burkina Faso (formerly Upper Volta) and the African wildlife Husbandry Development Association (AWHDA); the latter was a non-profit Canadian organization funded by private donations and the Canadian International Development Agency (CIDA). The Burkinabé Government provided personnel for co-direction, anti-poaching, and public relations. Research was done by free-lance ecologists and university students from Burkina Faso, France, Holland, the United Kingdom, and the United States. Ranch development was begun by Clark Lungren (the son of a Canadian missionary) and the Upper volta Government in 1979. It included construction of offices, a garage-workshop, and housing with water and electricity for Project personnel. Vehicles also were purchased. The 2 principal rivers were dammed to provide several permanent water sources; roads were built; and kob (Kobus kob) were reintroduced onto the ranch.

Ongoing projects included annual mammal transect surveys (since 1981), weather monitoring, and vegetation mapping (abundance and distribution of herbaceous and woody plants). Studies also focused on impacts of grazing and fire, or diet and habitat preferences of principal herbivores. Managers monitored populations of the most profitable target species in relation to their carrying capacity, identified their habitat requirements, and conducted annual harvests.

History of this Study

Spinage (1982) postulated that food limited some ungulate populations at the Nazinga Game Ranch. Thus, to meet the Project's goal of maximizing meat production, research was necessary to assess forage availability and selection. Descriptions of hartebeest and roan antelope diets, when compared to available foods, can provide an idea of preferred and avoided foods (Petrides 1975). Vegetation studies can monitor use of important foods, and management schemes could increase forages that are considered to be limiting; e.g., by regulating fire regimes to favor preferred plant species or by using dams to increase the availability of water and riparian vegetation throughout year.

Dietary studies at Nazinga began in 1982. Lewicki (1982) attempted to observe feeding behavior of captive and free-roaming animals, collect fecal and rumen/stomach contents (with Wageningen Agric. Univ. in the Netherlands doing analyses), and perform feeding trials of tame animals. Unfortunately, his tour of duty with the Peace Corps at Nazinga ended before those goals were realized.

Dietary research was passed on to M. O'Donoghue, who initially carried out field observations, feeding trials, and fecal analysis (0^{\prime} Donoghue 1983). Attempts were made to tame hartebeest and roan antelope. Some progress was made, but many antelope subsequently died due to their condition when captured or problems that occurred after they had been in captivity (i.e., intraspecific fighting, illness, and animal-fence interactions). These problems could have been overcome with time, effort, and experience, but this was determined to be too time consuming and costly. Direct observations of free-roaming animals
also proved ineffective due to the extreme wariness of these heavily poached animals and 3-meter grasses present at the end of the rainy season. For these reasons, microhistological fecal analysis was initiated for diet determinations.

Literature Cited

Lewicki, G. L. 1982. Les préférences alimentaires des principaux herbivores. Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 14 pp .

Lungren, C. G. 1975. Propositions pour le Project de Ranch de Gibier de Nazinga pour la Haute Volta. Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 120 pp.

O'Donoghue, M. 1983. Dietary study. Rep. No. 50/SR-Bio/Fau. Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 4 pp.

Petrides, G. A. 1975. Principal foods versus preferred foods and their relations to stocking rate and range condition. Biol. Conserv. 7:161-169.

Spinage, C. A. 1982. Preliminary draft of a revised research plan for the Projet Pilot pour l'Utilisation Rationnelle de la Faune a Nazinga. Nazinga Project. A.D.E.F.A., Ouagadougou, Burkina Faso. 12 pp.

Spinage, C. A. 1983a. Game ranching: the potential for sustained wildlife use in Upper Volta. In-session seminar: wildife utilization. Afr. For. Comm. Working Party on Wildl. Manage. and Nat. Parks, 7th Session. (Arusha, Tanzania, 19-21 September).

Comm. on Afr. For., FO:AFC/WL:83/6.1., FAO, Rome. 5 pp.

Spinage, C. A. 1983b. Plan revisé de recherche du projet pilote pour
l'utilization de la faune a Nazinga. Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 25 pp.
A PUNCH-CARD IDENTIFICATION KEY FOR WEST AFRICAN PLANT EPIDERMII ${ }^{1}$
Page
I. Abstract 7
II. Introduction 7
III. Study site 9
IV. Methods 11
V. Key Features 13
VI. Summary 15
VII. Acknowledgments 15
VIII. Literature cited 16
$1_{\text {Research sponsored by the United states Peace Corps, Huntley Street }}$ and the Canadian International Development Association (through the Association de Developpement de l'Elevage de la Faune Africaine), and the Oklahoma Cooperative Fish and Wildlife Research Unit (U.S. Fish and Wildl. Serv., Okla. Dep. Wildl. Conserv., Okla. State Univ., and Wildl. Manage. Inst., cooperating).

I. Abstract

A punch-card key was developed for identifying west African plants based on histologic features of their epidermii. Creation of this key was necessary to conduct a study of the diets of hartebeest (Alcelaphus buselaphus) and roan antelope (Hippotragus equinus) through fecal analysis. Little or no research has been published that describes the epidermal structure of African dicotyledons or West African grasses. Unlike a dichotomous key, this key allows using histological characteristics in a sequence appropriate to each fragment under observation. This is important because fecal cuticular fragments, especially smaller ones, exhibit (or lack) any combination of characteristics. I have included over 230 West African plant species and 46 identifying characteristics, although the key can be readily modified to include different species assemblages or more characteristics as required for other study sites. In light of recent interest in West African ecosystems, this key should benefit not only scientists performing dietary fecal analysis, but anyone needing to identify plants in the non-flowering stage.

II. Introduction

The histology of plant cuticles has been used for taxonomic classifications (Solereder 1908, Prat 1932, Stace 1965), herbivore diet determinations through fecal analysis (Storr 1961, stewart and stewart 1970, Leslie et al. 1984), ground litter and mulch composition quantification (Cavender and Hansen 1970), and the identification of grasses in the vegetative state (Davies 1959). Before results can be
obtained for any of these objectives, a complete reference collection of plant cuticles must be made from every plant species having the potential to occur in study samples. From these histologic specimens, detailed descriptions are made of all the characteristics observed on each plant species. A compilation of these descriptions reveals which characteristics are useful in making identifications; i.e., they occur in a limited number of species, are easily identified, or occur in unique combinations. This compilation is essential as a basis for accurate identifications, as evidenced by the publication of several keys (Stewart 1965, Scotcher 1977, Dabo et al. 1986).

During my investigation of hartebeest and roan antelope diets (Schuette 1991, Chapter III), it became clear that little information was available on the cuticular characteristics of West African plants (Geerling 1979, Scotcher 1979). This necessitated the development of my own guide to the histologic characteristics of west African grass and browse species. originally, I attempted to devise a dichotomous key for the identification of plant fragments found in fecal samples. However, selection of the order in which identifying characteristics were listed was problematic, because fragments in fecal material range from 1 cell to hundreds of cells; smaller fragments have fewer identifying characters. For this reason, regardless of which characteristics are chosen for initial separation of plant species in a dichotomous key, many cuticular fragments recovered from fecal pellets lack those characteristics. This shortcoming of dichotomous keys forces the investigator to follow both routes through the key when paired characteristics are not observed on an unknown fragment. Each such
occurrence increases both the time required for identifications and the potential for incorrect conclusions.

An alternative to a traditional dichotomous key allows the investigator to employ characteristics in a sequence appropriate to each fragment under observation; readily distinguished and/or uncommon characters are used for identification first. This method, commonly known as a punch-card identification system, has been used to identify timber (Clarke 1938), pollen grains (Faegri and Iversen 1950), plant families (Hall and Johnston 1955) and species (Dunkley 1939, Hall and Johnston 1953, Gwynne and Ndawula-Senyimba 1971). This process of identification reduces the time required to identify plants accurately, either by microscopic analysis or vegetative morphology (Gwynne and Ndawula-Senyimba 1971). Considering recent emphasis on the ecosystem of the sahel by the International Union for the Conservation of Nature and Natural Resources (IUCN) (IUCN 1990), this key should prove useful to future studies in the region.
III. study site

This study was conducted on the Nazinga Game Ranch, located between $\hat{P o}$ and Léo along the southern border of Burkina Faso; most field specimens were collected from the Taga, Talanga, and Boudjero regions of the Ranch (Fig. 1). The Ranch encompassed approximately $940 \mathrm{~km}^{2}$ of uninhabited and relatively undisturbed Sudan savanna between 270 and 326 m above mean sea level. Tropical ferruginous soils varied from gravely/rocky to silty/clayey; clay content usually increased with depth. In some areas, soils had been indurated on the surface and were
composed of ironstone and rocky outcrops of laterite, quartz, and precambrian granite (Buckle et al. 1983).

Dominant woody species of the savanna (the dominant vegetation type on the Ranch) included: Acacia spp., Afzelia africana, Combretum spp., Detarium microcarpum, Gardenia spp., Piliostigma thorningii, Pteleopsis suberosa, Terminalia spp., and Vitellaria paradoxa. Grass cover was dominated by Andropogon ascinoides, A. gayanus bisquamulatus, Aristida kerstingii, Hyparrhenia involucrata, Laudetiopsis kerstingii, and Schizachyrium sanguineum. Riparian areas were the second most common vegetation type and were composed mainly of Albizia chevalieri, Anogeissus leiocarpus, Daniellia oliveri, Khaya senegalensis, Mitragyna inermis, Andropogon gayanus gayanus, Hyparrhenia involucrata, Pennisetum subangustum, Sporobolus pyramidalis, and Vetiveria nigritana (Boxtel and Lokhorst 1988).

The Ranch received an average annual rainfall of 876 mm from 1982 through 1987. June through September accounted for $>76 \%$ of that total (unpubl. data, Research Section of Nazinga), and no precipitation was recorded for December or January. Daytime high temperatures ranged from 18.1 to 45.5 C with an average daily maximum temperature of 34.1 C . March and April had the highest daily temperatures ($\bar{x}=38.5$); August had the lowest ($\bar{x}=29.4$)(Johnson 1982). Night-time temperatures occasionally fell as low as 7 C in December and January (Lungren 1975). For my purposes, the year was divided into 3 seasons of equal duration (Fig. 2). The rainy season (Jun-Sep) usually ended abruptly and was followed by the cool dry season (Oct-Jan). Widespread fires signaled the start of the hot dry season (Feb-May), which was followed by the return of the rains.

Abstract

Common herbivores on the Ranch included: elephant (Loxodonta africana), buffalo (Syncerus caffer), roan antelope, hartebeest, waterbuck (Kobus defassa), reedbuck (Redunca redunca), bushbuck (Tragelaphus scriptus), warthog (Phacochoerus aethiopicus), oribi (Ourebia ourebi), and Grimm's duiker (Sylvacarpa gimmia) (O'Donoghue 1987). Natural predators were limited mainly to the small carnivores, including genets (Genette spp.), African civet (Viverra civetta), mongeese (Herpestes spp., Atilax spp. and Ichneumia spp.), jackal (Canis adustus), and several wild cats (Felis spp.). Occasional sightings of lion (Panthera leo), leopard (Panthera pardus), and spotted hyena (Crocuta crocuta) were made (Frame 1990). More than 260 avian species have been identified on the Ranch to date (O^{\prime} Donoghue, pers. commun.).

IV. Methods

A histologic reference collection of plant leaf cuticles was developed from mature specimens in the Nazinga herbarium, which were identified according to Hutchinson and Danziel (1972), Innes and clayton (1977), and Geerling (1982). A second reference collection included examples of immature leaves from most plant species on the Ranch; it was completed in 3 stages. During the first stage, leaves from dicotyledons were collected from the field in their early phenological stages. In the second stage, for each species of perennial bunch-grass, 10 individual plants were marked with wire stakes after being identified during the flowering season. These plants were subsequently sampled following the January fires. If regrowth was not present at that time, they were sampled after the rains in June. The third stage required planting annual grass seeds from herbarium specimens (or field specimens if no
herbarium specimens were available) in individual pots, watering them, and collecting the fifth leaf that appeared (to ensure a large enough sample to mount). Further plant samples were collected, as needed, to ensure accurate identification of plant species that were frequently encountered in the field.

Microscope slide preparation followed a method modified from Stewart (1967). Non-margin sections from the distal third of each leaf (Stace 1965) were removed and boiled in 10% nitric acid until separation of epidermal layers was achieved (3-10 minutes). These fragments were transferred to 40 ml beakers of water for temporary storage. Cuticle preparation required using a camels-hair brush to remove adhering mesophyll (performed under a dissecting microscope). The clean cuticles were placed on a microscope slide; glycerin or Hoyer's solution (Johnson et al. 1983) was used as a mounting medium. After a coverslip was added, fingernail polish was used to seal its edges. Whenever possible, both abaxial and adaxial sides of the leaf were mounted on the same slide; the abaxial side of some species was impossible to obtain intact due to total fragmentation during sample preparation. Microphotographs of the reference collection were taken with a zeiss photo-microscope III using a blue conversion filter.

Systematic descriptions of grass leaves were made following Stewart (1965). I identified and described the following:

```
Silica Bodies: (description); Length= ; Width= ; Frequency
Macro Hairs: (description)
Micro Hairs: (description); Length= ; Basal= ; Distal=
Prickle Hairs: (description); Length= ; L base= ; W base=
```

Papillae: (description)
Stomata: (description); Length= ; Width=

Long Cells: (description); cell wall $h=$; $A=$; Length= ; Width=

```
Systematic descriptions of non-grass species were made following Stace (1965). I identified and described the following:
```

Cell Walls: (description)
Cells: (description); Length= ; Width=

Stomata: (description); Length= ; Width= ; Prevalence...
Trichomes: (description); Length= ; Width=

Trichome Base Cells: (description)
Striations: (description)
Other structures: (description); Length= ; width=
Comments: (description)

In an attempt to identify non-leafy material, slides were prepared from stems, culms, inflorescences, seeds, and flowers of selected plant species. Descriptions of these samples are not presented here due to difficulties in distinguishing these to species (Davies 1959).

v. Key Features

After examining all specimens in the histologic reference collections, and $>20,000$ cuticular fragments found in fecal samples, I chose 46 characteristics to be used to identify grass (Table 1) and nongrass (Table 2) cuticular fragments. Stace (1965:58) stated that intraspecific variation in the features of cuticular structures was
usually a function "of size, frequency, and degree rather than the actual anatomy or organization of the particular structures." This implies that the histologic characteristics used in this grass key may be placed in the following order of decreasing taxonomic importance: (1) type and location of silica bodies; (2) presence and type of papillae; (3) stomatal shape and location; (4) presence of macro-, micro-, prickle hairs and intercostal hooks; and (5) type of cell wall undulations. Characteristics used to identify non-grass species may be ranked in a similar manner: (1) type of trichomes; (2) accessory cell arrangement, both for stomata and for trichomes; (3) presence of papillae or striations; (4) stomatal shape and thickenings; and (5) shape of cell wall undulations. size and frequency information describing cuticular structures are generally of limited value in differentiating plant species (unless they represent extremes in appearance), but were included in the key and descriptions in order to verify identifications.

Every card ($15.6 \mathrm{~mm} \times 10.2 \mathrm{~mm}$) in the key corresponded to a different plant species. The perimeter of the card, 3 mm from the margin, had 46 perforations (3 mm in diameter) spaced 6 mm apart (see Fig. 3). Each perforation was assigned to a different cuticular characteristic (Tables 1 and 2). If a plant species had a given characteristic, the specific area between the perforation and the margin of the card was removed. A summary of which perforations were connected to the margin is given for the 78 grass species (Appendix A) and 153 non-grass species (Appendix B). The final step to making the key required printing grass species' descriptions (Appendix C) and non-grass species' descriptions (Appendix D) on their corresponding species card,
which allowed immediate access to characteristics that did not fit into the 46 -hole system.
VI. Summary

I have presented a key to the histologic characteristics of 78 grass and 153 non-grass plant epidermii from West Africa. Although created for identifying cuticular fragments recovered from fecal samples of hartebeest and roan antelope, it should aid anyone that needs to identify plants in the non-flowering stage. Although this key, combined with the species descriptions, provides a good starting point for identifying cuticular fragments, a reference collection, preferably accompanied by photomicrographs of all samples, is essential to verify identifications.

VII. Acknowledgments

I would like to thank the Ministry of Environment and Tourism in Burkina Faso for granting me permission to carry out this study in their country. Dr. George W. Frame, Director of Research at the Nazinga Game Ranch, provided enormous logistical support. Mark o'Donoghue was invaluable in getting me started on the right track, and Dr. David M. Leslie, Jr. enthusiastically, and patiently, supported this longdistance study. Following my return to the United states, Dr. Jonathan A. Jenks provided plenty of criticism on every aspect of my study, helping to crystallize ideas before they left our office.
VIII. Literature Cited

Boxtel, A. van, and w. Lokhorst. 1988. Vegetation survey in the western half of the Nazinga Game Ranch, Burkina Faso. Nazinga Special Reports, Series C, No. 46. Monitoring Unit of the Ecology Center, Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 180 pp.

Buckle, L., R. Diffang, M. M. Eden, A. Jaiteh, and A. Touray. 1983. Vegetation classification of Nazinga Game Ranch (Upper Volta). Regional Remote Sensing Centre (C.R.T.O.), Ouagadougou, Burkina Faso. 15 pp .

Cavender, B. R., and R. M. Hansen. 1970. The microscope method used for herbivore diet estimation and botanical estimation of litter and mulch at the Pawnee site. Tech. Rep. \#18. U. S. International Biological Program. 7 pp.

Clarke, s. H. 1938. A multiple-entry perforated-card key with special reference to the identification of hardwoods. New Phytol., 37:369-374.

Dabo, S. M., R. J. Tyrl, and F. O. Thetford. 1986. Identification of grass epidermal fragments. Research Report P-876. Agricultural Experimental Station, Division of Agriculture, ok. State Univ. Davies, I. 1959. The use of epidermal characteristics for the identification of grasses in the leafy stage. J. Brit. Grassl. Soc. 14:7-16.

Dunkley, H. I. 1939. A multiple-entry perforated card-key for the identification of Uganda trees. Emp. For. J. 18:83-90.

Faegri, K., and J. Iversen. 1950. Text book of modern pollen analysis. Copenhagen: Ejnar Munksgaard.

Frame, G. W. 1990. Carnivora at the Nazinga Game Ranch, Burkina Faso: a summary of recent sightings. Nazinga Special Reports, Series C, No. 68. Monitoring Unit of the Ecology Center, Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 50 pp.

Geerling, C. 1979. The use of faecal analysis in studying food habits of West African ungulates. Pages 123-126 in Wildlife management in savannah woodland. Taylor and Francis, Ltd., London, U.K.. Geerling, C. 1982. Guide de terrain des ligneux, Sahéliens et SoudanoGuineens. H. Veenman and zonen B.V., Wageningen, Netherlands. 340 pp.

Gwynne, M. D., and M. S. Ndawula-Senyimba. 1971. A punch-card method based on vegetative characters for identifying East African grasses. E. Afr. Agric. and For. J. 12:334-352

Hall, N., and R. D. Johnston. 1953. The field identification of Eucalyptis. Unasylva 7:64-69.

Hall, N., and R. D. Johnston. 1955. Field identification of dicotyledons: a punched card system for the identification of families. Aust. J. Bot. 3:82-88.

Hutchinson, J., and J. M. Danziel. 1972. Flora of west tropical Africa. Crown Agents for Oversea Governments and Administrations, London, U.K. Vol. 3. 1946 pp.

Innes, R. R., and W. D. Clayton. 1977. A manual of Ghana grasses. Land Resour. Div., Min. Overseas Develop., Surbiton, Surrey, U.K. 265 pp.

IUCN. 1990. Hislaire heads Niger office. IUCN Bull. 21:12.

Johnson, E. 1982. Annual life cycles of woody vegetation at Nazinga, Upper Volta. Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 89 pp .

Johnson, M. K., H. Wofford, and H. A. Pearson. 1983. Microhistological techniques for food habits analyses. U.S. For. Serv. Res. Pap. No. so-199. 41 pp.

Leslie, D. M. Jr., E. E. Starkey, and M. Vavra. 1984. Elk and deer diets in old-growth forests in Western Washington. J. Wildl. Manage. 48:762-775.

Lungren, C. G. 1975. Propositions pour le project de Ranch de Gibier de Nazinga pour la Haute Volta. Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 120 pp.

Metcalfe, C. R. 1960. Anatomy of monocotyledons, I. the graminees. Clardon Press:Oxford University Press, Oxford, U.K.

Metcalfe, C. R., and L. Chalk. 1950. Anatomy of Dicotyledons. Vol. 1 and 2. Clardon Press:Oxford University Press, Oxford, U.K.

O'Donoghue, M. 1987. Ground surveys of large mammels at the Nazinga Project, 1987. Nazinga special Reports, Series C, No. 16. Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 42 pp. Prat, H. 1932. L'epiderme des graminées: étude anotomique et systematique. Ann. Sci. Nat. Bot. 10:117-324.

Schuette, J. R. 1991. Seasonal dietary overlap between hartebeest and roan antelope in Burkina Faso, West Africa. M.S. Thesis, Oklahoma State Univ., Stillwater, Oklahoma. 80 pp .

Scotcher, J. S. B. 1977. A key based on leaf epidermal characteristics of some grasses and sedges from Ndumu game reserve. Lammergeyer 23:28-35.

Scotcher, J. S. B. 1979. A review of fecal analysis techniques for determining the diets of wild grazing herbivores. Proc. Grassl. Soc. S. Afr. 14:131-136.

Solereder, H. 1908. Systematic anatomy of the dicotyledons. Transl. L. A. Boodle and F. E. Fritsch; revis. D. H. Scott. oxford, U.K. Stace, C. A. 1965. Cuticular studies as an aid to plant taxonomy. Bull. Brit. Mus. Nat. Hist. Bot. 4:1-84.

Stewart, D. R. M. 1965. The epidermal characters of grasses, with special reference to East African plains species. Bot. Jaarb. 84: 63-174.

Stewart, D. R. M. 1967. Analysis of plant epidermis in faeces: a technique for studying the food preferences of grazing herbivores. J. Appl. Ecol. 4:83-111.

Stewart, D. R. M., and J. Stewart. 1970. Food preferences by fecal analysis for African plains ungulates. Zoo. Afr. 5:115-129.

Storr, G. M. 1961. Microhistological analysis of faeces, a technique for ascertaining the diet of herbivorous mammals. Aust. J. Biol. sci. 14:157-164.

Table 1. List of grass key perforations with their corresponding features.

Structure	Feature	Description	Perforation Number
Silica cells	shape	dumbbell	1
		nodular	2
		saddle	3
		cross	4
	length ${ }^{\text {a }}$	<8	5
		>8	6
	appearance	elongate	7
		compact	8
	shape of ends	concave	9
		convex	10
		squared	11
		pointed	12
	arrangement	sparse	13
		continuous	14
	arrangement of rows	≤ 3 together	15
		>3 together	16
	silica body/short cell	<1	17
	width ratio	>1	18
			19
	association	alternate	20
	intercostal silica bodies	present	21
Papillae	interstomatal	present	22
	multiple papillae/cell	present	23
Micro hairs		present	24
Prickle hairs		present	25
	base shape	round	26
		oval	27
Intercostal hooks		present	28
Macro hairs		present	29

Table 1. Continued.

Structure	Feature	Description	Perforation Number
Long cells	inflated	present	30
	undulation size	deep	31
		shallow	32
	undulation shape	V	33
		'omega'	34
	undulation regularity	irregular	35
stomata	stomatal/	<1	36
	long cell width ratio	>1	37
	long cell/	<1.5	38
	stomatal length ratio	>1.5	39
	arrangement of rows	≤ 3 together	40
		>3 together	41
	shape	domed	42
		parallel	43
		peaked	44
	length	<12	45
		>12	46

$a_{\text {Each }}$ unit of measurement was based on a 1 cm micrometer, divided into 100 segments, located in the ocular of a $430 x$ microscope. Actual units $=2.3 \mathrm{um}$.

Table 2. List of non-grass key perforations with their corresponding features.

Structure	Feature	Description	Perforation Number
cells	shape	irregular	1
		round	2
		square	3
		elongate	4
	wall shape	straight	5
		curved	6
		undulate	7
	length ${ }^{\text {a }}$	<10	8
		>25	9
Stomata	thickening	polar	10
		T-piece	11
		mouth	12
		ledge	13
		peripheral	14
	length	<10	15
		>10	16
	accessory cells	anomocytic	17
		paracytic	18
		tetracytic	19
		other	20
	abundance	numerous	21
Trichome base cells	arrangement	actinocytic	22
		anomocytic	23
		cyclocytic	24
		hexacytic	25
		other	26
Trichomes	abundance	numerous	27
	type	1 cell	28
		multicelled	29
		branching	30
		bag	31
		club	32
		stellate	33
		2-point	34

Table 2. Continued.

	Feature	Description	Perforation Number
Structure	appearance	hollow internally segmented	35
crichomes		straight strong fragile	37
		smooth rough	38
		present	39
Striations		present	40
Papillae		both different	41
Leaf sides	appearance	present	42
Loaf cells		43	

$a_{\text {Each }}$ unit of measurement was based on a 1 cm micrometer, divided into 100 segments, located in the ocular of a 430 x microscope. Actual units $=2.3 \mathrm{um}$

LIST OF FIGURES

Fig. 1. Location of the Nazinga Game Ranch, Burkina Faso, West Africa.

Fig. 2. Monthly rainfall totals recorded at the Nazinga Game Ranch Research Station, Burkina Faso, March 1986-April 1987.

Fig. 3. Example of a species card for the grass key.

SEASONAL DIETARY SEPARATION BETWEEN HARTEBEEST AND ROAN ANTELOPE IN BURKINA FASO, WEST AFRICA

Abstract: Diets of hartebeest (Alcelaphus buselaphus) and roan antelope (Hippotragus equinus) were investigated at the Nazinga Game Ranch in southern Burkina Faso, West Africa. Microhistological fecal analysis indicated that dietary overlap was highest during the rainy ($\overline{\mathrm{x}}=73.7 \%$) and cool dry seasons ($\bar{x}=68.2 \%$) and lowest during the hot dry season (\bar{x} $=48.2 \%$), particularly during the last month of the hot dry season ($x=$ 31.5\%). As the hot dry season progressed and food became less available, hartebeest maintained a high rate of grass consumption, and roan antelope switched from being predominantly grazers (>95\% grass) to mixed feeders (<50\% grass). I propose that hartebeest are forced to be more selective than roan antelope through the hot dry season and search for fresh perennial grass regrowth. Results support (1) the premise that greater dietary separation occurs during periods of limited resource availability and (2) the use of the terms "concentrate/mixed /bulk" feeder vs. the "browser/grazer" dichotomy.
J. WILDL. MANAGE. $00(0): 000-000$

Key words: antelope, Burkina Faso, competition, diets, fecal analysis, game ranch, West Africa.

Game ranching is not new to Africa (Dasmann 1964, Parker and Graham 1971, Skinner 1989), although most earlier efforts have been in either East or South Africa. Project Nazinga (Projet Pilote pour l'Utilization Rationelle de la Faune a Nazinga) is a prototype game ranching effort for West Africa (Spinage 1983). If successful, Nazinga will demonstrate the feasibility of funding local conservation activities through marketing meat from harvested wild animals. Because limited data were available for west African ecosystems, basic natural history information was needed on important target species in order to maximize animal production.

I investigated seasonal diets of hartebeest and roan antelope, the 2 largest antelope on the Ranch. My objectives were to determine if interspecific competition for food limited hartebeest and roan antelope populations and to specify habitat management schemes to increase the carrying capacity of the Ranch. I hypothesized that (1) both antelope species would increase browse consumption when quality grass was less abundant and (2) dietary overlap between these 2 sympatric antelope would be minimized during times of limited resource availability.

This study was financed by the United states Peace corps, Huntley street, the Canadian International Development Association (CIDA), the Association de Developpement de l'Elevage de la Faune Africaine (ADEFA), and the Oklahoma Cooperative Fish and Wildlife Research Unit (U.S. Fish and wildl. Serv., Okla. Dep. Wildl. Conserv., Okla. State Univ., and Wildl. Manage. Inst., cooperating). I would like to thank the Ministry of Environment and Tourism in Burkina Faso for granting me permission to carry out this study in their country. Dr. George w. Frame, Director of Research at the Nazinga Game Ranch, helped me overcome the logistical
hurdles of this multinational investigation. Mark o'Donoghue, who initiated the fecal analysis studies at Nazinga, provided invaluable investigative support while I was in-country. Awia zibaré not only guided the fieldwork, but also my approaches to everyday situations. Dr. David M. Leslie, Jr. enthusiastically, and patiently, supported this long-distance study. Dr. Jonathan A. Jenks provided unending advice and assistance on all aspects of this study.

STUDY AREA

This study was conducted on the Nazinga Game Ranch, located between Po and Léo along the southern border of Burkina Faso; my field efforts were concentrated in the Taga, Talanga, and Boudjero regions of the Ranch (Fig. 1). The Ranch encompassed approximately $940 \mathrm{~km}^{2}$ of uninhabited and relatively undisturbed Sudan savanna between 270 and 326 m above mean sea level. Tropical ferruginous soils varied from gravely/rocky to silty/clayey; clay content usually increased with depth. In some areas, soils had been indurated on the surface and were composed of ironstone and rocky outcrops of laterite, quartz, and precambrian granite (Buckle et al. 1983).

Dominant woody species of the savanna, which was the most common vegetation type, included: Acacia spp., Afzelia africana, Combretum spp., Detarium microcarpum, Gardenia spp., Piliostigma thorningii, Pteleopsis suberosa, Terminalia spp., and Vitellaria paradoxa. Grass cover was dominated by Andropogon ascinodis, A. gayanus bisquamulatus, Aristida kerstingii, Hyparrhenia involucrata, Laudetiopsis kerstingii, and Schizachyrium sanquineum. Riparian areas were the second most common vegetation type and composed mainly of Albizia chevalieri,

Anogeissus leiocarpus, Daniellia oliveri, Khaya senegalensis, Mitragyna inermis, Andropogon gayanus gayanus, Hyparrhenia involucrata, Pennisetum subanqustum, Sporobolus pyramidalis, and Vetiveria nigritana (Boxtel and Lokhorst 1988).

The Ranch received an average annual rainfall of 876 mm from 1982 through 1987. June through september accounted for $>76 \%$ of that total (unpubl. data, Research Section of Nazinga), and no precipitation was recorded for December or January. Daytime high temperatures ranged from 18.1 to 45.5 C with an average daily maximum temperature of 34.1 C . March and April had the highest daily temperatures ($\bar{x}=38.5$); August had the lowest ($\overline{\mathrm{x}}=29.4$) (Johnson 1982). Night-time temperatures occasionally fell as low as 7 C in December and January (Lungren 1975). I divided the year into 3 climatic periods of equal duration (Fig. 2). The rainy season (Jun-Sep) ended abruptly and was followed by the cool dry season (Oct-Jan). Widespread fires signaled the start of the hot dry season (Feb-May), which ended with the return of the rains. Common Ranch herbivores included elephant (Loxodonta africana), buffalo (Syncerus caffer), roan antelope, hartebeest, waterbuck (Kobus defassa), reedbuck (Redunca redunca), bushbuck (Tragelaphus scriptus), warthog (Phacochoerus aethiopicus), oribi (ourebia ourebi), and Grimm's duiker (Sylvacarpa gimmia) (O'Donoghue 1987). Natural predators were limited to the small carnivores, including genets (Genette spp.), African civet (Viverra civetta), mongeese (Herpestes spp., Atilax spp. and Ichneumia spp.), jackal (Canis adustus), and several wild cats (Felis spp.). Occasional sightings of lion (Panthera leo), leopard (Panthera pardus), and spotted hyena (Crocuta crocuta) were made (Frame
1990). More than 260 avian species have been identified to date (O'Donoghue, pers. commun.).

METHODS

Microhistology

Fifteen fecal samples/month were collected for each ungulate from May 1986 through June 1987. Samples were collected throughout the month, or during road searches at the end of the month if <15 samples had been found. A sample comprised 20-50 pellets of fresh, intact feces from 1 fecal group. Identification of feces was made by the shape of the pellets and nearby hoofprints (Spinage 1986).

Four pellets were randomly selected from each pellet group. The outer covering of each pellet was removed because the dried mucus prevented the epidermal fragments from separating completely. Approximately 0.1 grams of the remaining fecal material was placed in a 30-ml test tube containing 10 ml of 10% nitric acid solution (Stewart 1967, Field 1972, Geerling 1979). Test tubes were placed in a boilingwater bath until the mesophyll was dissolved, as indicated by the fragments sinking to the bottom of the test tube. Test tubes were allowed to cool and the supernatent decanted. Fragments were washed once by filling the test tubes with water, shaking them, allowing the fragments to resettle, and decanting the supernatent. Bleach was then added to the test tubes, which were agitated and set aside for 24 hours, after which the bleach was decanted. If fragments were not completely bleached (determined visually), the bleach process was repeated; otherwise they were washed with water once and placed in $20-\mathrm{ml}$ vials of
water until analysis (≤ 4 years latter). These preparations were done under a hood because bleach reacts violently with nitric acid and produces chlorine gas.

To obtain a sample for analysis, I agitated a vial and randomly collected fragments with an eyedropper. Two drops were individually placed on a microscope slide; a second slide was prepared from the same vial. Excess water was absorbed from each of the 4 drops using a cloth towel. Glycerin or Hoyer's solution (Johnson et al. 1983) was used as a mounting medium. After a $22 \times 22 \mathrm{~mm}$ coverslip was added to each area, fingernail polish was used to seal the edges of the coverslip. Bausch and Lomb 100x/430x and Biolam 120x/600x microscopes were used for fecal analysis; sampling was done under 100 x and fragment identification under 430X. The Biolam microscope was used for comparing unknown fragments with the reference collection.

Grass vs. Non-grass.--Point intercept frequencies were used to quantify the grass non-grass ratio of individual fecal samples (Stewart 1967, Casebeer and Koss 1970). A group of 5 points (located in the microscope ocular) was systematically placed over each coverslip by traversing it horizontally. one field of view separated sampling fields, both vertically and horizontally. Exactly 100 fragment 'hits' were recorded for each fecal sample (25 from each of the 4 coverslip areas), which resulted in a monthly sample size of 1,500 fragments for each antelope species. This procedure reduced the bias of differential fragmentation and identification between grasses and non-grasses. Ratios derived from all identified fragments would over-estimate the non-grass component (Stewart 1967, Johnson et al. 1983) (i.e.,
dicotyledons are usually more identifiable to species with fewer cells than are monocotyledons).

Plant Species Composition.--Fragment counts were used to quantify species composition of grasses and non-grasses in individual fecal samples (Stewart and Stewart 1970, Melton 1978, Stevens et al. 1987). Fragments were defined as possessing at least 2 identifying structures (Field 1972, Scotcher et al. 1978) and were located by systematically traversing each coverslip in alternate vertical rows to avoid fragment duplication. Fragment identification procedures were outlined in Schuette (1991, Chapter II). After 15 grass and 15 non-grass fragments were recorded from the first slide, the second slide was analyzed to provide a total of 30 grass and 30 non-grass fragments for each fecal sample. If a sample contained $<5 \%$ non-grass species, or when diets included items that reduced fragment clarity (i.e., salt lick use or consumption of burnt vegetation), <30 grass or non-grass fragments may have been recorded.

Data Analyses

Grass vs. Non-grass.--I tested for monthly differences in the consumption of grasses between hartebeest and roan antelope with a 2sample t-test. Monthly differences in grass consumption by each antelope species over the 14 -month study period were tested using a 1way ANOVA. Tukey's multiple range test (Steel and Torrie 1980) on ranked values (Conover and Iman 1981) was used to ascertain which monthly diets contained less grass than others.

Plant species Composition.--The percentage of each grass species in individual pellet groups was determined by adjusting the percentage that a grass species contributed to the total grass component (as determined by fragment counts) by the percentage of grass in that sample (as determined by point intercept frequencies). The percentage of each nongrass species in individual diets was determined in the same manner. Monthly "composite diets" were determined for hartebeest and roan antelope by totaling each plant species percent composition in individual fecal samples across the 15 monthly samples and dividing this by 15. By doing this for every plant species viewed in the fecal samples, a monthly sample size of 450 grass fragments and 450 non-grass fragments was obtained for each antelope species. The following formulas summarize this 2-step process:

$$
\begin{aligned}
\text { \%Mp } & =\left[\sum_{i=1}^{15} \sum_{\sum=1}^{n}\left(\% M_{i}\right)\left(\# M_{i, p}\right) /\left(\# M_{i, T}\right)\right] / 15 \text { and } \\
\% D p & =\left[\sum_{i=1}^{n} \sum_{p=1}^{n}\left(\% D_{i}\right)\left(\# D_{i, p}\right) /\left(\# D_{i, T}\right)\right] / 15,
\end{aligned}
$$

where
${ }^{8} M_{i}=$ percentage of grasses in fecal sample $i ;$
$\% D_{i}=$ percentage of browse species in fecal sample $i ;$
$\# M_{i, p}=$ number of grass fragments in sample i identified as plant species p;
\#D ${ }_{i, p}=$ number of browse fragments in sample i identified as plant species p;
\# $M_{i, T}=$ total number of grass fragments identified in sample $i ;$
$\# D_{i, T}=$ total number of browse fragments identified in sample $i ;$
\%Mp $=$ percent component of one month's composite sample by grass species $p ;$ and
\%Dp $=$ percent component of one month's composite sample by browse species p.

This procedure was repeated for every plant species identified in the fecal samples. Note that whenever $\% M_{i}\left(\right.$ or $\left.\% D_{i}\right)$ was $>5 \%, \# M_{i, T}$ (or $\# D_{i, T}$) equaled 30 in that sample. If $\% M_{i}\left(\right.$ or $\% D_{i}$) was $<5 \%, \# M_{i, T}$ (or $\# D_{i, T}$) may have been <30.

Numerous approaches have been used to assess dietary overlap (GreigSmith 1964, Horn 1966, Gauch 1973, Hansen et al. 1973, Stroup and Stubbendieck 1983); I selected 2. The first was straight-forward and could range from 0 to 1 (identical diets) (Hurlbert 1978)

$$
C I=\sum_{i=1}^{n} \min \left(P_{R, i}, P_{H, i}\right),
$$

where

$$
\begin{aligned}
& P_{R, i}=\% \text { plant species } i \text { from roan antelope fecal samples; } \\
& P_{H, i}=\% \text { plant species } i \text { from hartebeest fecal samples; and } \\
& \min \left(P_{R, i}, P_{H, i}\right)=\text { equals the lesser of the } 2 \text { quantities } P_{R, i} \text { and } \\
& P_{H, i} .
\end{aligned}
$$

The second emphasized major differences in important dietary components and could range from 0 (identical diets) to 1 (Goodall 1973):

$$
E D=\sum_{i=1}^{n}\left(P_{R, i}-P_{H, i}\right)^{2}
$$

Stewart (1967) suggested that dietary information based on fragment counts should also be presented on a frequency basis due to differential fragmentation of plant species, plant parts, and phenological stages. I therefore recorded the number of diets, out of the 15 collected monthly, that contained a certain plant species (Hanson and Graybill 1956, Stewart 1967, Scotcher 1979). After completing slide analysis, plant fragments were placed into "forage categories."

RESULTS

Grass vs. Non-grass

During the rainy season, both hartebeest and roan antelope ate $>95 \%$ grass (Table 1 , Fig. 3). With the exception of May 1986 for hartebeest and October 1986 for roan, dry season grass consumption never exceeded 95\%. Although composite diets for hartebeest never contained $<80 \%$ grass, 6 of 10 dry season roan diets contained $<80 \%$ grass. Hartebeest consumed significantly less grass during the cool dry season than during other times of the year. Roan antelope had greater fluctuations in the grass component of their diet than did hartebeest; significant peaks in browse consumption occurred both at the end of the cool dry season and the hot dry season (Table 2).

Plant Species Composition

After analyzing 418 fecal samples, I concluded that the typical forage classifications (Anthony and Smith 1977, Leslie et al. 1984) (i.e., grass, browse, forb, etc.) were not appropriate for my study, mainly due to the predominance of grasses in the diets throughout the
year. I defined 8 forage categories, based on plant taxonomy, physiognomy, and histology (Table 3).

Grasses consumed by hartebeest and roan antelope during the rainy season were dominated by short Andropogon species (mostly A. ascinodis) (Appendix E) and Hyparrhenia species (Table 4 , Fig. 4). Increased use of grass culms and inflorescences occurred during the flowering season of the grasses and was followed by peak use of tall Andropogon species in October or November (Table 5) (matched by the reduction of all other grass leaves to $<10 \%$ of the diet) (Appendix F). Diets after fires in December and January were very similar to those of the rainy season, although culms and Jasminium kerstingii occurred in greater quantities than in the rainy season. As the hot dry season progressed, hartebeest ate $>50 \%$ grass leaves; roan antelope ate $<15 \%$ grass leaves (Table 6). Roan antelope shifted from perennial grass regrowth to mostly legumes (Appendix G). The return of the rains in June coincided with a reduction in culms and legumes in both diets, but Jasminium kerstingii increased from <2\% for both antelope in May 1987 to 13% and 20% for hartebeest and roan antelope, respectively, in June 1987.

Dietary overlap

Overlap indices suggested a high similarity between hartebeest and roan antelope diets at the plant species level during the rainy season (Fig. 5). Diets steadily became more dissimilar as the dry season progressed; overlap at the end of the hot dry season was less than half the levels recorded during the rainy season.

DISCUSSION

Grass vs. Non-grass

Hartebeest and roan antelope consumed grass when it was fresh and plentiful during the rainy season. As grasses reached senescence, both antelope species increased their consumption of non-grasses. After grasses dried out, fires removed the old growth and created conditions conducive for regrowth of perennial grasses. Because this grass regrowth was initially fresh and abundant, both antelope increased consumption of grasses, although grasses did not comprise as large a percentage of roan diets as they did hartebeest diets.

As the hot dry season progressed, roan antelope increased their consumption of browse. This may have been because grass regrowth became less abundant and drier, and browse species (primarily legumes) developed buds and young leaves and sprouts (Johnson 1982). Browse species also tend to have more protein (Brinckman and Leeuw 1975), calcium, and phosphorous (Toutain 1974) than grass during the dry season. Given this pattern, it is difficult to explain why hartebeest, the smaller of the 2 antelope species, maintained their levels of grass consumption (Gwynne and Bell 1968).

Standard errors on levels of grass consumption suggested that diets of both antelope were less variable in the rainy season than the rest of the year. This may reflect differences in phenology and availability rather than selection. Localized rain and fire produced a mosaic of phenological stages (potentially separated by >1 month) on the Ranch, which was reflected in diets because fecal samples were collected from 3 separate areas (and likely different herds of animals).

Plant Species Composition

During the rainy season, diets of hartebeest and roan antelope were mostly a function of the abundance of the different grasses. The increase in culm material and decrease in leaf material in September diets (the month that grasses put out their reproductive shoots) supports this observation. Increased use of tall Andropogon species in October (to the near exclusion of most other grass material except culms) cannot be explained simply by changes in abundance. Perhaps a better explanation would be availability. Tall Andropogon species have a low reproductive shoot/vegetative shoot ratio. For the animals, this means that there are fewer stalks to physically inhibit the use of tall Andropogon species leaves than there are for short Andropogon species. Combined with this, vegetative shoots tend not to senesce as early as reproductive shoots, which makes them more palatable.

Fires in November and December caused a decrease in the consumption of tall Andropogon species, which was not due to availability because they did produce regrowth. Consumption of short Andropogon species increased. Eight to 12 weeks after the fires, both antelope switched from short Andropogon species back to tall Andropogon species. Sen and Macey (1965) showed that crude protein levels for A. gayanus (a tall Andropogon) in Ghana were higher in 8-12 week old fresh material than fresh 4-, 16-, and 24-week old material. This peak in crude protein after the 4 th week differs from the general trend of decreasing crude protein with age sen and Macey found in other grasses and suggests that the dietary shift by antelope may be due to changes in forage quality.

Research is needed to analyze crude protein levels in short Andropogon species found on the Ranch over this same time span.

The final 2 months of the hot dry season caused regrowth of perennial grasses to wither and become less abundant. Although hartebeest were able to maintain high levels of grass consumption during the hot dry season, they increased consumption of low-quality culm material, suggesting dietary stress (Gwynne and Bell 1968). Roan antelope replaced consumption of grass-leaf regrowth with consumption of browse species, especially legumes that produced fresh leaves and started flowering in March and April, while most other browse species were still dormant (Johnson 1982). The notable decrease of browse in both antelope diets (except Jasminium kerstingii, a member of the olive family) when the rains returned in June suggested that browse was not a preferred forage but one of necessity.

Jasminium kerstingii was an important constituent of both hartebeest and roan antelope diets at 2 separate times of the year: 1 month after fires moved through the area and immediately after the rains returned. Although it was locally abundant, it never made up $>2 \%$ of the rainy-season cover in any of the vegetation types found on the Ranch (Boxtel and Lokhorst 1988). Field observations confirmed that these patches were heavily utilized, which suggested that this species was highly preferred.

Interspecific Competition

Although the best examples of interspecific competition come from small animals observed and manipulated under laboratory conditions (Gause 1934; Park 1948, 1954, 1962; Neill 1975), several attempts have
been made to verify the existence of competition under natural conditions and in large mammals (Hanson and Reid 1975, Hudson 1976, Singer 1979, Schwartz and Ellis 1981, Leslie 1982, McInnis and Vavra 1987). Considerable research has been conducted on ungulates in East and South Africa (Lamprey 1963, Bell 1971, Sinclair and Norton-Griffiths 1982, McNaughton 1985, sinclair 1985); the possibility of niche overlap, a prerequisite to interspecific competition, is high among the rich and varied ungulate fauna (Jarman and Sinclair 1979). For competition to occur, Pianka (1976) stated that both populations must be at or near their carrying capacity. Anthony and Smith (1977) agreed that competition below carrying capacity is a transient, not a directional, force whose significance is difficult to interpret.

At the Nazinga Game Ranch, sympatric populations of hartebeest and roan antelope were not at carrying capacity and likely had not been for some time due to human predation (Frame and Herbison Frame 1990). Measures of competition may indicate earlier, rather than current, conflicts (Sale 1974), demonstrating that evolutionary divergence is unaffected by the relatively recent impact of man (Owen-Smith 1988). o'Donoghue (1986) estimated that there were $3 X$ as many roan antelope (n $=2,172$) as hartebeest $(\mathrm{n}=753)$ at Nazinga. They commonly occurred in mixed herds, were comparable in stature (although roan were about 50\% heavier than hartebeest), and both considered to be mainly grazers (Lamprey 1963). These factors, combined with the high levels of dietary overlap (Fig. 5), indicated the potential for interspecific competition (Wilson 1975) for food.

There was no shortage of food during the rainy and cool dry seasons, so competition was unlikely to be a factor (Colwell and Futuyma
1978). Reduced dietary overlap during the hot dry season indicated that these 2 antelope species have developed different feeding strategies to cope with this season of limited food availability.

It has been stated that, to foster coexistence, species will
diverge greatest in times of limited resources (Colwell and Futuyma 1971, Sale 1974), although contradictions have been recorded (Schwartz and Ellis 1981, Leslie et al. 1987, Jenkins and Wright 1987, Schoener 1982). Bell (1971:90) hypothesized that "if two species of different size have the same food supply (all other parameters being equal), the larger species will displace a smaller one" due to different energy requirements and digestive efficiencies. This implies that roan antelope have a competitive advantage due to their greater size. Somewhat contrary to this idea, Bell (1971:91) also stated the "smaller species...can afford to be more selective than the larger one and can maintain itself on a food supply so sparse that the rate of intake would not satisfy the larger animal." This implies that hartebeest, because of their small size, should select plants of higher nutritive value and digestibility than roan and specialize on younger growth, greener parts, greener species, shorter sward, and more seeds (Gwynne and Bell 1968). Because browse tends to be more nutritious (Dean 1980) and more widely dispersed than grasses, selectivity is generally associated with browsing animals. Hoffman (1968), however, emphasised the digestibility aspect of forage selection. Rather than the classic "grazer/browser" classifications, he suggested "bulk-and-roughage-", "intermediate-", and "concentrate-" feeder, based on the alimentary/digestive tract anatomy and body size of ungulates (Hoffman and stewart 1972). Bulk-androughage feeders consume forage that is plentiful, regardless of its
digestibility. Concentrate feeders select quality forage, regardless of its availability.

At Nazinga, browse was more plentiful than grass regrowth at the end of the dry season, especially in years when the rainy season was delayed, as was the case during this study. Although browse contains greater quantities of important nutrients, it also tends to have more secondary compounds, which can reduce digestibility (Mould and Robbins 1982). This suggests that roan antelope, although consuming browse during the hot dry season, tend to be bulk-and-roughage feeders and capable of making the most of an abundant, but not very palatable, forage. Hartebeest tend to be concentrate feeders and select grass that may contain fewer nutrients but are more digestible than browse. The wider muzzle, apparently less-nimble lips, and 50% more species-rich diets of roan antelope compared to hartebeest suggest that roan antelope have adapted to non-selectively stripping leaves from twigs. Hartebeest are capable of grazing the widely-spaced, short tufts of perennial grass regrowth, which they likely are forced to rely upon due to direct competition with the larger roan antelope during the end of the hot dry season.

MANAGEMENT IMPLICATIONS

Dietary divergence by hartebeest and roan during the season of greatest limitation (Feb-May) indicates that any attempt to increase both populations at Nazinga must have 2 goals. For hartebeest, efforts must be directed at providing a steady supply of fresh, perennial grass regrowth throughout the dry season. Information is needed on effects different fire regimes have on quality and quantity of grass regrowth
and browse production. Fire also may induce gradual shifts in grass community structures and create more areas with species capable of providing regrowth than presently occur on the Ranch. As a secondary tool, serious consideration should be given to "prescribed grazing" practices with cattle, which may provide a less destructive method of regulating the supply of grass regrowth.

The second goal would emphasize the creation of watering holes accessible to the whole Ranch throughout the dry season. This would not only provide drinking water but also would create riparian areas in which most leguminous species eaten by roan antelope are found.

LITERATURE CITED

Anthony, R. G., and N. S. Smith. 1977. Ecological relationships between mule deer and white-tailed deer in southeastern Arizona. Ecol. Monogr. 47:255-277.

Bell, R. H. V. 1971. A grazing system in the Serengeti. Sci. Amer. 225: 86-93.

Boxtel, A. van, and w. Lokhorst. 1988. Vegetation survey in the western half of the Nazinga Game Ranch, Burkina Faso. Nazinga Special Reports, Series C, No. 46. Monitoring Unit of the Ecology Center, Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 180 pp.

Brinkman, W. L., and P. N. de Leeuw. 1975. The importance of browse in traditional pastoralism. in Wildlife management in savanna woodland, book of abstracts. Ibada-Garoua Internat. Sym. on Wildl. Manage., Univ. Nigeria. 37 pp.

Buckle, L., R. Diffang, M. M. Eden, A. Jaiteh, and A. Touray. 1983. Vegetation classification of Nazinga Game Ranch (Upper Volta). Regional Remote Sensing Centre (C.R.T.O.), Ouagadougou, Burkina Faso. 15 pp .

Casebeer, R. L., and G. G. Koss. 1970. Food habits of wildebeest, zebra, hartebeest, and cattle in Kenya Masailand. E. Afr. Wildl. Ј. 8:25-36.

Colwell, R. K., and D. J. Futuyma. 1971. on measurements of niche breadth and overlap. Ecology 52:567-576.

Conover, W. J. and R. L. Iman. 1981. Rank transformation as a bridge between parametric and nonparametric statistics. Amer. Stat. 35:124-133.

Dasmann, R. F. 1964. African game ranching. Pergamon Press, oxford, U.K.

Dean, R. E. 1980. The nutrition of wild ruminants. pages 278-305 in D. C. Church, ed. Digestive physiology and nutrition of ruminants, volume 3, 2nd edition. 0 and B Books Inc., Corvallis, Oregon. 416 pp.

Field, C. R. 1972. The food habits of wild ungulates in uganda by analysis of stomach contents. E. Afr. Wildl. J. 10:17-42.

Frame, G. W. 1990. Carnivora at the Nazinga Game Ranch, Burkina Faso: a summary of recent sightings. Nazinga special Reports, Series C, No. 68. Monitoring Unit of the Ecology Center, Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 50 pp.

Frame, G. W., and L. Herbison Frame. 1990. Large-mammal biomass estimates 1983 to 1989, and an estimate of ecological carrying capacity at the Nazinga Game Ranch, Burkina Faso. Nazinga Special

Reports, Series C, No. 65. Monitoring Unit of the Ecology Center, Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 42 pp.

Gauch, H. G. Jr. 1973. The relationship between sample similarity and ecological distance. Ecology 54:618-622.

Gause, G. F. 1934. Struggle for existence. Hafner, New York.
Geerling, C. 1979. The use of faecal analysis in studying food habits of West African ungulates. Pages 123-126 in Wildlife management in savannah woodland. Taylor and Francis, Ltd., London, U.K. Goodall, D. W. 1973. Sample similarity and species correlation. Pages 106-156 in R. H. Whittaker, ed. Ordination and classification of communities, Handbook of vegetation science, part V. Junk, The Hague, Netherlands.

Greig-Smith, P. 1964. Quantitative plant ecology. 2nd edition. Butterworths Publishing LTD., London, U.K. 265 pp.

Gwynne, M. D., and R. H. V. Bell. 1968. Selection of vegetation components by grazing ungulates in the Serengeti National Park. Nature 220:390-393.

Hansen, R. M., D. G. Peden, and R. W. Rice. 1973. Discerned fragments in feces indicates diet overlap. J. Range Manage. 26:103-105. Hansen, R. M., and L. D. Reid. 1975. Diet overlap of deer, elk, and cattle in Southern Colorado. J. Range Manage. 28:43-47. Hanson, W. R., and F. Graybill. 1956. Sample size in food-habits analyses. J. Wildl. Manage. 20:64-68.

Hoffman, R. R. 1968. Comparison of the rumen and omasum structure in East African game ruminants in relation to their feeding habits. Symp. zool. Soc. London 21:179-194.

Hoffman, R. R., and D. R. M. Stewart. 1972. Grazer vs. browser: a classification based on the stomach structure and feeding habits of East African ruminants. Mammalia 36:226-240.

Horn, H. S. 1966. Measurement of "overlap" in comparative ecological studies. Amer. Nat. 100:419-424.

Hudson, R. J. 1976. Resource division within a community of large herbivores. Nat. Can. 103:153-167.

Hurlbert, S. H. 1978. The measurement of niche overlap and some relatives. Ecology 59:67-77.

Jarman, P. J., and A. R. E. Sinclair. 1979. Feeding strategy and the pattern of resource partitioning in ungulates. Pages 130-163 in Serengeti: dynamics of an ecosystem. A.R.E. Sinclair and M. Norton-Griffiths, eds., Univ. Chicago Press, Chicago, Ill.

Jenkins, K. J., and R. G. Wright. 1987. Dietary niche relationships among cervids relative to winter snowpack in northwestern Montana. Can. J. Zool. 65:1397-1401.

Johnson, E. 1982. Annual life cycles of woody vegetation at Nazinga, Upper volta. Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 89 pp .

Johnson, M. K., H. Wofford, and H. A. Pearson. 1983. Digestion and fragmentation influences of herbivore dietary analysis. J. Wildl. Manage. 47:877-879.

Lamprey, H. F. 1963. Ecological separation of the large mammal species in the Tarangire Game Reserve, Tanganyika. East Afr. Wildl. J. 1:63-92.

Leslie, D. M. Jr. 1982. Nutritional ecology of cervids in old growth forests on Olympic National Park, Washington. Ph.D. Thesis, Oregon State Univ., Corvallis. 141 pp.

Leslie, D. M., Jr., E. E. Starkey, and M. Vavra. 1984. Elk and deer diets in old-growth forests in western Washington. J. Wildl. Manage. 48:762-775.

Leslie, D. M. Jr., E. E. Starkey, and B. G. Smith. 1987. Forage acquisition by sympatric cervids along an old-growth sere. J. Mammal. 68:430-434.

Lungren, C. G. 1975. Propositions pour le Project de Ranch de Gibier de Nazinga pour. la Haute volta. Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 120 pp.

McInnis, M. L., and M. Vavra. 1987. Dietary relationships among feral horses, cattle, and pronghorn in south-eastern oregon. J. Range Manage. 40:60.

McNaughton, S. J. 1985. Ecology of a grazing ecosystem: the Serengeti. Ecol. Monogr. 55:259-294.

Melton, D. A. 1978. Ecology of Waterbuck Kobus ellipsiprymnus (Ogilby, 1833) in the Umfolozi Game Reserve. D.Sc. Thesis. Univ. Pretoria, Pretoria, s. Afr. 372 pp.

Mould, E. D., and C. T. Robbins. 1982. Nitrogen metabolism in elk. J. Wildl. Manage. 45:323-334.

Neill, W. E. 1975. Experimental studies of microcrustacean competition, community composition, and effects of resource utilization. Ecology 56:809-826.

O'Donoghue, M. 1986. Ground censuses of large mammals at the Nazinga Game Ranch Project, 1986. Nazinga Special Reports, Series C, No.13. Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 48 pp.

O'Donoghue, M. 1987. Ground surveys of large mammals at the Nazinga Project, 1987. Nazinga special Reports, series C, No. 16. Nazinga Project, A.D.E.F.A., Ouagadougou, Burkina Faso. 42 pp. Owen-Smith, R. N. 1988. Megaherbivores: the influence of very large body size on ecology. Cambridge Univ. Press, Cambridge, U.K. 369 pp.

Park, T. 1948.' Experimental studies of interspecies competition I. competition between populations of the flour beetles, Tribolium confusum (Duval) and T. castaneum (Herst.). Ecol. Monogr. 18:267307.

Park, T. 1954. Experimental studies of interspecies competition II: temperature, humidity, and competition in 2 species of Tribolium. Physiol. Zool. 27:177-238.

Park, T. 1962. Beetles, competition and populations. Science 138:1369-1375.

Parker, I. S. C., and A. D. Graham. 1971. The ecological and economic basis for game ranching in Africa. in E. Duffy and A. S. Watt, eds. The scientific management of animal and plant communities for Conservation. Proc. 11th Symp. Brit. Ecol. Soc, Blackwell sci. Publ., oxford, U.K.

Pianka, E. R. 1976. Competition and niche theory. Pages 114-141 in Theoretical Ecology. W. B. Saunders, New York.

Sale, P. F. 1974. Overlap in resource use and interspecific competition. Oecologia 17:245-256.

Schoener, T. W. 1982. The controversy over interspecific competition. Amer. Sci. 70:586-595.

Schuette, J. R. 1991. Dietary overlap between hartebeest and roan antelope in Burkina Faso, West Africa. M.S. Thesis, Oklahoma State Univ., stillwater. 80 pp.

Schwartz, C. C., and J. E. Ellis. 1981. Feeding ecology and niche separation in some native and domestic ungulates on the shortgrass prairie. J. Appl. Ecol. 18:343-353.

Scotcher, J. S. B., Stewart, D. R. M., and Breen, C. M. 1978. The diet of the hippopotamus in Ndumu Game Reserve, Natal, as determined by faecal analysis. S. Afr. J. Wildl. Res. 8:1-11.

Scotcher, J. S. B. 1979. A review of fecal analysis techniques for determining the diets of wild grazing herbivores. Proc. Grassl. Soc. S. Afr. 14:131-136.

Sen, K. M., and G. L. Mabey. 1965. The chemical composition of some indigenous grasses of coastal savanna of Ghana at different stages of growth. 9th Int. Grassld. Congr., pp. 763-771.

Sinclair, A. R. E. 1985. Does interspecific competition or predation shape the ungulate community? J. Anim. Ecol. 54:899-918.

Sinclair, A. R. E., and M. Norton-Griffiths. 1982. Does competition or facilitation regulate migrant ungulate populations in the Serengeti? A test of hypotheses. Oecologia 53:364-369.

Singer, F. J. 1979. Habitat partitioning and wildife relationships of cervids in Glacier National Park, Montana. J. Wildl. Manage. 43:437-444.

Skinner, J. D. 1989. Game ranching in Southern Africa. Pages 286-306
in R. J. Hudson, K. R. Drew, and L. M. Baskin, eds. Wildlife production systems: economic utilization of wild ungulates. Cambridge Univ. Press, Cambridge, U.K.

Spinage, C. A. 1983. Game ranching: the potential for sustained wildlife use in Upper volta. In-session seminar: Wildlife utilization. Afr. For. Comm. Working Party on Wildl. Manage. and Nat. Parks, 7th Session (Arusha, Tanzania, 19-21 September 1983). Comm. on Afr. For. FO: AFC/WL: 83/6.1., FAO, Rome, Italy. 5 pp.

Spinage, C. A. 1986. The natural history of antelopes. Facts on File Pubs., Oxford, U.K. 124 pp.

Steel, R. G. D., and J. H. Torrie. 1980. Principals and procedures of statistics: A biometrical approach. McGraw-Hill, inc., New York. 633 pp.

Stevens, E. J., S. J. Stevens, R. N. Gates, K. M. Eskridge, and S. S. Waller. 1987. Procedure for fecal cuticle analysis of herbivore diets. J. Range Manage. 40:187-189.

Stewart, D. R. M. 1967. Analysis of plant epidermis in faeces: a technique for studying the food preferences of grazing herbivores. J. Appl. Ecol. 4:83-111.

Stewart, D. R. M., and J. Stewart. 1970. Food preference data by fecal analysis for African plains ungulates. zoo. Afr. 5:115-129.
stroup, W. W., and J. Stubbendieck. 1983. Multivariate statistical methods to determine changes in botanical composition. J. Range Manage. 36:208-212.

Toutain, B. 1974. Implantation d'un ranch d'embouche en Haute-Volta, région de Léo, étude agrostologique préalable. Institut d'Elevage et de Médecine vétérinaire des Pays Tropicaux, Maisons Alfort, France. 195 pp.

Wilson, E. O. 1975. Sociobiology: the new synthesis. Belnop press, Cambridge, Mass. 697 pp.

Table 1. Average grass component (\%) of monthly fecal samples from hartebeest and roan antelope at the Nazinga Game Ranch, Burkina Faso, 1986-87.

Month	Hartebeest		Roan Antelope		P-value	
	Percent	SE	Percent	SE	t-test	Tukey
May	96.7	1.51	93.8	1.53	0.236	0.995
Jun	98.0	0.70	96.4	1.37	0.369	1.000
Jul	98.7	0.71	96.9	0.64	0.116	0.835
Aug	97.7	0.75	98.7	0.57	0.224	1.000
Sep	95.4	1.61	97.6	0.57	0.219	1.000
oct	90.3	1.48	95.9	0.70	0.006	0.993
Nov	91.2	3.10	78.3	5.92	0.020	1.000
Dec	82.8	3.61	83.5	2.41	0.881	1.000
Jan	80.5	3.28	78.4	3.40	0.533	1.000
Feb	93.7	3.10	80.9	5.73	0.074	0.747
Mar	93.1	3.63	76.7	3.92	0.020	0.000
Apr	90.4	4.37	65.4	5.39	0.001	0.000
May	93.7	3.68	49.1	6.84	0.000	0.000
Jun	85.1	4.04	$76.2^{\text {a }}$	4.86	0.246	0.983

[^0]Table 2. Matrix of p-values from Tukey's mSD comparison of the ranked percentage of grasses found in hartebeest and roan antelope diets from the Nazinga Game Ranch, Burkina Faso, 1986-1987.


```
- P>0.05
* F}<0.0
** p< 0.01
*** p < 0.001
a Due to heavy rains, only }13\mathrm{ fecal samples were collected for roan
antelope in June, 1987.
```

Table 3. Descriptions of the 8 forage categories used to describe diets of hartebeest and roan antelope at the Nazinga Game Ranch, Burkina Faso, 1986-1987.

Forage Category	Description
Grass	Exhibit silica bodies
Tall Andropogon spp.	All perennial bunchgrasses Inflorescences >3 meters tall Exhibit multiple papillae
Short Andropogon spp.	Perennials and annuals Inflorescences <3 meters tall
Hyparrhenia spp.	```Perennials and annuals Very large papillae Very large stomata```
culms	Silica-suberose couplets No papillae
Miscellaneous leaves	Both identified and unidentified
Non-grass	No silica bodies
Legumes	Abaxial side with papillae Adaxial side featureless
Jasminium kerstingii	Segmented trichomes Heavy striations
Miscellaneous leaves	Both identified and unidentified leaves and stems

Table 4. Average composition (\%, S.E.) and frequency of occurrence for 8 forage catagories identified in monthly composite rainy-season fecal samples from hartebeest and roan antelope at the Nazinga Game Ranch, Burkina Faso, 1986-87.

Taxon	Month																													
	May ${ }^{\text {a }}$						June						July						Auqust						September					
	Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan		
	\times	SE	n	\mathbf{x}	SE	n	x	SE	n	X	SE	n	\times	SE	n	x	SE	n	\times	SE	n	x	SE	n	\times	SE	n	\times	SE	n
Grasses:																														
Andropogon																														
Andropogon																														
Short spp.	30	5.0	14	41	4.2	15	47	5.7	15	58	5.3	15	48	5.3	15	42	6.4	14	30	6.2	13	26	4.5	14	10	3.3	9	5	2.5	5
Hyparrhenia																														
spp.	15	3.3	12	13	3.5	13	16	3.0	13	11	2.2	13	20	4.6	14	22	5.1	12	16	3.3	13	23	3.9	15	8	1.8	11	9	4.5	8
Culme	17	5.4	13	13	2.8	13	4	0.8	14	7	2.5	10	8	1.8	13	11	3.2	12	11	3.0	12	11	2.2	14	53	5.3	15	48	5.9	14
Other leaves	13	2.1	14	8	2.2	11	14	3.6	12	7	2.0	10	5	2.4	7	3	1.9	5	6	2.6	10	4	1.4	7	9	3.6	9	7	2.0	10
Non-grasses:																														
Legumes	1	0.9	1	0	0.1	3	0	0.1	3	0	0.1	3	1	0.4	2	2	0.7	9	0	0.2	3	0	0.2	2	0	0.1	1	0	0.2	3
Jasminium																														
kerstingii	2	0.7	6	5	1.5	10	1	0.6	6	3	1.4	11	0	0.2	3	0	0.1	5	0	0.0	0	0	0.1	1	0	0.0	1	0	0.1	2
other spp.	1	0.4	7	1	0.5	8	1	0.3	6	0	0.2	6	0	0.1	7	1	0.3	11	2	0.8	7	1	0.4	8	4	1.6	14	2	0.6	10

[^1]Table 5. Average composition (\%, S.E.) and frequency of occurrence for 8 forage catagories identified in monthly composite cool dry season fecal samples from hartebeest and roan antelope at the Nazinga Game Ranch, Burkina Faso, 1986-87.

Taxon	Month																							
	October						November						December						January					
	Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan		
	x	SE	n	x	SE	n	x	SE	n	x	SE	n	\times		n									
Grasses:																								
Andropogon																								
Andropogon																								
Short spp.	7	1.7	11	3	1.2	5	2	1.1	5	4	2.4	5	19	4.7	14	34	4.9	14	44	4.7	15	45	3.8	15
Hyparrhenia																								
spp.	3	0.8	8	3	1.1	7	0	0.0	0	3	1.2	5	5	1.5	10	4	1.0	8	3	1.3	6	4	1.0	12
Culms	26	4.5	13	21	3.2	14	24	3.9	13	41	7.0	14	27	4.7	14	28	4.6	14	17	2.9	14	16	1.9	14
Other leaves	8	6.2	7	4	2.1	5	7	5.1	7	1	0.5	4	10	6.5	6	6	1.9	12	5	1.5	11	6	3.4	5
Non-grasses:																								
Legumes	2	0.7	12	2	0.4	13	2	0.8	12	3	1.0	9	3	1.0	10	2	0.5	14	5	1.2	13	4	1.2	14
Jasminium																								
kerstingii	3	0.8	10	0	0.2	4	3	1.3	7	4	1.5	11	10	2.3	13	7	1.3	13	11	2.7	13	15	2.9	13
other spp.	4	0.8	14	2	0.5	11	3	1.2	12	8	2.3	15	3	1.0	9	6	1.0	13	3	0.9	10	1	0.5	6

Table 6. Average composition (\%, S.E.) and frequency of occurrence for 8 forage catagories identified in monthly composite hot dry season fecal samples from hartebeest and roan antelope at the Nazinga Game Ranch, Burkina Faso, 1986-87.

Taxon	Month																													
	February						March						April						May						June ${ }^{\text {a }}$					
	Hartebeest			Roan			Hartebeest			Roan			Harteboest			Roan			Hartebeest			Roan			Hartebeest			Roan ${ }^{\text {b }}$		
	\times	SE	n	x	SE	n	x	SE	n	x	SE	n	x	SE	n	x	SE	n	x	SE	n	x	SE	n	x	SE	n	x	SE	n
Grasses:																														
Andropogon																														
Andropogon																														
Short spp.	46	6.3	14	18	4.6	13	20	4.3	13	4	1.2	9	9	2.6	10	3	1.0	8	20	3.8	13	5	3.4	8	24	6.9	14	24	4.8	12
Hyparrhenia																														
spp.	5	1.8	9	12	6.3	10	13	2.2	14	3	2.2	3	6	1.7	9	2	1.0	8	6	1.5	11	2	1.2	4	8	2.0	11	10	2.6	11
Culms	20	4.9	14	18	3.4	14	19	5.3	12	31	5.3	14	38	6.2	14	35	4.8	14	32	4.8	14	33	6.6	14	10	2.3	14	10	2.3	12
Other leaves	4	1.2	10	3	1.7	6	7	2.4	7	2	1.2	6	8	3.5	9	8	5.0	6	9	2.3	10	2	2.3	2	7	3.5	7	2	1.2	4
Non-grasses:																														
Legumes	1	0.8	5	2	0.6	9	4	2.0	5	13	2.5	14	5	2.4	6	18	3.7	13	4	2.5	5	31	4.2	14	1	0.2	9	2	1.3	8
Jasminium																														
kerstingii	4	2.0	6	6	2.6	10	0	0.3	1	3	0.7	13	1	1.0	2	3	0.9	9	0	0.0	2	2	0.9	10	13	4.0	11	20	4.8	10
Other spp.	1	0.5	9	5	1.5	13	3	1.6	9	8	1.7	14	3	1.5	10	11	2.4	15	3	1.2	11	17	4.0	14	1	0.3	9	3	0.7	12

[^2]
LIST OF FIGURES

Fig. 1. Location of the Nazinga Game Ranch, Burkina Faso, West Africa.

Fig. 2. Monthly rainfall totals recorded at the Nazinga Game Ranch Research Station, Burkina Faso, March 1986-April 1987.

Fig. 3. Average monthly grass component (\%) of fecal samples from hartebeest and roan antelope compared to monthly rainfall totals at the Nazinga Game Ranch, Burkina Faso, (March 1986April 1987).

Fig. 4. Average composition (\%) of 8 forage categories identified in monthly fecal samples from hartebeest and roan antelope at the Nazinga Game Ranch, Burkina Faso, 1986-87.

Fig. 5. Average monthly dietary overlap (\%) between hartebeest and roan antelope at the Nazinga Game Ranch, Burkina Faso, 1986-87. Open circles indicate results using the formula for "ED"; solid circles indicate results using the formula for "CI"; see text for further explanation.

APPENDIXES

APPENDIX A

DIRECTIONS FOR PREPARING A CARD KEY

TO GRASS EPIDERMAL FRAGMENTS

janthonieae
Elyptrophorus spicatue

ryzeae
oryza lonqistaminata
paniceae
Acrocerus amplectens
Beckeropsis uniseta
Brachiaria distichophylla
Brachiaria jubata
Brachiaria $\frac{\text { lata }}{\text { Brachiaria }}$
Brachiaria stigmatosa
Diqitaria argillacea
Digitaria horizontalis
Panicum Eluviicola
Panicum pansum
Panicum phracqitoide
Panicum subalbidun
Panicum walence
Paspalum scrobiculatum
Pennisetum atrichum
Pennigetua podicellatum
Pennisetun polystachium
Sacciolepis micrococca
Setaria anceps
Sotaria pallide-fueca
Setaria verticallata
Sporoboleae
Sporobolus festivus
Sporobolus microprotus
Sporobolue subanquetu

APPENDIX B

DIRECTIONS FOR PREPARING A CARD KEY TO NON-GRASS EPIDERMAL FRAGMENTS

Species

Spechorbiaceae
Antidesma venosum
Bridelia ferruqinea
Bridelia scleroneura
Croton niqritanus
Hymenocandia acida
Phyllanthus spp
Sapium grahamii
Socurinega virosa
Flacouraceae
Flacourtia indica
Oncoba spinosa
Guttiferae
Garcinia livingstonei psorospermum senegalense
abiatae
Tinnea barteri

Asparaqus flagellaris Asparaqus schroederi
oganiaceae
Strychnos innocua Strychnos spinosu

Loranthaceae
Tapianthus belvisii Tapianthus dondoneifolius

Malvaceae
Hibiscus asper Wissadula amlissima

Meliaceae
Khaya senegalensis
Boudocorola kotschy
Trichilia emotica
Mimosoideae
Acacia albida
Acacia dudgeon
Acacia gourmaensis
Acacia polyacanth
Acacia eieberana
Albizie chovalieri
Dichroatachys ciner
Entade africana
Mimosa piqua

x - x x - x
x - x x - x
잔
\mathbf{x}

APPENDIX C

DESCRIPTIONS OF

GRASS EPIDERMAL FRAGMENTS

Family: Andropogoneae

Anedelphia afzeliana

Abaxial surface:
Silica Bodies: most irregular dumbbell shaped, ends slightly concave to slightly convex, narrowness of center med-narrow
-sparse scattered cross-shaped s.b. between rows of dumbbell shaped.
-dumbbell shaped costal in 1 or 2 rows, rather widely spaced, separated in rows by s.c., occasional p.h.
-Length 8-11 Width 3-6 dumbbell shaped
-Length 4.5 Width 4.5 cross-shaped
-Frequency
Macro Hairs: none seen
Micro Hairs: widely scattered not present on some samples intercostal hairs, 2-celled tapered to a point, basal cell fairly straight (slightly inflated) distal cell 1.52 x longer, tapering to a point.
-Length 15-20 Basal 6-7 Distal , 10-13
-small cylindrical basal structure
Prickle Hairs: Coastal rows less frequent than adax., slightly tapered oval bases, rather short-medium hooked barbs
-Length 12-17 L base 9-12 W base 5-7
-fairly frequent intercostal hooks, rounded rectangular bases, barbs short and tapered to point
-Length 11-15 L base 8-9 W base 5-7
Papillae: Globulous papillae located on very long cells between stomata, intercostal, alternate with stomata, slightly larger than stomata, thick-walled may appear as bulges only
Stomata: stomata in intercostal single rows between silica bodies, med-domed, triangular
-Length 10-11 Width 8
Long Cells: Med-walled, slight undulation (wl=4-5; ampl.=2), in rows, parallel, cell ends straight
-Length 33-50 Width 5-8
Adaxial surface:
Silica Bodies: same as abax, often in pairs (1-4) separated by short cell, in double or single rows, groups separated by 1 s.c. (1
s.c. paired with) 1 p.h., 1 s.c.

Macro Hairs: none seen
Micro Hairs: none seen
Prickle Hairs: coastal-alternating with single or pairs of silica bodies, separated by short cells. Elongated oval bases, fairly short barb, triangular tapered to a point
-Base L= 11-14 Length 15-20 width 4-6 (-9)
-frequent intercostal hooks next to costal. zones
-I=8-10 L base 4-6 W base 6-8
-rounded rectangular base, short triangular barb
Papillae: none seen
Stomata: very sparse in intercostal zones
$-L=13 \mathrm{~W}=8$
Long Cells: parallel in rows, strong u-shaped irregular undulations (wl=3.5-5 ampl=2-3)
-Length 38-68 Width 5-7
Andropogon africanus
Abaxial Surface

Silica Bodies: Coastal, in single (occasionally 2 or 3), dumbbell shaped, slightly irregular, distal ends slightly concave-slightly convex, rather elongated med-narrow central portions
-separated in rows by 1 or 2 short cells slightly shorter than s.b.
-Length 9-13 Width 4-5
Macro Hairs: none seen
-Length Width
Micro Hairs: frequent intercostal, widely
spaced rows between stomata and silica
bodies, 2-celled, proximal cell cylindrical +
cigar-shaped, distal cell about same length,
rather triangular, tapering rapidly to point
-Length 15-20 $I_{b} 9 \quad L_{d} 9$
-bases square
Prickle Hairs: none seen
-Length $\quad L_{b} \quad W_{b}$
Papillae: none seen
Stomata: low-med domed (may be + triangular) in single, sometimes double-3 staggered intercostal rows
-Length 11-13 Width 7
-alternate with epidermal long cells
Long Cells: Parallel, in rows, $1-2$ rows
between silica body rows and stomatal rows, small irregular -u-shaped undulations ($=3.5$, ampl=1-2)
-Length 25-35-60 Width 6-8
-interstomatal l.c. slightly wider than stomata

	Adaxial Surface
Silica Bodies: Same as abax, rows more widely spaced, separated in rows by 1 or 2 short cells (slightly shorter than s.b.), or 1 s.c., 1 p.h., ls.c.	
	-Length 11-12 Width 6
Macro Hairs: none seen	
-Length Width	
	Micro Hairs: same as abaxial, but sparser may not be apparent
	-Length Width L_{b}
	Prickle Hairs: widely spaced prickle hairs in coastal rows, between 2 s.c., oval bases, barb perp. to row at times, med. length tapering to point may not be apparent
	-Length 17-26 Lb 11-13 W_{b} 7-9
	-[fairly] infrequent intercostal hooks, irregular rectangular bases, elongated triangular barbs may not be present
	$\begin{aligned} & \text {-Length } 15-21 \quad \mathrm{~L}_{\mathrm{b}} 12 \\ & \text { Papillae: none seen } \end{aligned}$
	Stomata: same as abax, but sparser. 1 or 2 intercostal rows
	-Length Width
Long Cells: " " "	
-Length 33-55 Width 8-11	
Andropogon africanus	
Abaxial Surface	
Silica Bodies: single costal rows of dumbbells, distal ends rounded + sometimes with indented ends, central portion quite long and narrow	
	-separated by 1-3 quite long s.c. ${ }^{\text {s }}$
	-Length 12-13 Width 5
	ro Hairs: none seen

Family: Andropogoneae

-Length Width Micro Hairs: frequent in intercostal zones, square bases, prox. cell cylindrical to slightly cigar-shaped, distal cell about same length, tapering very slightly to a very blunt point	
	-Length ${ }_{\text {Papillae }}{ }^{\text {L }}$ none ${ }_{\text {bee }}$
Stomata: low-med domed may be slightly triangular, in single-triple (1 staggered) intercostal rows (staggered).	
	-Length 11-13 Width 7-
```Long Cells: parallel in rows, roughly rectangular, fairly shallow u-shaped undulations ( =3.5, a=2), no-slight narrowing lateral to stomata```	
	length 30-60 Width
Silica Bodies: single costal rows, like abax -separated in rows by 1 s.c.	
	-Length Width
Macro Hairs: none seen	
-Length Width	
Micro Hairs: none seen	
-Length $\quad L_{b} \quad W_{b}$	
Stomata: like abax, but mostly in single, sometimes 2 rows	
-Length Widt	
Long Cells: parallel in rows, rectangular, shallow, u-shaped undulations ( $\mathrm{h}=5.5 \mathrm{a}=1$ )	
-Length 35-60 width 12-16	
Andropogon ascinoides	
baxial Surface	
Silica Bodies: single or double costal rows of slightly irreg. short dumbells, distal ends concave, central portions med-narrow and short	
-separated in rows by 1 s.c., sometimes 1 s.c., 1 prickle hair, 1 s.c.	
	-Length 8-11 Width
Macro Hairs: long, arising in costal rows, single cell, base slightly elevated, composed of several irreg. rounded cells in rough rings around basal cell. -may not be present.	
-Length Width	
Micro Hairs: quite frequent between stomata and s.b. rows, 2-celled, proximal cell tapering outwards towards distal cell from rounded base, distal cell half 3 as long, rather triangular, tapering rapidly to a point.	
```Prickle Hairs: in costal s.b. rows, between 2 s.c., oval bases, very short barbs. regrowth with no p.h.```	
-may be sm. intercostal hooks, rounded bases, small triangular barbs.	
-Length $7 \quad L_{b} \quad 6 \quad W_{b} 5$ Papillae: thin-walled, Globulous papillae, in interstomatal long cells, alternate with stomata, often slightly overlapping stomata. Stomata: in single or double (staggered	

arrangement) intercostal rows, low-domedtriangular shaped, alternate with long cells -Length 9-10 Width 6
Long Cells: parallel in rows, fairly strong u-v-shaped undulations ($h=2 \quad a=1$)
-Length 21-40 Width 4-6

Adaxial Surface

Silica Bodies: single or double costal rows of irreg-shaped dumbbells, short length, distal ends mostly convex (few slightly concave), short med. width central portions.
-Length 7-8 Width 4-5
-separated in rows by s.c., p.h., s.c.
Macro Hairs: same as abax
-Length Width
Micro Hairs: none seen
-Length $L_{b} \quad L_{c}$
Prickle Hairs: in costal rows with s.b., each 2-3 s.b. broadly oval bases, fairly long barbs.
-Length 11-22 $\quad L_{b}{ }^{4-6} \quad W_{b}{ }^{6-8}$
Papillae: none seen
regr.-fairly large Globulous papillae seen between some stomata.
Stomata: same as abax, single rows, widely separated.
-Length Width
Long Cells: same as abax, more strongly
undulated ($h=2.5, a=1$)
-Length 20-35 Width 6-10
-may be inflated rect. or + hexagonal.

Andropogon fastiqiatus

Abaxial Surface
Silica Bodies: costal single or double rows of slightly irreg. dumbell shaped s.b. distal ends slightly concave to broadly convex, rather (med-) long, narrow central portion
-in groups of 2 or 3 , separated by $1 \mathrm{s.c}$. , or 1 s.c., 1 p.h., 1 s.c.
-Length 6-8 Width 3-4
Macro Hairs: none seen
-Length Width
Micro Hairs: rather frequent between s.b. and stomatal rows, 2-sided, proximal cell, tapering slightly outward and narrow, distal cell tapering to blunt point about same lengths
-base-irreg. squared
-Length $17 \quad \mathrm{~L}_{\mathrm{b}} 7.5 \quad \mathrm{~L}_{\mathrm{d}} 9.5$
Prickle Hairs: in costal s.b. rows between 2 s.c., oval bases, short-med triang. barbs
-Length $12 \quad L_{b}$ 6-7 $\quad W_{b}$ 5-6
Papillae: med-walled, rather small c-shaped in intercostal stomatal rows, alternate with stomata (long cells)
Stomata: low-med domed, in intercostal single rows
-Length 10-11 Width 6
Long Cells: parallel in rows, slight u-shaped und.
-Length 25-44 Width 4-5
Adaxial Surface
Silica Bodies: same as abax, in single or double costal rows, widely separated, in groups of 2-3 separated by s.c., p.h.
-Length 7-12 Width 5

Family: Andropogoneae

Andropogon gayanus bisquamulatus

Abaxial Surface

Silica Bodies: single costal rows of short slightly irreg. dumbbell shaped s.b., distal ends slightly concave-slightly convex, shortmed width central portion
-in groups of $1-6$, separated by s.c. wider than s.b.
-Length 8 Width 4-6
Macro Hairs: fairly long single cell hairs arising in costal rows, bases of 3 irreg. rounded cells, slightly elevated
-Length 375 Width
Micro Hairs: frequent in intercostal zones, small square-rounded bases, proximal cell rather cylindrical (slightly inflated in middle), distal cell about same size (?) tapering slightly to blunt pt.-very fragile (may be shriveled in slide)
-Length $21 \quad \mathrm{I}_{\mathrm{b}} 11 \quad \mathrm{~L}_{\mathrm{d}} 10$
Prickle Hairs: in costal rows between s.b., sometimes widely-spaced, oval bases, med-very long triang. barbs
-may be fairly freq. intercostal hooks, sm. rounded bases, short triang barbs
-Length 28-35 L_{b} 9-14 $\mathrm{W}_{\mathrm{b}} 6$
Papillae: small fairly thick-walled globulousfinger like in small cells between stomata, often slightly overlapping stomata
Stomata: med-domed, sometimes rather triang., single intercostal rows, closely spaced in rows, occasionally double staggered rows
-Length 10-11 Width 6-8
Long Cells: parallel in rows, elongated, shallow u-shaped und. ($h=3, a=1$)
-Length 25-30 Width 5-7

Adaxial Surface

Silica Bodies: same as abax, in groups of 2-6
-Length 5-6 Width 5
Macro Hairs: none seen
-Length Width
Micro Hairs: none seen

bases, and med-very long narrow barbs, tapering to point
-Length 60-90 L_{b} 10-11 $\quad \mathrm{W}_{\mathrm{b}}$ 6-7
-fairly frequent intercostal hooks, oval
bases, short triang. barbs
-Length 15-20 $\quad I_{b}$ 5-8 $\quad W_{b} 4-6$
Papillae: none seen
-may be several sm. rounded papillae on many l.c.

Stomata: same as abax, rows wider spaced
-Length 9-10 Width 7-8
Long Cells: parallel in rows, rect. to
squared, shallow u-shaped und. ($h=3, a=1$)
-Length 14-27 Width 10

Andropogon gayanus gayanus

Abaxial Surface
Silica Bodies: single costal rows of fairly reg. dumbbell shaped occasionally nodular s.b., distal ends mostly convex, rather squared, central portion med-fairly long length, narrow
-separated by 1 s.c. in regular spacing-s.c. slightly wider or same width as s.b.
-1 cross-shaped and 1 slightly nodular s.b. seen
-Length 8-9 Width 4-5
Macro Hairs: scattered intercostally, long single cell, arising from elevated multicelled base if irreg. rounded cells roughly in rings.
-Length 410 Width
Micro Hairs: rather frequent in intercostal zones, rounded bases, proximal cell cylindrical-tapering outwards distal cell about same length, tapering only slightly-med to a (very) blunt point
-Length $22 \quad \mathrm{I}_{\mathrm{b}} 10 \quad \mathrm{I}_{\mathrm{d}} 12$
Prickle Hairs: in costal rows of irreq.-spaced s.b.
-tapered oval base,[fairly short]-quite long pointed barb
-Length 21-42 L $10 \quad W_{6} 6$
-rather infrequent intercostal hooks, rounded bases, short pointed barb
-Length 10-12 $\quad I_{b} 6 \quad W_{b} 5$
Papillae: fairly thin-walled c c-shaped papillae on interstomatal long cells $1 / 2$ width stomata
-often 2 present, [also often small papillaelike structures on many l.c.'s] may not be present
Stomata: med-low-domed rather triang. in intercostal single or double rows, alternate with long cells (occasionally up to 3 rows, one staggered with another)
-Length 10-12 Width 7-8
Long Cells: parallel in rows, rect., very shallow v-shaped und ($h=5, a=1$)
-Length 25-31 width 5-6
-interstomatal l.c. slightly narrower than stomata

Silica Bodies: same as abax-occasionally nodular, rows wider spaced
-Length 5-8 Width 4-5
Macro Hairs: same as abax
-Length 680 Width
Micro Hairs: none seen
 bases rounded tapered rect. , barbs fairly short -very long pointed
-Length $16 \quad L_{0} 8 \quad W_{6} 6$
-fairly freq. intercostal hooks, rounded

Family: Andropogoneae

-Length 9-19 $\quad{ }_{b} b_{6}^{4-7} \quad W_{b}{ }_{\text {4-7 }}^{4-7}$ Papillae:several small round papillae on interstomatal and surrounding l.c.'s	
-may not be apparent	
Stomata: like abax, but very sparse, in single intercostal rows, widely spaced in rows medhigh domed	
-Length 8-10 Width 8-9	
Long Cells: parallel in rows, rect.-squared, shallow u-shaped und. ($h=3, a=1$)	
-Length 11-20 Width 9-10	
-some l.c.'s with very little und.	
-interstomatal l.c. narrower than stomata	

Andropogon gayanus squalulatus

Andropogon pseudapricus

Abaxial Surface
Silica Bodies: single costal rows of reg. dumbbell shaped s.b., distal ends mostly convex with central indentations, central portion rather long and narrow with central thickening
-very evenly spaced with butterfly-shaped s.c.between each

Family: Andropogoneae
strongly triang., alternate with long cells without papillae
-Length 14-18 Width 10-11
Long Cells: interstomatal l.c. narrower than stomata
-parallel in rows, rect., med u-shaped und.
($h=4, a=2.5$)
-Length 27-50 Width 7-10
Adaxial Surface
Silica Bodies: like abax but very widely spaced
-Length Width
Macro Hairs: like abax
-Length Width
Micro Hairs: fairly freq. in intercostal zones, like abax
-Length $\quad L_{L_{l}} \quad L_{d}{ }_{d}$ in costal rows and in intercostal zones
-Length $\quad L_{b} \quad W_{b}$
Stomata: like abax
-Length Width
Long Cells: like abax
-Length Width

	Elionurus elegens
	Abaxial Surface
Silica Bodies: costally	: none seen (3), possibly some
-Length	Width
Macro Hairs: s basal cells columnar irre and thin, tap	seen infreq., arising costally, (on side) elevated, several reg., single cell for hair, long apering to point
-Length 340	Width
Micro Hairs: n	none see
-Length	$L_{i} \quad L_{d}$
Prickle Hairs: irreg. rect. triangles, t	: freq. intercostal hooks, bases ., barbs rather short elongated tapering to points
-Length 11-13 Papillae: none	$L_{b}{ }^{3-6} \quad W_{b}{ }^{6-8}$
Stomata: in si rows, low-don	ingle or double-3 intercostal omed, rather triangular
-Length 14-16	Width 8-10
Long Cells: pa inflated-rect ($h=4, a=1$)	parallel in rows, slightly ct., very shallow u-shaped und.
-Length 37-80	Width 9-11
	Adaxial Surface
Silica Bodies: costal zones, concave-strai thickness, ra	: very widely spaced dumbbells in s, rows 2-3, distal ends slightly aight, central portions med. rather short
-Length 6	Width 5
$\begin{aligned} & \text {-several irreg } \\ & \text { seen } \end{aligned}$	g. dumbbell/cross-shaped s.b.
Macro Hairs: n	none seen
-Length	Width
Micro Hairs: r zones, elonga slightly ciga shriveled to	rather freq. in intercostal gated oval bases, prox. cell gar shaped, distal ends too o see
-Length 15	L
Prickle Hairs: irreg. oval	: freq. intercostal hooks, ovalbases, short elongated triang.

-Length Width
Macro Hairs: seen infreq., arising costally, columnar irreg., single cell for hair, long
and thin, tapering to point
-Length 340 Width
Micro Hairs: none seen
Prickle Hairs: freq. intercostal hooks, bases irreg. rect., barbs rather short elongated triangles, tapering to points
-Length 11-13 $L_{b}{ }^{3-6} \quad W_{b} 6-8$
Stomata: in single or double-3 intercostal
rows, low-domed, rather triangular
-Length 14-16 Width 8-10
Long Cells: parallel in rows, slightly inflated-rect., very shallow u-shaped und. ($h=4, a=1$)
-Length 37-80 Width 9-11

Adaxial Surface

Silica Bodies: very widely spaced dumbbells in tal zones, rows 2-3, distal ends slightly concave-straight, central portions med.
rather short
Width 5
-several irreg. dumbbell/cross-shaped s.b. seen

Macro Hairs none sean
Micro Hairs: rather freq. in intercostal zones, elongated oval bases, prox. cell slightly cigar shaped, distal ends too
shriveled to see
Prickle Hairs: freq. intercostal hooks, ovalirreg. oval bases, short elongated triang.

cymbopogon giganteus
Abaxial surface
Silica Bodies: single or double costal rows of rather irreg. dumbbells, distal ends concave, central portions rather thick, med. length
-Length 6-7 Width 5
very freq. intercostal may be infreq. in
regrowth irreg. linear s.b., staggered
arrangement between l.c.'s
-paired with rect. s.c.
-Length 1 Width 5
-costal s.b. fairly closely and unevenly
spaced in row, separated by 1 or 2 s.c.,
approx. same width as s.b.
Macro Hairs: none seen
Length Width
Micro Hairs: freq. in intercostal zones, prox. cylindrical
slightly inflated, distal cell 1/2-2/3
, rather triangular, tapering rapidiy
point, base oval

Prickle Hairs: rather freq. intercostal hooks, bases oval, very short triang. barb
-Length 6-7 $\quad L_{b} 4-5 \quad W_{b} 5$
Stomata: usually 6-8 rows, often staggered in pairs, intercostal, of high-med domed (sometimes slightly triang.) stomata, separated by l.c.'s
-Length 10-14 Width 8-11
Long Cells: parallel in rows, rect., medshallow u-shaped- -shaped und. ($h=2, a=1$)
-Length 20-44 Width 6-8

Adaxial Surface
Silica Bodies: intercostal s.b. like abax, but sparser, single-2 costal rows of dumbbells, distal ends indented-convex, central portions rather short and thick
-separated in rows by s.c. (1 or 2) wider than s.b.

Width 5-6
Macro Hairs: none seen

Micro Hairs: like abax, sparse
-Length $L_{b} \quad L_{d}$
rickle Hairs: freq. intercostal hooks, bases
irreg. oval, very short triang. barbs
bon b blo
Stomata: single intercostal rows, like abax
-Length 14-16 Width 10-11
Long Cells: parallel in rows, rect.-inflatedfairly deep u-shaped und. ($h=5$
-Length 25-45 Width 10-12

Elionurus hirtifolius

Abaxial Surface
Silica Bodies: irreg. linear silica bodies in costal (?) zones, very widely spaced, between 1.c.
-Length 2 Width 6
Macro Hairs: none seen
-Length Width
Micro Hairs: few seen outside of costal (3) zone, basal cells cyl., no distal cells seen, bases oval
-Length $I_{b} 8-10 \quad L_{d}$
Prickle Hairs: infreq. intercostal hooks, rect.-squared bases, barbs fairly short, triang.
-Length $12 \quad L_{b} 5 \quad W_{b} 6$
Stomata: med-high domed, triang.
-Length 14-15 Width 8-10
Long Cells: rect. or inflated rect., shallow u-shaped und ($h=2.5-3, a=1-1.5$)
-Length 25-55 Width 10-13

Adaxial Surface
Silica Bodies: irreg. dumbbells, irreg. and occasional nodular s.b. in costal zones in several rows, distal ends mostly convex, central portions med. thickness (some thin, smaller irreg. s.b. with very thick central portions)
-Length 4-10 Width 4-6
-very variable
-scattered irreg. intercostal s.b.
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. in intercostal zones, oval bases, prox. cell cyl., distal cells (difficult to see) tapering to rather blunt points
-Length 40-45 I_{b} 15-20 L_{d}
Prickle Hairs: freq. costal p.h., bases ovals squared at one end, points very short blunttriang.
-Length 10-13 I_{b} 8-11 $\quad W_{b}{ }^{5-6}$
-fairly freq. intercostal hooks like abax
Papillae: none seen
Stomata: like abax, but larger
-Length 15-25 Width 10-15
Long Cells: rect., faịrly deep u-und. (h=3-4, $a=4-5$)
-Length 45-95 Width 10-15
Elionurus pobeguinii
Abaxial Surface
Silica Bodies: in bands of $4+$ costal rows-very
widely spaced dumbells, distal ends concave-
slightly convex and mostly short, central
portions short and thick, many paired with
squared s.c. with or without silica, some
squared s.b.
-widely spaced in rows
-Length $5 \quad$ Width 4-5 (sq.)
Macro Hairs: occasional in intercostal zones,
foot cell irreg. rounded rect. structure of
basal cells difficult to see
-in intercostal zones, sinqle celled
microhairs or very small macrohairs, bases

Abaxial Surface

ica Bodies: in bands of $4+$ costal rows-very widely spaced dumbbells, distal ends concavelightly convex and mostly short, central portions short and thick, many paired with squared s.b
-widely spaced in rows
Length 5 Width 4-5 (sq.)
Macro Hairs: occasional in intercostal zones, basal cells difficult to see
microhairs or very small macrohairs, bases
rounded rect., difficult to see basal structure, hair single cell, tapering to point
-Length 30-60
-many irreg. rounded cells likely not elevated ($?$), hair single cell, broken
-Length 105(445-475) Width
Micro Hairs: scattered in intercostal zone, basal cell cyl., distal cell often longer than prox., tapering to very blunt point
-Length $\quad I_{b} 8-12-14 \quad I_{d} 10-12-14$
Prickle Hairs: freq. intercostal hooks, bases rect., very short triang. barbs tapering to rather blunt point-med triang. barbs tapering to points
-Length $6 \quad L_{b}{ }^{5-6} \quad W_{b} 6-7$
Papillae: none seen
Stomata: in 4+ intercostal rows, low-med domed
-Length 16-20 Width 10-15
Long Cells: rounded-rounded rect., quite
variable in size, no und seen
-Length 17-36 Width 10-16
-interstomatal l.c. wider, often considerably, than stomata

Adaxial Surface

Silica Bodies: ? in bands of ${ }^{6}$ costal rowsvery widely spaced, "smashed-in" dumbbells or , distal ends mostly slightly convex, central portions short and thick, many , with 1 side bigger than other, each paired with linear s.c., separated by l.c.'s in row, spaced fairly evenly
-Length 3-4-6 Width 6
Macro Hairs: none seen
-Length Width
Micro Hairs: none seen
-Length $\quad \stackrel{L_{b}}{b_{b}}{ }_{L_{d}}$
-Length $\underset{b_{b}}{L_{b}} \quad W_{b}$
Papillae: none seen
Stomata: widely spaced, low-med domed triang.
-Length Width
Long Cells: parallel in rows, rect, deep u-
shaped und ($h=5, a=6$)
-Length 35-95 Width 15-17

Euclasta condylotricha

Abaxial Surface
Silica Bodies: single costal rows of
dumbells, most single and paired with a
prickle hair, distal ends concave-squared,
central portion short-med and very narrow
(occasionally nodular)
-Length 6-10 Width 3-4
Macro Hairs: rather freq. in intercostal
zones, base elevated, multi-celled, rough
rings of irreg. shaped cells, hair single
celled and long
-Length 535 Width
Micro Hairs: occasional, usually in stomatal
rows, arising between l.c.'s with papillae,
or may be paired with p.h. or between l.c.'s,
base small and round, prox. cell tapering
outward to max. width at $2 / 3$ its length,
distal cell not seen may not be seen
-Length $\quad I_{\text {b }} 16$ I
Prickle Hairs: in costal rows, some single,
some paired with s.b. or each other, irreg.

Abaxial Surface
Silica Bodies: scattered-quite freq. intercostal cross-shaped or irreg.-shaped
s.b., each paired with 1 linear s.c.
-Length 4-6 Width 8-10
-double or single costal rows of mostly dumbells (few nodular, few cross-shaped), distal ends mostly straight or indented, central portions med. length and width, rounded-rounded rect., overall ends arranged in rows closely and quite evenly spaced, separated by short s.c.'s
-Length 6-i2 Width 5-6
Macro Hairs: fairly freq. in intercostal zones, bases multi-celled, long, tapering to point
-Length 390 Width
Micro Hairs: fairly freq. in intercostal zones, base irreg. rounded-oval, prox. cell
cyl., distal cell 1.5-2X as long, first tapering slightly outwards, then tapering rapidly to a rather blunt point
-Length $24 \quad I_{b} 7-9 \quad I_{d} 15$
Prickle Hairs: none seen
$\begin{array}{ll}\text {-Length } & L_{b} \\ \text { Papillae: none } & W_{b}\end{array}$
Stomata: in many intercostal rows
(occasionally staggered), low-med. domed, often "peaked", separated in rows by long single l.c.'s
-Length 16-17 Width 10-13
Long Cells: roughly parallel in rows, rect.elongated irreg, irreg, u-shaped und (h=3.5,
$a=2$)
-Length 25-65 Width 9-10
-interstomatal l.c.'s often wider than stomata
Adaxial Surface
Silica Bodies: same as abax., wider spaced, intercostal s.b. less freq.
-Length Width
Macro Hairs: same as abax, less freq
-Length 320 Width
Micro Hairs: freq. intercostally, basal cell short and cyl. or tapering slightly outwards, distal cell 2 X as long, first tapering outwards, then inwards to a blunt point
-Length $18 \quad \mathrm{~L}_{\mathrm{b}} 6 \quad \mathrm{~L}_{\mathrm{d}} 12$

Prickle Hairs: none seen
-Length $\quad L_{b} \quad W_{b}$
Papillae: none seen
Stomata: same as abax, but wider spaced and slightly smaller (?)
-Length Width
Long Cells: roughly parallel in rows, rect.-
(sometimes inflated), fairly deep irreg. u-
-shaped und ($h=5, a=3$)
-Length 26-59 Width 10-20

Hyparrhenia glabriuscula

Abaxial Surface
Silica Bodies: single or double costal rows of closely-spaced dumbbells (very little space small narrow s.c.'s between s.b.), distal ends concave, central portions narrow, extremely short
-others with central portions med length and width, regrowth like
-Length 9-11 Width 7-8
Macro Hairs: none seen, but some bases
possibly present
-freq. on regrowth, costal or intercostal
-Length 230-250 Width
Micro Hairs: very freq. in intercostal zones, bases irreg., basal cell cyl., slightly
thicker in center, distal cell $\sim_{1 / 2} \mathrm{X}$,
tapering to blunt point
-Length 18-24 $\mathrm{L}_{\mathrm{b}} 12 \quad \mathrm{~L}_{\mathrm{d}} 6$
Prickle Hairs: occasional in costal rows, oval bases, fairly short triang. barbs tapering to point
-Length 12-13 $L_{b} 7-8 \quad W_{b} 4-5$
-very freq. or less intercostal hooks, squared bases, short pointed barbs
-Length 8-10 $\mathrm{I}_{\mathrm{b}}{ }^{5-6} \quad \mathrm{~W}_{\mathrm{b}} 5$
Papillae: none seen, possibly very thinwalled, low papillae on interstomatal long cells
Stomata: double or single intercostal rows, triang. low-med domed, with fairly short long cells separating stomata
-Length 13-14 Width 7-9
Long Cells: rect-slightly inflated, in rows (parallel), slight $\underline{u}-$ shaped und. ($h=2-2.5$, a=1)
-Length 29-38 Width 4-6
-interstomatal l.c.'s sometimes slightly wider than stomata

Adaxial Surface
Silica Bodies: same as abax
-separated in rows by 1 or 2 s.c., p.h. more

Family: Andropogoneae

freq. -Length 7-10 Width 8-9	
Macro Hairs: none seen	
-Length Width	
Micro Hairs: none seen	
-Length $L_{b} \quad L^{\text {b }}$	
Prickle Hairs: more freq. than abax in costal rows, otherwise same as abax	
-Length $\quad L_{b} \quad W_{b}$	
Stomata: low-domed, fairly triang.	
-Length 11-12 Width 7-8	
Long Cells: in rough rows of rect-squared cells, broad u-shaped und. ($h=3.5, a=2$)	
-Length 30-45	Width 10-1

Hyparrhenia involucrata

Abaxial Surface

Silica Bodies: single-6+ costal rows of dumbbell shaped s.b., distal ends mostly concave, some deeply, almost cross-shaped, central portions med. length, quite narrow, ends quite squared
-separated in rows by $1 \mathrm{~s} . \mathrm{c}$., or 1 l.c.
-Length 8-12 . Width 5
Macro Hairs: frequent, arising intercostally, multi-celled elevated base, cells irreg. and variable in size, in roughly concentric rings -Length 300 Width
Micro Hairs: Frequent in intercostal zones, bases small and rounded, prox. cell cyl. or slightly cigar-shaped, distal cell tapering rapidly to blunt point, about half length
-Length $15 \quad I_{b} 10 \quad L_{d} 5$
Prickle Hairs: freq. in intercostal zones, hooks, with rounded bases, very short triang. rather blunt? barbs
-Length $5 \quad L_{b} 5 \quad W_{b} 4-5$
Papillae: rather thick-walled Globulous papillae on long cells between stomata, often wider than stomata
Stomata: in 2-4 interstomatal rows, elongated and very low-domed
-Length 16-18 Width 5-7
Long Cells: parallel in rows, roughly rect., to u-shaped und., interstomatal l.c.'s wider than stomata ($h=3.5, a=1.5$)
-Length 35-60 Width 4-7
Adaxial Surface
Silica Bodies: in l-4 costal zones, like abax, many ends straight to slightly convex, rows widely spaced, some rows with close spacing
of s.b. like abax, others widely spaced
-Length 8-11 Width 5-6
Macro Hairs: arising intercostally, less freq.
than on abax., same base structure
-Length Width
Micro Hairs: fairly infreq. in intercostal
zones, like abax.
-Length $\quad{ }^{L_{b}}{ }_{\text {Prickle }}{ }_{\mathrm{L}}^{\mathrm{d}}$
-some samples with freq intercostal hooks like abax. each paired with s.c.
-Length $\quad L_{b} \quad W_{b}$
Papillae: none seen
-Length 15-18 Width 7-9
Long Cells: parallel in rows, uneven sized
inflated rect.-hexagonal med. -shaped und. ($h=5, a=2-3$)
-Length 25-75 Width 12-21

Hyparrhenia rufa

Abaxial Surface
Silica Bodies:1-4 costal rows of dumbells, distal ends squared, central portions very narrow and long regrowth-central portions slightly wider
-fairly evenly spaced by squared s.c., slightly narrower than s.b.
-Iength 12-16 Width 5-6
Macro Hairs: fairly freq. in intercostal zones, multi-celled elevated bases
-Length 430-520 Width
Micro Hairs: fairly freq. in intercostal zones, small rounded bases, prox. cell cyl.cigar shaped, distal cell $11 / 3 \times \mathrm{L}$, tapering slowly to point
-Length $30 \quad \mathrm{~L}_{\mathrm{b}} 13 \quad \mathrm{~L}_{\mathrm{d}} 17$
Prickle Hairs: occasional in costal rows, bases elongated ovals, barbs fairly high, tapering to short narrow points
-Length 20-25 L_{b} 11-15 $\quad \mathrm{W}_{\mathrm{b}}$ 4-6
-occasional intercostal hooks, oval bases, fairly short pointed barbs-barbs longer-30
-Length 15-20 $\mathrm{L}_{\mathrm{b}} 10-11 \quad \mathrm{~W}_{\mathrm{b}}{ }^{5-6}$
Papillae: thin walled bulges on interstomatal l.c., often not apparent

Stomata: in single or double intercostal rows, low-domed, often quite triang.
-Length 15-16 Width 7-8
Long Cells: elongated irreg. rect., walls with fairly shallow u-shaped und. ($h=3-4, a=1.5-2$)
-Length 50-75 Width 10
-interstomatal l.c. very narrow

Hyparrhenia smithiana

Abaxial Surface
Silica Bodies: mostly single-2-3 costal rows of irreg. dumbbells, distal ends squared, slightly indented-convex, central portions med. length, narrow

Family: Andropogoneae
-arranged in groups of 1-3, separated by 1
s.c. or 1 s.c., lp.h., ls.c., s.c.'s small, slightly narrower than s.b.
-Length 8-13 Width 5-7
Macro Hairs: fairly frequent in intercostal zones, multi-celled elevated bases, cells variable size, rounded irreg., long single cell hair
-Length 440+ Width
Micro Hairs: freq. in intercostal zones, bases small and rounded, prox. cell cigar-shaped, distal cell likely shriveled some, tapering to slightly blunt tip-point
-Length 16-20 L_{b} 9.5-10 $\quad L_{d}$ 6.5-10
Prickle Hairs: in costal rows between s.b., broadly oval bases with short pointed barbs-short-med triang.
-Length 15-20 $L_{b} 9-10 \quad W_{b} 6-7$
-intercostally, between stomatal rows, irreg. squared-round bases, infreq. on regrowth very short pointed barbs
 papillae on long cells in between stomata, slightly narrower than l.c. -may only appear as bulges in wall in interstomatal l.c.
Stomata: low-med.-high domed triang. in single or double intercostal rows
-Length 8-10 Width 8
Long Cells: roughly parallel in rows, rect., narrowing slightly lateral to stomata, interstomatal l.c. narrower than stomata. very small u-shaped und. ($h=2, a=1$)
-Length 30-55 width 5-6
Adaxial Surface
Silica Bodies: like abax, may be 'smashed' or poorly developed
-Length Width
Macro Hairs: less freq. tan on abax., same -Length 540 Width
Micro Hairs: freq., long and thin, in
intercostal zones, small rounded bases, prox. cell cigar-cyl. shaped, distal cell tapering to rather blunt point, very variable
-Length 17-34 L_{b} 11-17 L_{d} 6-17
Prickle Hairs: in costal rows between s.b.
groups, larger than abax. but same shape, may
be infreq. with long pointed barbs
-Length 15-25 L_{b} 13-17 W_{b} 7-8
-freq. intercostal hooks, rect. bases, pointed barbs

Stomata: same as abax, wider spaced in single rows
-Length Width
Long Cells: parallel in rows, slightly inflated, prominent u-shaped und. ($h=3$, $a=1.5$)
-Length 7-11 Width 35-60

Hyparrhenia subplumosa

Abaxial Surface

Silica Bodies: single, occasionally double-3 costal rows of dumbbells (occasionally nodular), distal ends rounded convex-concave, often with small points, central portions med. length and narrow
-fairly evenly spaced, separated by small s.c.- some rows more widely spaced with l.c.'s and p.h.
-Length 10-14 Width 6-7
-sparse intercostal cross-shaped s.b. (only one seen)
Macro Hairs: fairly freq. arising intercostally, multi-celled elevated bases of rather small mostly rounded cells, long single-celled hairs
-Length 620 Width
Micro Hairs: very freq. and prominent in intercostal zones, small rounded bases, basal cells rather cigar-shaped, widest about $2 / 3$ dist. to tip, distal cell tapering to fairly blunt point 1/2-2/3 length
-Length 20-25 L_{b} 10-15 $\mathrm{L}_{\mathrm{d}}{ }^{7-8}$
Prickle Hairs: rather freq. in some costal rows, oval bases, short pointed barbs may not be present
-Length 16-18 $\mathrm{L}_{\mathrm{b}} 10-12 \quad \mathrm{~W}_{b} 6-7$
-freq. intercostal hooks, irreg. bases, pointed barbs, short blunt
-Length 12-16 $\quad L_{b}$ 5-8 $\quad W_{b} 6-8$
Papillae: fairly thick-walled Globulous papillae on interstomatal l.c., slightly wider-slightly narrower than stomata
Stomata: in single or double (some staggered intercostal rows, low-domed rather triang.
-Length 14-16 Width 7-8
Long Cells: parallel in rows, rect., small ushaped und. ($h=2, a=1$)
-Length 30-50 Width 5-8
-interstomatal l.c. often wider than-same width as stomata

Adaxial Surface

Silica Bodies: single costal ron's (occasionally double) of irreg. dumbbells, distal ends straight, central portion med. length and rather narrow width, may be very widely spaced and irreg.
-separated by 1-2 short s.c.'s, occasional p.h.'s in some rows.
-Length 11-14 Width 8
Macro Hairs: less freq. than abax., multicelled elevated bases, intercostal, basal cells irreg., difficult to see structures
-Length Width
Micro Hairs: none seen
-like abax
-Length $L_{b} \quad L_{d}{ }_{\text {Prickle }}$ Hairs: Occasional in costal rows (possibly macro hairs), not seen on some specimens, several squared basal cells around rect. base, long barb tapering to point
-Length $105 \quad L_{b} 18 \quad W_{b} 8$
-quite freq. intercostal hooks, bases irreg.
rect., barbs relatively long and triang., pointed (esp. on edges of veins), very short, blunt, triang.
-length 15-20 $\mathrm{L}_{\mathrm{b}}{ }^{6-8} \quad \mathrm{~W}_{\mathrm{b}} 8-10$
Papillae: none seen
Stomata: single intercostal rows, like abax but widely spaced, often separated by $2+1 . c$.
-Length 20-25 Width 10-15
Long Cells: parallel in rows, rect.-hex.,
small u-shaped und. ($h=5, a=2$)
-Length 35-65 Width 10-25

Hyperthelia disoluta

Abaxial Surface

Silica Bodies: single costal rows of dumbbells (some nodular), distal ends squared with concave ends, central portions med. length and narrow
-unevenly spaced with short cells in between some s.b. only, some p.h.
-Length 9-13 Width 5-6
Macro Hairs: freq, intercostally, bases multicelled irreg. squared cells, mostly same size in ring around basal cell, elevated
-Length 680 Width
Micro Hairs: freq. in I.z., small round bases, prox. cell strongly cigar-shaped-cyl., distal cell considerably narrower and 2/3x, rather cyl. with blunt rounded end
-Length $35 \quad I_{b} 21 \quad I_{d} 14$
Prickle Hairs: intercostal hooks with squared bases quite freq., short triang. barbs
-Length $35 \quad L_{b}{ }^{5-6} \quad W_{b} 4-5$
-occasional in costal rows, ${ }^{b}$ elongated oval bases , long barbs tapering to points -costal and intercostal not as well developed
-Length 40-85 L_{b} 7-12 $\mathrm{W}_{\mathrm{b}} 5$
Papillae: very large Globulous papillae on interstomatal l.c.'s, overlapping stomata
Stomata: double or single intercostal rows of low-domed stomata-very low domed
-Length 14-16 Width 8
Long Cells: parallel in rows, rect, small ushaped und. ($h=2, a=1$)
-Length 35-70 Width 5-6

Adaxial Surface

Silica Bodies: same as abax but rows sparser -occasional cross-shaped s.b. intercostally near costal rows (or small dumbbells)
-Length Width
Macro Hairs: more freq. than abax, like abax.
-Length 700 Width
Micro Hairs: none seen
 elongated ovals with 1 squared end, barbs very long, tapering to point
-Length 10-12 L_{b} 105-110 $\quad \mathrm{W}_{\mathrm{h}}$ 7-8
-freq. intercostal hooks, bases squared, barbs elongated triang.-very short triang., tapering to point
-Length 6-11 $L_{b}{ }^{4-5} \quad W_{b} 4-5$
Papillae: none seen
Stomata: none seen
-Length \quad Width
Long Cells: in rough rows, rect.-irreg. hex,
broad u-shaped und ($h=3, a=1.5$)
-Length $25-40$ Width $8-16$

Imperata cylindrica

Abaxial Surface
Silica Bodies: 1-2 costal rows of dumbbells, distal ends straight-indented, central portions short, med. width
-some very compact
-widely spaced in rows by squared s.c., l.c.
-Length 5-6 Width 4-5
Macro Hairs: none seen
-Length Width

Micro Hairs: fairly freq. in intercostal zones, small squared bases, prox. cell cigarbarrel shaped, dist. cell $\mathrm{s}_{\text {same }}$ Length + shorter, narrower, tapering to blunt point
-Length 25-30 L_{b} 12-15 $\mathrm{L}_{\mathrm{d}} 10-13$
Prickle Hairs: quite freq. intercostal hooks, bases squared, barbs very short, blunt (difficult to see)
-Length $\quad \mathrm{L}_{b}{ }^{3-4} \quad \mathrm{~W}_{\mathrm{b}}{ }^{4-5}$
Stomata: 1-2 intercostal rows, med-domed
rounded, quite closely spaced by short l.c.
-Length 10-12 Width 8-10
Long Cells: rect., walls with med. u-shaped
und. ($h=3-4, a=1.5-2$)
-Length 25-55 Width 6-9
-interstomatal l.c. usually wider than stomata

Adaxial Surface

Silica Bodies: like abax
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: like abax
-Length \quad Lickle Hairs: fairly freq. intercostal hooks, bases rounded rect., barbs strong triang. tapering to point
-Length $15-20 \quad L_{b} 8-10 \quad W_{b} 5-7$
Papillae: none seen
Stomata: like abax
-Length Width
Long Cells: like abax
-Length Width

Monocymbium ceresiiforme

Abaxial Surface
Silica Bodies: 1-2 costal rows of dumbbells, distal ends with straight-slightly concave ends, central portion med. length and slightly narrow width
-separated by 1 s.c. (occasionally nodular)
-Length 8-11 Width 5-6
-fairly freq. smaller cross-shaped or irreg. dumbbells scattered intercostally-may not be present
Macro Hairs: none seen
-Length Width
Micro Hairs: occasional in intercostal zones, difficult to see structures, small rounded bases, prox. cell cyl., distal cell tapering to point, ~same length
-Length $18 \quad \mathrm{~L}_{\mathrm{b}} 13 \quad \mathrm{~L}_{\mathrm{d}}$
Prickle Hairs: hooks with oval-squarish bases and short triang. barbs scattered through
intercostal zones

- Length 11-17 $\mathrm{L}_{\mathrm{b}}{ }^{7-11} \mathrm{~W}_{\mathrm{b}}{ }^{7-9}$
-some costal rows with freq. ${ }^{7-h}$.
-some costal rows with freq. ${ }^{b}$ p.h., oval bases,
barbs med. length, pointed
-Length $20 \quad L_{b}$ 11-13 $\quad W_{b} 6-8$
Papillae: none seen
Stomata: 2-several rows of intercostal lowdomed rather triang. stomata-med-domed rounded
-Length 14-16 Width 10
Long Cells: irreg. rows, mostly rect., slight waves for und. ($h=4-6, a=1-1.5$), some with small u-shaped und.
-Length Width 7-10

Prickle Hairs: none seen
-Length $\quad I_{b} \quad W_{b}$
Papillae: none seen
Stomata: none seen
-Length Width
Long Cells: like abax
-Length $30-65$ Width $10-15$

Schizachyrium ruderale

Abaxial Surface

Silica Bodies: single costal rows of irreg. dumbbells, distal ends mostly indented and rounded, central portions short-med., med.narrow width
-separated by 1 small narrow s.c. in row, sometimes l.c.
-Length 9-12 Width 7
Macro Hairs: none seen
-Length Width
Micro Hairs: rather freq. in intercostal zones, small rounded bases, prox. cell slightly inward-tapering, distal cell 2/3x, triang., tapering to point
-Length $15 \quad L_{b} 9 \quad L_{d} 6$
Prickle Hairs: none seen
-Length $L_{b} \quad W_{b}$
Papillae: none seen
Stomata: 1-3 intercostal rows, low-med. domed strongly triang.
-Length 11-13 Width 7-10
Long Cells: in roughly parallel rows, elongated rect., slightly wider than stomata in stomatal rows, med. u- shaped und. (h=3, $a=2-2.5$)
-Length 25-65 Width 7-10

Adaxial Surface

Silica Bodies: like abax, 1-2 costal rows of dumbells, distal ends rounded and indented of fairly straight, central portions med. length and narrow width
-separated by 1 s.c. in rows, or l.c.'s, p.h.'s
-Length 11-12 Width 7
Macro Hairs: none seen
-Length Width
Micro Hairs: none seen

rickle Rairs: Hreq, Costally, bases oval , short triang. barbs, tapering rapidly to points
-Length 19-25 L_{b} 16-20 $W_{b} 8-10$
-fairly freq. intercostally, ${ }^{b}$ rect. bases, short elongated triang. barbs, tapering to points
$\begin{array}{lll}\text {-Length 9-11 } & \mathrm{L}_{\mathrm{b}}{ }^{3-4} \quad \mathrm{~W}_{\mathrm{b}}{ }^{7-8} \\ \text { Papillae: none seen }\end{array}$
Papillae: none seen
Stomata: none seen
-Length Width
Long Cells: parallel in rows, rect., with fairly deep und. u - shaped ($h=5, a=3.5$)
-Length 30-70 Width 14-18

Schizachyrium sanquineum

Abaxial Surface

Silica Bodies: 1-2 costal rows of dumbbells, distal ends rounded rect. fairly straightconvex, central portions narrow, med. length

Schizachyrium schweinfurthii

Abaxial Surface

Silica Bodies: 1-2 costal rows of dumbbells, distal ends rounded rect.-rounded, slightly indented-slightly convex, central portion short-long, fairly narrow
-arranged quite closely spaced in rows, separated by 1 narrow s.c. or 2 s.c. , rows closely spaced
-Length 9-13 Width 5-7-8

Family: Andropogoneae

```-scattered intercostal cross-shaped and irre s.b., some dumbbells, quite common-infreq. -Length Width 7```
Macro Hairs: none seen
-Length Width
Micro Hairs: quite freq. intercostally, bases circular, about same width as prox. cell, prox. cell cyl, distal cell tapering to blunt point $x 2 / 3-s a m e ~ l e n g t h ~$
-Length 15 L 5-9 $L_{\text {d }}$ 5-6
ickle Hair
-Length
Papillae: none seen
Stomata: 1-2 intercostal rows, low-domed slightly triangular-med. domed rounded
-Length 9-13 Width 6-7
Long Cells: parallel in rows, elongated rect., small u-shaped und. ( $h=2, a=1$ )
-very noticeable u- und. ( $h=3-4, a=2$ )   -Length 25-50 Width 5
Adaxial Surface
Silica Bodies: in costal rows, like abax., but with numerous p.h. in rows, may be very infreq.
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: none seen, occasional on some specimens, prox. cell like abax, no distal cells seen
-Length
```Prickle Hairs: very freq.-very infreq. in costal rows, bases broadly oval and slightly squared , fairly short elongated triang. bases, tapering to point```
-Length 17-22 $\quad \mathrm{L}_{\mathrm{b}}{ }^{10-12} \quad \mathrm{~W}_{\mathrm{b}}{ }^{7-8}$
Papillae: none seen
Stomata: none seen
-Length Width
Long Cells: roughly parallel in rows, rect-squared-hex., rather deep-very deep u-shaped und. ($h=4.5-6, a=3$)
h 20-50 Width 18-25

Sorgastrum bipennatum

Abaxial Surface

Silica Bodies: 1-3 costal rows of dumbbells, distal ends rounded and mostly convexindented, central portions med.-very narrow, med.-rather long length
-arranged singly or in groups of 3 or 4, separated in rows by $1 \mathrm{s.c}$. or $1 \mathrm{s.c.}$, p.h., 1 s.c.
-Length 10-15 width 5-7
-also occasional cross-shaped or small irreg. dumbbells outside costal zones, none seen
Macro Hairs: none seen
-Length Width
Micro Hairs: very freq. intercostally, small rounded rect. bases, prox. cell tapered slightly inward-cyl, distal cell about same length, may bulge a bit at first, then tapering to point (often appears unicellular)
-Length $15 \quad \mathrm{~L}_{\mathrm{b}} \quad \mathrm{L}_{\mathrm{d}}$
Prickle Hairs: in costal rows, oval bases, fairly short barbs, elongated triang. tapering to point
-Length 12-16 $\quad L_{b} 9-10 \quad W_{b} 5-7$
-infrequent intercostal hooks, squared bases, very short pointed barbs-not seen
-Length $4 \quad L_{b} 3 \quad W_{6} 4$
Papillae: med. walled c-shaped papillae on each interstomatal l.c., usually narrower than l.c.
Stomata: single or double staggered intercostal rows, med. domed, slightly triang.
-Length 10-11 Width 7-10
Long Cells: interstomatal l.c.'s may be wider, usually same as stomata, roughly parallel in rows, elongated rect., med-rather deep ushaped und. ($h=3.5, a=2$)
-Length 30-55 Width 6-7
Adaxial Surface
Silica Bodies: same as abax in rows, rows wider spaced, fewer p.h. in rows
-also same for intercostal s.b.
-Length Width
Macro Hairs: none seen, l seen, fairly short, tapering rapidly to point
-Length 70 width
Micro Hairs: like abax
-Length I I I
Prickle Hairs: same as abax, but less freq. in rows
Length $\quad L_{b} \quad W_{b}$
Papillae: same as abax, none seen
Stomata: same as abax, but rows wider spaced -Length Width
Long Cells: roughly parallel in rows, rect.-squared-slightly inflated, u-shaped med. und. ($\mathrm{h}=3.5, a=1.5-2$)
-Length 20-50 Width 9-20

Vetiveria nigritana

Abaxial Surface

Silica Bodies: cross-shaped s.b. scattered through both costal (1-4 rows) and intercostal zones, each paired with a linear s.c. , may be almost very short dumbbells
-Length 5 Width 5-6
Macro Hairs: none seen
-Length Width
Micro Hairs: none seen
-Length ${ }_{\text {Prickle }}^{L_{b}}{ }_{\mathrm{L}}^{\mathrm{L}}{ }_{\mathrm{d}}$

Stomata: double intercostal (sometimes 3 with 2 staggered) rows, rather widely spaced, lowdomed, slightly triang.
-Length 10-12 Width 5-6
Long Cells: parallel in rows-rect., deep ushaped und. ($h=3-3.5, a=3$), l.c. in stomatal rows wider than stomata, und. smaller
-Length 20-35 Width 6-7

Adaxial Surface
Silica Bodies: same as abax, but sparser
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: none seen, barrel shaped (wider towards distal ends) prox. cells seen on some specimens in intercostal zones, sparse
-Length 7-10 $\quad L_{b} \quad L_{d}$

Prickle Hairs: none seen, very freq. intercostal hooks, basal structure diff. to see (rounded rect.) barbs "fat" rounded triang., tapering to rounded points
Length $10-15 \quad L_{b} \quad W_{b}$
Stomata: like abax., but sparser
-Length 12-16 Width 7-8
Long Cells: parallel in rows, rect., med. ushaped und. ($h=4, a=3-3.5$)
-Length 25-80 width 8-10
Family: Aristadeae
Aristida adscensionis
Abaxial Surface
Silica Bodies: 1-2 costal rows of dumbbells, distal ends rounded and convex, central portions very long and very narrow
-Length 10-15 Width 3-4
-some rows spaced by rect. s.c., quite narrow, others also with p.h.
Macro Hairs: none seen
-Length Width
Micro Hairs: quite freq. in intercostal zones, bases small oval, prox. cell long cyl., distal cells all shriveled
-Length $L_{\text {b }} 9-12$
Prickle Hairs: freq. in some costal rows, bases elongated rounded rect., barbs fairly short, triang., tapering to points
$\text { -Length 13-20 } \mathrm{L}_{\mathrm{b}} 9-14 \quad \mathrm{~W}_{\mathrm{b}} 5-6$
Papillae: none seen
Stomata: single intercostal rows of mostly low(-med.) domed rounded
-Length 10 Width 6-7
Long Cells: elongated rect., deep u- und. (h= 3-4, $a=2$)
-Length 35-45 Width 5
sa

Adaxial Surface
Silica Bodies: like abax
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: intercostal characters very diff.
to see
-Length $\quad L_{\text {Lrickle }} \quad \mathrm{L}_{\mathrm{d}}$
$\begin{array}{ll}\text {-Length } & L_{b} \quad W_{b} \\ \text { Papillae: } & \end{array}$
Stomata:
-Length Width
Long Cells: Width

Aristida kerstingii
Abaxial Surface
Silica Bodies: 1-4 costal rows in wide bands of dumbbells, distal ends mostly round and convex, , central portions long-very long and narrow, occasionally nodular, arranged fairly evenly spaced in rows, separated by 1 s.c.narrow, rect.
-Length 9-13 Width 4-5
Macro Hairs: none seen
-Length Width

Micro Hairs: freq. in I.z. between stomatal
and costal rows, base small and rounded,
prox. cell cyl., tapering slightly outwards
or cigar-shaped, distal cell ${ }^{1} 1.5 x$, tapering
to point distally
-Length $23 \quad L_{b} 9 \quad L_{d} 14$
Prickle Hairs: none seen
-Length
Papillae: none seen b
Stomata: 1-2 staggered intercostal rows,
rather low-domed, rounded- \pm triang.,
separated by long narrow l.c.'s
-Length 8-10 Width 6-7
Long Cells: roughly parallel in rows,
elongated rect., deep u - und. ($h=3, a=2$)
-Length 25-65 Width 4-5
Adaxial Surface
Silica Bodies: bands of up to 5+ rows of dumbells, same as abax except some separated
by 1 s.c., 1 p.h., 1 s.c.
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: same as abax
-Length 23-26 $L_{b} 9-11 \quad L_{d} 15$
Prickle Hairs: in costal rows, very variable in size, often alternate with s.b., long oval
bases, strong triang. barbs, tapering to points, barbs on edges of costal bands at right angles to vein
-Length 11-28 L_{b} 9-19 $\quad W_{b} 5-8$
Papillae: none seen
Stomata: like abax., but 2-4 (staggered in pairs) intercostal rows, smaller
-Length 7-8 Width 4-5
Long Cells: parallel in rows, rect., slight ushaped und., like abax
-Length Width

Family: Arundinelleae

Loudetia flavida

Abaxial Surface
Silica Bodies: 1-6 rows of dumbbells, distal ends rounded and convex, central portions long and narrow
-separated in rows by s.c. (~same width as s.b.), p.h.
-Length 9-15 Width 5-6
Macro Hairs: occasional intercostally, basal cells irreg. in concentric circles
-Length 495 Width
Micro Hairs: fairly freq. intercostally, bases small oval, prox. cell cyl., distal cell ~ same length-1 $1 / 2 \times$ length, narrow and tapering to long points
-Length 20-25 L_{b} 7-12 $L_{d} 13$
Prickle Hairs: freq. in costal rows, bases elongated rounded rect., barbs strong triang., tapering to long sharp points
-Length 30-40 Lb 12-20 W_{b} 5-7
-fairly freq. intercostal hooks, bases irreg. rounded, short pointed barbs
-Length 8-12 $\quad L_{b} \quad W_{b}$
Papillae: bulges in interstomatal l.c. seenpapillae?
Stomata: 1-2 intercostal rows of med. domed rounded

Family: Arundinelleae

distal ends slightly concave-slightly convex, central portion narrow, med.-long length
-separated in rows by $1 \mathrm{s.c}$. or $1 \mathrm{s.c.}$, p.h., 1 s.c.
-Length 9-12 Width 4-5
Macro Hairs: rather freq. intercostally, like abax-none seen
-Length 450 Width
Micro Hairs: same as abax
-Length $L_{b} \quad I_{d}$
Prickle Hairs: in costal rows, oval bases, short barbs, same as abax costally and intercostally
-Length $\quad L_{b} \quad W_{b}$
Stomata: same as abax, low domed
-Length 12-14 Width 7-8
Long Cells: irreg.-inflated rect., very slight
waviness of cell walls-low u-und.
-Length 20-45 Width 9-10

Loudetia togoensis

Silica Bodies: 1-4 costal rows of dumbbells, distal ends rounded and convex, central portion very narrow, med.-long length -separated in rows by 1 s.c.-irreg., narrower than s.b. -Length 8-12 Width 4 Macro Hairs: none seen -Length Width Micro Hairs: freq. in intercostal zones, small rounded bases, prox. cell tapering outwards, distal cell about same length, tapering to rather blunt point -Length $22 \quad \mathrm{I}_{\mathrm{b}}$ 10-11 $\quad \mathrm{I}_{\mathrm{d}}{ }^{11-12}$ Prickle Hairs: none seen, fairly freq. intercostal hooks-small, triang. pointed, little basal structure seen, paired with s.c. -Length 5-6 $\quad L_{b} \quad W_{b}$ Papillae: none seen Stomata: 1-2 (sometimes staggered) intercostal rows, low-med. domed, fairly triang. -Length 13-14 Width 7-9 Long Cells: parallel in rows, elongated rect., med. u-shaped und. ($h=3.5, a=2$)	

Adaxial Surface

Silica Bodies: single (occasionally double) costal rows of dumbbells, some irreg. shaped, distal ends , slightly concave-slightly convex, central portion med. length, very narrow
-separated in rows by $1 \mathrm{s.c}$. or $1 \mathrm{s.c}, 1$ p.h., 1 s.c.
-Length 6-9 Width 5-6
Macro Hairs: none seen, occasional very thick hairs in interstomatal zones, tapering to points
-Length 200 Width
Micro Hairs: same as abax but less freq.
-Length $L_{b} \quad L$
Prickle Hairs: in costal rows, long oval bases, short-med. barbs, elongated triang., tapering to point
-Length 13-17 L_{b} 7-11 W_{b} 5-6
-freq. intercostal hooks, rect. bases, short triang. barbs tapering to points, each paired

Family: Arundinelleae

Adaxial Surface
Silica Bodies: like abax
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: freq. like abax
-Length $L_{b} 11-15 \quad L_{d}$
Prickle Hairs: fairly freq. in costal rows,
bases rounded elongated rect., barbs fairly
short triang., tapering to points
-Length 15-19 $\quad \mathrm{L}_{\mathrm{b}} 10-13 \quad \mathrm{~W}_{\mathrm{b}}{ }^{5-6}$
Papillae: none seen
Stomata: like abax
-Length Width
Long Cells: like abax (?)
-Length Width
Family: Chlorideae

Chloris pilosa

Abaxial Surface

Silica Bodies: 1-3 costal rows of saddleshaped s.b., separated in rows by $1 \mathrm{s.c}$. often wider than s.b. or 1 s.c., 1 p.h., 1 s.c. in groups of 2-4-8
-Length 4 Width 5
Macro Hairs: occasional intercostally, base diff. to see on slide, single-celled hair
tapering to point-none seen
-Length 335 Width
Micro Hairs: none seen
-Length $\mathrm{I}_{b} \quad \mathrm{~L}_{\mathrm{d}}$
Prickle Hairs: in costal rows, roundly oval bases with short pointed barbs-larger than s.b., fairly short strong triang. barbs

Family: Chlorideae

Family: Danthonieae
-Length Width
Micro Hairs: quite freq. intercostally but
little structure seen, prox. cell cyl.
-Length 5-9 $L_{b} \quad L_{d}$
Prickle Hairs: none seen
-Length $\quad L_{b} \quad W_{b}$
Papillae: none seen
Stomata: 2-4 (staggered) intercostal rows,
rounded low-med. domed, often irreg.
-Length 15-17 Width 9-10
Long Cells: roughly parallel in rows, inflated
rect., very few apparent und., l.c. in
stomatal rows narrower than stomata
-Length Width

Adaxial Surface

Silica Bodies: same as abax except some separated in rows by p.h.
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: like abax
-Length $\quad I_{b} \quad L_{d}$ bases with hooked short barbs at right angles to row , quite large
-Length 32-35 L_{b} 23-25 $\quad W_{b} \sim 7-8$
-also occasional intercostal hooks, square bases, barbs pointed

- Length 25-35 $\quad L_{b} \quad 15-25 \quad W_{b} \quad 10-15$
Papillae: none seen

Papillae: none seen
Stomata: same as abax
-Length Width
Long Cells: roughly parallel in rows, tapered elongated inflated rect., little und.
apparent, interstomatal 1.c.'s narrower than stomata, same as abax
-Length Width
Family: Eragrostideae

Dactyloctenium aegyptium

Abaxial Surface

Silica Bodies: 1-2-3 costal rows of saddle shaped s.b. rather evenly spaced in rows separated by rect. 1 s.c., same width as s.b.
-Length 4-5 Width 5
Macro Hairs: none seen
-Length Width
Micro Hairs: apparently-none seen (?-diff. to see) fairly freq. intercostally, rather large (rel.) round bases, prox. cell tapering slightly outwards to cyl.
-Length $\quad \mathrm{L}_{\mathrm{b}}$ 25-30 L_{d}
Prickle Hairs: probably (? ${ }^{\text {d }}$ diff. to see) fairly freq. intercostal hooks, oval bases, small triang. barbs tapering to points, none seen
-Length 6-7 $\quad I_{b} 3-4 \quad W_{b} 5$
Papillae: very freq. med-walled Globulous papillae, often wider than cell, on many l.c.
Stomata: 1-4 intercostal rows (some staggered) of rounded low(-med.) domed stomata
-Length 10-13 Width 7-9
Long Cells: (diff. to see) roughly rect.inflated rect., very slight und.
-Length 15-25 Width 6-7

Silica Bodies: like abax -Length Width
Macro Hairs: none seen -Length Width
Micro Hairs: like abax
-Length ${ }^{\text {L }}$ Lickle Hairs: like abax
-Length $L_{b} \quad W_{b}$
papillae:
Stomata: none seen
-Length Width
Long Cells: like abax
-Length Width

Eleusine indica

Abaxial Surface
Silica Bodies: bands of 1-3 (-4) costal rows of saddle-shaped-cresent-irreg. s.b., rather widely separated in rows by long s.c.
-Length 2-4 Width 4-5
Macro Hairs: none seen
-Length Width
Micro Hairs: none seen
-Length $\quad L_{b} \quad I_{d}$
Prickle Hairs: (possibly m.h.) fairly freq. in intercostal zones between stomatal rows, rounded bases, triang. barbs (tapering to blunt point, diff. to see
-Length 7-8 $\quad L_{b}{ }^{3-4} \quad \mathrm{~W}_{b} 4$
Papillae: none seen
Stomata: double intercostal rows of med.-high* domed often triang. stomata
-Length 11-13 Width 7-10
Long Cells: parallel in rows, rect., deep-med.-shallow u-shaped und. ($h=3.5, a=1.5-3$)
-Length 15-55 Width 8-10

Adaxial Surface

Silica Bodies: like abax
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: like abax
-Length prickle Hairs: fairly freq. intercostal hooks, bases oval-rounded rect., barbs fairly short triang. tapering to points
-Length 13-15 $\quad L_{b} 9-10 \quad W_{b} 6-8$
Papillae: none seen
Stomata: med domed rounded
-Length 10-13 Width 8
Long Cells: elongated rect, shallow u-und.
-Length Width

Eragrostis aspera

Abaxial Surface
Silica Bodies: 1-3 costal rows of saddleshaped s.b., widely spaced in rows with 1 long s.c., or $1 \mathrm{s.c.} 1 \mathrm{p} . ,\mathrm{h} ., 1 \mathrm{s.c.}$, each paired with s.c., sometimes not obvious
-Length 3-5 Width 4
-occasionally some s.b. deposited between intercostal l.c.'s-quite freq.
Macro Hairs: none seen
-Length Width
Micro Hairs: quite freq. in intercostal zones between stomatal rows, small rounded bases, pro. cell tapering outwards, distal cell
slightly-2/3 length shorter, wider with very blunt end-club-shaped
-Length 17-18-20 $\mathrm{L}_{\mathrm{b}} 9-10-12 \quad \mathrm{~L}_{\mathrm{d}} 8$
Prickle Hairs: in costal rows, ${ }^{\text {s }}$ dightly
tapered oval bases, short pointed barbs
-Length 14-20 L_{b} 9-15 $\quad W_{b} 6-8$
Papillae: none seen
Stomata: 2-3 staggered intercostal rows, lowmed. domed-rounded, separated by fairly long l.c.'s
-Length 10 Width 5-7
Long Cells: parallel in rows, elongated rect., med. u-shaped und. ($h=3, a=2$)
-Length 30-45 Width 7-8
-interstomatal l.c. ~same width as stomata

Adaxial Surface

Silica Bodies: may be very widely spaced bands of 1-4 rows of saddle-shaped s.b., singly or in smaller groups of many $(10+)$ separated in rows by $1 \mathrm{~s} . \mathrm{c}$. , or $1 \mathrm{~s} . \mathrm{c}, 1 \mathrm{p} . \mathrm{h} ., 1 \mathrm{~s} . \mathrm{c} .$, same size as abax
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: none seen
-Length $\quad L_{b} \quad L_{d}$ costal rows
-Length 13-22 $\quad L_{b}{ }^{\text {P-15 }} \quad \mathrm{W}_{\mathrm{b}}$ 6-9
Papillae: none seen
Stomata: 2-3 (staggered) intercostal rows of low-med. domed sometimes triang. stomata, same size as abax
-Length Width
Long Cells: parallel in rows, elongated rect., med. u-shaped und., same size as abax
-Length Width

Eragrostis atrovirens

Abaxial Surface ?
Silica Bodies: bands of $1-3$ rows of saddleshaped s.b., widely spaced in rows separated in rows by long s.c., or s.c., p.h., s.c.,
-Length 4-6 Width 4-5
-occasional small dumbbells
Macro Hairs: occasional intercostally,
elevated multi-celled bases, single celled hairs-none seen, present on regrowth
-Length Width
Micro Hairs: none seen, like abax, but infreq.-freq. on regrowth
-Length $L_{b} \quad L_{d}$
Prickle Hairs: in costal rows, , oval bases, short barbs-elongated triang. tapering to point, none seen-present on regrowth
-Length 16-19 $\quad L_{b}$ 10-14 $\quad W_{b} 5-8$
Papillae: none seen
Stomata: $\underline{2}$ intercostal rows, low-domed,rounded
-Length 10-11 Width 7-8
Long Cells: parallel in rows, elongated rect. rather small u-shaped und. ($h=2, a=1-1.5$)
-Length 25-35 Width 6-7
Adaxial Surface
Silica Bodies: scattered costal and intercostal cresent-shaped s.b., each paired with s.c., in regrowth some almost saddleshaped
-Length 2-4 Width 4-5
-also some cube-saddle shaped costal bodies Macro Hairs: none seen
-Length Width
Micro Hairs: freq. intercostally in rows adjacent to stomatal rows, round bases, prox. cell tapering outwards with prox. bulge-cyl., distal cell 1.5 x , tapering to rather blunt point, regrowth prox. cell tapering outwards, dist. cell -same length, tapering to point
-Length 23-24 $L_{b} 9-10 \quad L_{d} 14$
Prickle Hairs: none seen
-Length $L_{b} \quad W_{b}$
Papillae: none seen
Stomata: single? intercostal rows of low-med. domed rounded stomata
-Length 10-12 Width 8-10
Long Cells: parallel in rows, rect., med. u-v shaped und. ($h=2.5, a=1.5-2$)
-Length 30-60 Width 7-8

Eraqrostis ciliaris

Abaxial Surface

Silica Bodies: scattered costal 1-3 rows (and intercostal?) saddle-shaped-linear-irreg.
s.b., each paired with a linear s.c.-
sometimes not apparent, widely spaced in rows
-Length 3-4 Width 4-5
Macro Hairs: none seen
-Length Width
Micro Hairs: freq. intercostally, small oval bases, prox. cell tapering outwards, distal cells 1/3-1/2 length blunt (club-shaped, blunt points)
$\begin{array}{lll}\text {-Length } & L_{b} \text { 12-14-17 } & L_{d} 6-8 \\ \text { Prickle Hairs: none seen }\end{array}$
Prickle Hairs: none seen
-Length $\quad L_{b} \quad W_{b}$
Papillae: none seen
Stomata: in single (?) intercostal rows, rounded, med-low domed, widely spaced in rows
-Length 9-11 Width 5
Long Cells: parallel in rows, elongated rect., fairly shallow u-shaped und. (h=2-2.5, $a=1$)
-Length 30-55 Width 4-5

Adaxial Surface

Silica Bodies: freq.-occasional in 1-3 costal rows, small dumbbells, distal ends squared and concave, central portions short and mad width, rather widely spaced in rows in small groups or between p.h.'s
-Length 6-8 Width 3-4
Macro Hairs: none seen
-Length Width
Micro Hairs: like abax, fairly freq. in costal(3) rows along with p.h.'s, prox. cell tapering outwards with distal bulge, small oval bases
-Length $\quad L_{b}$ 14-18 $\quad L_{d}$
Prickle Hairs: fairly freq. in costal rows, bases , heavy short triang. barbs tapering to points or squared, barbs short pointed, also in intercostal zones
-Length 12-16 $\quad L_{b} 9-13 \quad W_{b} 5-6$
Papillae: none seen
Stomata: in double intercostal rows, like abax -Length Width
Long Cells: like abax
-Length Width

Eraqrostis pilosa

Abaxial Surface

Silica Bodies: bands of 2-9 costal rows, saddle-shaped-linear irreg., each paired with a rect. s.c., widely spaced in rows, short dumbbells, distal ends concave, central portions med. width, short length
-Length 2-5 Width 4-5
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally, small oval bases, prox. cell tapering outwards slightly, distal cell -1 1/3-1 1/2 x, rather cyl. with blunt end
$\begin{array}{ll}\text {-Length 17-18 } \\ \text { Prickle Hairs: none seen } & I_{d} 10\end{array}$
-Length ${ }_{\text {Papillae: }}^{L_{b}}{ }_{b}$
Stomata: 1-2 rows (intercostal) of med-low domed rounded
-Length 9-11 Width 5-7
Long Cells: parallel in rows, elongated rect., med. u-shaped und. ($h=2.5, a=2$),
interstomatal l.c. sometimes slightly
narrower than stomata
-Length 25-50 Width 5-7
Adaxial Surface
Silica Bodies: scattered (1-2 rows ?) costal small dumbells, distal ends irreg., indented, central portions med. width and length
-Length 4-6 Width 3-4
Macro Hairs: none seen
-Length Width
Micro Hairs: freq. in p.h. (costal?) rows, small rounded bases, prox. cell cyl., distal cell possibly short, dome shape
-Length $9 \quad I_{b} 7-8 \quad L_{d}$
Prickle Hairs: very freq., scattered costally (more freq.) and intercostally, squared irreg.-oval bases, thick triang. barbs (short), tapering to point
-Length 8-15 $\quad L_{b} 5-10 \quad W_{b}{ }^{4-6}$
Papillae: none seen
Stomata: 2(?)-3 intercostal rows, low-domed
-Length 7-8 Width 4-5
Long Cells: (diff. to see) elongated rect., small u-shaped und. ($\mathrm{h}=2, \mathrm{a}=1$)
-Length 15-35 Width 3-4

Eragrostis spp.

Abaxial Surface
Silica Bodies: occasional in 1-2 costal rows between p.h.'s, small dumbells or crossshaped, distal ends concave squared, central portions thick and short
-Length 6-9 Width 4-5
Macro Hairs: none seen
-Length Width
Micro Hairs: none seen, infreq. in intercostal zones, sinqle-celled small oval bases, blunt ends
-Length 10-20 $L_{b} \quad L_{d}$
Prickle Hairs: freq. in costal rows, oval bases sometimes tapered, short barbs, heavy triang. tapering to point-very short pointed
-Length 19-22 $L_{b}{ }^{12-16} \quad W_{b}$ 6-10
Stomata: rows of 2-3 interstomatal, low-(med.) domed
-Length 9-11 Width 6-9
Long Cells: parallel in rows, roughly rect., inflated rect., small-med. u-shaped und. ($h=3, a=1.5$), interstomatal l.c. often wider than stomata
-Length 30-60 Width 5-8

Adaxial Surface

Silica Bodies: costal dumbells-cross-saddle shaped, 1-2 rows, occasionally paired with p.h.'s, fairly infreq., size like abax, distal ends slightly concave-slightly convex, central portions med. width, rather short
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally, small oval bases, prox. cell tapering outwards, distal cell about same length, club-shaped
-Length 12-15 L_{H}
Prickle Hairs: fairly freq. costally, same as abax., occasional intercostal hooks, ovalrect. bases, triang. barbs tapering to points
-Length 11-15 $L_{b}{ }^{7-11} \quad W_{b} 5$
Papillae: none seen
Stomata: 2-4 intercostal rows, like abax
-Length Width
Long Cells: like abax
-Length Width

Eragrostis tremula

Abaxial Surface
Silica Bodies: bands of 2-10 rows, costal, crescent-saddle-cross shaped with pointed corners-irreg. linear, spaced fairly widely in rows, each paired with a s.c., appears to be $\mathbf{4}$ minor costal zones between each major zone, fewer s.b. in minor zones
-Length 2-3 Width 3-4
Macro Hairs: none seen
-Length Width
Micro Hairs: none seen
-Length ${ }_{\text {Prickle }}^{\text {L }}$ Hairs b_{d}
$\begin{array}{ll}\text { Prickle Hairs: none seen } \\ \text {-Length } & L_{b} \quad W_{b}\end{array}$
Papillae: none seen
Stomata: 1-2 (sometimes staggered) intercostal rows, low-med. domed, sometimes slightly triang.
-Length 9-11 Width 5-8
Long Cells: parallel in rows, rect., med.-deep u-shaped und. ($h=2.5, a=3$)
-Length 10-45 Width 6-8

Adaxial Surface

Silica Bodies: widely spaced saddle shaped, squared or rect. s.b. in costal rows (1-4 rows)
-Length 3 Width 3
Macro Hairs: occasional intercostally, multicelled elevated bases, single cell long hairs, none seen
-Length 460++ Width
Micro Hairs: occasional in costal (3) rows, small round bases, prox. cell tapering

Family: Eragrostideae

Eragrositis turgida

Abaxial Surface

Silica Bodies: scattered through costal bands (up to 8) and intercostal zones, crescont-saddle-linear-irreg., in costal rows, each paired with short cell
-Length 2-6 Width 4-6
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally adjacent to costal rows, club-shaped, prox. cell tapering outward
-Length $16 \quad L_{b} 8-9 \quad L_{d} 7-8$
-Length $L_{b} \quad W_{b}$
Papillae: none seen
Stomata: 1-2 intercostal rows of low-med. domed sometimes slightly triang. stomata
-Length 10-12 Width 7-8
Long Cells: parallel in rows, rect., med. ushaped und. (h=3-3.5, $a=2-2.5$)
-Length 20-45 Width 8-9

Adaxial Surface

Silica Bodies: 1-2 costal rows of irreg. dumbells (distal ends indented, central portion med. width and short), crosses-some cube-saddle shaped, arranged in rows, separated by s.c.'s, occasional p.h. and 2 s.c.
-Length 4-8 Width 3-5
Macro Haizs: present intercostally, multicelled eisvated bases
-Length 515 Width
Micro Hairs: none seen
-Length $L_{b} L_{d}$
Prickle Hazrs: freq. in costal rows, round bases, s..crt small triang. barbs, tapering to point
-Length $9-\therefore \quad L_{b} 6-8 \quad W_{b} 6-8$
Papillae: :.one seen
Stomata: $:=$ double intercostal rows, rows fairly wizely spaced, low-domed slightly triang.
-Length 8-10 Width 6-7
Long Cells: parallel in rows, elongated rect., shallow u-shaped und.
-Length Width

Eragrostis welwitschii

Abaxial Surface
Silica Bodies: small dumbbells, distal ends squared, indented, central portions med length and width, scattered crescent-shaped-irreg.-1inear s.b. in costal zones, each paired with linear s.c. (up to 7 rows in
costal bands, also occasional intercostally) also irreg. costal saddle-shaped, double 䉽料 dumbells
-Length 2-7 Width 3-6

Macro Hairs: none seen
-Length Width

Micro Hairs: fairly freq. intercostally, clubshaped, small oval bases, prox. cell tapering slightly outward, distal cell club shaped-
blunt-pointed and slightly longer
-Length $18 \quad L_{b} 8 \quad L_{d} 10$
Prickle Hairs: none seen, occasional in costal
rows, bases , barbs fairly short and pointed
-Length 18-20 L_{b} 10-15 $W_{b} 6-7$
Papillae: none seen
Stomata: 1-2 intercostal rows of low-domed slightly triang.-rounded stomata
-Length 9-11 Width 6-7
Long cells: parallel in rows, elongated rect., shallow-med. u-shaped und. ($h=2, a=2$)
-Length 20-50 Width 6
Adaxial Surface
Silica Bodies: occesional costal. dumbbells or irreg. shaped s.b., distal ends mostly concave, central portions med. length and width
-Length 6-8 Width 3-4
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally, small
size, small oval bases, prox. cell cyl.-
tapering slightly outwards, distal cells
slightly shorter, \pm same length, blunt ends
-Length Prickle $^{L_{b}} \stackrel{L_{d}}{ }$. in costal zones,
tapered oval bases, barbs triang. short, often at right angles to veins, tapering to points
-Length 10-15 $L_{b} 8-10 \quad W_{b} 4-5$
-freq. intercostal hooks, -bmaller
Papillae: none seen
Stomata: 1-2 rows of med.-low domed slightly triang.
-Length 8-10 Width 6-8
Long Cells: ? elongated rect., shallow u-und.
-Length Width

Leptochloa caerulescens

Abaxial Surface

Silica Bodies: in 1-3 costal rows, crossshaped, short dumbbells with indented squared distal ends short, med. width central portions, fairly widely separated in rows with many prickle hairs
-Length 6 Width 4
Macro Hairs: none seen
-Length Width
Micro Hairs: freq. intercostally, relatively large round bases, tapering inward to cyl. prox. cell, distal cell $\sim 1 / 2$ length, blunt ended
-Length $14 \quad L_{b} 9 \quad L_{d} 5$
Prickle Hairs: very freq. in costal rows, rounded to oval bases, short triang. barbs, tapering to points
-Length 8-14 L_{b} 7-8 $\quad \mathrm{W}_{\mathrm{b}}{ }^{5-6}$
Papillae: 1-2(-3) small thick walled Globulous
papillae on interstomatal l.c.'s (occasional

Family: Eragrostideae

Leersia hexandra

Abaxial Surface

Silica Bodies: single costal rows of crosses, some almost hour-glass shaped, spaced in rows by short s.c., - same width as s.b.

-Length 4-6 Width 5-7

Macro Hairs: none seen
-Length Width
Micro Hairs: present intercostally, oval bases, prox. cell cyl., distal cell first widening, then tapering to point., ~1 $1 / 2 \mathrm{x}$ length
-Length 13-14 $L_{b}{ }^{5-6} \quad L_{d} 8$
Prickle Hairs: freq. in costal rows, large oval bases, short pointed barbs. (infreq. on regrowth)
-Length 25-26 L_{b} 20-21 $W_{b} 9-10$
-fairly freq. intercostal hooks, irreg.
squared bases, fairly short pointed barbs
Papillae: rather thin-walled Globulous papillae on most interstomatal l.c. (less freq. on regrowth)
Stomata: single intercostal rows of rounded med.-domed stomata, often irreg.
-Length 8-11 Width 6-7
Long Cells: elong. rect., irreg. med.-shallow u-und. ($h=3, a=1-2$)
-Length 20-45 Width 5-6
-interstomatal l.c. -same width as stomata
Adaxial Surface
Silica Bodies: 1-2 rows, like abax
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: like abax
-Length $\quad L_{b} \quad L_{d}$

Oryza barthii (reqrowth)

	S
Silica Bodies: single costal rows of hourglass shaped s.b.-some ~ crosses which may look unconnected, no obvious s.c. between s.b.	
	-Length 3-4 Width 5-7
Macro Hairs: none seen	
	-Length Width
```Micro Hairs: fairly freq. in intercostal zones, small rect. bases, prox. cell cyl., distal cell widening first then tapering to blunt point, - same or \pm longer length```	
-Length $12-15 \quad L_{b}{ }^{6-7} L_{d} 6-9$Prickle Hairs: none seen	
```-Length formb some l.c.```	
Stomata: single intercostal rows of med. domed often irreg., \pm triang. stomata	
	-Length 10-12 Width 7-9
```Long Cells: elong. rect., shallow u-und (h=4, a=1-2)```	
-Length 25-40? Width 5-7   -interstomatal l.c. same length*- $\pm$ wider than stomata	
	Adaxial Surface
Silica Bodies: like abax	
-Length Width	
Macro Hairs: none seen	
-Length Width	
Micro Hairs: like abax	
-Length $L_{b} \quad L_{d}$ Prickle Hairs: none seen	
$\begin{aligned} & \text {-Length } \\ & \text { Papillae: like } \mathrm{L}_{\mathrm{b}} \\ & \mathrm{~W}_{\mathrm{b}} \end{aligned}$	
Stomata: like abax	
-Length Width	
Long Cells: like abax	
-Length Width	

## Oryza longistaminata

Abaxial Surface
Silica Bodies: in double adjacent rows in
costal zones ,hourglass-squared (connected)
shaped, rather closely and evenly spaced in
rows, appears to be alternate major and minor
costal rows, only major with s.b.'s
-Length 3 Width 2
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. adjacent to costal
rows, small oval bases, prox. cell rather
cigar shaped, distal cell about same length,
first tapering outwards, then inwards to
point
-Length $\quad$ Ly 15 (may be distorted) L
Prickle Hairs: in major costal rows, very
large round-oval bases, short pointed barbs

Family: Oryzeae


Family: Paniceae

## Acrocerus amplectens

## Abaxial Surface

Silica Bodies: 1-2 costal rows of irreg. dumbells, distal ends mostly indented, central portions short-med. length, med. width, closely spaced in rows, fairly evenly by short s.c. ~ same width as s.b. -Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: freq. intercostally, especially between stomatal rows, small oval bases, prox. cell tapering slightly outwards-cyl., distal cell slightly longer, tapering to blunt point
$\begin{array}{lll}\text {-Length } 19 \quad L_{b} & 8 \quad L_{d} 11 \\ \text { Prickle Hairs: none seen } \\ \text {-Length } & L_{b} \quad W_{b}\end{array}$ Papillae: none seen
Stomata: 2(-4 staggered) intercostal rows, low domed, triang.
-Length 14-17 Width 8-10
Long cells: roughly parallel in rows, rect., irreg. u-shaped und. ( $h=4, a=2$ )
-Length 20-45 Width 6
Adaxial Surface
Silica Bodies: same as abax
-Length Width
Macro Hairs: (?) arising intercostally, multicelled elevated bases, rather short thick hairs tapering to points
-Length 85 Width



## Brachiaria distichophylla

Silica Bodies: single costal rows dumbbells, distal ends indented, very narrownarrow short central portions, occasionally nodular. $\pm$ evenly spaced in rows by s.c. slightly longer than s.b.
-Length 6-10 Width 4-5
-scattered infreq. cross-shaped s.b. in intercostal zones, none seen
Macro Hairs: none seen-freq. intercostally, bases surrounded by few irreg. rounded cells
-Length 60-120 Width
Micro Hairs: freq. intercostally, small oval bases, prox. cell cyl.-slightly cigar-shaped or tapering outward, distal cells not seen (possibly tapering outward, distal cells not seen (possibly tapering to rather blunt point


Family: Paniceae


## Brachiaria lata

Abaxial Surface
Silica Bodies: single costal rows of mostly nodular (some dumbbells, esp. on regrowth, few single nodules) s.b., distal ends slightly indented-slightly convex and squared, fairly evenly spaced in rows, separated by s.c. $\pm$ same length
-Length 9-14 Width 4
-infreq. cross-shaped intercostal s.b.- none seen
Macro Hairs: present intercostally, elevated multi-celled bases, no complete hairs seen absent on regrowth
-Length - 100 Width
Micro Hairs: freq. intercostally, small round bases, prox. cell tapering outwards slightly, dist. cell ~ same length, tapering to blunt point-very wide on regrowth
-Length $L_{b} 9-12 \quad L_{d}$
Prickle Hairs: fairly freq. intercostal hooks, rect. bases, short pointed barbs-absent on regrowth
-Length 8-11 $\quad \mathrm{I}_{\mathrm{b}}(2-) 5 \quad \mathrm{~W}_{\mathrm{b}} 4-5$
Papillae: none seen
Stomata: 2-4 intercostal rows, rather.
triangular low-med. domed
-Length 11-14 Width 8-10
Long Cells: parallel in rows, rect., fairly wide med. irreg, $u$-shaped und. ( $h=2-3, a=2$ )
-Length 25-40 Width 7

Adaxial Surface
Silica Bodies: single costal rows of mostly nodular s.b. some dumbbells, distal ends mostly squared and indented-(some convex), unevenly spaced in small groups (adjacent within groups)
-Length 6-12 Width 4-5
-scattered small dumbbells, cross-shaped and irreg. s.b. in intercostal zones-none seen
Macro Hairs: present intercostally, elevated multi-celled bases, single celled, tapering to point, absent on regrowth
-Length 100 Width
Micro Hairs: like abax, infreq, on regrowth


## Diqitaria lecardii (argillacea)

Abaxial Surface
Silica Bodies: $1-4$ rows (costal) of irreg.
dumbells, distal ends mostly indented-
straight, central portions short-med., med.
width, arranged in rows in small groups of 1 -
6, spaced in groups by s.c.'s, p.h.'s between
groups
-Length 4-9 Width 4-5
-some nearly cross-shaped
Macro Hairs: fairly freq. intercostally,
multi-celled elevated bases, long single-
Silica Bodies: 1-4 rows (costal) of irreg.
dumbells, distal ends mostly indented-
straight, central portions short-med., med.
width, arranged in rows in small groups of 1-
6 , spaced in groups by s.c.'s, p.h.'s between
groups
-Length 4-9 Width 4-5
Macro Hairs: fairly freq. intercostally,
multi-celled elevated bases, long single-

## celled hairs

-Length 850 Width
Micro Hairs: freq. intercostally, small
rounded bases, prox, cell rather thin and
cyl., distal cell (diff. to see) about same length, tapering to rather blunt point
-Length $22 \quad \mathrm{~L}_{\mathrm{b}} 11 \quad \mathrm{~L}_{\mathrm{d}} 11$
Prickle Hairs: fairly freq. in costal rows-
very freq., squared oval bases, short triang.
pointed barbs, some at right angles to veins
-Length 12-19 $\mathrm{I}_{\mathrm{b}}{ }^{9-14} \quad \mathrm{~W}_{b}{ }^{3-6}$
-fairly freq. intercostal hooks, short triang.
pointed barbs
-Length 6-9 $\quad L_{b} 4-5 \quad W_{b} 4-5$
Papillae: none seen
Stomata: 2-3 (-4 staggered) intercostal rows, med.-low domed, occasionally slightly
triang.- peaked
-Length 13-15 Width 7-10
Long Cells: slightly inflated rect.-hex. in parallel rows, occasional irreg. u-shaped waves, but overall little und. (diff. to see)
-Length 20-45 Width 10-12

## Adaxial Surface

Silica Bodies: 1-2 costal rows of small dumbbells, distal ends indented-straight, central portions med. length, fairly narrowmed. width
-Length 4-5 Width 3-4
Macro Hairs: fairly freq. intercostally, multi-celled elevated bases, fairly short single celled hairs tapering to points
-Length 270 Width
Micro Hairs: fairly freq. intercostally, small rounded bases, prox. cell cyl., distal cell
usually slightly longer, tapering to point
-Length 18-22 $L_{b} 9-10 \quad L_{d} 9-12$
Prickle Hairs: like abax, but costal p.h.'s
less freq., and intercostal hooks more freq.
(with rect. bases)
-Length $\underset{\text { Papillae: none }}{L_{b}} \quad W_{b}$
Stomata: double intercostal rows, same as abax
-Length Width
Long Cells: parallel in rows, rect., med. u-
shaped und. ( $h=2, a=2-3$ )
-Length 35-55 Width 7-8

## Digitaria horizontalis

Abaxial Surface
Silica Bodies: single costal rows of dumbbells, distal ends slightly concaveslightly convex, central portion med. length and width, fairly evenly and widely spaced in row
-Length 5-7 Width 3-4
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally, small rounded bases, prox. cell cigar shaped, distal cell about same length, tapering to rather blunt point
-Length 20-22 $\mathrm{I}_{\mathrm{b}}$ 10-11 $\mathrm{I}_{\mathrm{d}}$ 10-11
Prickle Hairs: fairly freq, on margins of costal zones, barbs at right angles to veins, none seen
-Length 10-12 $\quad L_{b} 6-8 \quad W_{b} 7-8$
-fairly freq. intercostal hooks, squared
bases, triang. barbs tapering to points, absent
-Length $9-13 \quad L_{b}{ }^{4-5} \quad W_{b}{ }^{4-5}$
Papillae: none seen
Stomata: 2-3 intercostal rows of med.-low domed sometimes slightly triang. stomata
-Length 12-14 Width 7-10
Long Cells: roughly parallel in rows, irreg.-inflated-rect. shaped, slight u-shaped waves, interstomatal l.c. wider than stomata
-Length 15-45 width 6-11
Adaxial Surface
Silica Bodies: same as abax (more evenly
spaced in row?)
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: freq. intercostally, small rounded bases, prox. cell cigar-shaped (usually bulge towards distal end), distal cell 1/2-3/4 size, tapering to point
-Length $\quad L_{b} \quad L_{d}$
Prickle Hairs: costal hairs like abax, some with barbs parallel to veins and in costal rows-infreq.
-Length 14-23 $\mathrm{L}_{\mathrm{b}}$ 11-17 $\mathrm{W}_{\mathrm{b}} 10$
-freq. intercostal hooks, squared bases, triang. pointed barbs, none seen
-Length 12-16 $\quad L_{b} 5-9 \quad W_{b} 5$
Papillae: none seen
Stomata: like infreq.
-Length Width
Long Cells: in parallel rows, mostly slightly inflated rect.-hex., small u-shaped waves ( $h=3, a=1$ )
-Length 20-40 Width 10-12

## Echinochloa colona

## Abaxial Surface

Silica Bodies: single costal rows of nodular s.b., distal ends convex, mostly dumbbells, distal ends convex, central portion short and narrow
-Length 9-12 Width 3-4
-separated in rows by single s.c -evenly spaced
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally, small rounded bases, prox. cell usually tapering outwards ( or ), distal cell 2x-1 1/3x
length, tapering to rather blunt point (?)
-Length 16-22 $L_{b}$ 6-8 $\quad I_{d} 8-11$
Prickle Hairs: none seen
-Length $I_{b} \quad W_{b}$
Papillae: very conspicuous med.-walled globulous-c shaped papillae on many long cells
Stomata: 2-3(-4 staggered)-many intercostal rows, low(-med.) domed
-Length 13-17 width 9-10
Long Cells: in rough rows, mostly irreg.
inflated rect., irreg. u-shaped shallow waves
-Length Width

[^3]

Panicum pansum

Abaxial Surface
Silica Bodies: 1-3 costal rows of dumbellcross shaped (distal ends mostly indented, central portions fairly short, med.-narrow width), spaced in small groups in row, separated by s.c. or p.h.
-Length 6-9 Width 4-6
Macro Hairs: fairly freq. intercostally, elevated multi-celled bases, long singlecelled hairs
-Length 900 Width
Micro Hairs: fairly freq. intercostally, fairly small round bases, prox. cell cyl., distal cell about same length and tapering to rather blunt point
-Length 15-18 $\mathrm{L}_{\mathrm{b}} \quad \mathrm{I}_{\mathrm{d}}$
Prickle Hairs: freq. in costal rows, rounded rect. bases, short pointed barbs
-Length 10-25 $L_{b}$ 9-17 $W_{b} 7-11$
-freq. intercostal (many adjacent to costal rows) hooks, rect.-irreg. bases, short pointed barbs
-Length 8-10 $\quad L_{b}$ 5-7 $\quad W_{b}{ }^{7-8}$
Papillae: none seen
Stomata: double intercostal rows of med.-low domed, rounded-ttriang. stomata
-Length 11-15 Width 7-10
long Cells: parallel in rows, rect., fairly deep-med. u-shaped und. ( $h=2-4, a=1-2$ )
-Length 30-65 Width 7-8

## Adaxial Surface

Silica Bodies: 1-2 costal rows of short dumbbells (distal ends indented, central portions short and narrow) or some crosses, arranged in rows separated by s.c.'s, fairly closely spaced but uneven, small dumbbells, distal ends convex, central portion short narrow, closely spaced in rows, same size as abax
-scattered intercostal linear s.b., esp.
adjacent to costal rows
-Length Width
Macro Hairs: freq. intercostally, multi-celled elevated bases, single celled hairs tapering to points
-Length 460 Width
Micro Hairs: same as abax
-Length $L_{b} L_{d}$
Prickle Hairs: same as abax-fewer costal p.h.'s-very few
-Length $\quad$ Lb $_{b} \quad \mathrm{~W}_{b}$
Stomata: double costal rows, low-domed rounded, same size as abax
-Length Width
Long Cells: parallel in rows, elong. rect., deep, fairly wide u- shaped und., same size as abax
-Length Width

## Panicum phragmitoides

Abaxial Surface
Silica Bodies: single costal rows of very short dumbells or squared s.b., distal ends mostly slightly convex, central portion very short, wide
-Length 2-5 Width 3-4


## Panicum subalbidum

## Abaxial Surface

Silica Bodies: single costal rows of dumbbells (few nodular-crosses), distal ends indentedslightly convex, central portions med. length, very narrow-narrow, arranged in rows fairly evenly spaced by $1 \mathrm{~s} . \mathrm{c}$.
-Length 7-10 Width 3-6
-scattered intercostal irreg. linear-crosses, not seen
-Length 1-2 Width 5-8
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally, round bases, prox. cell rather short and tapering outwards-slightly barrel-shaped, no distal cells seen


Papillae: none seen
Stomata: double intercostal rows, low-very low domed, rather triang.
-Length 14-17 Width 8-10
Long Cells: rect.-inflated rect. in rows, med.-shallow u-shaped undulations (wide waves) ( $h=5, a=2-3$ )
-Length 40-80 Width 8-10

## Adaxial Surface

Silica Bodies: single costal rows of dumbells, often irreg., mostly with indented of straight distal ends, med. length, narrow central portions, or nodular s.b., arranged same as abax, same size as abax, scattered irreg. crosses intercostally, none seen
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: like abax
 square-rect. bases, short pointed barbs
-Length 7-10 $\quad L_{b}$ 6-8 $\quad W_{b}{ }^{4-6}$
Papillae: none seen
Stomata: like abax
-Length Width
Long Cells: like abax
-Length . Width

## Panicum walense

Abaxial Surface
Silica Bodies: single costal rows of roughly dumbbell shaped s.b.-rect., distal ends convex-straight or indented, wide, med.
length-short central portion -very variable
shape, unevenly spaced in rows by s.c., p.h.
-Length 4-6(-7) Width 3-4(-5)
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally, rather large round bases, basal cell cyl., distal cells not seen
-Length $\quad L_{b} 7-10 \quad L_{d}$
Prickle Hairs: occasional in costal rows, oval
bases, short triang. barbs tapering to point ?
-Length $13 \quad L_{b} 10 \quad W_{b} 5$
Papillae: none see
Stomata: 2(-4) interstomatal rows, low-med.
domed, rounded
-Length 11-15 Width 7-10
Long Cells: parallel in rows, elongated rect., med. -u shaped und. ( $h=3-4, a=2$ )
-Length 30-75 Width 7
-interstomatal l.c.'s often narrower than stomata

Adaxial Surface
Silica Bodies: single costal rows of widely spaced short dumbbells, distal ends mostly straight-indented, central portions wide and very short (some almost cross-shaped)
-Length 4-5 Width 4-5
Macro Hairs: none seen
-Length Width
Micro Hairs: present intercostally, same as abax
-Length $\quad L_{b} \quad L_{d}$

Family: Paniceae

```
Prickle Hairs: fairly freq. in costal rows,
 oval bases , fairly short triang. barbs,
 tapering to point
-Length 11-13 L_ Lb 5-8 (Wb 5-6
Papillae: none seen
Stomata: 2-4 intercostal rows of med.-low
 domed stomata, rounded
-Length 9-11 Width 8-10
Long Cells: parallel in rows, rect. rather
 shallow u-shaped und.
-Length 25-40 Width 7-9
```


## Paspalum scrobiculatum

## Abaxial Surface

Silica Bodies: single-double costal rows of very irreg. and variable dumbbells (distal ends irreg,-convex rounded, central portions short and narrow-very narrow) or nodular s.b., arranged unevenly in row, separated by s.c., l.c.
-Length 7-13 Width 5-6
-occasional cross-shaped s.b. in intercostal zones
-Length and Width 5-6
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally, rather squared small bases, basal cell with prominent basal bulge, then narrowing somewhat, distal cell (?) small and much shorter with blunt end
-Length 13-15 $I_{b} 10 \quad L_{d} 3$
Prickle Hairs: fairly freq.-infreq.
intercostal hooks, bases rounded-irreg. oval, barbs triang. short, and tapering to points
-Length 9-12 $\mathrm{L}_{\mathrm{b}}{ }^{6-8} \quad \mathrm{~W}_{\mathrm{b}}{ }^{6-8}$
Papillae: none seen
Stomata: many (10+) rows of med.-low domed slightly triang. stomata
-Length 11-13 Width 8-13
Long Cells: in rough rows, irreg. sometimes slightly inflated rect., small, u-shaped und.
-Length 20-40 Width 9-12
Adaxial Surface
Silica Bodies: irreg. linear or $y$-shaped s.b. scattered intercostally-costally irreg., and cross-shaped s.b. like abax
-Length 2-5 width 4-6
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally, small round-squared bases, prox. cell with basal bulge, no distal cells seen
-Length 8-10 $L_{b r i c k l e ~ H a i r s: ~}^{l i k e ~ a b a x ~}$
$L_{d}$
-Length
Papillae:
$L_{b}$
$\mathrm{~b}_{\text {seen }}$ $\mathrm{W}_{\mathrm{b}}$
Stomata: many intercostal rows, same as abax -Length Width
Long Cells: parallel in rows, rect., smallmed. u-shaped und. ( $h=3.5, a=1.5$ )
-Length 30-65 Width 6-8

## Pennisetum atrichum

Abaxial Surface
Silica Bodies: $1-4$ costal rows of very irreg. dumbbells (often deeply indented ? distal
ends, short narrow central portions), some nodular and some crosses, arranged fairly closely in groups, p.h.'s between
-Length 7-13 Width 4-6
Macro Hairs: none seen
-Length Width
Micro Hairs: freq. intercostally, small oval
bases, prox. cell cyl., distal cell 1 1/3- 1
$1 / 2 \mathrm{x}$, tapering outward first then inwards to point at distal end
-Length 25-33 $\mathrm{L}_{\mathrm{b}}$ 9-15 $\mathrm{L}_{\mathrm{d}}$ 15-19
Prickle Hairs: in costal rows, oval bases, very short triang. barbs tapering to blunt point-none seen
-Length 9-14 If 9-13 $\quad \mathrm{W}_{\mathrm{b}} 5-7$
-freq. intercostal hooks, irreg. bases, short pointed barbs
-Length 10-13 $\quad L_{b}$ 9-11 $\quad W_{b}$ 6-10
Papillae: none seen
Stomata: 1-5 intercostal rows of low-med. domed mostly indented triang.
-Length 20-28 Width 12-21
Long Cells: rather large irreg. rect., sometimes inflated, med. v-u shaped und. (not prominent) ( $h=3.5-5, a=2$ )
-Length 50-80 Width 12-15
Adaxial Surface
Silica Bodies: same as abax
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: same as abax
-Length $\quad$ I $_{\text {brickle }} \quad \mathrm{L}_{\mathrm{d}}$ Hairs: ireq. in costal rows, rather large oval bases, tapered on one side, short triang. barbs tapering to points.
-Length 17-33 $L_{b}$ 13-25 $\quad W_{b}$ 6-10
-intercostally same as abax
Papillae: none seen
Stomata: like abax but not as freq.
-Length Width
Long Cells: large inflated rect.-hex., faint $\mathrm{v}-\mathrm{u}$ shaped med. und. ( $h=3.5, a=2$ )
-Length Width

## Pennisetum pedicellatum

Abaxial Surface
Silica Bodies: single costal rows of mostly irreg. nodular s.b., distal ends squared, mostly slightly indented, many dumbbells (some rows of mostly dumbbells), rather evenly spaced in rows, occasional intercostal crosses or irreg. shaped s.b.-none seen
-Length 8-16 Width 3-6
Macro Hairs: quite freq. in intercostal zones or edges of costal rows, multi-celled
elevated bases noticeably causing bulges in the leaf epi., single-celled hair tapering to point, none seen
-Length 450 Width
Micro Hairs: fairly freq. intercostally, small squared-irreg. bases, prox. cell cyl.-
tapering slightly outwards, distal cell 1
1/2-2x length, knife shaped
-Length 40-43 $\quad I_{b} 16 \quad I_{d}$ 24-27
Prickle Hairs: fairly freq. intercostal hooks, squared-irreg. bases, pointed barbs
-Length 8-13 $\quad L_{b} 6-10 \quad W_{b} 6-9$

Papillae: none seen
Stomata: 1-5 intercoatal rows of med.-low domed triang. peaked
-Length 14-18 Width 12-14
Long Cells: roughly in rows, irreg. rect. or inflated rect., med u-shaped und. ( $h=3.5$, $\mathrm{a}=1.5$ )
-Length 30-80 Width 11-15
Adaxial Surface
Silica Bodies: like abax, but separated in small groups by p.h.
-Length Width
Macro Hairs: like abax
-Length 550+ Width
Micro Hairs: like abax
-Length ${ }^{L_{b}}{ }^{L_{d}}$
Prickle Hairs: freq. in costal rows, bases ovals tapered on one end, short triang. barbs tapering to points
-Length 22-28 $\mathrm{I}_{\mathrm{b}}$ 17-25 $\mathrm{W}_{\mathrm{b}}$ 5-7
-intercostal hooks like abax ${ }^{b}$
Papillae: none seen
Stomata: same as abax in 1-3 intercostal rowsless freq.
-Length 18-23 Width 10-12
Long Cells: roughly parallel in rows, very large rect.-hex. med. u-shaped und. ( $h=3.5$, $a=1.5$ )
-Length 30-80 Width 15-20

## Pennisetum polystachion

## Abaxial Surface

Silica Bodies: 1-3 costal rows of mostly nodular s.b., also many dumbbells, small size, distal ends squared and mostly slightly concave, spaced rather evenly in rows
-Length 6-11 Width 3-4
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally, small oval bases, basal cell tapering outwards slightly, distal cell knife-shaped, 1 1/3-2 x length
-Length 29-33 $\mathrm{I}_{\mathrm{b}}$ 12-15 $\quad \mathrm{L}_{\mathrm{d}}$ 19-22
Prickle Hairs: fairly freq. Intercostal hooks, rect.-irreg. bases, short pointed barbs

- Length 10-13 $L_{b} 4-9 \quad W_{b} 6-9$
-in some costal rows
-Length 21-33
Papillae: none seen
Stomata: 1-3 intercostal rows, med.(-low) domed peaked
-Length 18-22 Width 15-18
Long Cells: parallel in rough rows, roughly rect.-hex. or slightly inflated rect., med.shallow $v$-shaped und. ( $h=2.5, a=1-1.5$ )
-Length 40-75 Width 15-20


## Adaxial Surface

Silica Bodies: 1-3 costal rows, like abax
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: like abax, bases quite prominent ?
 squared bases, short triang. barbs, tapering
to rather blunt points
-Length $9-12 \quad \mathrm{~W}_{\mathrm{b}} 7-8$
-like abax in costal rows
Papillae: none seen
Stomata: same as abax
-Length Width
Long Cells: parallel in rows, inflated rect.-
hex., rather shallow u-shaped und., large
size (h=3.5-4, a=)
-Length $35-140$ Width 19-24

## Pennisetum subanqustum

Silica Bodies: Abaxial Surface $\begin{gathered}\text { Abstal rows of dumbells }\end{gathered}$ and nodular s.b., distal ends squared, mostly straight ends, central portions of dumbbells rather long and narrow, fairly evenly spaced in rows by s.c., some s.b. adjacent
-Length 7-11 Width 3
Macro Hairs: none seen
-Length . Width
Micro Hairs: fairly freq. intercostally,
relatively large rounded-irreg. rect. bases, prox. cell tapering slightly outwards, distal cell $11 / 2 x$, knife-shaped
-Length $30 \quad L_{b} 12 \quad L_{d} 18$
Prickle Hairs: fairly freq-freq intercostal hooks rounded squared bases, short pointed barbs
-Length 9-11 $\quad L_{b} 7-10 \quad W_{b} 7-10$
Papillae: none seen
Stomata: in 4-6 intercostal rows, low-domed triang. peaked
-Length 16-21 Width 9-14
Long Cells: in rough rows, rect. and slightly inflated rect., med. u-shaped und. ( $h=5$, $a=1.5-2$ )
-Length 55-75 Width 9-16

## Adaxial Surface

Silica Bodies: single costal rows, dumbbells and nodular, distal ends mostly convex, some slightly concave, central portions med.
length and narrow, arranged in small groups, separated by p.h.'s
-Length 8-11(-14 nodular) Width 3-7
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally,
irreg. bases, prox. cell cyl.-tapering
slightly outwards, distal cell knife shaped, 1 1/2-2x length
-Length $25 \quad L_{b} 9-10 \quad L_{d} 16$
Prickle Hairs: freq. in costal rows, long oval bases tapered on one end, short triang. barbs tapering to points
-Length 19-38 $\quad L_{b} 18-30 \quad W_{b}$
-same as abax intercostally
Papillae: none seen
Stomata: like abax but with 1-2 intercostal rows
-Length Width
Long Cells: parallel in rows, rect. or slightly inflated rect., shallow u-shaped und. ( $h=5, a=1.5-2$ )
-Length 45-90 width 17-20

## Family: Paniceae




## Family: Paniceae



## Setaria verticillata

Abaxial Surface
Silica Bodies: in bands of $1-3$ costal rows, mostly dumbbells, distal ends squared with slightly indented (-convex) ends, central portions rather narrow, med. length, fairly
evenly spaced in rows
-Length 6-10 Width 3-4
-occasional cross-shaped, esp on outside costal rows
Macro Hairs: fairly freq. intercostally, multi-celled elevated bases causing bulge in epidermis, single celled hairs tapering to points
-Length 250 Width
Micro Hairs: fairly freq. intercostally, small rounded bases, prox. cell cyl.-slightly tapering outwards, distal cell (diff. to find) longer, tapering to blunt point
-Length $22 \quad L_{b} 8-9 \quad L_{d} 14$
Prickle Hairs: none seen
-Length $\quad \mathrm{L}_{\mathrm{b}} \quad \mathrm{W}_{\mathrm{b}}$
Stomata: 4-8 interc triang. stamata
-Length 9-11 Width 7-10
Long Cells: roughly in rows, inflated rect.rect., med. u-shaped und. ( $h=3, a=1.5$ )
-Length 30-55 Width 7-10
Adaxial Surface
Silica Bodies: single costal rows of dumbells, same as abax but separated in rows by p.h. into small groups
-Length Width
Macro Hairs: same as abax
-Length Width
Micro Hairs: same as abax, intercostally,
fairly freq. in costal rows also, small oval
bases, prox. cell tapering outwards, no
distal cells seen
-Length $I_{b} 8-9 \quad L_{d}$
Prickle Hairs: in costal rows, very elongated oval bases, very short triang. barb tapering to point
-Length 16-23 $L_{b}$ 13-20 $\quad \mathrm{W}_{\mathrm{b}}$ 5-7
Papillae: none seen
Stomata: same as abax
-Length Width
Long Cells: mostly inflated rect., little und. of cell wall seen
-Length 25-65 Width 8-14
Family: Sporoboleae

## Sporobolus festivus

Silica Bodies: in wide costal bands of (usually 6) rows, mostly saddle shaped-irreg. squared, small s.b., rather evenly spaced in rows by l.c.'s   -Length 3-5 Width 3-5   -in intercostal (?) rows either side of costal rows with p.h.'s   Macro Hairs: none seen   -Length Width   Micro Hairs: none seen-fairly freq.   intercostal Globulous m.h.   -Length 5-6 $\quad \mathrm{L}_{\mathrm{b}} \quad \mathrm{L}_{\mathrm{d}}$   Prickle Hairs: in rows on outside of costal bands, not well developed, oval bases, short triang. barbs tapering to point at right angles to row, none seen   -Length 5-7 $\quad L_{b} 5-7 \quad W_{b} 5$   Papillae: none seen	

Silica Bodies: in wide costal bands of (usually 6) rows, mostly saddle shaped-irreg. squared, small s.b., rather evenly spaced in rows by l.c.'s
-in intercostal (?) rows either side of costal
rows with p.h.'s
Macro Hairs: none seen

Micro Hairs: none seen-fairly freq.
intercostal Globulous m.h.
$\begin{array}{ll}\text {-Length 5-6 } \\ \text { Prickle Hairs: } & \mathrm{L}_{\mathrm{b}} \quad \mathrm{L}_{\mathrm{d}} \\ \text { rows outside of costal }\end{array}$ bands, not well developed, oval bases, short triang. barbs tapering to point at right
angles to row, none seen
Papillae: none seen

Family: Sporoboleae


Abaxial Surface
Silica Bodies: bands of 2-8 costal rows, saddle-crescent shaped, fairly evenly spaced in rows by s.c.
-Length 2-5 Width 3-5
-scattered crescent shaped or irreg. s.b. in intercostal zones
-Length 2-4 Width 4-5
Macro Hairs: none seen
-Length Width
Micro Hairs: freq. in intercostal rows between stomatal rows, sinqle-celled-2, small oval bases, Globulous hair
-Length $9-10 \quad L_{b} \quad L_{d}$
Prickle Hairs: none seen
-Length $\quad L_{b} \quad W_{b}$
Papillae: none seen
Stomata: 2-3 intercostal rows, low-med. domed rounded
-Length 10-12 Width 6-7
Long Cells: roughly in rows rect., rather shallow-quite deep u-shaped und. ( $h=2.5, a=1$ )
-Length 15-40 Width 5-7
Adaxial Surface
Silica Bodies: $1(-3)$ costal rows of dumbbellclose to being cross shaped, distal ends often deeply indented, central portion med. width, very short.? like abax
-Length 4-6(-7) Width 3-4
Macro Hairs: none seen
-Length Width
Micro Hairs: like abax but infreq.
 bases, very short triang. bases with blunt points? none seen


## Sporobolus subanqustum

Abaxial Surface
Silica Bodies: $1(-3)$ costal rows of nodular and some dumbbell shaped s.b., distal ends slightly indented, central portions narrow, med. length, fairly widely spaced
-Length 7-14 Width (2-)3-4
-sparse intercostal cross-shaped s.b., esp. adjacent to costal rows
-Length 4-5 Width 4-5
Macro Hairs: none seen
-Length Width
Micro Hairs: fairly freq. intercostally, irreg. oval bases, prox. cell cyl., distal

## Family: Sporoboleae

```
 cell -1 1/2x tapering to point after first
 widening slightly
-Length 31-36 Ib 12-16 L_ L
Prickle Hairs: freq. in costal rows, large
 size, tapered oval bases , short thick
 pointed barbs, some at right angles to nerve
-Length 17-29 L, 12-21 W, 4-7
-occasional intercostal hooks, broad rounded
 or squared bases, short pointed barbs
-Length 14-18 Lb 9-12 Wb W 7-8
Papillae: none seen
Stomata: 1-3 intercostal rows of low-domed
 peaked
-Length 15-17 Width 8-10
Long Cells: in rows, mostly inflated rect.,
 shallow u-shaped waves, interstomatal l.c.
 often wider than stomata (}\textrm{h}=3,\textrm{a}=1\mathrm{)
-Length 40-80 Width 12-15
 Adaxial Surface
Silica Bodies: 1-2 costal rows of nodular and
 dumbbell shaped s.b., often paired adjacent
 to each other, distal ends indented, central
 portions narrow-med. length, scattered
 intercostal cross-shaped or irreg. s.b., same
 size as abax
-Length Width
Macro Hairs: none seen
-Length Width
Micro Hairs: same as abax
-Length Prickle Hairs: same as abax, intercostally, no
costal p.h.
-Length Papillae: none seen lomb
Stomata: same as abax-more triang. low domed,
 but in 2-5 intercostal rows
-Length Width
Long Cells: in rows, rect. or slightly
 inflated rect., interstomatal l.c. wider than
 stomata, med. u-shaped und.
-Length Width
```

APPENDIX D
DESCRIPTIONS OF
NON-GRASS EPIDERMAL FRAGMENTS

Lepidagathis anobrya
Abaxial surface:
Cell Walls: straight;
irregular; easily visible;
occasionally doubled
Cells:
-Length 10-30 -width 10-15
Stomata: diallelocytic
-Length 8-14 -Width 4-7
-Prevalence...numerous (1-2)
Hairs: none seen
-Length -Width
Hair Base Cells: none seen
Striations: none seen
Other Structures: loaf cells
-Length 30-100 -Width 9-12
Comments:

## Adaxial surface:

Cell Walls: like abaxial surface
Cells:
-length 10-20 -width
Stomata: like abaxial surface
-length 7-12 -width 4-6
-prevalence...moderate (1-4)
Hairs: none seen
Hair Base Cells: none seen
Striations: none seen
Other Structures: loaf cells; numerous (1-2 rows of cells
between); aligned
-length 23-200 -width 10-25
Comments:

## Lepidagathis heulelotiana

Abaxial surface:
Cell Walls: straight;
irregular; easily visible
Cells: most are altered by
stomata or loaf cells
-Length 10-20 -Width (d) 5-10
Stomata: diallelocytic
-Length 7-10 -Width 4-7
-prevalence...numerous (1-2)
Hairs: 1 cell; apparently
hollow; scarce (1 seen)
-Length 345 -Width 7
Hair Base Cells: actinocytic; $d=8-10$
Striations: none seen
Other Structures: loaf cells; not ordered
-Length 15-30 (105) Width 5-9 (30)

Comments:

Adaxial surface:
Cell Walls: same as abaxial surface
Cells: same as abaxial surface
-Length -Width
Stomata: same as abaxial surface
-Length 6-11 -Width 3-6
-Prevalence
Hairs: same as abaxial surface; moderate
-Length 60-600 -Width 10-18 Hair Base Cells: same as abaxial surface; 4 basal cells in addition to others; rounded Striations:
Other Structures: like abaxial surface; numerous (0-2)
-Length 15-60 -width 8-11
Comments:

Family: Amoranthaceae

## Pandianka heudelotii

Abaxial surface:
Cell Walls: moderately undulate; irregular; poorly visible
Cells: $d=5-25$
-Length -Width
Stomata: anomocytic??
-Length 10 -width 8
-Prevalence... moderatenumerous
Hairs: 1-4 segments; enlarged at nodes
-Length 50-200 -Width 5-15
-Prevalence...
Hair Base Cells: actinocytic? Striations: none seen Other Structures: none seen -Length -Width
Comments :
Adaxial surface:
Cell Walls: straight; rounded; poorly visible; thin cutin; stained darkly
Cells: $d=15-35$
-Length -Width
Stomata: like abaxial surface
-Length 11 -Width 7
-Prevalence...moderate (2-3)
Hairs: 1-6 segments
-Length 70-275 -Width 5-50
-Prevalence... sparse
Hair Base Cells: like abaxial surface
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Family: Anacardiaceae
Lannea acida
Abaxial surface:
Cell Walls: straight; 4-7 sided; moderately visible; thin cutin
Cells:
-Length 5-18 -width 5-10
Stomata: anomocytic
-Length 9-12 -Width 5-8
-Prevalence... numerous (1-4)
Hairs: none seen
-Length -width
-Prevalence...
Hair Base Cells: none seen

Striations: none seen
Other Structures: at junctions of cell walls the cutin creates a round spot ( $\mathrm{d}=1$ )
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abaxial surface; very clear
Cells: d=7-15
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Lannea velutina

Abaxial surface:
Cell Walls: straight-curved;
irregular-rectangular; poorly visible
Cells: d=5-25
-Length -Width
Stamata: none seen
-Length -Width
-Prevalence...
Hairs: 1-cell; usually with mercury-bulb base; only on veins
-Length 40-135 -Width 10
-Prevalence... moderate-dense
Hair Base Cells: actinocytic?...difficult to see
Striations: radially from hair bases
Other Structures: stellate hairs 3-6 (6); rough edges; sparse
-Length 55-135 -Width 6-8
Comments: veins numerous

## Adaxial surface:

Cell Walls: like abaxial surface
Cells: like abaxial surface
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abaxial surface
-Length -Width
-Prevalence... moderate
Hair Base Cells: like abaxial surface
Striations: none seen
Other Structures: like abaxial surface
-Length -Width
Comments:

## Lannea eqeqria

Abaxial surface:
Cell Walls: straight; penthexagonal; easily visible Cells:
-Length 9-19 -Width 7-18
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: bulbous base; usually
"accordion-like" belt with 2
bulges half-way up (sometimes 2 groups)
-Length 91-300 -Width 16-19
-Prevalence... moderate
Hair Base Cells: anomocytic
Striations: irregular over whole
Other Structures: circles; sparse; d=8
-Length -Width
Comments: hairs tend to be on ridges (sags)

Adaxial surface:
Cell Walls: somewhat undulate;
"hexagonal"; nearly invisible
Cells: d=7-9
-Length -Width
Stomata: cyclocytic; 6-cell; $\mathrm{d}=9$
-Length -Width
-Prevalence... sparse
Hairs: like abaxial surface; sometimes rough-edged
-Length 77-280 -Width 13-20
-Prevalence... moderatenumerous
Hair Base Cells: none seen
Striations: none seen
Other Structures: odd elongate structures; not prevalent; length=30, width=8
-stellate hairs; sparse; 6haired
-Length 50-85 -Width 8
Corments: much mesophyll
Lannea humilis
Abaxial surface:
Cell Walls: straight-walled; irregular; easily visible

## Cells:

-Length 9-15 -Width 5-10
Stomata: anomocytic; stomatal ridge; not on veins
-Length 10-12 -Width 6-8
-Prevalence... numerous (2-3)
Hairs: 1-cell; peg-foot; all on small "veins"
-Length 110-350 -Width 7-10
-Prevalence... moderatenumerous
Hair Base Cells: actinocytic or on veins
Striations: none seen
Other Structures: none seen
-Length -Width

## Comments:

Adaxial surface:
Cell Walls: 5-7 sided; exceptionally visible
Cells:
-Length 13-22 -Width 7-14
Stomata: tetracytic, anomocytic
or somewhat cyclocytic; 4 cells
-Length 13-19 -Width 9-10
-Prevalence...sparse
Hairs: like abaxial surface; double-tapered, worm-like
-Length 60-130 -Width 5-6
-Prevalence... sparse
Hair Base Cells: 1 cell around peg hole; actinocytic around this cell
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: very ordered veins 1 3 cells wide

## Lannea microcarpa

Abaxial surface:
Cell Walls: straight-slightly undulate; somewhat rounded; moderately visible
Cells: $d=5-15$
-Length -Width
Stomata: anomocytic
-Length 9-14 -Width 9
-Prevalence... numerous (2-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abaxial
surface; walls doubled

## Cells:

-Length 7-20 -Width 5-15
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: actinocytic Striations: radiating from hair base cells, erratic between hairs
Other Structures: none seen
-Length -Width
Comments:
Orozoa insiqnis
Abaxial surface:
Cell Walls: slightly undulate;
somewhat round; faint
Cells: $d=7$
-Length -Width
Stomata: none distinguished
-Length -Width
-Prevalence...
Hairs: 1-cell; loosely sickle-
shaped; straight ones
length $=30-60$
-Length 50-80 -Width 3-4
-Prevalence... numerous on veins, others sparse
Hair Base Cells: anomocytic
Striations: ordered in lines;
not easily visible over entire
other Structures: club hairs;
3-4 celled; more on veins; peg
foot
-Length 25-35 -Width 10-20
Comments:
Adaxial surface:
Cell Walls: straight; somewhat squared; mostly covered by hair
Cells: none seen
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: 1-cell; slightly bulbous
at base; slowly tapering to a
point; straight
-Length 43-260 -Width 3-5
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen

> -Length -Width

Comments: thick covering of
hair
Family: Annonaceae
Annona senegalensis

## Abaxial surface:

Cell Walls: straight walled; irregular; easily seen Cells:
-Length 7-15 -Width 4-8 Stomata: anomocytic-tetracytic; stomatal ridge :zigzagged" -Length 8-10 -Width 4-6
-Prevalence... numerous (1-4)
Hairs: small veins connecting hairs
-Length 60-140 -Width 4-6
-Prevalence... sparce-moderate
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: apparently 2 -
layered... 1 layer cells $d=4-17$

## Adaxial surface:

Cell Walls: like abaxial surface
Cells:
-Length 5-10 -Width 4-7
Stomata: none seen

Family: Annonaceae
-Length -Width
-Prevalence...
Hairs: 1-cell; flexible
-Length 85-100 -Width $5-6$
-Prevalence... sparse
Hair Base Cells: peg foot
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: like abaxial surface

## Uvaria chamae

Abaxial surface: 32
Cell Walls: slightly undulate;
irregularly round; easily seen
Cells: d=5-8
-Length -Width
Stomata: anomocytic-tetracytic;
square
-Length 6-7 -Width 5
-Prevalence... moderate (2-4)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: only one side
presented

## Adaxial surface:

Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -width
-Prevalence...
Hair Base Cells:
Striations:
Other structures:
-Length -Width
Comments:

## Family: Apocynaceae

## Saba senegalensis

Abaxial surface:
Cell Walls: irregular-squared;
slightly-moderately undulate
Cells: with 0-7 round
structures inside $\mathrm{d}=1-2$
-Length 7-16 -Width 5-9
Stomata: anomocytic; circular
structure at center $d=2$
-Length 5-8 -Width 6
-Prevalence... numerous (1)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments :

Adaxial surface:
Cell Walls: slightly undulate; irregular; easily visible Cells:
-Length 4-11 -Width 2-6
Stomata: like abaxial surface
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Family: Balanitaceae
Balenites aeqyptica
Abaxial surface: $3 ?$
Cell Walls: straight-curved;
irregular; easily visible
Cells: d=2-5
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: 1-cell; apparently
hollow; no veins seen
-Length 50-170 -Width 5-7
-Prevalence... sparse
Hair Base Cells: cyclocytic; 69 cells
Striations: none seen
Other Structures: many holes
cyclocytic, potentially lost
hairs $\mathrm{d}=5-6$, potentially
stomata (5-8 cells between)
-Length -Width
Comments: two photos apparently
the same

## Adaxial surface:

Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:
Family: Bignoniaceae

## Stereospermum kunthianum

Abaxial surface:
Cell Walls: rounded; easily visible
Cells: $\mathrm{d}=4-13$
-Length -Width

Stomata: anomocytic
-Length 6-12 -Width 3-6
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: actinocytic,
round 3-d spoked-wheel
structures; $d=12-16$;
occasional
-occasional round thickenings
of cell walls $d=1$
-Length -Width
Comments:
Adaxial surface:
Cell Walls: straight-moderately undulate; square-rounded; highly visible
Cells:
-Length 7-27 -Width 7-15
Stomata: none seen
-Length -width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: like abaxial surface
Striations: none seen
Other Structures: occasional
lines of extra-thick cutin
walls
-Length -Width
Comments:
Family: Bombaceae

## Adansonia digitata

Abaxial surface:
Cell Walls: straight-curved; irregular-undulate; poorly visible (faint)
Cells:
-Length 6-23 -Width 4-12
Stomata: anomocytic; highly
cutinized around edges
-Length 9-16 -Width 7-14
-Prevalence... numerous (1-4)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: balls $\mathrm{d}=16$ -
21, frequent
-Length -Width
Comments:

## Adaxial surface:

Cell Walls: like abaxial
surface; apparently 2-layers
Cells:
-Length 6-25 -Width 5-17
Stomata: none seen
-Length -Width
-Prevalence...

Family: Bombaceae

## Hairs: none seen <br> -Length -Width <br> -Prevalence...

Hair Base Cells: actinocytic; middle d=10-15; numerous Striations: "flaps" located encircling hair bases and randamly other places
Other Structures: like abaxial surface
-Length -Width
Comments:

## Bombax costatum

## Abaxial surface:

Cell Walls: straight-slightly undulate; irregular; moderately visible
Cells:
-Length 7-23 -Width 5-12
Stomata: anomocytic; highly cutinized around edges
-Length 11-17 -Width 7-9
-Prevalence... numerous (1-2)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: encircling stomata, sometimes radiating from them, not too prevalent
Other Structures: club hairs; actinocytic
-Length 24-34 -Width 12-14
Comments: occasional lines of extra-thick cell walls

## Adaxial surface:

Cell Walls: like abaxial surface; heavily cutinized (double-walled)
Cells:
-Length 10-25 -Width 10-20
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: actinocytic, middle d=10-15; numerous
Striations: like abaxial surface
Other Structures: like abaxial surface
-Length -Width
Comments: like abaxial surface

## Family: Burseraceae

## Commiphora africana

Abaxial surface:
Cells: none seen
-Length -Width
Stamata: none seen
-Length -Width
-Prevalence...
Hairs: 1 cell, tapered entire
length, expanded base, coarse,
tending towards veins
-Length 320-650 -Width 25-35
-Prevalence... sparse
Hair Base Cells: thickened cutin with pockmarks
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Adaxial surface:

Cell Walls: none seen
Cells: none seen
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax.
-Length 260-520 -Width 17-30
-Prevalence...
Hair Base Cells: like abax.
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Family: Capparaceae
Cadaba farinosa
Abaxial surface:
Cell Walls: moderately undulate; irregular, highly visible
Cells:
-Length 7-i8 -Width 5-13
Stomata: anomocytic
-Length 6-9 -Width 5
-Prevalence... numerous (2-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: circular structure with radial striations $d=8-12 ; 1$-4 per
field
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abaxial
surface; poorly visible (due
to striations)
Cells: like abaxial surface
-Length -Width
Stamata: like abaxial surface
-Length -Width
-Prevalence... (2-4)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: heavy, radiating
from circular structures,
branching like rivers
otherwise
other Structures: d=5-12
-Length -Width
Coments:

## Capparis fascicularis

Abaxial surface:
Cell Walls: slightly-moderately undulate; irregular, 0-7
peaks; moderately visible
Cells: $\mathrm{d}=5-20$
-Length -Width
Stomata: anomocytic
-Length 4-6 -Width 3-4
-Prevalence... moderate
Hairs: 1-cell, apparently
hollow, somewhat doudletapered
-Length 70-110 -Width 7-10
-Prevalence... sparse
Hair Base Cells: $\sim 7$ radially oriented, sometimes highly visible
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: slightly-moderately
undulate; irregular, 3-6 peaks
Cells: d=5-10
-Length -Width
Stamata: like abaxial surface
-Length 7-8 -Width 4
-Prevalence... mod.
Hairs: like abaxial surface
-Length 70-120 -Width 7-10
-Prevalence... mod.
Hair Base Cells: like abaxial
surface
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Capparis tomentosa
Abaxial surface: 27
Cell Walls: slightly undulate;
irregular; moderately visible
Cells:
-Length 5-15 -Width 4-7
Stanata: anomocytic; often
associated with mesophyll
-Length 4-8 -Width 4
-Prevalence... moderate (5-10)
Hairs: 1-cell (27), apparently
hollow
-Length 80-210 -Width 6-8
-Prevalence... moderate
Hair Base Cells: somewhat
actinocytic
Striations: none seen
other Structures: oddly spaced
pappillae prevalent, diameter
= 2-3
-Length -Width
Comments:

Adaxial surface:

Family: Capparaceae
Cell Walls: straight-undulate,
like abaxial surface
Cells: diameter $=7-20$
-Length -Width
Stomata: like abaxial surface
-Length -Width
-Prevalence...
Hairs: like abaxial surface
-Length -Width
-Prevalence...
Hair Base Cells: like abaxial
surface
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Crateva adansonii

Abaxial surface:
Cell Walls: straight; squared; poor-moderate visible
Cells:
-Length 9-20 -Width 7-13
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -width
-Prevalence...
Hair Base Cells: none seen Striations: heavy-flowing with
ebbs here and there
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: slightly undulate; irregular-rounded; poorly visible
Cells: diameter $=10-152$
-Length -Width
Stomata: anomocytic?2, peripheral beaded thickening
-Length 4-7 -Width 9-15
-Prevalence... numerous (1-2)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: heavy-radiating from stomata, erratic elsewhere, more like noise Other Structures: none seen -Length -Width
Comments:

## Maerua angolense

Abaxial surface:
Cell Walls: moderate-highly undulate; irregular; poorly visible
Cells: diameter $=10-20$
-Length -Width Stomata: anomocytic
-Length 7-11 -Width 3-5
-Prevalence... numerous (1-2)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abaxial surface
Cells: like abaxial surface -Length -Width
Stomata: anomocytic? difficult
to see
-Length 43 -Width 3 ?
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Family: Caryophyllaceae
Polycarpea eriantha
Abaxial surface:
Cell Walls: slightly undulate; elongate-irregular; thick walled
Cells: possible venous cells prominent/ other cells
-Length 31-57/19-40 -Width 10-23/9-27
Stomata: anomocytic
-Length 8-12 -Width 5-8
-Prevalence... numerous (1-2)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: rooted in middle of cell (towards one end)
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Adaxial surface:

Cell Walls: straight/slightly undulate; elongate/irregular; poorly visible (faint)
Cells: like abaxial surface
-Length 40-86/25-50 -Width 18-33/13-38
Stomata: like abaxial surface
-Length -Width
-Prevalence...
Hairs: 1-cell
-Length 15-70 -Width 10
-Prevalence... sparse ( 2 seen)
Hair Base Cells: like abaxial surface
Striations: none seen
Other Structures: none seen
-Length -Width

Comments:

## Family: Celastraceae

## Maytenus seneqalensis

Abaxial surface: ?
Cell Walls: straight; roundedirregular; poorly visible (2 layers)
Cells: diameter $=5-14$
-Length -Width
Stomata: paracytic 3, possibly
anomocytic with extra thick
outer stomatal walls
-Length 10-13 -Width 9-13
-Prevalence... numerous (2-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: occasional lines of extra-thick cell walls

## Adaxial surface:

Cell Walls: like abaxial surface
Cells: like abaxial surface
-Length -width
Stamata: like abaxial surface
-Length 10-12 -Width 7-11
-Prevalence... (1-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen Striations: none seen
Other Structures: none seen
-Length -width
Comments: like abaxial surface
Family: Cochlospermaceae

## Cochlospermum planthoni

Abaxial surface:
Cell Walls: slightly undulate;
irregular; moderately visible Celle:
-Length 5-13 -Width 2-9
Stomata: anomocytic
-Length 10 -Width 6
-Prevalence... numerous (1-3)
Hairs: 1-cell, tending towards veins
-Length 34-215 -Width 5-6
-Prevalence... sparce-moderate
Hair Base Cells: actinocyticvenous
Striations: none seen
Other Structures: flat-topped hairs, black
-Length 15-27 -Width 1
Comments: occasional lines of extra thick cell walls

Family: Cochlospermaceae

Cell Walls: straight; rounded; easily visible
Cells: diameter $=5-18$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abaxial surface
-Length 50-90 -Width 5-6
-Prevalence... (4 seen)
Hair Base Cells: like abaxial surface
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: like abaxial surface

## Cochlospermum tinctorium

Abaxial surface:
Cell Walls: slightly undulate;
irregular; poorly visible

## Cells:

-Length 6-12 -Width 3-6
Stomata: anomocytic
-Length 7-12 -Width 5-8
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: occasional lines of
extra thick cell walls
Adaxial surface:
Cell Walls: straight; rounded;
moderately visible
Cells: diameter $=7-20$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: like abaxial surface
Family: Combretaceae

## Anogeissus leiocarpus

Abaxial surface:
Cell Walls: moderately
undulate; irregular 3-8 peaks
Cells: diameter $=3-5$
-Length -Width
Stomata: anomocytic
-Length 6-7 -Width 4
-Prevalence... moderate-heavy
Hairs: 1-cell, tapering entire
length, more on veins
-Length 35-130 -Width 4-6
-Prevalence... sparse

Hair Base Cells: 5-7 radially oriented

## Combretum glutinosum

Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: slightly undulate;
slightly irregular (0-6
peaks); highly visible
Cells: diameter $=5-10$
-Length -Width
Stomata: like abaxial surface
-Length 7 -Width 4
-Prevalence... sparse
Hairs: like abaxial surface
-Length 25-160 -Width 2-5
-Prevalence... moderate-heavy
Hair Base Cells: like abaxial surface
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Combretum collinum hypopilinum
Abaxial surface:
Cell walls: slightly undulate; somewhat round (0-5); moderately visible
Cells: diameter $=5-10$
-Length -Width
Stamata: paracytic?; diameter $=$ 103
-Length -Width
-Prevalence... sparse?
Hairs: 1-cell, tapering entire length
-Length 25-70 -Width 2-3
-Prevalence... sparse (none on veins)
Hair Base Cells: 5 radially oriented
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Adaxial surface:

Cell Walls: like abaxial surface
Cells: like abaxial surface
-Length -Width
Stomata: anomocytic
-Length 5-8 -Width 5-6
-Prevalence... moderate-dense (1-3 ${ }^{+}$)
Hairs: like abaxial surface; thick cutin prevalent on circular peg-feet, erratic
-Length 60-100 -Width 2-5
-Prevalence... dense
Hair Base Cells: not
distinguishable
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Abaxial surface:
Cell Walls: slightly undulate;
irregular; moderately visible
Cells: diameter $=5-10$
-Length -Width
Stomata: anomocytic, zigzag stomatal ridge
-Length 10-15 -Width 6-10
-Prevalence... dense (1-3)
Hairs: 1-cell
-Length 30-60 -Width 4-5
-Prevalence... sparce-moderate, erratic
Hair Base Cells: anomocyticactinocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: distinct veins

## Adaxial surface:

Cell Walls: like abaxial
surface; double walled

## Cells:

-Length 8-16 -Width 4-12
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abaxial surface;
bulbous base
-Length 50-90 -Width 7-8
-Prevalence... sparse
Hair Base Cells: actinocytic; frequent
Striations: radiating from hair bases like folds from buttons on a pillow, elsewhere like erratic wrinkles
Other Structures: none seen
-Length -Width
Comments: cell walls with
occasional beads of extra
thick cutin

## Combretum paniculatum

Abaxial surface:
Cell Walls: slightly undulate; irregular; difficult to see (thin, much mesophyll)
Cells: diameter $=5-10$
-Length -Width
Stamata: anomocytic
-Length 9-13 -Width 7-10
-Prevalence... numerous (1-3)
Hairs: 1 cell; slightly curved
-Length 90-180 -Width 8
-Prevalence...
Hair Base Cells: anomocytic
Striations: radiating from
larger stomata and hairs
Other Structures: multi-celled
(5) club hairs; sparse
-Length 35-55 -Width 15
Comments:

Family: Combretaceae

Cell Walls: like abaxial surface
Cells: like abaxial surface
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abaxial surface
-Length -Width
-Prevalence...
Hair Base Cells: like abaxial surface
Striations: more prominent than abaxial surface
Other Structures: like abaxial surface
-Length -Width
Comments:

## Combretum micranthum

## Abaxial surface:

Cell Walls: straight; irregular; easily visible;
double thick
Cells: diameter $=4-14$
-Length -Width
Stomata: anomocytic
-Length 9-15 -Width 6-10
-Prevalence... numerous (1-2)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: limited to erratic
wrinkles here and there
other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abaxial
surface
Cells: diameter $=8-16$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: actinocytic; numerous
Striations: slightly radiating
from hair bases
Other Structures: very faint
bag hairs; diameter $=20$
-Length -Width
Comments:

## Combretum collinum binderanum

## Abaxial surface:

Cell Walls: moderate-highly undulate; highly irregular; difficult-moderately visible
Cells: diameter $=3-10$
-Length -Width
Stomata: actinocytic (5-7)
-Length 10 -Width 5
-Prevalence... moderate
Hairs: 1-cell, very bulbous (15)
-Length 60-300 -Width 5-8
-Prevalence... moderate equally on veins
Hair Base Cells: not differentiated
Striations: none seen
other Structures: moderate
covering of doughnuts, diameter $=7-8$, possibly peg
feet
-Length -Width
Comments:

## Adaxial surface:

Cell Walls: like abaxial
surface; highly visible
Cells: like abaxial surface
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abaxial surface,
bulbous (-20)
-Length 90-300 -Width 9-10
-Prevalence... slight-moderate
Hair Base Cells: less undulate
with some radial striations,
diameter $=6$
Striations: on hair base cells
Other Structures: sparse
covering of doughnuts with
radial striations, diameter $=$
6
-Length -Width
Comments:

## Combretum nigricanus

Abaxial surface:
Cell Walls: slightly undulate;
irregular; poorly visible
(faint, variable)
Cells:
-Length 4-12 -Width 3-7
Stomata: cyclocytic?
-Length 5-11 -Width 4-6
-Prevalence... numerous (2-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: bag hairs, diameter $=23-30$, moderate numbers
-Length -Width
Comments:
Adaxial surface:
Cell Walls: straight-curved;
rounded; easily visible
Cells: diameter $=5-14$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: clumps of subcellular objects in all cells
-Length -Width
Comments:

## Pteleopsis suberosa

## Abaxial surface: <br> Cell Walls: straight; rounded;

moderately visible
Cells: diameter $=5-11$
-Length -Width
Stomata: anomocytic
-Length 11-16 -Width 7-9
-Prevalence... numerous (1-2)
Hairs: 1 cell
-Length 27-105 -Width 4-6
-Prevalence... sparce-moderate
Hair Base Cells: anomocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abaxial surface; patches where not visible (faint)
Cells: diameter $=4-12$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abaxial surface
-Length 50-130 -Width 4-6
-Prevalence...
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Terminalia avicennoides

Abaxial surface:
Cell Walls: straight;
"squared"; covered by hair
Cells: diameter $=5-8$
-Length -Width
Stomata: anomocytic?; accessory
cells difficult to distinguish
-Length 8-10 -Width 6-8
-Prevalence... moderate
Hairs: 1 cell; tending off from veins
-Length 30-140 -Width 4-5
-Prevalence... moderate-
numerous
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: very messy slide,
mesophyll and hair

Adaxial surface:	Stomata:
Cell Walls: squared-irregular;	-Length 4-8 -Width 7-12
easily visible; occasional	-Prevalence... numerous (1-3)
reas of a second cell layer	Hairs
(mesophyll)	-Length -Width
Cells:	-Prevalence...
-Length 5-13 -Width 3-10	Hair Base Cells: none seen
Stomata: none seen	Striations: none seen
-Length -Width	Other Structures: none seen
-Prevalence	-Length -Width
Hairs: none seen	Comments:
-Length -Width	
-Prevalence.	Adaxial surface:
Hair Base Cells: like abaxial surface, moderate numbers	Cell Walls: straight; squared Cells:
Striations: none seen	-Length 5-15 -Width 3-10
Other Structures: none seen	Stomata: anomocytic
-Length -Width	-Length 4-8 -Width 4-8
Comments: like abaxial surface	-Prevalence... moderate (2-5)   Hairs: none seen
Terminalia laxiflora	-Length -Width
	-Prevalence...
Abaxial surface:	
Cell Walls: straight; 5-6	Striations: none seen
sided; occasionally visible;	Other Structures: none seen
mostly venous cells visible	-Length -Width
due to thinness of cuticle	Comments:
Cells: diameter $=5-10$	Terminelia mollis
-Length -Width	
Stomata: anomocytic; clumped in	Abaxial surface:
areas of no veins (thin cuticle)	```Cell Walls: straight; rounded; mod. vis.```
-Length 6-10 -Width 4-8	$\begin{aligned} & \text { Cells: } \mathrm{d}=5-9 \\ & \text {-Length } \quad \text {-Width } \\ & \text { Stomata: anomocytic, clustered } \end{aligned}$
-Prevalence... (0-1)	
Hairs: 1 cell; slightly wider at base	-Length 5-10 -Width 3-5
-Length 80-180 -Width 8	-Prevalence... Dense (0-1)
-Prevalence... sparce-moderate	Hairs: 1 cell, like worms
Hair Base Cells: anomocytic	-Length 350 -Width 8
Striations: none seen	-Prevalence... mod.
Other Structures: none seen	Hair Base Cells: venous
-Length -Width	Striations: none seen
Comments:	Other Structures: nucleus? visible in most cells
Adaxial surface:	-Length -Width
```Cell Walls: 4-6 sided; highly visible```	Comments:
Cells: like abaxial surface	Adaxial surface:
-Length -Width	Cell Walls: straight-slightly
Stomata: none seen	und.; rounded-elongate; easily
-Length -Width	vis.; THICK
-Prevalence	Cells: ${ }^{\text {c }}$ (6)
Hairs:	-Length 7-16 -Width 5-12
-Length 50-150 -Width 5-8	Stomata: none seen
-Prevalence... sparse	
Hair Base Cells: actinocytic	-Prevalence...
(4-6 cells)	Hairs: bag, $d=8-10$
Striations: none seen	-Length -Width
Other Structures: none seen	-Prevalence... sparse-mod.
-Length -Width	Hair Base Cells: anomocyticactinocytic
Comments:	
	Striations: none seen
Terminalia macroptera	Other Structures: like abax. -Length -Width
Abaxial surface:	Comments:
```Cell Walls: straight-slightly undulate; irregular; easily seen```	Family: Commelinaceae
Cells:	Ancilema setiferum
-Length 3-10 -Width 5-14	



## Sonshus spp.

Abaxial surface:
Cell Walls: highly undulate; irregular (4-8); highly visible
Cells: diameter $=5-30$
-Length -Width
Stomata: anomocytic; sunken?
-Length 8-9 -Width 6
-Prevalence... sparse
Hairs: 4-6 segments; indented at nodes, no more on veins
-Length 40-140 -Width 10-30
-Prevalence... moderate
Hair Base Cells: anomocyticactinocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: poorly visible due to clutter of mesophyll
Cells: diameter $=3-15$
-Length -Width
Stomata: none seen
-Length -Width

Family: Compositae
-Prevalence...
Hairs: like abaxial surface -Length -Width
-Prevalence...
Hair Base Cells: anomocytic? Striations: none seen Other Structures: none seen -Length -Width
Comments:

## 152 slide ruined

## Abaxial surface:

Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:

## Adaxial surface:

Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:
157

## Abaxial surface:

Cell Walls: highly und.; irr. (5-10); slightly-moderately visible
Cells: d=5-40
-Length -Width
Stomata: anomocytic; diamond shaped
-Length 9 -Width 6
-Prevalence... sparse
Hairs: 2 segments; slightly more on veins; first segment with bumps; first/second
-Length 40-300/10-60 -Width 5-30/5-10
-Prevalence...
Hair Base Cells: actinocytic; highly visible; (6-10)
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax;
moderately visible
Cells: like abax
-Length -Width
Stomata: anomocytic?
-Length 7 - Width 5-6?
-Prevalence... sparse
Hairs: like abax
-Length 85-310/10-80 -Width
15-30/5-10
-Prevalence... mod.
Hair Base Cells: like abax
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Family: Convulvuluceae

## Ipomaca aquatica

## Abaxial surface: ?

Cell Walls: N/A
Cells: occasional bag cells;
$\mathrm{d}=12-17$; dark cells irr.
-Length 2-15 -Width 1-10
Stomata:
-Length 8-12 -Width 4-6
-Prevalence... Dense
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: encircling stomata; radiating from bag hairs
Other Structures: bag hairs;
$\mathrm{d}=14-20$; sparse
-Length -Width
Comments: unique slide; mostly
stomata, separated by dark
cells; with occasional bag
cells
Adaxial surface:
Cell Walls: like abax
Cells: like abax
-Length -Width
Stomata: paracytic
-Length -Width
-Prevalence... numerous
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: like abax
Other Structures: like abax
-Length -Width
Comments: like abax but less stomata and dark cells are light with visible cell walls

## Meremia kentrocaulos

Abaxial surface:
Cell Walls: slightly und.; very difficult to see
Cells: unable to determine
-Length -Width
Stomata: paracytic; can only
see accessory cells
-Length 8-9 -Width 6
-Prevalence... [0-70=distance
between acc. cells]
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: wagon wheels;
inner circle $d=7$; outer ring
d=17; 15-20 spokes; no
relation to veins; $1-3 /$ field;
sbag hairs
-Length -Width
Comments :

## Adaxial surface:

Cell Walls: like abax; rounded
Cells: $\mathrm{d}=7-15$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: irr., like ravines
leading to veins, prevalent
other Structures: like abax;
sparse
-Length -width
Comments:

## 188

Abaxial surface:
Cell Walls: slightly und.;
somewhat round; difficult to
find due to hair covering
Cells: $\mathrm{d}=10-20$
-Length -Width
Stomata:
-Length 12 -Width 8
-Prevalence... numerous
Hairs: 1 cell3; expanded base; possibly 1 or 2 cells; like
sweat band;
-Length 410 -Width 8
-Prevalence... dense
Hair Base Cells:
undifferentiated
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Adaxial surface:

Cell Walls: like abax; easily visible
Cells: like abax
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax; highly expanded base; longitudinally striated
-Length 80-800 -Width 5-25
-Prevalence... mod.-heavy

Family: Convulvuluceae

Hair Base Cells:
undifferentiated-radially
elongated in larger hairs; 1525 cells
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Family: Dioscoreaceae

## Dioscorea dumetorum

Abaxial surface:
Cell Walls: moderately und.; somewhat elongated; irr.; easily visible
Cells: $d=5-20$
-Length -Width
Stomata: anomocytic-actinocytic
-Length 10 -Width 7
-Prevalence... mod.
Hairs: 1 cell; slightly enlarged base; sleeved insertion; slowly bent; not more on veins
-Length 160-220 -Width 5-6
-Prevalence... sparse
Hair Base Cells: anomocyticactinocytic
Striations: slight
longitudinal; sometimes continuing beyond cell walls
Other Structures: frequent
bases to fallen hairs
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax; slightmoderately und.
Cells: like abax
-Length -Width
Stamata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: see "other structures"
Striations: like abax
Other Structures: apparent hair bases; actinocytic-anomocytic; $\mathrm{d}=15-20$; with $3-4$ central cells; collar-like; sparse
-Length -Width
Comments: occasionally
thickened cell walls; $d=3$
Family: Eberaceae

## Diospyros mespiliformis

Abaxial surface:
Cell Walls: slightly und.;
irr.; easily visible
Cells: $d=5-10$
-Length -width
Stomata: cyclocytic
-Length 10 -Width 8-10
-Prevalence... dense ( $0-3$ )
Hairs: 1 cell; 2 points, attached in middle straight;
no relation to veins
-Length 50-80/70-130 -Width 6-7
-Prevalence... sparse
Hair Base Cells: anomocytic;
large "central cell"; d=12
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: squared; slightly und. when out of focus, otherwise straight (somewhat)
Cells: $\mathrm{d}=3-11$
-Length -Width
Stomata: none seen
-Length -Width
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Family: Euphorbiaceae
Antidesma venosum
Abaxial surface:
Cell Walls: moderately und.; usually elongate; easily visible
Cells:
-Length 7-35 -Width 4-20
Stomata: anomocytic-paracytic
-Length 6-14 -Width 5-8
-Prevalence...
Hairs: 1 cell
-Length 50-150 -Width 7-10
-Prevalence... sparse
Hair Base Cells: on veins
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax
Cells: $d=10-20$
-Length up to 45 -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Bridelia ferruginea

Abaxial surface:
Cell Walls: straight; rounded;
easily visible
Cells: $d=4-15$
-Length -Width Stomata: anomocytic
-Length 7-12 -Width 5-7
-Prevalence... numerous (1-2)
Hairs: 1 cell; tapered entire
length; tending towards veins
-Length 70-185 -Width 6-8
-Prevalence... sparse-mod.
Hair Base Cells: cyclocytic?
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax; 4-6 sided
Cells: like abax
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: actinocytic; sparse
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Croton nigritanus

Abaxial surface: ?
Cell Walls: straight; irr.;
moderately visible
Cells:
-Length 7-15 -Width 5-10
Stomata: tetracytic
-Length 9 -Width 5
-Prevalence... sparse (2-30)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: actinocytic; sparse-mod.
Striations: none seen
Other Structures: 25: of cells with doughnuts; $\mathrm{d}=4$; grouped
-Length -Width
Coments:

## Adaxial surface:

Cell Walls: like abax
Cells:
-Length 6-14 -Width 3-8
Stamata:
-Length 5-7 -Width 4-6
-Prevalence... numerous (1-2)
Hairs: 28 hairs; $d$ of
whole $=200$; like starburst
-Length -Width
-Prevalence... 1 seen on vein

Family: Euphorbiaceae
Hair Base Cells: like abax
Striations: none seen
Other Structures: like abax; in
10t of cells; not grouped; d=3
-Length -Width
Comments:
Hymenocandia acida
Abaxial surface:
Cell Walls: straight; squared;
moderately visible
Cells: Width $6-13$
-Length
Stomata: anomocytic; somewhat
clumped
-Length 8-11 -Width 6
-Prevalence...
Hairs: 1 cell; only on main
vein
-Length 45-60 -Width $5-10$
-Prevalence...
Hair Base Cells: venous
Striations: none seen
Other Structures: numerous
"lily pads" $=$ bag hairs;
somewhat transparent; d=28-85
-Length -Width
Comments:

## Adaxial surface:

Cell Walls: like abax; irr.
Cells: d=3-15
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: like abax
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: 2 photos of abax
phyllanthus spp.
Abaxial surface:
Cell Walls: slightly und.;
irr.; highly visible
Cells: $d=5-25$
-Length -Width
Stomata: anomocytic
-Length 6 -Width 3
-Prevalence... sparse
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: nucleus
visible in all cells
-Length -Width
Comments: some extra-thick
walls
Adaxial surface:
Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:

## Sapium grahamii

Abaxial surface:
Cell Walls: slightly und.;
irr.; highly visible
Cells: $\mathrm{d}=5-15$
-Length -Width
Stomata: anomocytic
-Length 8-10 -Width 5-6
-Prevalence... dense ( $0-3$ )
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: occasional long lines
of extra-thick walls

## Adaxial surface:

Cell Walls: like abax; easily visible
Cells:
-Length 6-20 -Width 4-10
Stomata: paracytic
-Length 6-9 -Width 4-6
-Prevalence... numerous (1-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: like abax

## Securinega virosa

## Abaxial surface:

Cell Walls: straight; squared; moderately visible; thin double walls
Cells:
-Length 7-17 -Width 4-9
Stomata: tetracytic
-Length 7-9 -Width 4-5
-Prevalence... numerous (1-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: slight, erratic
Other Structures: none seen
-Length -Width
Comments:

Adaxial surface:
Cell Walls: like abax; easily visible
Cells:
-Length 6-22 -width 5-14
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: like abax
other Structures: none seen
-Length -Width
Comments:
Family: Flacourtiaceae

## Flacourtia indica

Abaxial surface:
Cell Walls: slightly und.; irr.; moderately visible; very thick
Cells: $d=4-12$
-Length -Width
Stomata: paracytic-tetracytic;
with inner circle
-Length 7-11 -Width 7
-Prevalence... numerous (1-2)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Adaxial surface:

Cell Walls: like abax
Cells: $d=5-18$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: 1 cell; only on veins;
hook-shaped
-Length 25-40 -width 5
-Prevalence... sparse
Hair Base Cells: venous
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Oncoba spinosa

## Abaxial surface:

Cell Walls: slightly undulate; many somewhat rectangular; highly visible
Cells: several size categories
-Length 20/12/5 -Width 10/7/5
Stomata: somewhat paracytic
-Length 8-12 -Width 6-7
-Prevalence... dense (1-2)
Hairs: none seen

Family: Flacourtiaceae
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: occasional long lines of thickened cell walls; many square cells (3x7) with thickened walls

Adaxial surface:
Cell Walls: irr.; easily
visible; a lot of mesophyll in places
Cells: like abax; smaller cells
seem darker
-Length -Width
stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: fine, allignederratic
Other Structures: none seen
-Length -Width
Comments: like abax; fibrous veins

Family: Guttiferae

## Garcinia livingstonei

Abaxial surface:
Cell Walls: slightly und.; many resembling beads on a string; moderately visible; somewhat rectangular
Cells:
-Length 10-15 -Width 5-7
Stomata: paracytic-each is like in a box; shaped like butterflies; 11-12 square -Length -Width
-Prevalence... dense (1-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Coments:
Adaxial surface:
Cell Walls: like abax; slightly-moderately visible
Cells: like abax
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen

Other Structures: none seen
-Length -Width
Comments:

## Psorospermum seneqalense

Abaxial surface:
Cell Walls: mod. undulations;
irr.; slightly-moderately visible
Cells: $\mathrm{d}=5-10$
-Length -Width
Stomata: anomocytic
-Length 9-10 -Width 7-8
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: moderate numbers
Striations:
Other Structures: volcano-like structure with cells, somewhat actinocytic with 1 cell circling the base, $d=7$, center hole $d=3$, possibly hair base
-Length -Width
Comments: boring
Adaxial surface:
Cell Walls: like abax; highly visible
Cells: dx10-15; some rectangular
-Length 5 -Width 15
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: sparse
Striations: none seen
Other Structures: like abax
-Length -Width
Coments: like abax
Family: Labiatae

## Tinnea barteri

Abaxial surface:
Cell Walls: mod. undulations;
irr.; easily visible
Cells: d=5-25
-Length -Width
Stomata: anomocytic
-Length 10 -Width 8
-Prevalence... sparse/clumped
Hairs: 3-4 segments; proximal segments shorter; swollen at base, some bent to full circles, more on veins
-Length 35-315 -Width 15-20
-Prevalence...
Hair Base Cells: anomocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Adaxial surface:
Cell Walls: straight; rounded; easily visible
Cells: $d=10-25$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax, 2-9 segments
-Length 25-240 -Width 15-20
-Prevalence...
Hair Base Cells: like abax
Striations: none seen
Other Structures: transparent
"lily pads" abag hairs?; d=50-
50; mod. numbers
-Length -Width
Comments:
Family: Cesalpinoideae

## Afzelia africana

Abaxial surface:
Cell Walls: slightly und.; irr.; highly visible; thick Cells:
-Length 5-20 -Width 5-10
Stomata: paracytic
-Length 8 -Width 5-7
-Prevalence... numerous (0-1)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: very clean slide
Adaxial surface:
Cell Walls: like abax; irr.squared
Cells:
-Length 7-20 -Width 7-11
Stamata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen Striations: none seen Other Structures: none seen
-Length -Width
Coments: like abax

## Burkea africana

Abaxial surface:
Cell Walls: straight; elongate; easily visible
Cells:
-Length 7-15 -Width 4-8
Stomata: paracytic
-Length 7-11 -Width 5-7
-Prevalence... numerous (0-1)
Hairs: 1 cell, hollow, like
porcupine quill

Family: Cesalpinoideae
-Length 155 -Width 6
-Prevalence... 1 seen
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Adaxial surface:
Cell Walls: like abax; irr. Cells:
-Length 7-20 -Width 3-10
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: nucleus
visible in venous cells, $d=1$
-Length -Width
Comments:

## Burkea africana

Abaxial surface:
Cell Walls: straight; squared; easily visible
Cells:
-Length 5-20 -Width 5-10
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: 1 cell, straight, rough edges
-Length 60-100 -Width 3-4
-Prevalence...
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Adaxial surface:

Cell Walls: like abax;
moderately visible
Cells: like abax
-Length -width
Stomata: paracytic
-Length 8 -Width 5-6
-Prevalence... numerous (2-3)
Hairs: like abax
-Length -Width
-Prevalence...
Hair Base Cells: like abax
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Cassia arereh
Abaxial surface:
Cell Walls: slightly und.; square-round; moderately visible
Cells: d=5-10
-Length -Width

Stomata: none seen
-Length -Width
-Prevalence...
Hairs: 1 cell, tapering entire
length, equal number on veins
-Length 30-70 -Width 4-5
-Prevalence... sparse
Hair Base Cells: anomocytic (68 cells)
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: occasional long lines
of extra thick cell walls

## Adaxial surface:

Cell Walls: like abax; somewhat round
Cells: $d=3-10$
-Length -Width
Stomata: anomocytic
-Length -Width
-Prevalence...
Hairs: like abax
-Length 25-80 -Width 2-5
-Prevalence... mod.
Hair Base Cells: like abax
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Cassia mimosoides

## Abaxial surface:

Cell Walls: slightly und.; generally rounded; poorly visible
Cells: d=5-20
-Length -Width
Stomata: paracytic?
-Length 6-8 -Width 2-4
-Prevalence... dense
Hairs: 1 cell, very bulbous
base, straight, on vein
-Length 75 -Width 5
-Prevalence... only 1 seen
Hair Base Cells: actinocytic? (6-10)
Striations: none seen
Other Structures: nucleus
easily seen in cells
-Length -Width
Comments:
Adaxial surface:
Cell Walls: straight; most
easily visible
Cells:
-Length 10-35 -Width 10-15
Stomata: paracytic??,
apparently in sunken areas of missing cells with much extra space
-Length 6-8 -Width 5
-Prevalence... mod. (1-2)
Hairs: like abax
-Length 30 -Width 10
-Prevalence...
Hair Base Cells: venous

Striations: none seen
Other structures: nucleus not
seen; "water spots" instead;
also abstract dark structures
(~15mu), scattered randomly
between cells
-Length -Width
Coments:

## Cassia nigricans

Abaxial surface:
Cell Walls: slightly und.;
irr.; poorly visible
Cells: d=10-20
-Length -Width
Stomata: paracytic?
-Length 8-10 -Width 4-6
-Prevalence... numerous (1-2)
Hairs: 1 cell, sickle-shaped
-Length 40-115 -Width 5-7
-Prevalence... mod.
Hair Base Cells: anomocytic?
Striations: none seen
Other Structures: nucleus
easily seen in cells
-Length -Width
Comments:

## Adaxial surface:

Cell Walls: like abax
Cells: like abax
-Length -Width
Stomata: like abax
-Length -Width
-Prevalence... (2-3)
Hairs: like abax
-Length -Width
-Prevalence...
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: like abax
-Length -Width
Comments:

## Cassia sieberana

Abaxial surface:
Cell Walls: straight; squared;
poorly-moderately visible;
cutin not heavy
Cells: not very ordered or in pairs
-Length -width 4-11
Stomata: anomocytic, peripheral
and stomatal thickening
-Length 5-9 -Width 3-5
-Prevalence...
Hairs: 1 cell, rough edge, straight
-Length 35-90 -Width 7
-Prevalence...
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax; easily

Family: Cesalpinoideae
visible; heavy cutin
Cells: somewhat ordered,
apparently in pairs
-Length -Width 4-11
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax, sickle shaped
-Length 35-90 -Width 7
-Prevalence...
Hair Base Cells: anomocytic Striations: none seen Other Structures: none seen -Length -Width
Comments:

## Cassia sinqueana

## Abaxial surface:

Cell Walls: straight; squared; moderately visible
Cells:
-Length 8-29 -Width 6-16
Stomata: anomocytic
-Length 8-11 -Width 5-7
-Prevalence...
Hairs: 1 cell, curved, rough edged
-Length 125-235 -Width 8-11
-Prevalence... sparse
Hair Base Cells: actinocytic
Striations: 60\% of cells with wrinkles on top, especially cells by stomata, the rest clear
Other Structures: nucleus visible in most cells, $d=2-6$ -Length -Width
Comments: occasional long lines of extra-thick cell walls

## Adaxial surface:

Cell Walls: like abax; easily visible
Cells:
-Length 5-21 -Width 4-16
Stomata: like abax
-Length 8-11 -Width 5-7
-Prevalence...
Hairs: like abax; edges not rough
-Length 125-235 -Width 8-11
-Prevalence... sparse
Hair Base Cells: like abax
Striations: none seen
Other Structures: like abax
-Length -Width
Comments: like abax

## Daniellia oliveri

## abaxial surface:

Cell Walls: straight-slightly und.; irr.; highly visible Cells:
-Length 6-20 -Width 5-11
Stomata: paracytic, peripheral t-thickening,
-Length 10-15 -Width 6-10
-Prevalence... dense ( $0-1$ )

Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: round cells,
mostly on veins, $d=7$
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax
Cells:
-Length 10-30 -Width 6-16
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: like abax
-Length -Width
Comments: some cells all black inside, like air bubbles; fine matting within cells

## Detarium microcarpum

Abaxial surface:
Cell Walls: straight-slightly und.; irr.;-square; barely
visible, mostly not visible
(faint, many papillae)
Cells:
-Length 11 -Width 5-9
Stomata:
-Length 6-11 -Width 4-8
-Prevalence... mod.
Hairs: 1 cell, hollow
-Length 35-110 -Width 4-5
-Prevalence... sparse
Hair Base Cells: actinocyticcyclocytic with many ( $\mathbf{2 0}^{20}$
small cells in each of 3 rows
Striations: none seen
Other Structures: many papillae
(40\% coverage), $d=5$, not many
on veins
-Length -Width
Comments:
Adaxial surface:
Cell Walls: straight; barely visible; no papillae
Cells:
-Length 6-14 -Width 5-8
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax
-Length 26-145 -Width 3-5
-Prevalence...
Hair Base Cells: like abax
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Isoberlinia doka

## Abaxial surface:

Cell Walls: slightly und.; round-square-rectangular; moderately visible; highly cutinized
Cells:
-Length 3-10 -Width 3
Stamata: paracytic, large accessory cells; with acc. cells $\mathrm{l}=12$, $\mathrm{w}=10$
-Length 10 -Width 5
-Prevalence... very numerous
Hairs: 1 cell, tapered distal 1/3
-Length 40-55 -Width 5-7
-Prevalence... very sparse
Hair Base Cells: anomocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax
Cells: like abax
-Length -Width
Stomata: like abax
-Length -Width
-Prevalence... mod.
Hairs: like abax
-Length -Width
-Prevalence...
Hair Base Cells: like abax
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Isoberlinia tomentosa

Abaxial surface:
Cell Walls: straight; roundrectangular; easily visible; heavily cutinized
Cells:
-Length 3-7 -Width 3
Stomata: paracytic, large accessory cells
-Length 5-10 -Width 4-5
-Prevalence... dense (more area
with stomata than other cells)
Hairs: 1 cell, fragile
-Length 40-135 -Width 2-3
-Prevalence... mod.
Hair Base Cells: anomocytic
Striations: none seen
Other Structures: nucleus?
visible in cells
-Length -Width
Comments:

## Adaxial surface:

Cell Walls: like abax
Cells: like abax
-Length -Width
Stomata: like abax
-Length 12 -Width 7
-Prevalence... sparse
Hairs: like abax
-Length 60-160 -Width
-Prevalence...
Hair Base Cells: like abax
Striations: none seen
Other Structures: like abax
-Length -Width
Comments:

## Piliostigma thonninqii

Abaxial surface: 32
Cell Walls: straight; rounded; moderately visible; thin

## Cells:

-Length 5-10 -Width 5-8
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: 1 cellz, very fragile, highly transparent, potentially divided, mostly broken
-Length 15-70 -width 4
-Prevalence... quite sparse
Hair Base Cells: actinocytic (5-9)
Striations: none seen
other Structures: nucleus
visible in some cells
-Length -Width
Comments:

Adaxial surface:
Cell Walls: irr.; difficult to see, only veins are prevalent, much noise
Cells: $d=5-10$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: 5 segments, somewhat fragile, mostly whole
-Length 60-250 (470) -Width
6-8
-Prevalence... mod.-dense
Hair Base Cells:
indistinguishable
Striations: none seen
Other Structures: papilloid objects, irregularly clumped
-Length 25 -Width 4
Comments:
Swartzia madaqascariensis
Abaxial surface:
Cell Walls: straight; rounded;
easily visible
Cells: d=4-8
-Length -Width
Stomata: anomocytic, stomatal
ridge, occasionally like cats
eye
-Length 9-14 -Width 6-8
-Prevalence... numerous (2-3)
Hairs: 1 cell
-Length 90-200 -Width 6-7
-Prevalence...

Hair Base Cells: anomocytic Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax, high
visible
Cells: d=6-20
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Coments:
Tamarindus indica

Cell Walls: straight-slightly und.; barely visible (faint, much mesophyll)

> Cells:
-Length 10-17 -Width 5-11
Stomata: paracytic
-Length 5-7 -Width 3-5
-Prevalence... mod.
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

## Adaxial surface:

Cell Walls: like abax; slightmod. und
Cells:
-Length 10-19 -Width 5-14
Stomata: like abax
-Length -Width
-Prevalence... numerous (1-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen Other Structures: none seen
-Length -Width
Comments:
Family: Mimosoideae
Acacia albida
Abaxial surface:
Cell Walls: straight, rounded; poorly visible (faint) Cells:
-Length 8-18 -Width 7-12
Stomata: paracytic 22; most
sedimented over; like abax
-Length -Width
-Prevalence... mod.-numerous
(2-5)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: areas in cell
walls with extra cutin spots, $d=2-3$
-Length -Width
Comments: very messy slide,
frequent long lines of extra
thick cell walls

## Adaxial surface:

Cell Walls: like abax
Cells:
-Length 7-15 -Width 6-12
Stomata: like abax
-Length 5-8 -Width 5-6
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: like abax
-Length -Width
Comments:

## Acacia dudgeoni

Abaxial surface:
Cell Walls: mod. und.; irr.; easily visible
Cells: d=5-15
-Length -Width
Stomata: "paracytic", easily visible
-Length 5-7 -Width 3-6
-Prevalence... mod.-dense (1-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: papillae on
$>50$ of normal cells
-Length -Width
Comments:
Adaxial surface:
Cell Walls: slightly und.; elongate-square
Cells: d=5-15
-Length -Width
Stomata: anomocytic
-Length 7 -Width 3
-Prevalence... rare
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Acacia gourmaensis Abaxial surface:	-Length 45-65 -Width 3-5   -Prevalence... 3 seen   Hair Base Cells: like abax   Striations: none seen	```Cells: -Length 10-20 -Width 6-10 Stomata: none seen -Length -Width```
Cell Walls: slightly und.;	Other Structures: none seen	-Prevalence.
```somewhat squared; easily visible```		Hairs: 1 cell, straight, aligned
Cells: $\mathrm{d}=5-15$		-Length 47-110 -Width
-Length -Width	Acacia sieberana	-Prevalence... mod.
```Stamata: "paracytic", poorly visible```	Abaxial surface:	Hair Base Cells: like abax., spokes more prevalent
-Length 6-8 -Width 5	Cell Walls: straight-slightly	Striations: none seen
-Prevalence... mod. (2-4)	und.; irr.; easily visible	Other Structures: none seen
Hairs: none seen	Cells:	-Length -Width
-Length -Width	-Length 10-17 -Width 5-12	Comments:
-Prevalence.	Stomata: paracytic	
Hair Base Cells: none seen	-Length 9-13 -Width 4-7	
Striations: none seen	-Prevalence... numerous (1-3)	Dichrostachys cinera
Other Structures: papillae on	Hairs: none seen	Abaxial surface:
-Length -Width	-Prevalence.	Cell Walls: highly und.; irr.;
Comments:	Hair Base Cells: none seen	easily visible
	Striations: none seen	Cells: d=10-20
Adaxial surface:	Other Structures: none seen	-Length -Width
Cell Walls: like abax	-Length -Width	Stomata: paracytic, 1 usually
Cells:	Comments: ordered	much smaller, more dense by
-Length 10-25 -Width 5-15		veins and margins
Stomata: none seen	Adaxial surface:	-Length 6-9 -Width 5-6
-Length -Width	Cell Walls: straight; square-	-Prevalence... (1-5)
-Prevalence	rounded	Hairs: 1 cell, slightly bulbous
Hairs: none seen	Cells:	at base
-Length -Width	-Length 10-30 -Width 4-15	-Length 65-135 -Width 10
-Prevalence.	Stamata: none seen	-Prevalence... sparse ( 5 seen)
Hair Base Cells: none seen	-Length -Width	Hair Base Cells: anomocytic
Striations: none seen	-Prevalence.	Striations: none seen
Other Structures: none seen	Hairs: none seen	Other Structures: none seen
-Length -Width	-Length -Width	-Length -Width
Comments: ordered	-Prevalence.	Comments:
	Hair Base Cells: none seen	
Acacia polyacantha	Striations: none seen	Adaxial surface:
	Other Structures: none seen	Cell Walls: like abax; mod-
Abaxial surface:	-Length -Width	highly visible; mod.-highly
Cell Walls: Moderately und.; irr.; poorly visible	Comments: ordered	und.   Cells: like abax
Cells: d=5-15	Albizia chevalieri	-Length -width
-Length -Width		Stomata: paracytic-anomocytic,
```Stamata: "paracytic", poorly visible```	Abaxial surface:   Cell Walls: slightly-mod. und.;	not on veins; easily seen -Length 7-8 -Width 5-6
-Length 6-8 -Width 4-5	irr.; poorly-mod. vis.	-Prevalence... dense (2)
-Prevalence... mod.-dense (1-4)	Cells:	Hairs: like abax, grouped
Hairs: 1 cell, straight	-Length 10-15 -Width 5-10	-Length 50-165 -Width 7-10
-Length 45 -Width 3	Stamata: paracytic	-Prevalence... sparse (near
-Prevalence... sparse (1 seen	-Length 6-8 -Width 3-5	margins)
on vein or leaf margin)	-Prevalence... numerous (0-2)	Hair Base Cells: actinocytic
Hair Base Cells: anomocytic	Hairs: slightly bent	(4)
Striations: none seen	-Length 35-140 -Width 4-6	Striations: none seen
Other Structures: some papillae	-Prevalence...	Other Structures: none seen
-Length -Width	slight lines of cell walls	Comments:
Comments:	radiating outward like 5-6 spokes	Entada africana
Adaxial surface:	Striations: none seen	
Cell Walls: like abax; squared; moderately visible	Other Structures: occasional papillae, $d=5-6$, clumped	Abaxial surface: Cell Walls: straight; irr.;
Cells: d=5-10	-Length -Width	easily seen
-Length -Width	Comments :	Cells:
Stomata: none seen		-Length 8-23 -Width 4-12
-Length -Width	Adaxial surface:	Stomata: paracytic
-Prevalence...	Cell Walls: slightly und.; 4	-Length 4-9 -Width 3-5
Hairs: like abax	sided; highly vis.	-Prevalence... numerous (1-3)

Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: 2 stomatal
associative cells heavily
cutinized or striated above
Adaxial surface:
Cell Walls: like abax; 4-6
sides
Cells:
-Length 13-30 -Width 10-20
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
other Structures: none seen
-Length -Width
Comments:

Mimosa pigra

Abaxial surface:

Cell Walls: straight; elongate

 together; moderately visible (thin)Celle:
-Length 8-17 -Width 4-10
Stomata: paracytic, 1 cell larger than other, aligned with other cells
-Length 6-7 -Width 4-5
-Prevalence...
Hairs: 1 cell, occasionally
hooked at base, like needles
-Length 110-190 -Width 2-3
-Prevalence... sparse-mod.
Hair Base Cells: anomocyticactinocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax; (meso)

Cells:

-Length 9-30 -Width 5-8
Stomata:
-Length 5-6 -Width 3-4
-Prevalence...
Hairs: like abax
-Length 65-165 -Width 2-3
-Prevalence...
Hair Base Cells: like abax
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Parkia biglobosa
Abaxial surface:
Cell Walls: slightly und.;
irr.; easily visible
Cells: d=3-10
-Length -Width
Stomata: paracytic, not on
veins, highly visible
-Length 10-12 -Width 5-7
-Prevalence... dense (1-2)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures:
-Length -Width
Comments:

Adaxial surface:

Cell Walls: like abax; rounded; thick
Cells: d=3-14
-Length -Width
Stamata: none seen
-Length -width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: nucleus
visible in venous cells, $d=2-$
3; occasional small papillae
on larger cells giving
appearance of und. cell wall, $\mathrm{d}=1-2$
-Length -Width
Comments: much mesophyll

Prosopsis africana

Abaxial surface: ?
Cell Walls: straight; rounded; easily visible
Cells: d=4-12
-Length -Width
Stomata: paracytic, 1 cell usually larger than other, guard cells clear, rest green
-Length 8-9 -Width 6-7
-Prevalence... numerous (2-3)
Hairs: 1 cell, rough edged
-Length 55-65 -Width 4
-Prevalence... sparse
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: nucleus seen
in all cells, $d=1$
-Length -Width
Comments:

Adaxial surface:

Cell Walls: like abax
Cells: like abax
-Length -Width
Stomata: like abax
-Length -Width
-Prevalence...
Hairs: like abax
-Length 65-105 -Width 4-5
-Prevalence...
Hair Base Cells: like abax
Striations: none seen
Other Structures: like abax
-Length -Width
Comments:
Family: Papilionideae
Cajanus kerstingii
Abaxial surface: ?
Cell Walls: none seen
Cells: none seen
-Length -width
Stomata: n.s
-Length -width
-Prevalence...
Hairs: 1 cell, stout, tapering
to a point during distal 1/3
-Length 40-80 -Width 4-5
-Prevalence... dense
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: thick, semi-ordered
covering of succulent hairs
Adaxial surface:
Cell Walls: none seen
Cells: none seen
-Length -width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax
-Length 100-150 -Width 4-5
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: like abax

Crotalaria goreensis

Abaxial surface:

Cell Walls: slight-moderately und.; irr.; moderately visible; apparently double or extra-thick in places
Cells: d=10-50
-Length -width
Stomata: anomocytic
-Length 12-15 -Width 5-6
-Prevalence...
Hairs: 1 cell, somewhat narrowed at base, tapering
entire length, more on veins
-Length 125 -Width 11
-Prevalence... only 1 seen
Hair Base Cells: anomocytic?
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Family: Papilionideae

```
Cell Walls: like abax;
    moderately und.
Cells: d=15-50
-Length -Width
Stomata: anisocytic
-Length 10 -Width 6
-Prevalence...
Hairs: like abax
-Length 80-210 -Width 9-10
-Prevalence... mod.
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Cell Walls: like abax;
moderately und.
Cells: \(\mathrm{d}=15-50\)
-Length -Width
Stamata: anisocytic
-Length 10 -Width 6
revalence..
Hairs: like abax
-Prevalence... mod.
Hair Base Cells: actinocytic
Striations: none seen
-Length -Width
Comments:
```

Crotalaria ononoides
Abaxial surface:
Cell Walls: straight; irr.;
poorly visible (thin)
Cells: $\mathrm{d}=10-30$
-Length -Width
Stomata: anomocytic?
-Length 5-6 -Width 4-5
-Prevalence...
Hairs: 1 cell
-Length 200-420 ${ }^{+}$-Width 10-13
-Prevalence... mod.
Hair Base Cells: actinocytic
Striations: none seen
other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax
Cells: like fillers between
stomatal associative cells
-Length 30-50 -Width 25-35
Stomata: anisocytic-helicocytic
-Length 7-10 -Width 7-9
-Prevalence...
Hairs: attached $1 / 5$ from 1 end
-Length 250 -Width 14
-Prevalence... 1 seen
Hair Base Cells: ?
Striations: faint, erratic
Other Structures: none seen
Comments:
Desmodium spp.
Abaxial surface:
Cell Walls: slightly-mod. und.;
irr.; poorly visible
Cells: d=3-10
-Length -Width
Stomata: paricytic?
-Length 7 -Width 5
-Prevalence... mod.
Hairs: 1 cell, succulent,
somewhat ordered
-Length 60-300 -Width 3-5
-Prevalence... numerous
Hair Base Cells: actinocytic?
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Crotalaria ononoides
Abaxial surface:
Cell Walls: straight; irr.; porly visible (thin)
Cells: $\mathrm{d}=10-30$
Stomata: anomocytic?
-Length 5-6 -Width 4-5
-Prevalence...
Hairs: 1 cell
-Length 200-420 ${ }^{+}$-Width 10-13
-Prevalence... mod.
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax
Cells: like fillers between
stomatal associative cells
-Length $30-50 \quad$-Width 25-35
Stamata: anisocytic-helicocytic
-Length 7-10 -Width 7-9
-Prevalence...
Hairs: attached $1 / 5$ from 1 end
-Length $250 \quad$-Width 14
-Prevalence... 14 seen
Hair Base Cells: ?
Striations: faint, erratic
Other Structures: none seen
Comments:

Desmodium spp.

Abaxial surface:
Cell Walls: slightly-mod. und.;
irr.; poorly visible
Cells: $d=3-10$
-Length -Width
Stomata: paricytic?
-Length 7 -Width 5
-Prevalence... mod.
Hairs: 1 cell, succulent,
somewhat ordered
Width 3-5
-prevalence... numerous
Striations: none seen
Other Structures: none seen
-Width
Comments:

Adaxial surface:
Cell Walls: like abax; slightly visible due to thin cutin

Cells: like abax

-Length -Width
Stomata: like abax
-Length -Width
-Prevalence...
Hairs: like abax; disordered
-Length 60-150 -Width 3-7
-Prevalence...
Hair Base Cells: like abax
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Desmodium velutinum

Abaxial surface: ?

Cell Walls: slightly-mod. und.;
irr.; clearly visible
Cells: d=5-20
-Length -Width
Stomata: paracytic
-Length 10 -Width 5
-Prevalence... mod.
Hairs: 1 cell, straight,
thicker on veins, sometimes
hooked at end, collared base
-Length 45-330 -Width 7-19
-Prevalence... mod.
Hair Base Cells: actinocytic (14-20)
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface: 3??
Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:
Indigofera bracteolata
Abaxial surface: ?
Cell Walls: straight; 5-sided; poorly visible due to thin cuticle
Cells: $\mathrm{d}=10-15$?
-Length -Width
Stomata: accessory cells not visible
-Length 4 -Width 3
-Prevalence... sparse
Hairs: 2 sided, attached in middle with oval cell (l=15-
$30, w=7$), apparently hollow -Length 15/35-70/170 -Width 4-13
-Prevalence...
Hair Base Cells: actinocytic?
Striations: none seen
Other Structures: papillae on
most cells, $\mathrm{d}=4$
-Length -Width
Comments:

Adaxial surface:

Cell Walls: like abax
Cells: like abax
-Length -Width
Stomata: like abax
-Length 6 -Width 4
-Prevalence...
Hairs: like abax
-Length 15/30-140/250 -Width 5-25
-Prevalence...
Hair Base Cells: actinocytic (8-22)
Striations: none seen
Other Structures: like abax
-Length -Width
Comments:

Indigofera dendroides

Abaxial surface: ?
Cell Walls: slightly und.;
irr.; poorly visible
Cells: $d=5-10$
-Length -Width
Stomata: anomocytic
-Length 6 -Width 3
-Prevalence... mod.
Hairs: 1 segment, attached in middle
-Length 30-50/60-110 -Width
5-10
-Prevalence...
Hair Base Cells: anomocytic
Striations: none seen
Other Structures: many
pockmarks...may be mesophyll
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax
Cells: like abax
-Length -Width
Stomata: like abax
-Length -width
-Prevalence...
Hairs: like abax
-Length 40-100/60-140 -Width 5-
20
-Prevalence...
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: like abax
-Length -Width
Comments:
Lonchocarpus laxiflora
Abaxial surface:
Cell Walls: straight; rounded;
easily visible
Cells: d=5-15
-Length -Width
Stomata: anomocytic-paracytic,
somewhat grouped
-Length 7-11 -Width 4-6
-Prevalence... numerous (0-1)
Hairs: 2 cell, first like a
collar
-Length 60-80 -Width 6
-Prevalence... sparse
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: papillae,
mostly on smaller cells, d=d
of cell
-Length -Width
Comments:
Adaxial surface:
Cell walls: like abax; 4-5
sided; highly visible
Cells: d=7-20
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax
-Length $60-90$-Width 5
-Prevalence...
Hair Base Cells: like abax
Striations: none seen
Other Structures: like abax
-Length -Width
Comments:

Pericopsis laxiflora

Abaxial surface:
Cell Walls: straight; squared; easily visible
Cells: $d=5-10$
-Length -Width
Stomata: paracytic, strung
together, cells between
heavily cutinized
-Length 7-10 -Width 5-8
-Prevalence...
Hairs: 1 cell
-Length 45-180 -Width 5-6
-Prevalence... sparse
Hair Base Cells: actinocytic (6-10)
Striations: none seen
Other Structures: 12 sided
hair seen, but this many be
from a different sample
-Length -Width
Comments:

Adaxial surface:

Cell Walls: like abax; squaredrounded
Cells: d=4-12
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...

Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Pterocarpus erinaceus

Abaxial surface:
Cell Walls: straight; squared; mod. visible
Cells:
-Length 5-15 -Width 5-10
Stomata: paracytic-tetracytic
-Length 7-13 5-6 -Width
-Prevalence... numerous (0-2)
Hairs: 1 cell, like daggers
with rough blades
-Length 40-160 -Width 5-9
-Prevalence... mod.
Hair Base Cells: actinocytic (8-12)
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: veins "frequent"
Adaxial surface:
Cell Walls: slightly visible; somewhat in rows; easily visible
Cells: $d=10-15$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: like abax

Pterocarpus erinaceus

Abaxial surface:
Cell Walls: slightly-mod. und.;
irr.; mod. visible
Cells: $\mathrm{d}=7-15$
-Length -Width
Stomata: paracytic
-Length 10-14 -Width 6-8
-Prevalence... numerous (1-2)
Hairs: 1 cell, somewhat bulbous at base, sturdy appearance
-Length 35-170 -Width 7-10
-Prevalence... sparse-mod.
Hair Base Cells: actinocytic (8-12)
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: veins "frequent"
Adaxial surface

Cell Walls: like abax; slightly und.
Cells: $\mathrm{d}=10-15$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: like abax

Sesbania bispinosa

Abaxial surface:
Cell Walls: straight-slightly und.; irr.; poorly visible (thin); several layers Cells: $\mathrm{d}=20-40$
-Length -Width
Stomata: anomocytic, not
clearly ${ }_{3}$ defined
-Length $6^{3}-18$-Width $3^{3}-8$
-Prevalence... numerous ($0-1$)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: thin, covering all, erratic
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax
Cells:
-Length 20-45 -Width 12-22
Stomata: like abax
-Length -Width
-Prevalence... mod. (1-2)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen Striations: like abax
Other Structures: none seen
Comments:

Tephrosia bracteolata

bad slide

Abaxial surface:
Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width

Family: Papilionideae
Coments:
Adaxial surface:
Cell Walls:
Cells:
-Length -Width
Stamata: -Width
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:

Tephrosia eleqans

Abaxial surface:

Cell Walls: straight; squared slightly; poorly visible due to thin cuticle
Cells:
-Length 10-20 -Width 10-15
Stomata: paracytic?
-Length 7-9 -Width 4-6
-Prevalence... mod.
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: actinocytic, mod. numbers
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax
Cells: d=5-15
-Length -Width
Stomata: like abax
-Length 6-9 -Width 5-6
-Prevalence... mod. (2-4)
Hairs: 1 cell, succulent
-Length 90-295 -Width 6-8
-Prevalence... numerous
Hair Base Cells: actinocytic?
Striations: none seen Other Structures: none seen
-Length -Width
Comments:

Xeroderris stuhlmannii

Abaxial surface:
Cell Walls: s.n.
Cells: none seen
-Length -Width
Stomata: numerous
-Length 13 -Width 8
-Prevalence...
Hairs: 1 cell
-Length 40-115 -Width 5
-Prevalence... mod.
Hair Base Cells: none seen
Striations: none seen
Other Structures: almost
completely covered by
papillae, $d=3-10$
-Length -Width
Comments:
Adaxial surface:
Cell Walls: straight; 5-7
sided; easily seen; main walls
sandwiched between 2 uniform
layers of more wall. . very
thick
Cells:
-Length 10-30 -Width 7-14
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax
-Length 9-140 -Width 8-9
-Prevalence... sparse
Hair Base Cells: actinocytic, mod. numbers
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Family: Liliaceae

Asparaqus flagellaris

Abaxial surface:
Cell Walls: straight;
rectangular; mod. vis.
Cells:
-Length 120 -Width 4-6
Stomata: aligned with cells
-Length 7-9 -Width 5-6
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: generally resembling
striated muscle
Adaxial surface:
Cell Walls:
Cells:
-Length -Width
Stamata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:
Asparaqus schroederi
Abaxial surface:
Cell Walls: straight;
rectangular; mod. vis.
Cells:
-Length 120 -Width 4-6
Stomata: aligned with cells
-Length 5-6 -Width 7-9
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: generally resembling
striated muscle
Adaxial surface:
Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:
Strychnos innocua
Abaxial surface:
Cell Walls: straight; irr.squared; easily vis.

Cells:

-Length 10-22 -Width 5-8
Stomata: hexacytic
-Length 11-17 -Width 6-8
-Prevalence... dense (1-2)
Hairs: 1 cell, rough edges, hollow but separated inside, extreme base enlarged on veins
-Length 100-160 -Width 9
-Prevalence...
Hair Base Cells: venous
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: none seen
Adaxial surface:
Cell Walls: like abax; 4-6 sided
Cells: d=5-18
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax
-Length 65-110 -Width 9-10
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Family: Loganiaceae

Strychnos spinosu	-Length -Width -Prevalence...	-Length -Width Comments:
Abaxial surface:	Hair Base Cells: none seen	
Cell Walls: straight; squared-	Striations: like abax	Adaxial surface:
rounded; mod. vis.	Other Structures: none seen	Cell Walls: straight-slightly
Cells:	-Length -Width	und.; 5-8 sides; rounded-
-Length 10-25 -Width 7-13	Comments:	elongate; apparently double
Stomata: tetracytic		walls
-Length 10-14 -Width 6-8	Tapianthus dondoneifolius	Cells: none seen
-Prevalence... numerous (1-2)		-Length -Width
Hairs: none seen	Abaxial surface:	Stomata: like abax
-Length -Width	Cell Walls: straight; squared-	-Length -Width
-Prevalence.	irr.; easily vis.	-Prevalence.
Hair Base Cells: none seen	Cells:	Hairs: like abax, 2-4 hairs (4)
Striations: encircling stomata,	-Length 15-32 -Width 7-21	-Length 30-95 -Width 6-10
not always prevalent	Stomata: paracytic	-Prevalence
Other Structures: none seen	-Length 15-24 -Width 9-15	Hair Base Cells: like abax
-Length -Width	-Prevalence.	Striations: none se
Comments:	Hairs: none seen	Other Structures: none seen
	-Length -Width	-Length -Width
Adaxial surface:	-Prevalence.	Comments:
Cell Walls: like abax; greatly thickened; easily vis.	Hair Base Cells: none seen Striations: prevalent, usually	Wissadula amlissima
Cells:	flowing perpendicular to	
-Length 10-25 -Width 7-15	stomata	Abaxial surface:
Stomata: like abax	Other Structures: none seen	Cell Walls: slightly und.;
-Length -Width	-Length -Width	uniform; highly vis.
-Prevalence.	Comments:	Cells:
Hairs: none seen		-Length 10 -Width 5
-Length -Width	Adaxial surface:	Stomata: possibly
-Prevalence.	Cell Walls: like abax; mod.	hemiparicytic, difficult to
Hair Base Cells: none seen	vis. (mesophyll)	see
Striations: none seen	Cells:	-Length 6^{2}-Width 3^{2}
Other Structures: none seen	-Length 13-30 -Width 9-18	-Prevalence... possibly
-Length -Width	Stomata: like abax	numerous
Comments :	-Length -Width	Hairs: stellate, 8 hairs,
	-Prevalence.	bulbous base, tapering entire
Tapianthus belvisii	Hairs: none seen	length, straight, more on
	-Length -Width	veins
Abaxial surface:	-Prevalence	-Length 15-25 -Width 2-4
Cell Walls: straight; irr.;	Hair Base Cells: none seen	-Prevalence... numerous
mod. vis. (mesophyll)	Striations: not as prevalent as	Hair Base Cells: apparently all
Cells:	abax, but still there	venous
-Length 17-37 -Width 10-18	Other Structures: none seen	Striations: none seen
Stamata: paracytic	-Length -Width	Other Structures: none seen
-Length 9-21 -Width 5-6 (911)	Comments:	$\begin{aligned} & \text {-Length -Width } \\ & \text { Comments: } \end{aligned}$
-Prevalence... numerous (1-2)	Family: Malvacaea	
Hairs: none seen		Adaxial surface:
-Length -Width	Hibiscus asper	Cell Walls: none seen
-Prevalence.		Cells: none seen
Hair Base Cells: none seen	Abaxial surface:	-Length -Width
Striations: extending out	Cell Walls: slightly und.;	Stomata: none seen
perpendicularly from larger	irr.; mod. vis.	-Length -Width
stomata	Cells: $\mathrm{d}=10-30$	-Prevalence...
Other Structures: none seen	-Length -Width	Hairs:
-Length -Width	Stomata: paracytic; very small,	-Length 35-60 -Width 2-4
Comments: occasional long lines	thin accessory cells	-Prevalenc
of extra thick cell walls	apparently with larger cell (difficult to see)	Hair Base Cells: none seen Striations: none seen
Adaxial surface:	-Length 10 -Width 5	Other Structures: none seen
Cell Walls: like abax; easily	-Prevalence... numerous	-Length -Width
vis.; doubled	Hairs: stellate, 1-8 hairs (4);	Comments:
Cells: like abax	somewhat more on veins	
-Length -Width	-Length 70-130 -Width 7-25	Family: Meliaceae
Stomata: like abax; paracytic-	-Prevalence... mod.	
tetracytic	Hair Base Cells: somewhat	Khaya seneqalensis
-Length -Width	actinocytic (4-8)	
-Prevalence...	Striations: none seen	Abaxial surface:
Hairs: none seen	Other Structures: none seen	Cell Walls: straight; irr.;

Family: Meliaceae
easily vis.
Cells:
-Length 2-15 -Width 1-8 Stomata: anomocytic-cyclocyticactinocytic, poorly vis.
-Length 6-11 -Width 5-8
-Prevalence... numerous
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen Striations: flow around stomata other structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax
Cells:
-Length 7-18 -Width $5-12$
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: cyclocytic-
actinocytic, sparse, with 2
rows of cells
Striations: faint, flowing in
streams, many areas where not
vis.
Other Structures: none seen
-Length -Width
Comments:

Pseudocerela kotschyi

Abaxial surface:

Cell Walls: none seen (possibly straight)
Cells: none seen
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: 1-6 segments, final
segment sometimes branched,
many more on veins
-Length 50-300 -Width 3-13
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: pock-marks,
d=3-5, elliptic-circular,
connected by lines
-Length -Width
Comments:

Adaxial surface:

Cell Walls: straight, squared, easily seen
Cells: $\mathrm{d}=5-15$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax
-Length 30-150 -Width 7-10
-Prevalence...

Hair Base Cells: anomocytic Striations: prevalent,
radiating from hair bases Other Structures: none seen -Length -Width Comments:

Trichilia emetica

Abaxial surface:
Cell Walls: straight-slightly
und.; irr.-square-round.; mod.
vis.
Cells:
-Length 5-15 -Width 4-8
Stomata: anomocytic-paracytic?
-Length 14-19 -Width 8-12
-Prevalence... numerous
Hairs: 1 cell, rough edges, on veins
-Length 55-170 -Width 7-9
-Prevalence... sparse
Hair Base Cells: venous
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Adaxial surface:
Cell Walls: like abax; poorly
vis.; wide
Cells: d=5-16
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: difficult to see due to "heaviness", very thick cuticle

Family: Moraceae

Ficus glumosa

Abaxial surface:
Cell Walls: straight; irr.; poorly vis. (striations, faint)
Cells:
-Length 10-20 -Width 5-15
Stomata:
-Length 6-8 -Width 4-6
-Prevalence... mod. ?
Hairs: 1 cell, tending towards veins, hollow
-Length 30-265 -Width 5-7
-Prevalence... sparse
Hair Base Cells: actinocytic
Striations: radiating from hairs and some stomata "not flowing"
Other Structures: none seen
-Length -Width

Comments:

Adaxial surface:
Cell Walls: like abax; easily
vis.; heavily cutinized
Cells: like abax
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax
-Length 30-115 -Width 7-10
-Prevalence...
Hair Base Cells: like abax
Striations: none seen
Other Structures: none seen
-Length -Width
Coments: apparent double layer
of cells

Ficus ingens

Abaxial surface:

Cell Walls: straight; roundirr.; poor-mod. vis. (mesophyll)
Cells:
-Length 3-9 -Width 2-7
Stamata: most anomocytic, larger "cyclocytic"
-Length 6-22 -Width 5-9
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen Striations: faint, radiating
from stomata and bag hairs
Other Structures: bag hairs, $d=15-30$
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax; 4-6
sided
Cells: d=11-17
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Ficus platyphylla
Abaxial surface:
Cell Walls: straight; irr.;
barely vis. (clutter!)
Cells:
-Length 10-20 -Width 5-15
Stomata:
-Length 8-10 -Width 5-6
-Prevalence... sparse

Family: Moraceae

Hairs: none seen -Length -Width	irr.; mod.-highly vis. Cells: d=5-10	-Prevalence... Hair Base Cells: none seen
-Prevalence..	-Length -Width	Striations: none seen
Hair Base Cells: none seen	Stomata: anomocytic-	Other Structures: none seen
Striations: none seen	paracytic?3; apparent circle	-Length -Width
Other Structures: funnel shaped holes 3??, $d=14-18$, inner $d=2-$	in middle of stomata, $d=2-4$, usually elongate	Comments:
3, mod.-sparse numbers	-Length 7-9 -Width 5-6	Family: Oleaceae
-Length -Width	-Prevalence... dense (1-2)	
Comments:	Hairs: none seen	Jasminium kerstingii
	-Length -width	
Adaxial surface:	-Prevalence.	Abaxial surface:
```Cell Walls: like abax; poorly vis. (mesophyll)```	Hair Base Cells: potentially actinocytic with 6-8 cells (2	```Cell Walls: straight; irr. (3-6 sides); easily seen```
Cells: d=7-20	seen)	Cells: d=8-15
-Length -Width	Striations: none seen	-Length -Width
Stomata: none seen	Other Structures: potential	Stamata: cyclocytic-anomocytic
-Length -Width	papillae on peninsulas	-Length 8-12 -Width 6-9
-Prevalence.	-Length -width	-Prevalence... mod. (3-6)
Hairs: 1 cell, like thorns -Length 15-27 -Width 6	Comments:	Hairs: 1-5 segments, larger hairs curved
-Prevalence... sparse-mod.	Adaxial surface:	-Length 30-100 -Width 7-11
Hair Base Cells: actinocytic	Cell Walls: mod. und.; irr.;	-Prevalence...
Striations: none seen	mod. vis. (much mesophyll)	Hair Base Cells: (paracytic)-
Other Structures: like abax,	Cells: like abax	cyclocytic
numerous (1-5)	-Length -Width	Striations: blanket of brook
-Length -width	Stomata: none seen	trout type striations
Comments:	-Length -Width	radiating from larger hairs
	-Prevalence...	Other Structures: none seen
Ficus sur	Hairs: none seen	-Length -Width
	-Length -width	Comments:
bad slide	-Prevalence...	
Abaxial surface:	Hair Base Cells: like abax	Adaxial surface:
Cell Walls:	Striations: none seen	Cell Walls: like abax
Cells:	Other Structures: like abax	Cells: like abax
-Length -Width	-Length -Width	-Length -width
Stomata:	Comments:	Stomata: like abax
-Length -Width		-Length 8-12 -Width 6-8
-Prevalence.	Family: Olacaceae	-Prevalence... mod. (3-6)
Hairs:		Hairs: 1-3 segments (mostly 2),
-Length -Width	Ximenia americana	like abax
-Prevalence.		-Length 30-125 -Width 7-10
Hair Base Cells:	Abaxial surface:	-Prevalence... mod.
Striations:	Cell Walls: straight-slightly	Hair Base Cells: like abax
Other Structures:	und.; irr.; mod.-easily vis.	Striations: non-continuous
-Length -Width	Cells:	lines radiating from stomatal
Comments:	-Length 6-22 -Width 4-10	hairs
Adaxial surface:	Stomata: tetracytic-hexacytic, not stained	Other Structures: none seen -Length -Width
Cell Walls:	-Length 6-10 -Width 4-6	Comments:
Cells:	-Prevalence... numerous (1-3)	
-Length -Width	Hairs: none seen	Family: Opileaceae
Stomata:	-Length -width	
-Length -Width	-Prevalence.	Opilia celtidifolia
-Prevalence.	Hair Base Cells: none seen	
Hairs:	Striations: none seen	Abaxial surface:
-Length -Width	Other Structures: none seen	Cell Walls: straight; squared;
-Prevalence...	-Length -Width	easily seen
Hair Base Cells:	Comments:	Cells:
Striations:		-Length 6-16 -Width 3-6
Other Structures:	Adaxial surface:	Stomata: tetracytic(-
-Length -Width	Cell Walls: like abax; easily	hexacytic?)
Comments:	vis.; irr.-squared	-Length 9-11 -Width 6-8
	Cells: like abax	-Prevalence... numerous (1-3)
Family: Myrtaceae	-Length -Width	Hairs: none seen
	Stomata: like abax	-Length -Width
Syzygium guineense	-Length -Width	-Prevalence...
	-Prevalence...	Hair Base Cells: none seen
Abaxial surface:	Hairs: none seen	Striations: none seen
Cell Walls: slightly und.;	-Length -Width	Other Structures: none seen

Family: Opileaceae

-Length -Width	Stomata: anomocytic?	Family: Rosaceae
Comments:	-Length 6-9 -Width 6-8	
	-Prevalence... numerous?	Parimari curatellifolia
Adaxial surface:	Hairs: 1 cell, tending towards	
Cell Walls: like abax	veins, apparently hollow, not	Abaxial surface:
Cells:	ordered	Cell Walls:
-Length 7-17 -Width 4-10	-Length 15-285 -Width 3-8	Cells:
Stomata: none seen	-Prevalence... mod.-dense	-Length -Width
-Length -Width	Hair Base Cells: actinocytic-	Stomata:
-Prevalence.	anomocytic	-Length -Width
Hairs: none seen	Striations: none seen	-Prevalence.
-Length -Width	Other Structures: none seen	Hairs:
-Prevalence.	-Length -Width	-Length -Width
Hair Base Cells: none seen	Comments :	-Prevalence.
Striations: none seen		Hair Base Cells:
Other Structures: none seen	Adaxial surface:	Striations:
-Length -Width	Cell Walls: straight; 4-6	Other Structures:
Comments:	sided; easily seen	-Length -Width
	Cells: d=7-14	Comments:
Family: Polygalaceae	-Length -Width	
	Stomata: anomocytic	Adaxial surface:
Securidaea longepedunculata	-Length 14 -Width 7	Cell Walls: straight; 4-7
Abaxial surface:	-Prevalence... sparse (1 seen)	sided; mod. vis. (2 layers,
Cell Walls: straight; square-	-Length 27-335 -Width 5-9	Cells: $\mathrm{d}=3-11$
rounded; easily seen	-Prevalence... sparse-mod.	-Length -Width
Cells: $\mathrm{d}=5-10$	Hair Base Cells: like abax	Stomata: none seen
-Length -Width	Striations: none seen	-Length -Width
Stomata: anomocytic (6)(-	Other Structures: none seen	-Prevalence.
cyclocytic?)	-Length -Width	Hairs: none seen
-Length 8-13 -Width 6-8	Comments:	-Length -Width
-Prevalence... mod. 1-3		-Prevalence.
```Hairs: 1 cell, apparently hollow```	Ziziphus mucronata	Hair Base Cells: actinocytic, mod. numbers
-Length 25-130 -Width 3-8	Abaxial surface:	Striations: none seen
-Prevalence... mod. (-sparse)	Cell Walls: straight; rounded;	Other Structures: none seen
Hair Base Cells: anomocytic-	easily seen	-Length -Width
actinocytic	Cells: d=4-10	Comments:
Striations: none seen	-Length -width	
Other Structures: papillae vis.	Stomata: anomocytic	Family: Rubiaceae
-Length -Width	-Prevalence... numerous (0-2)	Borreria filifolia
Comments:	Hairs: 1 cell, hollow	
	-Length 40-215 -Width 4-16	Abaxial surface: ?
Adaxial surface:	-Prevalence... sparse	Cell Wails: straight; elongate
Cell Walls: like abax; squared	Hair Base Cells: actinocytic	like grass; mod. vis.; double
Cells:	Striations: none seen	walls; aligned
-Length 7-20 -Width 7-19	Other Structures: nucleus vis.	Cells:
Stomata: none seen	somewhat in most cells	-Length 20-60 -Width 13-18
-Length -Width	-Length -Width	Stomata: fringed edge, inside
-Prevalence.	Comments:	apparently undifferentiated
Hairs: like abax		-Length 15-25 -Width 10-15
-Length 13-60 -Width 4-5	Adaxial surface:	-Prevalence... numerous (1-3)
-Prevalence... sparse	Cell Walls: like abax; mod.	Hairs: none seen
Hair Base Cells: actinocytic	vis. (mesophyll, 2 layers)	-Length -Width
Striations: none seen	Cells: $\mathrm{d}=6$-16	-Prevalence.
Other Structures: like abax	-Length -Width	Hair Base Cells: none seen
-Length -Width	Stomata: none seen	Striations: faint, random,
Comments:	-Length -Width	mottled
	-Prevalence...	Other Structures: none seen
Family: Rhamnaceae	Hairs: none seen	-Length -Width
	-Length -Width	Comments:
Ziziphus abyssinica	-Prevalence...	
	Hair Base Cells: none seen	Adaxial surface:
Abaxial surface:	Striations: none seen	Cell Walls:
Cell Walls: straight; rounded;	Other Structures: nucleus	Cells:
difficult to see (messy-	highly vis., d=1-2	-Length -Width
hairs/mesophyll)	-Length -Width	Stamata:
Cells: $\mathrm{d}=5-10$	Comments:	-Length -Width
-Length -Width		-Prevalence...

Family: Rubiaceae
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Coments:

Borreria octoden

Abaxial surface:
Cell Walls: slightly und.;
irr.-square; mod.-easily vis.
(double walls)
Cells: squared; irr. d=10-30
-Length 15-40 -Width 8-17
Stamata: tetracytic?
-Length 10-15 -Width 12-22
-Prevalence... numerous (1)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Conments: most of area with
regimented cells, others
highly random, both grouped

Adaxial surface:
Cell Walls: none seen
Cells: none seen
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -width
Conments: like a cutin layer only

Borreria scabra

Abaxial surface:
Cell Walls: slightly und.;
irr.; difficult to see (thin)
Cells: d=10-30
-Length -Width
Stomata: anomocytic-tetracytic,
clustered in areas of
striations
-Length 9-13 -Width 4-7
-Prevalence... numerous
Hairs: hollow, wide, star
shaped base
-Length 23-260 -Width 7-45
-Prevalence...
Hair Base Cells: actinocytic
(6-10)
Striations: occasional "roads"
of striations
Other Structures: papillae d=3-
6

Abaxial surface:
il Walls: slightly und.
irr.; difficult to see (thin)
Wenth Width
Stomata: anomocytic-tetracytic, clustered in areas of
-Length 9-13 -Width 4-7
-Prevalence... numerous
Hairs: hollow, wide, star
-Length 23-260 -Width 7-45
Prevalence... (6-10)
triations: occasional "roads"
iations 6
-Length -Widt
Comments:
Adaxial surface:
Cell Walls: straight; 5-6 sided; easily vis.; heavily cutinized (double walls)
Cells: $d=15-35$
-Length -Width
Stomata: like abax
-Length 12-21 -Width 7-15
-Prevalence...
Hairs: like abax
-Length 50-100 -Width 26-35
-Prevalence... sparse-mod.
Hair Base Cells: like abax
Striations: like abax
Other Structures: like abax
-Length -Width
Coments:

Borreria stachydea

Abaxial surface:
cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:

Adaxial surface:

Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:
Borreria verticilata
Abaxial surface:
Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:
Adaxial surface:
Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:

Boscia salicifolia

Abaxial surface:

Cell Walls: slight-mod. und.;
irr.; mod.-easily vis.
Cells:
-Length 4-15 -Width 3-8
Stomata: cyclocytic-actinocytic
-Length 7-8 -Width 3-4
-Prevalence... mod. (4-7)
Hairs: 1 cell, hollow
-Length 5-95 -Width 10-20
-Prevalence... sparse-mod.
Hair Base Cells: cyclocyticactinocytic
Striations: radiating from
hairs, not highly noticeable
Other Structures: none seen
-Length -Width
Comments:

Adaxial surface:

Cell Walls: like abax.
Cells: like abax.
-Length -Width
Stamata: like abax.
-Length -Width
-Prevalence...
Hairs: like abax.
-Length -Width
-Prevalence... mod.
Hair Base Cells: like abax.
Striations: like abax.
other Structures: none seen
-Length -Width
Comments:

Canthia cornelia

Abaxial surface:
Cell Walls: slightly und.;
irr.; poor-mod. vis.
Cells: d=5-10
-Length -Width
Stomata: paracytic
-Length 8 -Width 6
-Prevalence... numerous
Hairs: 1 cell, straight-
slightly curved, no veins seen
-Length 230-410 -Width 10-17
-Prevalence... sparse-mod.
Hair Base Cells: anomocytic-

Family: Rubiaceae
slightly actinocytic, thicker cutin
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Adaxial surface:

Cell Walls: straight; rounded; easily vis.
Cells: $d=4-14$
-Length -Width
Stomata: like abax
-Length 14 -Width 5
-Prevalence... sparse (1 seen)
Hairs: like abax, longitudinal striations, hollow, rough edges
-Length 75-390 -Width 12-14
-Prevalence...
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Crossopteryx febrifuqa
Abaxial surface:
Cell Walls: straight; rounded;
easily vis.
Cells: $d=5-15$
-Length -Width
Stomata: paracytic
-Length 12-15 -Width 8
-Prevalence... numerous (0-2)
Hairs: 1 cell, on veins only
-Length 55-130 -Width 6-12
-Prevalence... sparse
Hair Base Cells: venous
Striations: none seen
Other Structures: none seen -Length -Width
Comments: occasional lines of thicker cutin

Adaxial surface:
Cell Walls: like abax
Cells: $\mathrm{d}=5-20$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen Striations: none seen Other Structures: none seen -Length -Width
Comments: like abax

Fadogia cienkowskii

Abaxial surface:
Cell Walls: slightly und.; irr.?; poorly vis. (much mesophyll)
Cells: $\mathrm{d}=5-10$
-Length -Width

Stomata: paracytic?
-Length 7-10 -Width 3-5
-Prevalence... dense
Hairs: 1 cell, only on veins, slowly hooked
-Length 220-275 -Width 13-17
-Prevalence... sparse
Hair Base Cells: ?
Striations: highly prevalent,
erratic, dense, radiating from
hair bases
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax; squared; poorly vis. (striations)
Cells: d=8-13
-Length -Width
Stomata: ?3, not covered by striations
-Length 11-14 -Width 6-7
-Prevalence... mod.-sparse
Hairs: 1 cell, tending towards veins
-Length 100-125 -Width 20
-Prevalence...
Hair Base Cells: ?
Striations: like abax
Other Structures: none seen
-Length -Width
Comments:

Feretia apodonthera

Abaxial surface:
Cell Walls: straight; squared; easily vis.
Cells:
-Length 7-20 -Width 5-15
Stomata: paracytic?
-Length 9-13 -Width 6
-Prevalence... numerous (1-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: sporadic, erratic,
prevalent near veins, flowing
past stomata
Other Structures: none seen
-Length -Width
Comments:

Adaxial surface:

Cell Walls: like abax; squaredrounded
Cells: like abax
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: like abax
Other Structures: none seen
-Length -Width

Comments:

Gardenia aqualla

Abaxial surface:
Cell Walls: straight; rounded; heavily cutinized; messy, globular
Cells: $d=7-15$
-Length -Width
Stomata: paracytic?, located in pockets of less cutinized cells
-Length 8-13 -Width 7-9
-Prevalence...
Hairs: 1 cell, tending towards veins
-Length 85-180 -Width 8-18
-Prevalence... mod.
Hair Base Cells: ?
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax;
sometimes 3 layers of cells
seen, not globular
Cells: like abax
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax, dagger like, hollow, not tending toward veins
-Length 50-150 -Width 10-25
-Prevalence...
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: none seen
-Length -Width
Coments: lines of cutinization
encircling other cells

Gardenia erubescens

> Abaxial surface:
> Cell Walls: slightly und.; irr.; poorly vis. (striations)

Cells:
-Length 7-15 -Width 4-12?
Stomata: paracytic, appearance of clams
-Length 4-10 -Width 5-8
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: prominent, like a
mountain range, thick, aligned
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax; squared (mesophyll)

Family: Rubiaceae

Hair Base Cells: none seen Striations: none seen Other Structures: none seen -Length -Width
Comments: frequent long lines of extra thick cell walls encircling 4-15 other cells

Gardenia ternifolia

Abaxial surface:

Cell Walls: straight; roundedsquare; vis.
Cells:
-Length 8-22 -Width 3-10
Stomata: paracytic?
-Length 8-12 -Width 4-6
-Prevalence... dense (1-2)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen Striations: normally radiating from stomata only a short distance
Other Structures: none seen -Length -Width
Coments: occasional long lines of extra-thick cell walls

Adaxial surface:
Cell Walls: like abax; poor-
mod. vis. (mesophyll, diffuse walls)
Cells: d=7-20
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: like abax

Mitragyna inermis

Abaxial surface:
Cell Walls: straight; varying
(square); mod. vis.
Cells: $d=8-25$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen

Striations: small irr.
wrinkles, not aligned
Other Structures: none seen
-Length -Width
Comments:

Adaxial surface:

Cell Walls: like abax; mostly not vis. (thin)
Cells: $d=10-153$
-Length -Width
Stomata: numerous
-Length 8-15 -Width 5-10
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Morelia seneqalensis

Abaxial surface:
Cell Walls: straight-slightly und.; irr.; poorly vis. (mesophyll)
Cells:
-Length 5-15 -Width 4-10
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: over whole, difficult to see (mesophyll), random, slight
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax; easily vis.
Cells:
-Length 5-17 -Width 4-12
Stomata: paracytic?
-Length 7-9 -Width 5-6
-Prevalence... numerous (1-4)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Pavetta cinereifolia
Abaxial surface:
Cell Walls: straight; squared; easily vis.
Cells:
-Length 10-20 -Width 5-15
Stamata: paracytic?, located in

pockets of less cutinized
-Length 7-10 -Width 5-7
-Prevalence...
Hairs: 1 cell, widened at base but peg foot vis. below, hollow, especially on veins
-Length 30-115 -Width 9-25
. mod.-dens
Hair Base Cells: anomocytic
Striations: a few "cuts" radiating from hairs and irregularly placed otherwise, more like slight wrinkles
Other Structures: none seen
ngth -Width
omments: occasional lines of

Adaxial surface:
Cell Walls: like abax
Cells: like abax
Length -Width
Stomata: none seen
-Width
-Prevalence...
-Length 30-115 -Width 9-25
-Prevalence... mod.
Hair Base Cells: like abax
Striations: like abax
Structures: none seen
-Length -Width
Comments: like abax
-

straight; irr.

easily vis.; multiple wall
-Length 8-25 -Width 5-15
Stomata: anomocytic
Length 8-13 -Width 6-9
-Prevalence...
Hairs: none seen
-Length -Width
revalence. .
Hair Base Cells: none seen
Striations? none seen
ther Structures: none seen
-Length -Width
Comments:

Adaxial surface:

Cell Walls: like abax
s: d=8-23
-Length -Width
actinocytic
-Length 20 -Width 10
valence... 1 seen
airs: none seen
-Length -Width
revalence...

Other Structures: none seen
-Length -Width
of extra thick cell walls

Rytigynia seneqalensis
Abaxial surface:
Cell Walls: straight; irr.; not much noise
Cells:
-Length 7-19 -Width 5-12
Stomata:
-Length 10-14 -Width 6-8
-Prevalence... sparse
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: faint, over whole, radiating perpendicular to stomata
Other structures: nucleus plainly vis. in all normal cells
-Length -Width
Comments:

Adaxial surface:

Cell Walls: like abax; much noise (cuticular striations?) especially radiating from stomata
Cells: $\mathrm{d}=5-10$
-Length -Width
Stomata: anomocytic-paracytic
-Length 10-13 -Width 5-7
-Prevalence... mod. (1-8)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: (see cell walls) Other Structures: like abax
-Length -Width
Comments:

Sarcocephalus latifolius

Abaxial surface:
Cell Walls: slightly-mod. und.; irr.; walls not doubled; difficult to see (faint, striations)
Cells:
-Length 6-16 -Width 5-10
Stomata: 37
-Length 9 -Width 5-6
-Prevalence... mod.-numerous
Hairs: with very rough, "raspy"
surface on veins mostly
-Length 10-15 -Width 5-7
-Prevalence... rare-sparse
Hair Base Cells: ?
Striations: usually flowing around stomata, sometimes perpendicular to them, radiating from hairs
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: slightly und.;
irr.; walls doubled, confusing (2 layers)
Cells: $d=10-20$
-Length -Width
Stomata: paracytic
-Length 11-13 -Width 5-7
-Prevalence... rare
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: erratic near
stomata, flowing over whole,
occasionally radiating from 1
spot for unknown reasons
Other Structures: none seen
-Length -Width
Comments:

Family: Supinaceae

Allophyllus cobbe
Abaxial surface: ?
Cell Walls: slightly und.;
irr.; difficult to see
(striations)
Cells: $\mathrm{d}=5-15$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: 1 cell, on veins, rough
baggy cover, hollow
-Length 100-740 -Width 8-25
-Prevalence... sparse-mod.
Hair Base Cells: venous
Striations: covered by erratic striations
Other Structures: multicellular club hair with stalk d^{-5}, 5 cells for stalk like mushrooms or embryos, on veins; also specks
(potentially the nucleus)
visible in cells
-Length 25-45 -Width 15-18
Comments:
Adaxial surface:
Cell Walls: slightly und?;
irr?; hard to see (spots,
general noise)
Cells: $d=5-10$?
-Length -Width
Stomata:
-Length 2-6 -Width 2-4
-Prevalence...
Hairs: like abax.
-Length 45-777 -Width 4-23
-Prevalence...
Hair Base Cells: like abax.
Striations: not noticeable
other structures: like abax.
-Length -Width
Comments:

Zanha golungensis
Abaxial surface:

Cell Walls: slight-mod. und.; mod. vis. (much debris); irr.
Cells:
-Length 6-23 -Width 5-12
Stomata: anomocytic
-Length 5-13 -Width 3-7
-Prevalence... numerous (1-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: bag hairs, $\mathrm{d}=11-14$, actinocytic, sparsemod.
-Length -Width
Comments:

Adaxial surface:
Cell Walls: slightly und.; irr.; mod.-highly vis.
Cells: $\mathrm{d}=10-25$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: nucleus
apparently somewhat apparent
in normal cells
-Length -Width
Comments:

Family: Sapotaceae

Vitellaria paradoxa
Abaxial surface:
Cell Walls: slightly und.;
irr.; easily vis.
Cells:
-Length 5-14 -Width 3-7
Stomata: paracytic?
-Length 8-12 -Width 6-7
-Prevalence... dense (0-1)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen Striations: flowing past, over, and eddying by stomata, mod. vis.
Other Structures: none seen
-Length -Width
Comments:

Adaxial surface:

Cell Walls: like abax.;
squared-irr.
Cells:
-Length 7-15 -Width 4-10
Stomata: concentrated in 1
area, highly vis. dots in four corners $d=2$
-Length 10 -Width 7-9
-Prevalence...

Family: Sapotaceae

Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: actinocytic, sparse
Striations: flowing over whole
Other Structures: none seen
-Length -Width
Comments:

Family: Simaroubaceae
guassia undulata
Abaxial surface:
Cell Walls: straight; 4-7
sided; clearly vis.
Cells: d=5-15
-Length -Width
Stomata: paracytic-cyclocytic?, thicker cutin obstructs cells here, irr. line encompassing stomata
-Length 10-15 -Width 7-10
-Prevalence... numerous (1-3)
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: slight, tending to
circle stomata
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: rounded; dots where cell walls meet, $d=1-2$
Cells: like abax.
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: somewhat straight, wandering
Other Structures: possible very faint bag hairs growing from
larger cells, $d=10-23$
-Length -Width
Comments:
Family: Sterculiaceae

Cola laurifolia

Abaxial surface:

Cell Walls: straight; squared-
irr.; easily vis.
Cells: $d=3-9$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...

Hair Base Cells: none seen
Striations: none seen
Other Structures: scar-like structures with heavily cutinized, smaller cells surrounding, cyclocytic, $\mathrm{d}=5$ 15, numerous
-Length -Width
Comments:

Adaxial surface:
Cell Walls: like abax.
Cells:
-Length 5-13 -Width 4-9
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: like abax.,
$\mathrm{d}=10-15$
-Length -Width
Comments:

Sterculia setigera

Abaxial surface:
Cell Walls: straight-curved; 46 sided; very difficult to see due to lack of cutin
Cells: d=5-10
-Length -Width
Stomata: 3, difficult to see
-Length 10-12 -Width 7
-Prevalence... numerous-dense
Hairs: stellate (1-8), only on veins, attached to each other above base ($05-20$)
-Length 70-140 -Width 10
-Prevalence... mod.-dense
Hair Base Cells: venous
Striations: none seen
Other Structures: strange hair-
like structure apparently hollow, fragile, leaving a circular mark where attached, sparse
-Length 8-20/60-100 -Width 8-20/23-30
Comments: veins numerous

Adaxial surface:
Cell Walls: like abax., somewhat difficult to see
Cells: like abax.
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax., (1-6)
-Length 50-155 -Width 6-10
-Prevalence... mod.
Hair Base Cells: like abax.
Striations: none seen
Other Structures: like abax.
-Length -Width
Coments: like abax.

Family: Tiliaceae

Grewia barteri

Abaxial surface:
Cell Walls: straight, rounded; mod. vis.
Cells: $d=5-15$
-Length -Width
Stomata: too much striation
-Length 7 -Width 4
-Prevalence... sparse?
Hairs: stellate (1-4); somewhat
hollow, tending towards veins
-Length 70-315 -Width 6-9
-Prevalence...
Hair Base Cells: anomocytic
Striations: radiating from
hairs, becoming random
between, following veins,
heavy
Other Structures: club hairs, sparse
-Length 20-30 -Width 9-12
Coments:

Adaxial surface:

Cell Walls: potentially und.; very difficult to see; slide with much piles of stuff...may be mesophyll
Cells: ?
-Length -Width
Stomata: paracytic
-Length 6-7 -Width 5
-Prevalence... numerous
Hairs: like abax., not tending towards veins
-Length 40-320 -Width 3-12
-Prevalence... mod.-dense
Hair Base Cells: ?
Striations: none seen
Other Structures: like abax., mod.
-Length 15-25 -Width 5-9
Comments:

Grewia cissoides

Abaxial surface:

Cell Walls: none seen
Cells: none seen
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: stellate (8); bulbous base; tapering entire length
-Length 40-130 -Width 3-7
-Prevalence... dense
Hair Base Cells: none seen
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: more densely hairy than WIAM adax 8

Adaxial surface:
Cell Walls: straight; irr.;

Family: Tiliaceae
seen on half of specimen,
other half only a cutin laye
might be mesophyll; poorly
vis.
Cells:
-Length 9-18 -Width 7-12
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: club hairs,
mod.
-Length $15-20$
Comments: -Width $10-15$

Grewia lasiodiscus

Abaxial surface:
Cell Walls: straight-curved; elongate; veins easily seen, but normal cells are almost invisible and much noise is present
Cells:
-Length 5-15 -Width 5
Stomata: very difficult to see
-Length 7 -Width 4
-Prevalence... numerous
Hairs: stellate (1-6)(4); starlike, with longitudinal striations
-Length 15-95 -Width 2-9
-Prevalence...
Hair Base Cells: actinocytic, with nucleus vis., $d=12-16$
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:

Adaxial surface:
Cell Walls: like abax., not much noise
Cells:
-Length 5-13 -Width 3-8
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax., (4-7)(5), no longitudinal striations
-Length 25-145 -Width 4-13
-Prevalence... mod.
Hair Base Cells: none seen
Striations: none seen
Other Structures: very faint
bag hairs, $d=20$, anomocytic,
base $d=5$, mod. numbers
-Length -Width
Comments:

Grewia venasta

Abaxial surface:
Cell Walls: straight-curved; 46 sides; poor-mod. vis. (much noise)

Cells: $d=5-15$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: stellate, (1-12)(8), difficult to distinguish -Length 25-55 -Width 2-5
-Prevalence... mod.
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: many apparent depressions, actinocytic (10-
18), possibly hair bases
-Length -Width
Comments:

Adaxial surface:
Cell Walls: slightly und.; irr.; hairs too dense to see well
Cells: d=5-10
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax., (4-8),
tending away from veins
-Length 25-40 -Width 1-3
-Prevalence... dense
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: like abax.
-Length -Width
Comments:
Triumfetta lepidota

Abaxial surface:
Cell Walls: straight-curved;
somewhat round; poor-mod. vis.
(much noise)
Cells: $d=5-15$
-Length -Width
Stomata: anomocytic, difficult
to see
-Length 12 -Width 7
-Prevalence... mod.
Hairs: stellate (1-7), wide circular base $d=15-40$
-Length 35-110 -Width 5-10
-Prevalence... sparse-mod.
Hair Base Cells: to messy to see, others without hairs actinocytic with 6-10 accessory cells, mod. numbers Striations: none seen
Other Structures: none seen
-Length -Width
Comments: many veins
Adaxial surface:
Cell Walls: poorly vis. (much
noise), somewhat double-walled
Cells: $\mathrm{d}=5-10$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax. (1-8).(8)
-Length 45-300 -Width 6-14
-Prevalence... mod.-dense
Hair Base Cells: messy, others like abax. with 6-16 accessory cells
Striations: none seen
Other structures: none seen
-Length -Width
Comments: like abax.

Family: Verbinaceae

Vitex doniana

Abaxial surface:
Cell Walls: rounded; irr.; mod. vis.; thick walls Cells: $\mathrm{d}=4-22$ -Length -Width Stomata: anomocytic, somewhat grouped
-Length 8-12 -Width 4-8
-Prevalence... numerous
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: bag hairs
mod., $d=10-25$
-Length -Width
Comments:

Adaxial surface:

Cell Walls: like abax.; dots at
intersections of cell walls $d=1$
Cells: $\mathrm{d}=5-15$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: none seen
-Length -Width
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: like abax.,
$d=25$, sparse; areas of
thicker, potentially
mesophyll, $d=20-50$
-Length -Width
Comments:

Family: Vitaceae

Cissus populnea

Abaxial surface:
Cell Walls: rounded-slightly und.; irr.; poorly vis. (striations)
Cells: $d=5-13$
-Length -Width
Stomata: ?
-Length 10-13 -Width 7-11
-Prevalence... mod.-numerous
Hairs: none seen
-Length -Width
-Prevalence...

Family: Vitaceae
Hair Base Cells: none seen
Striations: not defined, going
from 1 stomata to another and
over whole
Other Structures: none seen
-Length -Width
Comments:

Adaxial surface:

Cell Walls: like abax.; straight
Cells: $\mathrm{d}=10-23$
-Length -width
Stomata: only near veins
-Length 12-17 -Width 8-13
-Prevalence... mod.
Hairs: stellate (16)
-Length 40-70 -Width 5-6
-Prevalence... only one seen, on vein
Hair Base Cells: none seen Striations: heavy, over whole Other Structures: none meen
-Length -Width
Comments:

bad slide
 Abaxial surface:

Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width
Comments:
Adaxial surface:
Cell Walls:

Cells:

-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:

Striations:

Other Structures:
-Length -Width
Comments:
CIBP
Abaxial surface:
Cell Walls: none seen
Cells: none seen
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: 1 cell, double tapered
-Length 300-430 -Width 10

-Prevalence... numerous	Cells:
Hair Base Cells: none seen	-Length -Width
Striations: none seen	Stomata:
Other Structures: none seen	-Length -Width
-Length -Width	-Prevalence...
Comments: mod. covering of	Hairs:
disordered, tape like cells	-Length -Width
	-Prevalence...
Adaxial surface:	Hair Base Cells:
Cell Walls:	Striations:
Cells:	Other Structures:
-Length -Width	-Length -Width
Stomata:	Comments:

Adaxial surface:

Cell Walls:
Cells:
-Length -Width
Stamata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:

> -Length -Width

Comments:

\#57

Abaxial surface:

Cell Walls: mod. und.; irr.;
highly vis.
Cells: most modified
-Length 10-40 -Width 5-15
Stomata: complex and confusing,
$\mathrm{d}=10-16$
-Length -Width
-Prevalence...
Hairs: 2-3 cells, only on veins, distal segments longer,
base thimble shaped
-Length 145-295 -Width 20-30
-Prevalence...
Hair Base Cells: none seen
Striations: none seen
Other Structures: striated longitudinally, ends rounded; circular origin d=11-14, cross over whole, appearance of a
bud, actinocytic
-Length 35-85 -Width 10-15
Comments:
Adaxial surface:
Cell Walls:
Cells:
-Length -Width
Stomata:
-Length -Width
-Prevalence...
Hairs:
-Length -Width
-Prevalence...
Hair Base Cells:
Striations:
Other Structures:
-Length -Width

Family: Vitaceae

Comments:

\#113

Abaxial surface:
Cell Walls: mod. und.; irr.; mod. vis.
Cells: $d=5-30$
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: 1 cell, mercury bulb base, straight
-Length 190-350 -Width 10-17
-Prevalence... mod.
Hair Base Cells: actinocytic (8-12)
Striations: none seen
Other Structures: none seen
-Length -Width
Comments:
Adaxial surface:
Cell Walls: like abax.;
slightly-mod. und.; walls
doubled
Cells:
-Length 9-35 -Width $9-24$
Stomata: anomocytic
-Length 11 -Width 7
-Prevalence... mod.-sparse
Hairs: like abax.
-Length 90-300 -Width 15-30
-Prevalence...
Hair Base Cells: like abax.
Striations: none seen
Other Structures: none seen
-Length -Width
Coments:

\#144

Abaxial surface:

Cell Walls: mod. und.; irr. (0-
10); highly vis.

Cells: $\mathrm{d}=10-70$
-Length -Width
Stomata: paracytic, $d=15$
-Length -Width
-Prevalence... numerous
Hairs: 2-3 segments, swollen at
second node
-Length 85-300 -Width 25-35
-Prevalence...
Hair Base Cells: none seen Striations: none seen Other Structures: striated
longitudinally, rounded ends;
also appearance of a bud,
cross over whole, $d=15$,
circular origin $d=7$
-Length 35-140 -Width 10-15
Comments: other structures
diagnostic
Adaxial surface:
Cell Walls: like abax. Cells: like abax.
-Length -Width

Stomata: like abax., $d=20$
-Length -Width
-Prevalence... mod.
Hairs: 2 segments, like abax.,
not more on veins
-Length 30-60/90-130 -Width 30/15-20
-Prevalence... sparse
Hair Base Cells: none seen
Striations: none seen
Other Structures: like abax.
-Length -Width
Comments: like abax.

*148

Abaxial surface:

Cell Walls: slightly und.; irr.; poorly-mod. vis.; double-triple irregularly
Cells: d=10-30
-Length -Width
Stomata: anomocytic
-Length 9-18 -Width 5-9
-Prevalence... numerous (1-2)
Hairs: 1 cell
-Length 45-380 -Width 8-38
-Prevalence... mod.
Hair Base Cells: actinocytic
Striations: none seen
Other Structures: papillae? or just wrinkled cell surface, irr.
-Length -Width
Comments:

Adaxial surface:
Cell Walls: straight; 5-6
sided; easily vis.
Cells: $d=20-40$
-Length -Width
Stomata: like abax.
-Length 14-19 -Width 9-11
-Prevalence... mod. (1-5)
Hairs: like abax., apparently hollow
-Length 50-465 -Width 15-28
-Prevalence...
Hair Base Cells: like abax.
Striations: occasional
encircling stomata
Other Structures: club hairs, wrinkled, grouped
-Length 8-15 -Width 7-8
Comments:

\#180

Abaxial surface:
Cell Walls: mod. und.; irr.; mod. vis.; apparently double walled
Cells: d=5-25
-Length -Width
Stomata: anomocytic, difficult to see
-Length 8 -Width 6
-Prevalence... sparse?
Hairs: 1 cell, tapering entire length, all on veins
-Length 200-350 -Width 10-12
-Prevalence...
Hair Base Cells: actinocytic (7-12)
Striations: none seen
Other Structures: none seen
-Length -Width
Comments: veins abundant
Adaxial surface:
Cell Walls: like abax.
Cells: like abax.
-Length -Width
Stomata: none seen
-Length -Width
-Prevalence...
Hairs: like abax.
-Length 130-430 -Width 6-10
-Prevalence...
Hair Base Cells: like abax.
Striations: none seen
Other Structures:
-Length -Width
Comments: like abax.

APPENDIX E

AVERAGE COMPOSITION (\%, S.E.) AND FREQUENCY OF OCCURRENCE FOR IMPORTANT FORAGES FOUND IN MONTHLY COMPOSITE RAINY SEASON FECAL SAMPLES FROM HARTEBEEST AND ROAN ANTELOPE AT THE NAZINGA GAME RANCH, BURKINA FASO, 1986-1987

Taxon	Month																													
	May ${ }^{\text {a }}$						June						July						Auqust						September					
	Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan		
	x	SE	n	x	SE	n	\mathbf{x}	SE	n	x	SE	n	x	SE	n	x	SE	\underline{n}												
Grasses:																														
Andropogon																														
gayanus																														
bisquamulatus	15	4.1	12	14	3.1	12	15	3.5	13	13	2.6	15	17	3.4	14	18	3.5	13	30	4.3	15	35	5.3	13	15	3.8	12	29	5.7	15
A. q. gayanus	7	2.8	6	6	2.1	6	2	1.2	3	1	0.6	2	1	0.7	1	0	0.0	0	1	1.1	1	0	0.2	1	0	0.0	0	0	0.0	0
A. tectorum	0	0.4	1	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	1	1.1	2	0	0.0	0	0	0.0	0	0	0.0	0
$\text { Other }{ }^{b}$	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	1	-	-	0	-	-	0	-	-	0	-	-
Total																														
Tall A. spp.	22	4.4	15	19	3.0	14	17	3.2	15	14	2.7	15	17	3.2	15	18	3.5	13	33	5.4	15	35	5.4	13	15	3.8	12	29	5.7	15
A. ascinoides	11	2.5	12	21	3.8	14	21	2.9	14	32	5.2	14	29	3.0	15	23	4.1	13	10	3.5	9	13	2.9	12	6	2.1	8	4	2.2	4
A. spp.	15	5.0	8	19	4.8	9	23	5.5	10	20	4.5	10	19	4.5	10	19	4.5	10	19	4.9	10	13	3.8	10	2	1.2	4	1	0.8	2
Other	4	-	-	1	-	-	3	-	-	6	-	-	0	-	-	0	-	-	1	-	-	0	-	-	2	-	-	0	-	-
Total																														
Short A. spp.	30	5.0	14	41	4.2	15	47	5.7	15	58	5.3	15	48	5.3	15	42	6.4	14	30	6.2	13	26	4.5	14	10	3.3	9	5	2.5	5
Hyparrhenia																														
dissoluta	1	0.7	1	1	0.9	2	1	0.6	1	1	0.9	1	7	4.0	6	0	0.2	1	2	1.4	3	3	1.3	5	2	1.0	4	2	1.6	2
H. involucrata	5	1.2	9	1	0.5	3	6	2.1	8	1	0.8	2	5	2.0	6	7	3.9	6	4	2.8	4	5	2.8	5	1	0.5	3	4	4.2	1
H. subplumosa	3	1.8	3	6	3.1	6	5	1.7	6	2	1.0	6	4	1.6	4	8	2.9	7	5	2.3	4	11	3.2	9	4	1.6	6	2	1.6	2
Other	6	-	-	5	-	-	4	-	-	7	-	-	4	-	-	7	-	-	5	-	-	4	-	-	1	-	-	1	-	-
Total																														
H. spp.	15	3.3	12	13	3.5	13	16	3.0	13	11	2.2	13	20	4.6	14	22	5.1	12	16	3.3	13	23	3.9	15	8	1.8	11	9	4.5	8

Taxon	Month																													
	May						June						July						Auqust						September					
	Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan		
	x	SE	n	\mathbf{x}	SE	n	x	SE	n	x	SE	n	x	SE	n	x	SE	n	x	SE	n									
Non-grasses:																														
Lonchocarpus																														
laxiflorus	0	0.0	0	0	0.0	1	0	0.0	1	0	0.0	0	1	0.4	2	1	0.4	3	0	0.2	2	0	0.1	1	0	0.0	0	0	0.0	0
Legume a	0	0.0	0	0	0.0	0	0	0.0	1	0	0.1	1	0	0.0	0	1	0.7	5	0	0.0	1	0	0.0	0	0	0.1	1	0	0.1	1
Other	1	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-
Total																														
Legumes	1	0.9	1	0	0.1	3	0	0.1	3	0	0.1	3	1	0.4	2	2	0.7	9	0	0.2	3	0	0.2	2	0	0.1	1	0	0.2	3
Total																														
Jasminium																														
kerstingii	2	0.7	6	5	1.5	10	1	0.6	6	3	1.4	11	0	0.2	3	0	0.1	5	0	0.0	0	0	0.1	1	0	0.0	1	0	0.1	2
Total																														
Other																														
Non-grass	1	-	-	1	-	-	1	-	-	0	-	-	0	-	-	1	-	-	2	-	-	1	-	-	4	-	-	2	-	-

[^4]
APPENDIX F

AVERAGE COMPOSITION (\%, S.E.) AND FREQUENCY OF OCCURRENCE FOR IMPORTANT FORAGES FOUND IN MONTHLY COMPOSITE COOL DRY SEASON FECAL SAMPLES FROM HARTEBEEST AND ROAN ANTELOPE AT THE NAZINGA GAME RANCH, BURKINA FASO, 1986-1987

Taxon	Month																							
	October						November						December						January					
	Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan		
	x	SE	n	x	SE	n	x	SE	n	x	SE	n	x	SE	n	x	SE	n	\mathbf{x}	SE	n	\mathbf{x}	SE	n
Grasses:																								
gayanus																								
bisquamulatus	46	4.6	14	66	5.4	15	33	6.7	14	20	3.7	13	20	3.4	14	10	2.1	14	10	2.1	14	7	1.7	13
A. q. gayanus	0	0.4	1	0	0.0	0	24	5.6	12	16	7.7	7	1	0.6	4	3	2.5	3	1	0.5	2	1	1.0	2
A. tectorum	0	0.0	0	0	0.0	0	0	0.2	1	1	0.7	1	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0
Other ${ }^{\text {a }}$	1	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-
Total																								
Tall A. spp.	47	4.5	14	66	5.4	15	57	6.6	14	37	7.0	14	21	3.4	14	13	4.1	14	11	2.3	13	8	2.2	12
A. ascinoides	3	1.3	7	2	1.1	4	1	0.4	2	1	1.1	2	5	1.4	10	16	3.6	12	26	5.7	15	25	3.8	15
A. spp.	3	1.6	5	1	0.5	2	1	0.8	4	2	1.4	4	14	4.3	10	18	4.1	10	17	3.9	10	19	4.1	10
Other	1	-	-	0	-	-	0	-	-	1	-	-	0	-	-	0	-	-	1	-	-	1	-	-
Total																								
Short A. spp.	7	1.7	11	3	1.2	5	2	1.1	5	4	2.4	5	19	4.7	14	34	4.9	14	44	4.7	15	45	3.8	15
Hyparrhenia																								
dissoluta	0	0.2	1	0	0.0	0	0	0.0	0	0	0.2	1	0	0.2	1	0	0.0	0	0	0.0	0	0	0.0	0
H. involucrata	0	0.0	0	0	0.2	1	0	0.0	0	0	0.0	0	0	0.2	1	0	0.0	0	0	0.0	0	0	0.2	1
H. subplumosa	1	0.7	3	1	0.4	3	0	0.0	0	1	0.7	3	0	0.0	0	1	0.8	3	3	1.3	6	1	0.4	4
Other	2	-	-	2	-	-	0	-	-	2	-	-	5	-	-	3	-	-	0	-	-	3	-	-
Total																								
H. spp.	3	0.8	8	3	1.1	7	0	0.0	0	3	1.2	5	5	1.5	10	4	1.0	8	3	1.3	6	4	1.0	12

Taxon	Month																							
	October						November						December						January					
	Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan		
	x	SE	n	x	SE	n	x	SE	n	x	SE	n	\mathbf{x}	SE	n	x	SE	n	x	SE	n	x	SE	n
Grasses (cont.) :																								
culm a	2	1.1	4	3	1.5	3	1	0.7	2	6	3.2	6	4	2.3	3	2	1.3	3	1	1.1	1	0	0.3	1
Culmb	2	1.5	4	0	0.2	1	0	0.0	0	0	0.0	0	0	0.4	1	0	0.0	0	0	0.0	0	0	0.0	0
culm c	1	0.6	1	1	1.1	1	0	0.0	0	0	0.2	1	0	0.0	0	0	0.0	0	2	1.8	1	0	0.1	1
Culm d	4	1.3	8	4	1.7	7	9	3.0	10	9	3.9	11	2	1.3	4	5	1.7	8	2	0.7	5	3	1.0	9
Culme	1	0.3	3	1	0.5	2	1	0.4	4	3	1.0	8	8	3.3	8	3	1.4	6	1	0.6	1	1	0.5	5
Culm f	1	0.5	2	0	0.2	1	0	0.0	0	1	0.8	1	0	0.2	1	1	0.8	4	0	0.4	1	1	0.9	1
Culm g	4	1.6	6	3	1.0	6	3	1.8	3	5	2.3	7	3	1.6	5	2	1.5	2	2	1.1	4	0	0.2	2
Culm h	2	0.7	4	1	0.9	3	1	0.6	4	5	2.0	6	2	1.1	5	3	1.4	5	3	1.1	5	3	1.4	5
Culm i	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0
Other	9	-	-	8	-	-	9	-	-	12	-	-	8	-	-	12	-	-	6	-	-	8	-	-
Total																								
Culms	26	4.5	13	21	3.2	14	24	3.9	13	41	7.0	14	27	4.7	14	28	4.6	14	17	2.9	14	16	1.9	14
Leaf a	0	0.0	0	0	0.0	0	0	0.4	1	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.2	1
Leaf b	6	6.3	1	0	0.0	0	5	5.1	1	0	0.0	0	6	6.3	1	0	0.0	0	0	0.0	0	0	0.0	0
Other	2	-	-	4	-	-	2	-	-	1	-	-	4	-	-	6	-	-	5	-	-	6	-	-
Total																								
Leaves	8	6.2	7	4	2.1	5	7	5.1	7	1	0.5	4	10	6.5	6	6	1.9	12	5	1.5	11	6	3.4	5

Taxon	Month																							
	October						November						December						January					
	Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan		
	\times	SE	n	\times	SE	n	\boldsymbol{x}	SE	n	x	SE	n	\mathbf{x}	SE	n	\times	SE	n	\times	SE	n	x	SE	n
Non-grasses:																								
Lonchocarpus																								
laxiflorus	1	0.5	6	1	0.2	5	1	0.5	4	2	0.6	10	0	0.2	5	2	0.4	10	1	0.3	5	0	0.2	3
Legume a	1	0.3	8	1	0.4	4	0	0.2	6	1	0.4	7	1	0.4	7	1	0.4	7	1	0.6	7	0	0.2	3
Other	0	-	-	0	-	-	1	-	-	0	-	-	2	-	-	0	-	-	3	-	-	4	-	-
Total																								
Legumes	2	0.7	12	2	0.4	13	2	0.8	12	3	1.0	9	3	1.0	10	2	0.5	14	5	1.2	13	4	1.2	14
Total																								
Jasminium																								
kerstingii	3	0.8	10	0	0.2	4	3	1.3	7	4	1.5	11	10	2.3	13	7	1.3	13	11	2.7	13	15	2.9	13

Total

other
$\begin{array}{llllllllllllllllllllllllllllllll}\text { Non-grase } & 4 & 0.8 & 14 & 2 & 0.5 & 11 & 3 & 1.2 & 12 & 8 & 2.3 & 15 & 3 & 1.0 & 9 & 6 & 1.0 & 13 & 3 & 0.9 & 10 & 1 & 0.5 & 6\end{array}$
All "other" catagories are comprised of various plant apecies, both identified and unidentified, which never contribute >5s to any composite diet in any month.

APPENDIX G

AVERAGE COMPOSITION (\%, S.E.) AND FREQUENCY OF OCCURRENCE FOR IMPORTANT FORAGES FOUND IN MONTHLY COMPOSITE HOT DRY SEASON
 FECAL SAMPLES FROM HARTEBEEST AND ROAN ANTELOPE AT THE
 NAZINGA GAME RANCH, BURKINA FASO, 1986-1987

Taxon	Month																													
	February						March						April						May						June ${ }^{\text {a }}$					
	Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan ${ }^{\text {b }}$		
	x	SE	n	x	SE	n	x	SE	n	x	SE	n																		
Grasses:																														
Andropogon																														
gayanus																														
bisquamulatus	14	4.7	11	33	6.1	13	33	5.3	15	29	5.5	13	29	5.6	12	19	4.1	12	20	3.0	14	7	2.6	12	27	5.1	14	23	5.3	11
A. g. gayanus	5	4.9	3	2	1.2	4	1	0.5	3	1	0.6	5	0	0.2	1	0	0.2	1	7	6.4	4	0	0.0	0	8	3.9	5	2	1.4	2
A. tectorum	0	0.0	0	0	0.0	0	0	0.0	0	5	5.1	1	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.4	1	0	0.0	0
Other ${ }^{\text {c }}$	0	-	-	1	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	0	-	-	1	-	-	4	-	-
Total																														
Tall A. spp.	19	6.1	12	36	6.0	14	34	5.2	15	35	5.8	14	29	5.6	12	19	4.1	13	27	5.7	15	7	2.6	12	36	5.8	14	29	5.1	12
A. ascinoides	23	4.0	13	10	3.3	11	8	1.9	12	2	1.1	4	3	0.9	8	1	0.6	4	7	2.3	10	1	0.4	2	15	7.5	12	6	1.9	10
A. spp.	23	5.5	10	7	2.7	9	12	4.0	8	2	0.6	7	6	2.2	7	2	0.8	6	11	3.2	10	4	3.0	8	9	2.2	10	11	3.1	8
Other	0	-	-	1	-	-	0	-	-	0	-	-	0	-	-	0	-	-	2	-	-	0	-	-	0	-	-	7	-	-
Total																														
- Short A. spp.	46	6.3	14	18	4.6	13	20	4.3	13	4	1.2	9	9	2.6	10	3	1.0	8	20	3.8	13	5	3.4	8	24	6.9	14	24	4.8	12
Hyparrhenia																														
disoluta	0	0.0	0	7	6.5	1	0	0.2	1	0	0.0	0	0	0.0	0	1	0.4	2	0	0.0	0	0	0.0	0	1	0.5	1	2	1.2	5
H. involucrata	0	0.0	0	0	0.0	0	0	0.2	1	0	0.0	0	0	0.0	0	0	0.3	2	0	0.0	0	0	0.0	0	1	0.5	2	0	0.0	0
H. subplumosa	2	0.9	5	4	1.5	6	6	1.7	9	2	1.4	3	3	1.3	5	0	0.4	2	4	1.5	7	1	0.8	2	4	1.7	7	2	0.9	4
Other	3	-	-	1	-	-	7	-	-	1	-	-	3	-	-	1	-	-	2	-	-	1	-	-	2	-	-	6	-	-
Total																														
H. spp.	5	1.8	9	12	6.3	10	13	2.2	14	3	2.2	3	6	1.7	9	2	1.0	8	6	1.5	11	2	1.2	4	8	2.0	11	10	2.6	11

Taxon	Month																													
	February						March						April						May						June ${ }^{\text {a }}$					
	Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			$\text { Roan }{ }^{\frac{b}{2}}$		
	x	SE	n	x	SE	n	\mathbf{x}	SE	n	x	SE	n	\times	SE	n	X	SE	n												
Grasses (cont.) :																														
Culma	1	0.7	1	2	1.6	1	5	3.7	2	2	2.1	2	8	5.2	4	4	2.1	3	6	4.1	2	11	6.3	3	0	0.3	2	1	1.3	1
Culm b	5	5.1	2	1	0.7	1	0	0.2	1	0	0.1	1	0	0.0	0	0	0.0	0	1	0.5	2	0	0.0	0	0	0.2	1	0	0.2	1
Culm c	0	0.0	0	0	0.0	0	0	0.2	1	0	0.0	0	0	0.0	0	0	0.2	1	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0
Culm d	1	0.5	3	3	0.7	9	4	1.3	8	3	1.3	7	4	1.5	7	3	1.0	7	5	1.4	8	2	0.8	6	3	0.9	9	1	0.5	4
Culme	2	1.1	4	1	0.8	2	2	1.5	2	1	0.4	2	2	0.8	4	2	1.4	3	1	0.5	3	1	0.3	4	0	0.2	1	0	0.2	1
Culm f	0	0.2	1	0	0.2	1	0	0.2	1	1	0.5	5	2	1.1	3	6	1.9	8	1	0.3	2	10	3.8	10	0	0.2	1	1	0.6	1
Culm g	1	0.4	3	1	0.7	1	0	0.4	1	1	0.5	4	3	1.3	6	5	2.4	5	2	1.4	3	0	0.2	2	0	0.0	0	0	0.2	2
Culm h	2	1.1	4	4	1.6	6	2	0.8	5	5	3.6	5	5	2.2	7	2	1.0	3	5	1.6	7	0	0.0	1	0	0.0	0	0	0.0	0
Culm i	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0
Other	8	-	-	6	-	-	6	-	-	18	-	-	14	-	-	13	-	-	11	-	-	9	-	-	7	-	-	7	-	-
Total																														
Culme	20	4.9	14	18	3.4	14	19	5.3	12	31	5.3	14	38	6.2	14	35	4.8	14	32	4.8	14	33	6.6	14	10	2.3	14	10	2.3	12
Leaf a	0	0.0	0	0	0.0	0	0	0.0	0	0	0.2	1	0	0.2	1	2	2.4	1	5	2.0	7	0	0.0	0	0	0.2	1	0	0.0	0
Leaf b	0	0.0	0	0	0.0	0	0	0.0	0	0	0.0	0	4	3.6	1	5	4.5	1	0	0.0	0	2	2.3	1	0	0.0	0	0	0.0	0
Other	4	-	-	3	-	-	7	-	-	2	-	-	4	-	-	1	-	-	4	-	-	0	-	-	7	-	-	2	-	-
Total																														
Leaves	4	1.2	10	3	1.7	6	7	2.4	7	2	1.2	6	8	3.5	9	8	5.0	6	9	2.3	10	2	2.3	2	7	3.5	7	2	1.2	4

Taxon	Month																													
	February						March						April						May						June ${ }^{\text {a }}$					
	Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan			Hartebeest			Roan ${ }^{\text {b }}$		
	\times	SE	n	x	SE	n	\times	SE	n	x	SE	n	\times	SE	n	x	SE	n	x	SE	n	x	SE	n	x	SE	n	\mathbf{x}	SE	n
Non-grasses:																														
Lonchocarpus																														
laxiflorus	0	0.3	3	1	0.3	6	1	0.6	4	3	0.7	12	0	0.3	3	3	0.8	9	0	0.0	2	10	2.1	10	0	0.1	6	0	0.2	1
Legume a	0	0.1	3	1	0.4	8	1	0.9	2	5	1.9	9	1	0.6	3	7	2.1	10	0	0.3	2	7	2.3	11	0	0.1	2	1	1.0	5
Other	1	-	-	0	-	-	2	-	-	5	-	-	4	-	-	8	-	-	4	-	-	14	-	-	1	-	-	1	-	-
Total																														
Legumes	1	0.8	5	2	0.6	9	4	2.0	5	13	2.5	14	5	2.4	6	18	3.7	13	4	2.5	5	31	4.2	14	1	0.2	9	2	1.3	8
Total																														
Jasminium																														
kerstingii	4	2.0	6	6	2.6	10	0	0.3	1	3	0.7	13	1	1.0	2	3	0.9	9	0	0.0	2	2	0.9	10	13	4.0	11	20	4.8	10
Total																														
Other																														
Non-grass	1	0.5	9	5	1.5	13	3	1.6	9	8	1.7	14	3	1.5	10	11	2.4	15	3	1.2	11	17	4.0	14	1	0.3	9	3	0.7	12

[^5]
VITA
 James Randolph Schuette
 Candidate for the Degree of
 Master of Science

Thesis: SEASONAL DIETARY OVERLAP BETWEEN HARTEBEEST AND ROAN ANTELOPE IN BURKINA FASO, WEST AFRICA

Major Field: Wildlife and Fisheries Ecology
Biographical:

Personal Data: Born in West Point, New York, March 25, 1962, the son of Roger C. and Shirlee J. Schuette.

Education: Recieved Bachelor of Science Degree in Wildlife Management from the University of Minnesota, Minneapolis/st. Paul, Minnesota, in June, 1983; completed requirements for the Master of Science Degree at oklahoma state University, Stillwater, Oklahoma, in December, 1991.

Professional Experience: Wildlife technician, Bureau of Land Management, Butte, Montana, summer 1983; wildlife technician, Minnesota Department of Natural Resources, fall 1983; wildlife technician, United States Fish and wildife Service, Bowling Green, Kentucky, winter 1984; eagle nest watcher, National Forest Service, Carefree, Arizona, spring 1984; campground teller/wildlife technician, National Park Service, Buxton, North Carolina, summers of 1984 and 1985; foreign fisheries observer, National Oceanic and Atmospheric Administration/National Marine Fisheries Service, Seattle, Washington, fall 1984; wildlife biologist, United states Peace Corps, Burkina Faso, West Africa, 1985-1987; wildlife biologist, African Wildlife Husbandry Development Association, Burkina Faso, West Africa, 1987-1989; graduate research assistant, Oklahoma Cooperative Fish and Wildlife Research Unit, Stillwater, oklahoma, springs and summers of 1989 and 1990; graduate teaching assistant, oklahoma state University, falls of 1989 and 1990 , spring of 1991.

[^0]: a Due to heavy rains, only 13 fecal samples were collected for roan antelope in June, 1987.

[^1]: a Because of the early rains in 1986, May diets resemble rainy season diets more the they resemble hot dry season diets.

[^2]: a Because of the delay in the return of the rains in 1987 , June diets have been included with the dry season diets, although they were more transitional.
 b Due to heavy rains in late June, only 13 fecal samples were collected for roan antelope in June, 1987.

[^3]: Adaxial Surface
 Silica Bodies: same as abax (occasional
 dumbbells), like abax

[^4]: a Because of the early rains in 1986, May diets have been included with the rainy season diets. b All "other" catagories are comprised of various plant species, both identified and unidentified, which never contribute >58 to any composite diet in any month.

[^5]: Because of the delay in the return of the rains in 1987 , June diets have been included with the dry season diets, although they were more transitional.
 bue to heavey rains, only 13 fecal samples were collected for roan antelope in June, 1987.
 c All "other" catagories are comprised of various plant species, both identified and unidentified, which never contribute >58 to any composite diet in any month.

