• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 16, Pages: 1178-1186

Original Article

The Major Phyto-Compounds Heptasiloxane, hexadecamethyl- and 1,1-Dimethylethyl 3-Phenyl-2-Propenoate Derived from Indigofera tinctoria Medicinal Flora Tested Against Various Target Medical and Agronomic Pests

Received Date:12 February 2023, Accepted Date:15 March 2023, Published Date:21 April 2023

Abstract

Objectives: To determine the phytochemical screening and major phytocompounds from Indigofera tinctoria leaf methanol extract as well as ovicidal and larvicidal toxicity towards medical and agronomic pests, Aedes aegypti, Culex quinquefasciatus, Spodoptera litura and Helicoverpa armigera. Methods: In this study, the phytochemical screening was done by prescribed method, finding of phyto-constituents were made by GC-MS analysis, ovicidal and larvicidal toxicity of selected pests were recorded after 24 hrs. post treatment at various concentrations. The mortality was assessed by using probit analysis to calculate LC50/LC90. Findings: By the phytochemical screening, the more numbers of phytochemicals were obtained from methanol extract as well as GC-MS analysis displayed sum of 10 phyto-compounds gained 100% besides two phyto-compounds were major constituents Heptasiloxane, hexadecamethyl- and 1,1-Dimethylethyl 3-Phenyl-2-Propenoate. The phytoproducts of I. tinctoria were produced maximum eggs toxicity around 100% at higher concentration. Similarly, I. tinctoria leaf methanol extract borne major phyto-compounds major constituents Heptasiloxane, hexadecamethyland 1,1-Dimethylethyl 3-Phenyl-2-Propenoate were tested 3rd instar larvae of selected medicinal and agronomic pests with their LC50/ LC90 value were 10.93/18.65 mg/ml, 10.87/18.77 mg/ml, 15.29/27.17 mg/ml, 16.84/29.41mg/ml and 11.16/19.38 mg/ml, 10.43/18.51 mg/ml, 14.57/26.58 mg/ml and 15.61/28.63 mg/ml were recorded on various pests of Ae. aegypti, Cx. quinquefasciatus and S. litura and H. armigera, respectively. Novelty: The statistical analysis of the data clearly indicates that phyto-compounds of I. tinctoria induced outstanding larvallethality were observed on selected pests. Particularly, the identified phytocompounds showed multifold toxicity against the selected pests.

Keywords: Indigofera tinctoria; Phytocompound; Targetfauna; Ecosafety; Pesttoxicity

References

  1. Elumalai K, Mahboob S, Al-Ghanim KA, Al-Misned F, Pandiyan J, Baabu PMK, et al. Entomofaunal survey and larvicidal activity of greener silver nanoparticles: A perspective for novel eco-friendly mosquito control. Saudi Journal of Biological Sciences. 2020;27(11):2917–2928. Available from: https://doi.org/10.1016/j.sjbs.2020.08.046
  2. Gharsan FN. A Review of the Bioactivity of Plant Products Against Aedes aegypti (Diptera: Culicidae) Journal of Entomological Science. 2019;54(3):256–274. Available from: https://doi.org/10.18474/JES18-82
  3. Villanes A, Griffiths E, Rappa M, Healey CG. Dengue Fever Surveillance in India Using Text Mining in Public Media. The American Journal of Tropical Medicine and Hygiene. 2018;98(1):181–191. Available from: https://doi.org/10.4269/ajtmh.17-0253
  4. Yooboon T, Pengsook A, Ratwatthananon A, Pluempanupat W, Bullangpoti V. A plant-based extract mixture for controlling Spodoptera litura (Lepidoptera: Noctuidae) 2019. Available from: https://doi.org/10.1186/s40538-019-0143-6
  5. Jones CM, Parry H, Tay WT, Reynolds DR, Chapman JW. Movement Ecology of Pest Helicoverpa Implications for Ongoing Spread. Annual Review of Entomology. 2019;64(1):277–295. Available from: https://doi.org/10.1146/annurev-ento-011118-111959
  6. Gonçalves RM, Mastrangelo T, Rodrigues JCV, Paulo DF, Omoto C, Corrêa AS, et al. Invasion origin, rapid population expansion, and the lack of genetic structure of cotton bollworm (Helicoverpa armigera) in the Americas. Ecology and Evolution. 2019;9(13):7378–7401. Available from: https://doi.org/10.1002/ece3.5123
  7. Baranitharan M, Sawicka B, Gokulakrishnan J. Phytochemical Profiling and Larval Control of Erythrina variegata Methanol Fraction against Malarial and Filarial Vector. Advances in Preventive Medicine. 2019;2019(9):1–9. Available from: https://doi.org/10.1155/2019/2641959
  8. Esan V, Elanchezhiyan C, Mahboob S, Al-Ghanim KA, Al-Misned F, Ahmed Z, et al. Toxicity of Trewia nudiflora -mediated silver nanoparticles on mosquito larvae and non-target aquatic fauna. Toxin Reviews. 2022;41(1):229–236. Available from: https://doi.org/10.1080/15569543.2020.1864648
  9. Muzzazinah, Putri DS, Majid ANCA, Nurmiyati, Kristiandi. Analysis of phytochemical compounds in Indigofera longeracemosa at Magelang, Trisik and Srandakan. AIP Conference Proceedings. 2023;2540:30005. Available from: https://doi.org/10.1063/5.0106468
  10. Gokulakrishnan J, Elumalai K, Dhanasekaran S, Anandan A, Krishnappa K. Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes. Asian Pacific Journal of Tropical Diseases. 2012;3(1):60006–60013. Available from: https://doi.org/10.1016/S2222-1808(13)60006-7
  11. Krishnappa K, Elumalai K. Toxicity of Aristolochia bracteata methanol leaf extract against selected medically important vector mosquitoes (Diptera: Culicidae) Asian Pacific Journal of Tropical Diseases. 2012;p. 60219–60228. Available from: https://doi.org/10.1016/S2222-1808(12)60219-9
  12. Abbott WS. A Method of Computing the Effectiveness of an Insecticide. Journal of Economic Entomology. 1925;18(2):265–267. Available from: https://doi.org/10.1093/jee/18.2.265a
  13. Finney DJ. A statistical treatment of the sigmoid response curve. In: Probit analysis. (Vol. 633) Cambridge University Press. 1971.
  14. Baranitharan M, Krishnappa K, Elumalai K, Pandiyan J, Gokulakrishnan J, Kovendan K, et al. Citrus limetta (Risso) - borne compound as novel mosquitocides: Effectiveness against medical pest and acute toxicity on non-target fauna. South African Journal of Botany. 2020;128:218–224. Available from: https://doi.org/10.1016/j.sajb.2019.11.014
  15. Krishnappa K, Baranitharan M, Elumalai K, Pandiyan J. Larvicidal and repellant effects of Jussiaea repens (L.) leaf ethanol extract and its major phyto-constituent against important human vector mosquitoes (Diptera: Culicidae) Environmental Science and Pollution Research. 2020;27(18):23054–23061. Available from: https://doi.org/10.1007/s11356-020-08917-8
  16. Torawane S, Andhale R, Pandit R, Mokat D, Phuge S. Screening of some weed extracts for ovicidal and larvicidal activities against dengue vector Aedes aegypti. The Journal of Basic and Applied Zoology. 2021;82(1):1–9. Available from: https://doi.org/10.1186/s41936-021-00233-y
  17. Shoukat RF, Shakeel M, Rizvi SAH, Zafar J, Zhang Y, Freed S, et al. Larvicidal, Ovicidal, Synergistic, and Repellent Activities of Sophora alopecuroides and Its Dominant Constituents Against Aedes albopictus. Insects. 2020;11(4):246. Available from: https://doi.org/10.3390/insects11040246
  18. Wiwattanawanichakun P, Saehlee S, Yooboon T, Kumrungsee N, Nobsathian S, Bullangpoti V. Toxicity of isolated phenolic compounds from Acorus calamus L. to control Spodoptera litura (Lepidoptera: Noctuidae) under laboratory conditions. Chemical and Biological Technologies in Agriculture. 2022;9(1):1–9. Available from: https://doi.org/10.1186/s40538-021-00274-z

Copyright

© 2023 Vasumathi & Senguttuvan. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee

DON'T MISS OUT!

Subscribe now for latest articles and news.