Article DOI: https://doi.org/10.37284/ijar.3.1.301

Original Article

Beekeeping Potential, Richness, and Distribution of Plant Species Foraged by Stinging Honey Bee (Apis Mellifera L.) in West Kilimanjaro Tanzania Forest Service Agency (TFS) Plantation.

Masawanga Yahya Ismail¹, Theophil Leonard¹, Joel Felichesmi Tarimo¹ & Canisius John Kayombo^{2*}

¹West Kilimanjaro Forest Plantation-TFS, P. O. Box 161, Hai, Kilimanjaro-Tanzania.

ABSTRACT

² Forestry Training Institute, Olmotonyi, P.O. Box 943, Arusha, Tanzania.

* Author for Correspondence email: kayombocanisius@gmail.com.

Article DOI: https://doi.org/10.37284/ijar.3.1.301

Publication Date:

22 March 2021

2021

Keywords:

Beekeeping Potential, Richness, Distribution, Foraged Plants, Stinging Honey Bees, Apis Mellifera L., West Kilimanjaro, Tanzania Forest Service Agency. An assessment of beekeeping potential, richness, and distribution of plant species foraged by stinging honey bee Apis mellifera L. in West Kilimanjaro Tanzania Forest Service Agency (TFS) Plantation area was conducted in 2020. A total of 40, 20 m x 20 m plots were set on the 5 natural vegetation remnants within the plantation forest ranges of Sanya juu, Lemosho, Hill wood, Wasendo, and Londrosi at an interval of 100 m. Within the 20 m x 20 m, 1 m x 1 m nested plots were established to assess herbs, sedge, grasses, and seedlings, while 2 m x 5 m were established to determine shrubs. Agriculture crops grown by the bordering villagers were identified and evaluated for the bee forage potential. Plant species richness (S) was determined from the total number of plant species identified from every site using the Shannon Weiner Diversity Index (H'). Plant species distribution was determined grounded on the frequency (F) and evenness (E) were determined. The sites were revealed to have high plant species diversity foraged by stinging honey bees. A total of 204 plant species belonging to 76 families and 178 genera were identified. The calculates H' of 2.37 for nonwood plants and 3.05 for wood plants implied high plant diversity. The most distributed plant species had a relative frequency (RF) of 6.250 ± 3.0303 , while the rest had an RF < 3.0303. The disappearance of one species does not cause any significant effect on bees, as they can go for another species in the area. 92% of non-woody plants and 94% of the identified woody plants were known to be foraged by stinging honey bees. The evenness (E) of 0.7484 for non-wood plants and 0.795 implied that the plants in all categorize were not evenly distributed. West Kilimanjaro Forest Plantation (WKFP) natural forest patches are potential for honey beekeeping. Stinging honey bee Article DOI: https://doi.org/10.37284/ijar.3.1.301

fodder plants should be planted, regular visits to the project sites should be exercised to protect honey theft, spot clearing to give a room for naturally germinated seedlings covered by climbers. Further study should be done on the biological species diversity, training to beekeeping staff, and plan for regular inspection of the honey bee colony strength will help to reveal any challenges facing the venture including diseases and hives strengths and weakness.

APA CITATION

Ismail, M. Y., Leonard, T., Tarimo, J. F., & Kayombo, C. J. (2021). Beekeeping Potential, Richness, and Distribution of Plant Species Foraged by Stinging Honey Bee (Apis Mellifera L.) in West Kilimanjaro Tanzania Forest Service Agency (TFS) Plantation. *International Journal of Advanced Research*, *3*(1), 33-54. https://doi.org/10.37284/ijar.3.1.301

CHICAGO CITATION

Ismail, Masawanga Yahya, Theophil Leonard, Joel Felichesmi Tarimo, and Canisius John Kayombo. 2021. "Beekeeping Potential, Richness, and Distribution of Plant Species Foraged by Stinging Honey Bee (Apis Mellifera L.) in West Kilimanjaro Tanzania Forest Service Agency (TFS) Plantation." *International Journal of Advanced Research* 3 (1), 33-54. https://doi.org/10.37284/ijar.3.1.301.

HARVARD CITATION

Ismail, M. Y., Leonard, T., Tarimo, J. F., and Kayombo, C. J. (2021) "Beekeeping Potential, Richness, and Distribution of Plant Species Foraged by Stinging Honey Bee (Apis Mellifera L.) in West Kilimanjaro Tanzania Forest Service Agency (TFS) Plantation.", *International Journal of Advanced Research*, 3(1), pp. 33-54. doi: 10.37284/ijar.3.1. 301.

IEEE CITATION

M. Y. Ismail, T. Leonard, J. F. Tarimo, and C. J. Kayombo, "Beekeeping Potential, Richness, and Distribution of Plant Species Foraged by Stinging Honey Bee (Apis Mellifera L.) in West Kilimanjaro Tanzania Forest Service Agency (TFS) Plantation.", *IJAR*, vol. 3, no. 1, pp. 33-54, Mar. 2021.

MLA CITATION

Ismail, Masawanga Yahya, Theophil Leonard, Joel Felichesmi Tarimo, and Canisius John Kayombo. "Beekeeping Potential, Richness, and Distribution of Plant Species Foraged by Stinging Honey Bee (Apis Mellifera L.) in West Kilimanjaro Tanzania Forest Service Agency (TFS) Plantation.". *International Journal of Advanced Research*, Vol. 3, no. 1, Mar. 2021, pp. 33-54, doi:10.37284/ijar.3.1. 301.

INTRODUCTION

Worldwide beekeeping products have been known for their role such as to provide high-value products as a source of income and nutrition value (FAO, 2015). It has been stated that beekeeping is an economic development venture that has existed for a long period of time (Tutuba & Vanhaverbeke, 2018). Beekeeping is an environmentally friendly intervention, provides employment, education, food, and significant contribution to plant diversity, conservation, and honey bees as famous pollinators improves agriculture crop production (Bradbear, 2009). The tropical people depend on very smallscale crop production relying on shifting cultivation that clears vegetation, and hence beekeeping is a panacea for sustainable community development and biodiversity conservation (Minja & Nkumilwa, 2016). The indigenous flowering plants in Africa benefit from honey bee pollination, and approximately one-third of all food produced is the result of honey bee pollination (Gupta et al., 2014). URT (2014) mentioned that until that year, TFS was managing six declared bee reserves with a total area of 31,374 ha and three proposed bee reserves covering an area of 8,392 ha. However, Tanzania had a capacity of 9.2 million bee colonies and the potential production of 138,000 tons of honey and 625 tons of beeswax annually (URT, 2014). The Tanzania Beekeeping Policy (URT, 1998) mentions beekeeping as among potential socio-economic activities that sustain biodiversity because the honey products depend on protected vegetation playing a vital role as a source of bee fodder.

Beekeeping Potential in West Kilimanjaro Plantation

West Kilimanjaro Forest plantation was gazetted as a forest reserve in 1921 and regazetted in 1940 under the Government Notice No. 227 Cap. 132.

Article DOI: https://doi.org/10.37284/ijar.3.1.301

The plantation was established in 1954 planted with Pinus patula, Cupressus lusitanica, Pinus radiata, and Juniperus procera to increase the watershed protective capacity, to reduce erosion problem on the slopes of Mount Kilimanjaro and to supply wood products in the Arusha and Kilimanjaro regions (Tanzania Forest Service Agency, 2020). It has been insisted that beekeeping area or be reserve is recognized through scientific research to reveal the necessary conditions supporting the production of honey crops (Tanzania National Beekeeping Act 2002). Amulen et al. (2019) highlighted that the potential of beekeeping for poverty alleviation is lacking because the value of honey products has not been evaluated thoroughly. Apart from the West Kilimanjaro being planted with exotic trees, there are still natural vegetation (thicket, woodland, and forest) patches with high plant diversity that can support honey beekeeping. However, little is known on the beekeeping potential, richness and distribution of the plant species foraged by honey bees. This survey intended to survey the potential, richness and distribution of plant species foraged by honey bees in West Kilimanjaro Plantation.

Richness and Distribution of plants Species Foraged by *Apis mellifera*

Plant species richness which is the total number of species of a given locality forms the plant community properties together with evenness (abundance equality of species) and composition (Dorji et al. 2014; Fischer et al., 2018). The West Kilimanjaro plantation lies on the Kilimanjaro mountain with high plant diversity of which among them are treated as endangered such as *Juniperus procera*. Abrha et al. (2018) pointed out that *J. procera* is the most preferred tree in Ethiopia; it is an endangered tree species enumerated in the IUCN red list.

The distribution (the spreading of plant species) has a great role in the availability of pollinators that are important organisms for the fertility of plants in the wild environment and on farms. *A. mellifera* is well supported by the widely distributed plants that can be foraged on (Hung et al. 2018). The quantity and diversity of collected pollen can influence the growth and health of honey bee colonies (Requier et al., 2015), but little is known on the potential foraged ecosystem resources. This study aimed to assess the beeping potential, richness and distribution of plant species foraged by the stinging honey bee in West Kilimanjaro Plantation.

MATERIAL AND METHODS

Description of Study Site

The study was conducted in five targeted areas (*Table 1 & Figure 1*) for beekeeping intervention within the West Kilimanjaro Plantation.

Article DOI: https://doi.org/10.37284/ijar.3.1.301

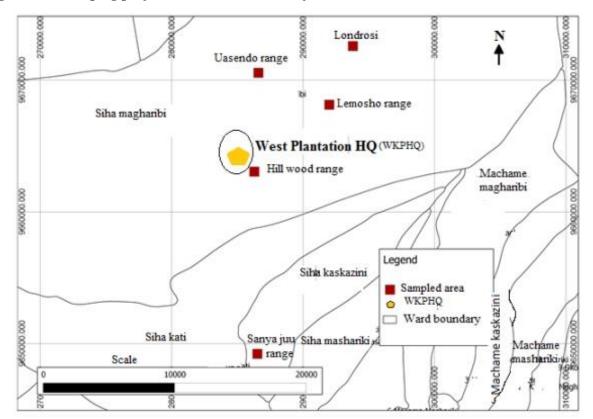
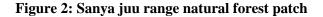


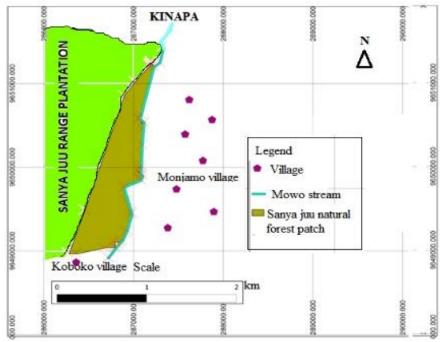
Figure 1: Beekeeping project sites in West Kilimanjaro Forest Plantation

The five sites are natural forest remnants or patches left within the plantation. Those areas are known for their potential in terms of plant species diversity, of which most of them are being foraged by honey bees. The West Kilimanjaro Plantation occupies an area of 7,500 hectares including staff quarters area, plantation area, and the remnants of natural vegetation patches inclusive of Londrosi in Wasendo range with an area of 4,460 Ha including the 1,156 Ha remnant of natural vegetation, Sanya Juu range (200 Ha), Lemosho range (2,200.5 Ha), and Hill wood range (121 Ha).

Table 1: Sampled sites for beekeeping project in West Kilimanjaro Plantation

S/No.	Range/project site	Coordinates
1	Sanya juu	37M 0286459 UTM 9648800 Alt. 1276 m. a.s.l
2	Wasendo	37M 0287955 UTM 9669797 Alt. 1754 m. a.s.l
3	Lemosho	37M 0291150 UTM 9668860 Alt. 2013 m. a.s.l
4	Londrosi	37M 0292809 UTM 9672618 Alt. 2146 m. a.s.l
5	Hill wood	37M 0285976 UTM 9663016 Alt. 1557 m. a.s.l

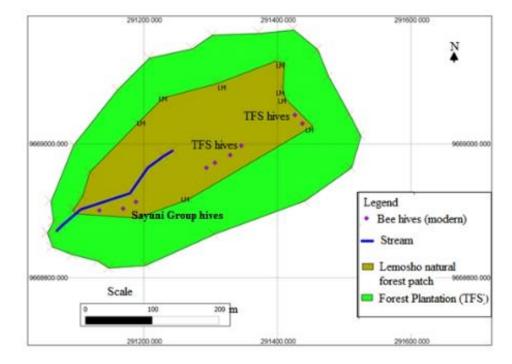

Description of Beekeeping Project Sites


Sanya Juu Range Natural Forest

This natural forest remnant borders the Monjamo village on the east, Koboko village on the south, and

on the east and north, it borders the West Kilimanjaro plantation (*Figure 2*). The site is characterized into two major parts; the seasonally dry forest and the riverine forest on the eastern margin.

Article DOI: https://doi.org/10.37284/ijar.3.1.301

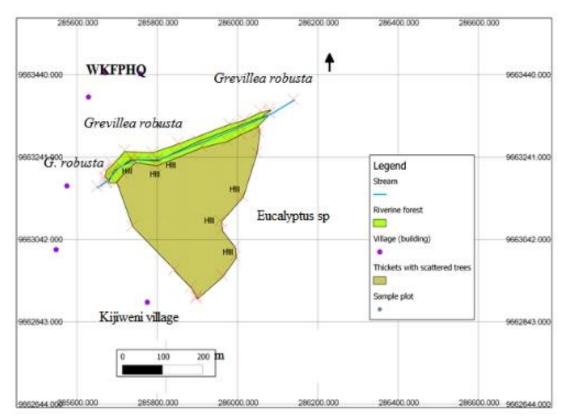


Wasendo Range Natural Forest

Lemosho Range Natural Forest

The Wasendo natural forest borders the plantation area on the north, east, west, and on the south, it borders the Rozilini. This is a very open secondary forest within the plantation. It is completely bordered by the plantation (it borders the plantation land on the west, north, east, and south) (*Figure 3*).

Figure 3: Lemosho plantation forest range


Article DOI: https://doi.org/10.37284/ijar.3.1.301

Near Londrosi Gate Natural Vegetation

The Londrosi borders the plantation on the west and east, while on the north, it borders the Kilimanjaro National Park (KINAPA).

Hill Wood Natural Vegetation

This comprises thickets with scattered trees and the riverine forest on the western part. It borders the plantation on the west (*Grevillea robusta*), north (*Grevillea robusta*) and east and south-east (*Eucalyptus saligna*), while on the south, it borders the Kijiweni village (*Figure 4*).

Figure 4: Hill wood natural vegetation

Data Collection and Analysis

Data Collection

In this survey, a total of 40, 20 m x 20 m plots were set in the 5 natural vegetation remnants (Sanya juu range, Hill wood range, Lemosho range, Wasendo range, and Londrosi) within the plantation at an interval of 100 m. Within the 20 m x 20 m, 1 m x 1 m quadrants were established to identify herbs, sedge, grasses, and seedlings, while 2 m x 5 m subplots were established to determine shrubs and saplings. The observed plant species were identified for their botanical names and counted for their number of individuals. Also, all plants were indicated for whether bee fodder or not using local informants and observing the flowers visited by honey bees. Furthermore, tree canopy cover was estimated percentage-wise. Water sources (ponds, rivers, streams) were recorded. The agriculture crops being grown by the nearby or bordering villagers near the natural vegetation were identified and evaluated for the be forage potential.

Data Analysis

The plant species richness (S) was determined from the total number of plant species identified from every site. The Shann index of diversity (H') as per Ifo et al. (2016) was calculated through:

Article DOI: https://doi.org/10.37284/ijar.3.1.301

$$H^1 = \sum_{i=1}^s p_i \ln p_i$$

.

where: \sum = summation; pi = proportion of individuals of a single species to the total individuals of all plants identified in the sample plots; ln = natural logarithm. Plant species distribution was determined based on the frequency (F) (number of plots the plant species occurred or was found), and from this, a relative frequency (Loehle, 2012) was calculated through $RF = \frac{\sum n!}{\sum N!} \times 100\%$; where RF = relative

frequency; \sum = summation; n! = frequency of one plant species; N! = total frequency of all plant species in the sample plots.

RESULTS AND DISCUSSION

Beekeeping Potential of West Kilimajaro Plantation

The available abundant pollen in the natural vegetation and agricultural landscapes is essential

for the successful growth and reproduction of honey bee colonies (Apis mellifera L.) (Danner et al. 2017). The natural vegetation within the West Kilimanjaro plantation is potential for beekeeping because of its high diversity, availability of water and relatively security assurance. The results have been reported based on the plantation ranges in order to expose their separate potential for honey bee forage. Ferrier et al. (2018) pointed out that each site known to be of importance in terms of bee fodder has to be reported thoroughly. The study revealed that 92% of non-woody plants and 94% of the identified woody plants were known to be foraged by stinging honey bees (Table 3). Among foraged plants species include Albizia gummifera, A. petersiana, Asparagus setaceus, Dombeya burgessiae, D. kirkii, Lagenaria abyssinica (Plate 1), Zehneria scabra (Plate 1), Brugmansia suaveolens (Plate 1), Bothriocline longipes (Plate 1), Momordica foetida (Plate 1), and Vernonia lasiopus (Plate 1), to list a few.

Plate 1: Plant species foraged by honey bees in west Kilimanjaro Plantation

Article DOI: https://doi.org/10.37284/ijar.3.1.301

Plant Species Foraged by Stinging Honey Bees per Range

Sanya Juu Range

A total of 26 non-woody (*Table 2*) and 89 woody plants (*Table 3*) were identified at Sanya Juu. Of the

26 non-woody plants, only one was not known not to be foraged by stinging honey bees, and one (1) not known whether was being foraged or not. Most of the woody plants were foraged by stinging honey bees (*Table 3*).

Table 2: Non-woody plant species foraged by stinging honey bees at Sanya Juu Range

S/No	Botanical name	GF	Indiv.	F	RF	Н'	Status	Ε
1	Rhipsalis baccifera	EPH	1	1	0.379	0.035	X*	
2	Oplismenus compositus	GR	40	2	0.758	0.358	BF*	
3	Acalypha volkensii	HB	10	1	0.379	0.189	BF	
4	Achyranthes aspera	HB	5	1	0.379	0.120	BF***	
5	Asparagus setaceus	HB	4	3	1.136	0.102	BF**	
6	Asystacia gangetica	HB	10	2	0.758	0.189	BF**	
7	Basella alba	HB	2	1	0.379	0.061	BF*	
8	Celosia trigyna	HB	2	1	0.379	0.061	BF**	
9	Cinerari deltoides	HB	11	3	1.136	0.201	BF**	
10	Commicarpus pedunculosus	HB	2	1	0.379	0.061	BF*	
11	Cyathula orthocantha.	HB	16	2	0.758	0.249	BF**	
12	Cyphostemma adenocaule	HB	1	1	0.379	0.035	BF**	
13	Desmodium repandum	HB	2	1	0.379	0.061	BF***	
14	Ipomoea wightii	HB	4	1	0.379	0.102	BF***	
15	Jasminum fluminense	HB	2	1	0.379	0.061	BF***	
16	Justicia flava	HB	3	1	0.379	0.083	BF**	
17	Lagenaria abyssinica	HB	2	1	0.379	0.061	BF**	
18	Mikania cordata	HB	3	1	0.379	0.083	BF***	
19	Momordica foetida	HB	3	1	0.379	0.083	BF***	
20	Rhynchosia sp.	HB	3	1	0.379	0.083	BF***	
21	Rubia cordifolia	HB	3	1	0.379	0.083	BF**	
22	Scadoxus multiflorus	HB	1	1	0.379	0.035	Х	
23	Solanecio angulatus	HB	5	1	0.379	0.120	BF***	
24	Thunbergia alata	HB	2	1	0.379	0.061	BF**	
25	Tragia brevipes	HB	2	1	0.379	0.061	UN	
26	Cyperus alternifolius	SG	10	1	0.379	0.189	BF	
	Total		149	33	13.637	2.828		0.868

Key: GF = Growth form; Indiv=individuals(stems)'; F=frequency; RF=Relative frequency; H'=Shannon wiener index of diversity; E=species evenness; BF=foraged by bees; BF***=the most foraged; X=not foraged; X*=not foraged but bees seen collecting water on either leaves & stem; UN=unknown or data deficiency.

Most of the woody plant species identified at Sanya Juu were known to be foraged by stinging honey bees (*Table 3*), while only a few were not.

Article DOI: https://doi.org/10.37284/ijar.3.1.301

S/N	Botanical name	GF	Indiv.	F	RF	Н'	Status	Ε
1	Aspilia mossambicensis	SR	15	1	0.3788	0.088	BF***	
2	Aspilia pluriseta	SR	5	1	0.3788	0.038	BF***	
3	Carissa edulis	SR	3	1	0.3788	0.025	BF**	
1	Crotalaria axillaris	SR	5	2	0.7576	0.038	BF***	
5	Grewia similis	SR	12	3	1.1364	0.075	BF***	
6	Hoslundia opposita	SR	32	8	3.0303	0.150	BF***	
7	Indigofera trita	SR	1	1	0.3788	0.010	BF***	
8	Maerua triphylla	SR	3	1	0.3788	0.025	BF*	
9	Montanoa hibicifolia	SR	10	1	0.3788	0.065	BF*	
10	Pavonia urens	SR	33	9	3.4091	0.153	BF***	
11	Phyllanthus ovalifolius	SR	9	2	0.7576	0.060	BF*	
12	Phyllanthus fischeri	SR	5	1	0.3788	0.038	BF	
13	Psiadia punctulata	SR	2	1	0.3788	0.018	BF***	
14	Psychotria riparia	SR	- 7	4	1.5152	0.049	BF***	
15	Rumex usambarensis	SR	6	1	0.3788	0.049	BF**	
16	Senecio hadiensis	SR	5	2	0.7576	0.038	BF***	
17	Senna bicapsularis	SR	2	1	0.3788	0.018	BF*	
18	Vernonia tolypophora	SR	26	2	0.7576	0.130	BF***	
19	Vernonia lasiopus	SR	12	$\frac{2}{2}$	0.7576	0.075	BF***	
20	Vernonia myriantha	SR	3	$\frac{2}{2}$	0.7576	0.025	BF***	
20	Vitex strickeri	SR	10	$\frac{2}{2}$	0.7576	0.065	BF**	
22	Alangium chinense	TR	1	1	0.3788	0.000	BF*	
22	Albizia gummifera	TR	1	1	0.3788	0.010	BF***	
23 24	Albizia petersiana	TR	3	1	0.3788	0.010	BF***	
2 4 25	Allophyllus africanus	TR	2	4	1.5152	0.023	BF***	
25 26	Allophyllus ferrugineus	TR	$\frac{2}{2}$	4	0.7576	0.018	BF***	
20 27	Bersama abyssinica	TR	$\frac{2}{12}$	5	1.8939	0.018	BF***	
28	Bridelia micrantha	TR	2	1	0.3788	0.073	BF***	
28 29		TR	2 9	5		0.018	BF**	
29 30	Celtis africana	TR	2	5 1	1.8939 0.3788	0.000	BF**	
30 31	Celtis gomphphylla	TR	2 31	8		0.018	BF*	
	Chaetacme aristata				3.0303			
32	Chionanthus battiscombei	TR TP	9	4	1.5152	0.060	BF* pe***	
33 24	Clausena anisata Crotor macrostachuus	TR TP	9 4	6	2.2727	0.060	BF*** pe**	
34	Croton macrostachyus	TR TR	4	2	0.7576	0.032	BF** BF**	
35	Croton megalocarpus	TR	18	7	2.6515	0.100	BF**	
36	Cussonia holstii	TR	2	1	0.3788	0.018	BF*	
37	Deinbolia borbonica	TR	4	1	0.3788	0.032	BF***	
38	Diospyros abyssinica	TR	19 5	7	2.6515	0.104	BF**	
39 40	Dombeya buregessiae	TR	5	1	0.3788	0.038	BF***	
40	Dracaena fragrans	TR	5	1	0.3788	0.038	BF**	
41	Ehretia cymosa	TR	3	2	0.7576	0.025	BF**	
42	Ekebergia capensis	TR	2	1	0.3788	0.018	BF***	
43	Elaeodendron buchananii	TR	5	3	1.1364	0.038	BF**	
44	Erythrococca fischeri	TR	5	2	0.7576	0.038	BF	
45	Euclea divinorum	TR	24	8	3.0303	0.123	BF**	
46	Fagaropsis angolensis	TR	1	1	0.3788	0.010	BF***	
47	Ficus sur	TR	2	1	0.3788	0.018	X*	
48	Ficus thonningii	TR	11	3	1.1364	0.070	X*	

Table 3: Woody plant species foraged by stinging honey bees at Sanya Juu Range

Article DOI: https://doi.org/10.37284/ijar.3.1.301

S/N	Botanical name	GF	Indiv.	F	RF	Н'	Status	Ε
49	Flacourtia indica	TR	37	9	3.4091	0.165	BF***	
50	Lannea schweinfurthii	TR	1	1	0.3788	0.010	BF***	
51	Mimusops kummel	TR	1	1	0.3788	0.010	BF**	
52	Mystroxylon aethiopicum	TR	10	4	1.5152	0.065	BF***	
53	Newtonia buchananii	TR	1	1	0.3788	0.010	BF***	
54	Obetia radula	TR	4	3	1.1364	0.032	UN	
55	Ochna holstii	TR	1	1	0.3788	0.010	BF**	
56	Olea capensis	TR	4	9	3.4091	0.032	BF**	
57	Oxyanthus speciosus	TR	3	1	0.3788	0.025	BF**	
58	Persea americana	TR	1	1	0.3788	0.010	BF***	
59	Pittosporum viridiflorum	TR	1	1	0.3788	0.010	BF***	
50	Rauvolfia caffra	TR	4	2	0.7576	0.032	BF*	
51	Rawsonia lucida	TR	5	3	1.1364	0.038	BF**	
52	Rhus natalensis	TR	2	1	0.3788	0.018	BF***	
53	Rothmania fischeri	TR	9	4	1.5152	0.060	BF***	
54	Schrebela alata	TR	1	1	0.3788	0.010	BF*	
55	Trema orientalis	TR	2	1	0.3788	0.018	BF**	
56	Trichilia emetica	TR	6	2	0.7576	0.044	BF***	
57	Trilipesium madagascariensis	TR	4	2	0.7576	0.032	X*	
58	Turraea robusta	TR	3	2	0.7576	0.025	BF***	
59	Vangueria infausta	TR	9	3	1.1364	0.060	BF***	
70	Vangueria madagascariensis	TR	2	9	3.4091	0.018	BF***	
71	Vepris simplicifolia	TR	33	2	0.7576	0.153	BF***	
72	Vernonia tolyp amygdalina	TR	3	2	0.7576	0.025	BF***	
73	Acacia brevispica	WC	8	2	0.7576	0.055	BF***	
74	Adenia gummifera	WC	8	3	1.1364	0.055	BF***	
75	Ampelocissus tomentosa	WC	4	5	1.8939	0.032	BF*	
76	Ampelocissus africana	WC	10	1	0.3788	0.065	BF**	
77	Bauhinia tomentosa	WC	3	1	0.3788	0.025	BF	
78	Capparis tomentosa	WC	3	1	0.3788	0.025	BF*	
79	Clematis simensis	WC	2	1	0.3788	0.018	BF**	
80	Clerodendrum johnstonnii	WC	3	1	0.3788	0.025	BF*	
81	Combretum aculeatum	WC	6	2	0.7576	0.044	BF***	
82	Helinus mystacinus	WC	5	2	0.7576	0.038	BF*	
83	Landolfia buchaananii	WC	4	2	0.7576	0.032	BF**	
84	Paulinia pinnata	WC	3	1	0.3788	0.025	BF*	
85	Phytolacca dodecandra	WC	4	1	0.3788	0.032	BF	
86	Salacia madagascariensis	WC	11	5	1.8939	0.070	BF**	
87	Secamone punctulata	WC	2	1	0.3788	0.018	BF**	
88	Tiliacora funifera	WC	10	3	1.1364	0.065	BF*	
39	Toddalia asiatica	WC	8	2	0.7576	0.055	BF***	
	Total		640	228	86.364	4.036	21	0.899

Key: GF=Growth form; Indiv=individuals(stems)'; F=frequency; RF=Relative frequency; H'=Shannonwiener index of diversity; E=species evenness; BF=foraged by bees; $BF^{***}=the$ most foraged; X=notforaged; $X^*=not$ foraged but bees seen collecting water on either leaves & stem; UN=unknown or data deficiency. Article DOI: https://doi.org/10.37284/ijar.3.1.301

Wasendo Range

Most of the plant species were known to be foraged by stinging honey bee at the Wasendo range (*Table* 4).

Table 4: Non-woody plan	ts forgood by stingi	ng hanav haa at Wacan	do Rango Natural Koroct
$1 a \mu c = 1 10 n - w 00 u y \mu a \mu$	us torageu by sungi	ig noney bee at wasen	uo nange matural rorest

S/N	Botanical name	GF	Indiv.	F	RF	Н'	Status	Ε
1	Acalypha volkensii	HB	2	1	0.417	0.023	BF	
2	Achyranthes aspera	HB	92	7	3.333	0.451	BF***	
3	Asparagus racemosus	HB	7	2	0.833	0.061	BF***	
4	Asparagus setaceus	HB	31	10	4.167	0.176	BF***	
5	Asystacia gangetica	HB	11	2	0.833	0.086	BF**	
6	Basella alba	HB	2	1	0.417	0.023	BF*	
7	Commelina benghalensis	HB	15	1	0.417	0.107	BF**	
8	Conyza bonariensis	HB	5	1	0.417	0.047	BF***	
9	Crassocephallum montuosum	HB	2	1	0.417	0.023	BF***	
10	Cyathula cylindrica	HB	24	3	1.250	0.149	BF***	
11	Cyathula uncinulata	HB	11	4	1.667	0.086	BF***	
12	Cyphostemma adenocaule	HB	3	1	0.417	0.031	BF**	
	Cypphostemma							
13	kilimandscharicum	HB	2	1	0.417	0.023	BF**	
14	Dipsacus pinnatifidus	HB	3	1	0.417	0.031	BF*	
15	Drymaria cordata	HB	5	1	0.417	0.047	BF	
16	Galinsoga parviflora	HB	6	1	0.417	0.054	BF*	
17	Girardinia diversifolia	HB	5	2	0.833	0.047	UN	
18	Hypoestes aristata	HB	64	1	0.417	0.267	BF**	
19	Impatiens meruensis	HB	15	1	0.417	0.107	BF**	
20	Ipomoea wightii	HB	28	3	1.250	0.164	BF***	
21	Kalanchoe densiflora	HB	1	1	0.417	0.013	BF*	
22	Lagenaria abyssinica	HB	2	1	0.417	0.023	BF**	
23	Momordica foetida	HB	2	2	0.833	0.023	BF***	
24	Plectranthus longipes	HB	30	1	0.833	0,258	BF**	
25	Rubus niveus	HB	3	1	0.417	0.031	BF**	
26	Rumex abyssinica	HB	5	1	0.417	0.047	BF**	
27	Secamone punctulata	HB	2	1	0.417	0.023	BF*	
28	Solanum anguivi	HB	1	1	0.417	0.013	BF	
29	Sonchus schweinfurthii	HB	2	1	0.417	0.023	BF*	
30	Stephania abyssinica	HB	2	1	0.417	0.023	BF*	
31	Urtical massaica	HB	26	2	0.833	0.157	UN	
32	Vernonia galamensis	HB	1	1	0.41	0.013	BF***	
33	Zehneria scabra	HB	14	7	2.91	0.102	BF**	
				-				0.71
	Total		424	66	28.33	2.491		2

Key: GF=Growth form; Indiv=individuals(stems)'; F=frequency; RF=Relative frequency; H'=Shannon wiener index of diversity; E=species evenness; BF=foraged by bees; $BF^{***}=the$ most foraged; X=not foraged but bees seen collecting water on either leaves & stem; UN=unknown or data deficiency.

Article DOI: https://doi.org/10.37284/ijar.3.1.301

S/N	Botanical name	GF	Indiv.	F	RF	H'	Status	Ε
1	Bothriocline longipes	SR	2	1	0.417	0.020	BF***	
2	Crotalaria axillaris	SR	1	1	0.417	0.011	BF***	
3	Maerua triphylla	SR	2	1	0.417	0.020	BF*	
4	Pavonia urens	SR	13	5	2.083	0.089	BF***	
5	Vernonia tolypophora	SR	19	2	0.833	0.116	BF***	
6	Vernonia lasiopus	SR	33	4	1.667	0.169	BF***	
7	Allophyllus abyssinica	TR	4	1	0.417	0.036	BF***	
8	Allophyllus ferrugineus	TR	3	2	0.833	0.028	BF***	
9	Bersama abyssinica	TR	15	9	3.750	0.098	BF***	
10	Cassipourea malosana	TR	95	13	5.417	0.304	BF*	
11	Celtis africana	TR	5	5	2.083	0.043	BF**	
12	Clausena anisata	TR	7	5	2.083	0.056	BF***	
13	Cussonia holstii	TR	2	3	1.250	0.020	BF**	
14	Diospyros abyssinica	TR	52	12	5.000	0.223	BF**	
15	Dombeya buregessiae	TR	24	3	1.250	0.137	BF***	
16	Ekebergia capensis	TR	2	1	0.417	0.020	BF***	
17	Elaeodendron buchananii	TR	12	8	3.333	0.084	BF**	
18	Erythrococca fischeri	TR	29	11	4.583	0.155	BF	
19	Euclea divinorum	TR	8	2	0.833	0.062	BF**	
20	Fagaropsis angolensis	TR	15	12	5.000	0.098	BF***	
21	Ficus thonningii	TR	1	1	0.417	0.011	X*	
22	Ficus thonningii	TR	2	1	0.417	0.020	X*	
23	Hagenia abyssinica	TR	3	1	0.417	0.028	BF**	
24	Ilex mitis	TR	2	2	0.833	0.020	BF**	
25	Maesa lanceolata	TR	17	3	1.250	0.108	BF***	
26	Maytenus heterophylla	TR	7	1	0.417	0.056	BF***	
27	Maytenus undata	TR	2	1	0.417	0.020	NF***	
28	Momordica foetida	TR	3	1	0.417	0.028	BF***	
29	Mystroxylon aethiopicum	TR	26	8	3.333	0.144	BF**	
30	Olea capensis	TR	3	1	0.417	0.028	BF**	
31	Olea europaea	TR	1	1	0.417	0.011	BF**	
32	Polysias fulva	TR	2	1	0.417	0.020	BF	
33	Rawsonia lucida	TR	1	1	0.417	0.011	BF*	
34	Ritchiea albersii	TR	1	5	2.083	0.011	BF*	
35	Rytignia uhilgii	TR	4	3	1.250	0.036	BF***	
36	Turraea holstii	TR	12	6	2.500	0.084	BF**	
37	Vangueria infausta	TR	3	2	0.833	0.028	BF***	
38	Vepris simplicifolia	TR	67	15	6.250	0.257	BF***	
39	Xymalos monospora	TR	2	1	0.417	0.020	BF*	
40	Azima tetracantha	WC	18	6	2.500	0.112	BF	
41	Toddalia asiatica	WC	20	2	0.833	0.121	BF***	
42	Urera hypselodendron	WC	9	3	1.250	0.067	BF*	
	Total		472	150	62.50	2.546		0.711

Table 5: Woody plant species foraged by stinging honey bee at Wasendo Range

Key: GF=Growth form; Indiv=individuals(stems)'; F=frequency; RF=Relative frequency; H'=Shannon wiener index of diversity; E=species evenness; BF=foraged by bees; BF***=the most foraged; X=not foraged; X*=not foraged but bees seen collecting water on either leaves & stem; UN=unknown or data deficiency

Article DOI: https://doi.org/10.37284/ijar.3.1.301

Londrosi Gate

A total of 21 non-woody plant species were identified at the Londrosi range. Of those, only two

of them were not foraged, while only one was not known as to whether they can be foraged or not (Table 6).

Table 6: Plant species	foraged by	sting honey bees at	Londrosi gate vegetation

S/N	Botanical name	GF	Indiv.	F	RF	Н'	Status	Ε
1	Asparagus racemosus	HB	2	1	2.222	0.074	BF**	
2	Asparagus setaceus	HB	4	1	2.222	0.122	BF**	
3	Basella alba	HB	9	2	4.444	0.207	BF*	
4	Crotalaria sp.	HB	1	1	2.222	0.043	BF***	
5	Cyathula uncinulata	HB	8	2	4.444	0.193	BF***	
	Cyphosetemma							
6	adenocaule	HB	2	1	2.222	0.074	BF**	
7	Jasminum fluminense	HB	2	1	2.222	0.074	BF**	
8	Lagenaria abyssinica	HB	5	1	2.222	0.142	BF**	
9	Momordica foetida	HB	2	1	2.222	0.074	BF***	
10	Nicandra physaloides	HB	2	1	2.222	0.074	BF***	
11	Polygonum snegalense	HB	10	1	2.222	0.220	BF**	
12	Pteridium aquilinum	FN	50	2	0.8333	0.234	X*	
13	Pteris catoptera	FN	2	1	2.222	0.074	X*	
14	Rubus pinnatus	HB	2	1	2.222	0.074	BF**	
	Thalictrum							
15	rhynchocarpum	HB	3	1	2.222	0.100	BF*	
16	Trapeolum majus	HB	5	1	2.222	0.142	BF	
17	Urtica massaica	HB	31	3	6.667	0.358	UN	
18	Verbena bonariensis	HB	1	1	2.222	0.043	BF	
19	Vernonia galamensis	HB	2	1	2.222	0.074	BF***	
	Zandedeschia							
20	elleollitiana	HB	8	1	2.222	0.193	BF	
21	Zehneria scabra	HB	7	2	4.444	0.177	BF**	
	Total		158	27	56.389	2.766		0.940

Key: GF=Growth form; Indiv=individuals(stems)'; F=frequency; RF=Relative frequency; H'=Shannonwiener index of diversity; E=species evenness; BF=foraged by bees; BF***=the most foraged; X=notforaged; X*=not foraged but bees seen collecting water on either leaves & stem; UN=unknown or data deficiency.

Of the 16 identified woody plants at Londrosi, only one was known not to be foraged by stinging honey bees (*Table 7*).

S/N	Botanical name	GF	Indiv.	F	RF	Н'	Status	Ε
1	Acacia melanoxylon	TR	5	1	2.222	0.113	BF***	
2	Allophyllus abyssinica	TR	2	1	2.222	0.058	BF**	
3	Bersama abyssinica	TR	1	1	2.222	0.033	BF***	
4	Brugmansia suaveolens	TR	60	3	6.667	0.367	BF	
5	Casearia battiscombei	TR	2	1	2.222	0.058	BF**	
6	Croton megalocarpus	TR	1	1	2.222	0.033	BF**	

Article DOI: https://doi.org/10.37284/ijar.3.1.301

S/N	Botanical name	GF	Indiv.	F	RF	Н'	Status	Ε
7	Cupressu lusitanica	TR	1	1	2.222	0.033	X*	
8	Dombeya buregessiae	TR	3	1	2.222	0.078	BF***	
9	Ensete edule	TR	3	1	2.222	0.078	BF***	
10	Euryops chryssanthemoides	SR	15	1	2.222	0.230	BF***	
11	Olea europaea	TR	21	2	4.444	0.275	BF**	
12	Pavonia urens	SR	2	1	2.222	0.058	BF***	
13	Solanum aculeastrum	SR	4	1	2.222	0.097	BF	
14	Urera hypselodendron	WC	5	1	2.222	0.113	BF	
15	Vepris simplicifolia	TR	1	1	2.222	0.033	BF***	
16	Vernonia lasiopus	SR	9	1	2.222	0.169	BF***	
	Total		135	19	42.222	1.827		0.645

Key: GF=Growth form; Indiv=individuals(stems)'; F=frequency; RF=Relative frequency; H'=Shannonwiener index of diversity; E=species evenness; BF=foraged by bees; BF***=the most foraged; X=not foraged; X*=not foraged but bees seen collecting water on either leaves & stem; UN=unknown or data deficiency.

Hill Wood Range

All non-woody plants identified from this range were known to be foraged by honey bees, even though at different levels (*Table 8*).

Table 8: Plant species foraged by stinging honey bees at Hill woody range

S/N	Botanical name	GF	Indiv.	F	RF	Н'	Status	Е
1	Acalypha volkensii	HB	15	2	1.887	0.200	BF	
2	Asparagus setaceus	HB	4	1	0.943	0.081	BF*	
3	Conyza bonariensis	HB	1	1	0.943	0.027	BF***	
	Crotalaria [pubescent							
4	fruits]	HB	2	1	0.943	0.048	BF***	
5	Crotalaria axillaris	HB	2	1	0.943	0.048	BF***	
6	Crotalaria incana	HB	3	1	0.943	0.065	BF***	
7	Cyphostemma adenocaule	HB	1	1	0.943	0.027	BF**	
8	Exotheca abyssinica	GR	12	1	0.943	0.174	BF*	
9	Helichryssum kirkii	HB	5	1	0.943	0.095	BF***	
10	Melinis minutiflora	GR	115	2	1.887	0.305	BF**	
11	Panicum maximum	GR	13	2	1.887	0.183	BF**	
12	Pentas lanceolata	HB	7	1	0.943	0.121	BF***	
13	Rhynchosia sp.	HB	3	1	0.943	0.065	BF***	
14	Solanecio angulatus	HB	1	1	0.943	0.027	BF***	
15	Solanum anguivi	HB	2	1	0.943	0.048	BF	
16	Tinnea aethiopicum	HB	3	1	0.943	0.065	BF*	
17	Triiumfetta rhomboidea	HB	2	1	0.943	0.048	BF**	
	Total		191	20	18.868	1.629		0.57

Key: GF=Growth form; Indiv=individuals(stems)'; F=frequency; RF=Relative frequency; H'=Shannon wiener index of diversity; E=species evenness; BF=foraged by bees; BF***=the most foraged; X=not foraged; X*=not foraged but bees seen collecting water on either leaves & stem; UN=unknown or data deficiency

Article DOI: https://doi.org/10.37284/ijar.3.1.301

Woody plants of Hill wood range as shown in Table 9

S/N	Botanical name	GF	Indiv.	F	RF	H'	Status	Е
1	Aspilia mossambicensis	SR	7	3	2.830	0.088	BF***	
2	Carissa edulis	SR	17	3	2.830	0.163	BF**	
3	Clutia abyssinica	SR	2	1	0.943	0.033	BF*	
4	Coffea robusta	SR	1	1	0.943	0.019	BF***	
5	Grewia similis	SR	18	4	3.774	0.169	BF***	
6	Heteromorpha trifoliata	SR	2	1	0.943	0.033	BF**	
7	Hibiscus fuscus	SR	2	1	0.943	0.033	BF***	
8	Indigofer trita	SR	11	3	2.830	0.121	BF***	
9	Lippia javanica	SR	5	1	0.943	0.068	BF***	
10	Microglossa densiflora	SR	11	2	1.887	0.121	BF***	
11	Pavonia urens	SR	2	1	0.943	0.033	BF***	
12	Plectrunthus comosus	SR	2	2	1.887	0.033	X*	
13	Psiadia punctulata	SR	4	1	0.943	0.058	BF***	
14	Senecio hadiensis	SR	2	1	0.943	0.033	BF***	
15	Acacia drepanolobium	TR	2	1	0.943	0.033	BF	
16	Afrocarpus falcatus	TR	1	1	0.943	0.019	X*	
17	Albizia gummifera	TR	2	1	0.943	0.033	BF***	
18	Calodendron capense	TR	2	1	0.943	0.033	BF**	
19	Celtis africana	TR	2	1	0.943	0.033	BF**	
20	Combretum molle	TR	10	3	2.830	0.114	BF**	
21	Croton megalocarpus	TR	1	1	0.943	0.019	BF**	
22	Cupressu lusitanica	TR	2	1	0.943	0.033	x*	
23	Cussonia holstii	TR	5	3	2.830	0.068	BF*	
24	Diospyros abyssinica	TR	1	1	0.943	0.019	BF**	
25	Dodonaea viscosa	TR	32	4	3.774	0.239	BF**	
26	Dombeya buregessiae	TR	2	1	0.943	0.033	BF***	
27	Dombeya kirkii	TR	10	3	2.830	0.114	BF***	
28	Elaeodendron buchananii	TR	2	1	0.943	0.033	BF**	
29	Euclea divinorum	TR	2	1	0.943	0.033	BF**	
30	Ficus sur	TR	3	1	0.943	0.046	X*	
31	Ficus thonningii	TR	2	1	0.943	0.033	X*	
32	Grevillea robusta	TR	1	1	0.943	0.019	BF***	
33	Juniperus procera	TR	5	2	1.887	0.068	X*	
34	Maytenus heterophylla	TR	3	1	0.943	0.046	BF***	
35	Mimusops kummel	TR	2	1	0.943	0.033	BF**	
36	Mystroxylon aethiopicum	TR	2	1	0.943	0.033	BF**	
37	Olea europaea	TR	10	3	2.830	0.114	BF**	
38	Olinia rochetiana	TR	21	4	3.774	0.187	BF**	
39	Protea gaguedii	TR	19	2	1.887	0.175	BF**	
40	Rhus natalensis	TR	29	5	4.717	0.226	BF***	
41	Schrebela alata	TR	1	1	0.943	0.019	BF**	
42	Sclopia zeyheri	TR	5	1	0.943	0.068	BF**	
43	Syzygium cordatum	TR	2	1	0.943	0.033	BF***	
44	Trichilia emetica	TR	2	1	0.943	0.033	BF***	
45	Trimeria grandifolia	TR	13	3	2.830	0.136	BF*	
46	Turraea robusta	TR	3	1	0.943	0.046	BF***	
			-	-				

Table 9: Woody plant species foraged by stinging honey bee at Hill Wood Range

Article DOI: https://doi.org/10.37284/ijar.3.1.301

S/N	Botanical name	GF	Indiv.	F	RF	Н'	Status	Ε
	Vangueria							
47	madagascariensis	TR	2	1	0.943	0.033	BF***	
48	Vepris simplicifolia	TR	3	1	0.943	0.046	BF***	
49	Dalbergia lactea	WC	1	1	0.943	0.019	BF***	
50	Helinus mystacinus	WC	2	1	0.943	0.033	BF**	
51	Pterolobium stellatum	WC	4	2	1.887	0.058	BF**	
52	Rhoicissus tridentata	WC	2	1	0.943	0.033	BF***	
	Total		299	86	81.132	3.412		0.86

Key: GF=Growth form; Indiv=individuals(stems)'; F=frequency; RF=Relative frequency; H'=Shannon wiener index of diversity; E=species eveenness; BF=foraged by bees; $BF^{***}=the$ most foraged; X=not foraged; X*=not foraged but bees seen collecting water on either leaves & stem; UN=unknown or data deficiency.

Lemosho Range

Non-woody plant species foraged by stinging honey bees at Lemosho Range, Only one not foraged, and one unknown as being foraged was identified (*Table 10*).

Table 10: Non-woody plant species foraged by stinging honey bees at Lemosho Range

S/N	Botanical Name	GF	Indiv.	F	RF	H'	Status E
1	Acalypha volkensii	HB	2	1	1.724	0.031	BF*
2	Achyranthes aspera	HB	21	2	3.448	0.176	BF***
3	Asparagus racemosus	HB	5	1	1.724	0.064	BF**
4	Basella alba	HB	2	1	1.724	0.031	BF*
5	Conyza bonariensis	HB	5	1	1.724	0.064	BF***
6	Crassocephallum montuosum	HB	2	1	1.724	0.031	BF***
7	Cyathula cylindrica	HB	10	1	1.724	0.107	BF***
8	Cyathula uncinulata	HB	5	2	3.448	0.064	BF***
9	Cynodon dactylon	GR	12	1	1.724	0.121	BF*
10	Cyphostemma adenocaule	HB	3	1	1.724	0.043	BF**
	Cypphostemma						
11	kilimandscharicum	HB	2	1	1.724	0.031	BF**
12	Dipsacus pinnatifidus	HB	3	1	1.724	0.043	BF
13	Drymaria cordata	HB	5	1	1.724	0.064	BF
14	Galinsoga parviflora	HB	6	1	1.724	0.073	BF**
15	Impatiens meruensis sp.	HB	15	1	1.724	0.141	BF**
16	Ipomoea wightii	HB	28	3	5.172	0.210	BF***
17	Kalanchoe densiflora	HB	1	1	1.724	0.018	BF*
18	Lagenaria abyssinica	HB	2	1	1.724	0.031	BF**
19	Momordica foetida	HB	2	2	3.448	0.031	BF***
20	Plectranthus longipes	HB	11	1	1.724	0.114	BF**
21	Pteridium aquilinum	FN	50	2	3.448	0.287	X*
22	Rubus niveus	HB	3	1	1.724	0.043	BF**
23	Rumex abyssinica	HB	5	1	1.724	0.064	BF**
24	Sonchus schweinfurthii	HB	2	1	1.724	0.031	BF*
25	Stephania abyssinica	HB	2	1	1.724	0.031	BF*
26	Urtical massaica	HB	21	3	5.172	0.176	UN

Article DOI: https://doi.org/10.37284/ijar.3.1.301

S/N	Botanical Name	GF	Indiv.	F	RF	H'	Status	Е
	Total		225	34	58.621	2.123	0.652	

Key: GF=Growth form; Indiv=individuals(stems)'; F=frequency; RF=Relative frequency; H'=Shannonwiener index of diversity; E=species evenness; BF=foraged by bees; BF***=the most foraged; X=notforaged; X*=not foraged but bees seen collecting water on either leaves & stem; UN=unknown or data deficiency.

Only six of the identified woody plants were not foraged by stinging honey bees, while the rest were potential bee fodder at varying levels (*Table 11*).

Table 11: Woody plant species foraged by stinging honey bee at Lemosho range

S/N	Botanical name	GF	Indiv.	F	RF	H'	Status E	
1	Aspilia mossambicensis	SR	7	3	2.830	0.088	BF***	
2	Carissa edulis	SR	17	3	2.830	0.163	BF**	
3	Clutia abyssinica	SR	2	1	0.943	0.033	BF*	
4	Coffea robusta	SR	1	1	0.943	0.019	BF***	
5	Grewia similis	SR	18	4	3.774	0.169	BF***	
6	Heteromorpha trifoliata	SR	2	1	0.943	0.033	BF**	
7	Hibiscus fuscus	SR	2	1	0.943	0.033	BF***	
8	Indigofer trita	SR	11	3	2.830	0.121	BF***	
9	Lippia javanica	SR	5	1	0.943	0.068	BF***	
10	Microglossa densiflora	SR	11	2	1.887	0.121	BF***	
11	Pavonia urens	SR	2	1	0.943	0.033	BF***	
12	Plectrunthus comosus	SR	2	2	1.887	0.033	X*	
13	Psiadia punctulata	SR	4	1	0.943	0.058	BF***	
14	Senecio hadiensis	SR	2	1	0.943	0.033	BF***	
15	Acacia drepanolobium	TR	2	1	0.943	0.033	BF	
16	Afrocarpus falcatus	TR	1	1	0.943	0.019	X*	
17	Albizia gummifera	TR	2	1	0.943	0.033	BF***	
18	Calodendron capense	TR	2	1	0.943	0.033	BF**	
19	Celtis africana	TR	2	1	0.943	0.033	BF**	
20	Combretum molle	TR	10	3	2.830	0.114	BF**	
21	Croton megalocarpus	TR	1	1	0.943	0.019	BF**	
22	Cupressu lusitanica	TR	2	1	0.943	0.033	X*	
23	Cussonia holstii	TR	5	3	2.830	0.068	BF*	
24	Dalbergia lactea	WC	1	1	0.943	0.019	BF***	
25	Diospyros abyssinica	TR	1	1	0.943	0.019	BF**	
26	Dodonaea viscosa	TR	32	4	3.774	0.239	BF**	
27	Dombeya buregessiae	TR	2	1	0.943	0.033	BF***	
28	Dombeya kirkii	TR	10	3	2.830	0.114	BF***	
29	Elaeodendron buchananii	TR	2	1	0.943	0.033	BF**	
30	Euclea divinorum	TR	2	1	0.943	0.033	BF**	
31	Ficus sur	TR	3	1	0.943	0.046	X*	
32	Ficus thonningii	TR	2	1	0.943	0.033	X*	
33	Grevillea robusta	TR	1	1	0.943	0.019	BF***	
34	Helinus mystacinus	WC	2	1	0.943	0.033	BF**	
35	Juniperus procera	TR	5	2	1.887	0.068	X*	
36	Maytenus heterophylla	TR	3	1	0.943	0.046	BF***	
37	Mimusops kummel	TR	2	1	0.943	0.033	BF**	

Article DOI: https://doi.org/10.37284/ijar.3.1.301

S/N	Botanical name	GF	Indiv.	F	RF	Н'	Status	Ε
38	Mystroxylon aethiopicum	TR	2	1	0.943	0.033	BF**	
39	Olea europaea	TR	10	3	2.830	0.114	BF**	
40	Olinia rochetiana	TR	21	4	3.774	0.187	BF**	
41	Protea gaguedii	TR	19	2	1.887	0.175	BF**	
42	Pterolobium stellatum	WC	4	2	1.887	0.058	BF**	
43	Rhoicissus tridentata	WC	2	1	0.943	0.033	BF***	
44	Rhus natalensis	TR	29	5	4.717	0.226	BF***	
45	Schrebela alata	TR	1	1	0.943	0.019	BF**	
46	Sclopia zeyheri	TR	5	1	0.943	0.068	BF**	
47	Syzygium cordatum	TR	2	1	0.943	0.033	BF***	
48	Trichilia emetica	TR	2	1	0.943	0.033	BF***	
49	Trimeria grandifolia	TR	13	3	2.830	0.136	BF*	
50	Turraea robusta	TR	3	1	0.943	0.046	BF***	
51	Vangueria madagascariensis	TR	2	1	0.943	0.033	BF***	
52	Vepris simplicifolia	TR	3	1	0.943	0.046	BF***	
	Total		299	86	81.132	3.412		0.86

Key: GF=Growth form; Indiv=individuals(stems)'; F=frequency; RF=Relative frequency; H'=Shannonwiener index of diversity; E=species evenness; BF=foraged by bees; BF***=the most foraged; X=notforaged; X*=not foraged but bees seen collecting water on either leaves & stem; UN=unknown or data deficiency.

Agriculture Crops Foraged by Stinging Honey Bees

The West Kilimanjaro plantation borders villages where community members practice agriculture, of which most of them offer ecosystem services, among them being flowers for stinging honey bees

(Plate 2 & Table 12).

Plate 2: Village farm with crops foraged by honey bee

Article DOI: https://doi.org/10.37284/ijar.3.1.301

The income in households and ecosystem services depends on pollinators including honey bees across the world (Fikadu, 2019). The pollinators also rely on plants that are found on natural vegetation and agriculture crops (Altieri et al., 2015). Of the five sites, Sanya juu, Hill wood, Lemosho, and near Londrosi gate were revealed to be the most supportive sites grounded on plant species diversity within such small patches, of which most plants were known to be foraged by honey bees. Bradbear (2009) pointed out that a high diversity of plants foraged by honey bees guarantees honey bee yields. On the other hand, Wasendo natural forest apart from being the largest of all was revealed to accommodate relatively fewer species per plot compared to the others. Also, the very tall trees that are also being foraged by honey bees could probably support beekeeping the least of all others because they have most plants with moderate height and wind effect may be to the minimal.

Botanical Name	Swahili/Common name	Village/ area of range
Phaseolus vulgaris	Maharage	Monjamo
Musa acuminata	Mgomba/Banana tree	Monjamo
Grevillea robusta	Grevilea	Monjamo, west of hill wood
Coffea arabica	Kahawa/Coffee	Monjamo
Mangifera indica	Mwembe/Mango tree	Monjamo
Persea americana	Mpalachichi/Avocado	Monjamo
Solanum aethiopicum	Nyanya chungu	Monjamo
Cordia africana	Mringaringa	Monjamo
Eriobotrya japonica		Monjamo
Lycoperscon esculentum	Nyanya/Tomato	Monjamo
Jacaranda mimosifolia	Mjakaranda/Jacaranda	Monjamo
Psidium guajava	Mpera/Guava	Monjamo
Solanum tuberosum	K. mviringo/Irish potatoes	Lemosho, Wasendo
Prunus persica	Tipis/Pitches	West of hill wood
Zea mays	Mahindi	Monjamo, west of hill wood
Brassica oleracea	Sukuma wiki	Monjamo
Pisum sativa	Njegere	Monjamo

Table 12: Agriculture crops identified at villages bordering West Kilimanjaro Plantation

Availability of Water

Beekeeping intervention, among other requirements, water sources are vital. The five sampled areas are well supplied with water. The Sayuni range natural forest remnants are well supplied with water on the eastern side from Mowo stream, which flows down from the waterfall in the Kilimanjaro National Park (KINAPA) (*Plate 3*). Hill wood is also supplied with water from KINAPA (Plate 3). Lemosho is in the area with a small wetland/stream on the small valley. The Wasendo and Londrosi target areas are well supplied with water from small wetlands, pipes at the Wasendo range quarters and Londrosi gate.

Article DOI: https://doi.org/10.37284/ijar.3.1.301

Plate 3: Water supply at Sanya Juu and Hill wood ranges

Plant Species Richness and Distribution in Natural Vegetation Patches

The natural vegetation patches of West Kilimanjaro Plantation consist of high plant species diversity. During the survey, an overall 204 plant species were identified as belonging to 76 families and 178 genera (*Table 13*). The average plant species richness (S) per surveyed site was 25 for non-woody plants and 50 for the woody plants. The calculates H' of 2.37 for non-wood plants and 3.05 for wood plants implied high plant diversity as supported by Kent and Coker (1994) and Kent (2012) that the H' for high diversity ranges from 3.5 ± 1.5 , and exceptionally can go beyond 4.5.

Table 13: Plant families, genera, richness and index of diversity (H') per growth form

Variable	Families	Genera	Richness (S)	Н'	
				NWP	WP
Value	76	178	204	2.37	3.05

The non-woody plants were revealed to be more distributed than the non-woody plants for both surveyed ranges of West Kilimanjaro. The H' of 2.37 for non-woody and 3.05 for woody plants revealed high diversity for all growth forms. The most distributed plant species had an RF of 6.250 ± 3.0303 , while the rest had an RF < 3.0303. The most distributed plants include *Hoslundia opposita*, *Pavonia urens, Chaetacme aristata, Euclea divinorum, Flacourtia indica, Olea capensis, Vangueria madagascariensis, Asparagus setaceus, Cassipourea malosana, Bersama abyssinica, Elaeodendron buchannanii, Fagaropsis angolensis, Erythrococca fischeri, Mystroxylon aethiopicum,*

Vepris simplicifolia and nearly all of them are foraged by sting honey bees. The most occurred plant species in the sample plots are meant to be the most distributed in a specified locality (Loehle, 2012). Even though most of the plant species are treated under the least distributed, the area remains very potential for beekeeping because nearly every plant is being foraged by the bees. The disappearance of one species does not cause any significant effect on bees, as they can go for another species in the area. The calculated evenness (E) of 0.7484 for non-wood plants and 0.795 (*Table 14*) implied that the plants in all categorize were not evenly distributed.

Article DOI: https://doi.org/10.37284/ijar.3.1.301

	S		RF		Н'		Ε		BF	
	NW								NW	W
Range Name	Р	WP	NWP	WP	NWP	WP	NWP	WP	Р	Р
Sanya juu	26	89	13.63	86.36	2.82	4.03	0.86	0.89	23	87
Wasendo forest	33	42	28.33	62.51	2.49	2.54	0.71	0.71	31	40
Londrosi	21	16	56.38	42.22	2.76	1.82	0.94	0.64	19	15
Hill wood	17	52	18.86	81.13	1.62	3.41	0.57	0.86	17	46
Lemosho	26	52.0	58.62	81.13	2.12	3.41	0.65	0.86	24	46
Total	123	251	175.82	353.35	11.81	15.21	3.73	3.96	114	234
Average	25	50	35.17	70.67	2.3674	3.04	0.7484	0.795	23	47

Table 14: Plant richness, distribution, H', E and stinging honey bee forage status

Key: S = plant richness; RF = relative frequency; H' = Shannon Weiner Diversity Index; E = Evenness; BF = bee fodder; NWP= nonwoody plant; WP = woody plant

Conservation status of trees as per IUCN

A total of two tree species, *Osyis lanceolata* (Santalaceae) (*Plate 4*) (Andiego et al., 2019) and *Juniperus procera* (*Plate 4*), are internationally known to be endangered as per IUCN. The two trees *Fagaropsis angolensis* identified at the Sanya juu range and Wasendo range and *Afrocarpus falcatus* (Podocarpaceae), identified at Hill wood are known

to be widely distributed in African countries but maybe locally extinct due to their demand for timber (Doda & Abuelgasim, 2019). *F. angolensis* is low in abundance wherever it is found growing. Its local extinction is owing to severe logging because of its high-quality timber. The *Juniperus procera*, *Osyris lanceolata*, and *Afrocarpus falcatus* are also treated as national reserve trees of Tanzania.

Plate 4: Endangered trees identified at Hill wood range: Endangered trees identified at Hill wood range

CONCLUSION AND RECOMMENDATIONS

CONCLUSION

West Kilimanjaro Forest Plantation (WKFP), natural forest patches are potential for honey

beekeeping. The high plant species diversity, of which most of them (> 90%) are foraged by bees, ensures the project sustainability. The Sanya juu, Hill wood, Lemosho, and Londrosi sites are suitable areas for beekeeping. The average species richness (S) for Wasendo was the least of all other sites, with

Article DOI: https://doi.org/10.37284/ijar.3.1.301

very tall trees and fewer honey bees observed than on other sites. The Wasendo, being planned for tourism for the Wasendo natural forest, implies suitable use of resources. Nearly all sites have very few foraged plants that seem to be the most distributed; however, nearly all of them are honey bee fodder. The sites are situated at a reasonable distance from the local community's settlement.

RECOMMENDATIONS

The survey on the five sites revealed a high diversity of honey bee foraged plant species. The recommendations have been that:

- High-quality bee fodder plants should be planted: these include *Albizia gummifera* and *Dombeya burgessiae*.
- Security: regular visits to the project sites should be exercised to protect any kind of honey theft
- Spot clearing: most seedlings have been overed by the climbers, especially at the Lemosho range. The most preferred *D. burgessiea* seedlings and saplings are covered by herbaceous and woody climbers. Opening up the cover could encourage the growth of *D. burgessiae*.
- Wasendo natural forest is more suitable for tourism because of its size, tall trees with very high canopy cover, and suitable areas for camping sites.
- Further study on the biological species diversity should be done. The information can be used to inspire tourism.
- Sample of honey should be collected and checked at the laboratory to check for the content (chemical content?).
- Education or seminar to responsible beekeeping staff: beekeeping is a venture that needs specific expertise in putting hives, harvesting and extracting honey.
- Regular inspection of the honey bee colony strength will help to reveal any challenges

facing the venture including diseases and hives strengths and weakness.

REFERENCES

- Abrha, H., Birhane, E., Hagos, H., & Manaye, A. (2018). Predicting suitable habitats of endangered Juniperus procera tree under climate change in Northern Ethiopia. *Journal of Sustainable Forestry*, 37(8), 842-853.
- Altieri, M. A., Nicholls, B. C. I., & Gbèhounou, G. (2015). Crops, weeds and pollinators Understanding ecological interaction for better management Biodiversity & Ecosystem Services in Agricultural Production System. FAO, Rome, Italy.
- Amulen, D. R., D'Haese, M., D'Haene, E., Okwee Acai, J., Agea, J. G., Smagghe, G., & Cross, P. (2019). Estimating the potential of beekeeping to alleviate household poverty in rural Uganda. *PloS one*, 14(3), e0214113.
- Andiego, K. P., Dangasuk, O. G., Odee, D. W., Omondi, F. S., Otieno, D. F., & Balozi, B. K. (2019). Genetic diversity of endangered sandalwood (Osyris lanceolata) populations in Kenya using ISSR molecular markers. *East African Agricultural and Forestry Journal*, 83(2), 80-93.
- Bradbear, N. (2009). Bees and their role in forest livelihoods A guide to the services provided by bees and the sustainable harvesting, processing and marketing of their products. Non-woody forest products. Food and Agriculture Organization of the United Nations, Rome.
- Danner, N., Keller, A., Härtel, S., & Steffan-Dewenter, I. (2017). Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. *PloS one*, *12*(8), e0183716.
- Doda, Z., & Abuelgasim, A. (2019). The conservation of African yellowwood tree (Afrocarpus falcatus) in Sidama sacred sites, Ethiopia. *Cogent Social Sciences*, 5(1), 1565073.
- Dorji, T., Moe, S. R., Klein, J. A., & Totland, Ø. (2014). Plant species richness, evenness, and

Article DOI: https://doi.org/10.37284/ijar.3.1.301

composition along environmental gradients in an alpine meadow grazing ecosystem in central Tibet, China. *Arctic, Antarctic, and Alpine Research*, 46(2), 308-326.

- FAO. (2015). Bee products: providing nutrition and generating income-Honeybees. Beekeeping products in our daily lives. *Global Forum on Food Security and Nutrition. FSN Forum.* FAO. http://www.fao.org/fsnforum/activities/discussi ons/beekeeping
- Ferrier, P. M., Rucker, R.R., Thurman, W.N. and Burgett, M. (2018). *Economic Effects and Responses to Changes in Honey Bee Health*. Economic Research Service Economic Research Report Number 246. United States Department of Agriculture. https://www.ers.usda.gov/webdocs/publications /88117/err-246.pdf?v=0
- Fikadu, Z. (2019). The Contribution of Managed Honey Bees to Crop Pollination, Food Security, and Economic Stability: Case of Ethiopia. *The Open Agriculture Journal*, *13*(1).
- Fischer, C., Leimer, S., Roscher, C., Ravenek, J., de Kroon, H., Kreutziger, Y., ... & Hildebrandt, A. (2018). Plant species richness and functional groups have different effects on soil water content in a decade-long grassland experiment. *Journal of Ecology*, 107(1), 127-141.
- Gopal, V., Joshna, K., & Kavitha, B. (2017). A comparative review on sweet honey and bitter honey. *International Journal of Pharmaceutical Science*, 8 (4): 716-723.
- Gupta, R. K., Reybroeck, W., Van Veen, J. W., & Gupta, A. (Eds.). (2014). Beekeeping for poverty alleviation and livelihood security: Vol. 1: Technological aspects of beekeeping. Springer Netherlands.
- Hung, K. L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. *Proceedings of the Royal Society B: Biological Sciences*, 285(1870), 20172140.

- Ifo, S. A., Moutsambote, J. M., Koubouana, F., Yoka, J., Ndzai, S. F., Bouetou-Kadilamio, L. N. O., ... & Joel, L. J. (2016). Tree species diversity, richness, and similarity in intact and degraded forest in the tropical rainforest of the Congo Basin: case of the forest of Likouala in the Republic of Congo. *International Journal of Forestry Research*, 2016.
- Kent, M. & Coker, P. (1994). *Vegetation Description and Analysis*. John Wiley and Sons, Chichester.
- Kent, M. (2012). Vegetation Description and Data Analysis. A Practical Approach. Second Edition. Wiley-Blackwell.
- Loehle, C. (2012). *Relative frequency function models for species distribution modeling*. Naperville, IL: National Council for Air and Stream Improvement, Inc. (NCASI).
- Minja, G. S., & Nkumilwa, T. J. (2016). The role of beekeeping on forest conservation and poverty alleviation in Moshi Rural District, Tanzania. *European Scientific Journal*, 12(23).
- Requier, F., Odoux, J. F., Tamic, T., Moreau, N., Henry, M., Decourtye, A., & Bretagnolle, V. (2015). Honey bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a major role of weeds. *Ecological Applications*, 25(4), 881-890.
- Tanzania Forest Service Agency (TFS). (2020). West Kilimanjaro. Tanzania Forest Service Agency, United Republic of Tanzania. https://www.tfs.go.tz/index.php/en/forests/westkilimanjaroTanzania National Beekeeping Act No. 15 of 2002.
- Tutuba, N. B., & Vanhaverbeke, W. (2018). Beekeeping in Tanzania: why is beekeeping not commercially viable in Mvomero? *Afrika Focus*, *31*(1), 213-239.
- United Republic of Tanzania (URT) (2014). *Three Years Implementation Report for The Financial Year 2011/2012 - 2013/ 2014*. Ministry of Natural Resources and Tourism Tanzania Forest Services Agency.

Article DOI: https://doi.org/10.37284/ijar.3.1.301

United Republic of Tanzania (URT). (1998). *Tanzania Beekeeping Policy*. Dar es salaam, Tanzania: Ministry of Natural Resources and Tourism. https://www.maliasili.go.tz/uploads/B eekeeping_Policy.pdf