Skip to main content

Phytochemicals and Biological Activities of Stenochlaena palustris

  • Living reference work entry
  • First Online:
Bioactive Compounds in Bryophytes and Pteridophytes

Abstract

Stenochlaena palustris (family Blechnaceae) is a fern species that occurs in the tropics and subtropics. They have been used as edible wild vegetables and folk medicine by the indigenous people in the Asian region. Phytochemical analyses revealed the presence of flavonoids, phenolics, tannins, saponins, gums, steroids, glycosides, terpenoids, and alkaloids in S. palustris. Nonetheless, the main secondary metabolites identified from the fern are kaempferol glycosides, fatty acids and phytosterols. Phytocompounds and solvent extracts derived from the fern were demonstrated to have antioxidant, antiglucosidase, cytotoxic, antimicrobial, anti-butyrylcholinesterase, anti-metalotoxic, antipyretic, and termiticidal activities. In nursing mothers, the juice of the fern stimulated breast milk production. The antioxidant and antimicrobial potentials of the fern also contributed to their applications in food, cosmetics, and food packaging material. Thus, current literature indicates that S. palustris is a promising source of phytochemicals with potential applications in health promotion, food, and cosmetics, which deserves future research attention. This review presents an overview of the current knowledge pertaining to the biological activities of phytocompounds and extracts of S. palustris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABTS:

2,2′-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)

AGI:

alpha-glucosidase inhibitor

BChE:

butyrylcholinesterase

DPPH:

2,2-diphenyl-1-picrylhydrazyl

DU145:

Duke University 145

EC50:

half-maximal effective concentration

EGFR-TK:

epidermal growth factor receptor protein tyrosine

FRAP:

ferric reducing antioxidant power

GAE:

gallic acid equivalent

GC-MS:

gas chromatography-mass spectrometry

H2O2:

hydrogen peroxide

HD:

hydrolysis degrees

HeLa:

Henrietta Lacks

LC50:

lethal concentration 50

LC-MS:

liquid chromatography-mass spectrometry

MCF-7:

Michigan Cancer Foundation-7

MDA-MB-231:

MD Anderson-Metastatic Breast-231

MIC:

minimum inhibitory concentration

NMR:

nuclear magnetic resonance

PVA:

poly (vinyl alcohol)

ROS:

reactive oxygen species

TF:

total flavonoid

TH:

total hydroxycinnamic acid

TP:

total phenolic

References

  1. Pranjal B, Barukial J (2021) On the pteridophytes of Bherjan-Borajan-Padumoni wildlife sanctuary, Assam. India J Threat Taxa 13(12):19781–19790. https://doi.org/10.11609/jott.7488.13.12.19781-19790

    Article  Google Scholar 

  2. Nurhasnawati H, Sundu R, Sapri SR, Kuspradini H, Arung ET (2019) Antioxidant activity, total phenolic and flavonoid content of several indigenous species of ferns in East Kalimantan. Indonesia Biodiversitas 20(2):576–580. https://doi.org/10.13057/BIODIV/D200238

    Article  Google Scholar 

  3. Cao H, Chai T-T, Wang X, Morais-Braga MFB, Yang J-H, Wong F-C et al Phytochemicals from fern species: potential for medicine applications. Phytochem Rev 16(3):379–440. https://doi.org/10.1007/s11101-016-9488-7

  4. Chambers TC (2013) A review of the genus Stenochlaena (Blechnaceae, subfamily Stenochlaenoideae). Telopea 15

    Google Scholar 

  5. Debnath S, Kundu P, Ahad M, Saha L, Biswas NN, Sadhu S (2021) Investigation of phytochemical and pharmacological assessment of ethanol extract of Stenochlaena palustris – an edible fern of Sundarbans. J Med Plants Stud 9:226–232. https://doi.org/10.22271/plants.2021.v9.i3c.1294

    Article  Google Scholar 

  6. Ndanusa AH, Cicuzza D, Siddique MM (2020) Analysis of the phytochemical contents and anti-oxidative properties of Stenochlaena palustris. Int Food Res J 27(5):798–804

    CAS  Google Scholar 

  7. Arullappan S, Sawai S, Chee L, Mahandan M, Sanmugavelan R (2017) Phytochemical screening and evaluation of cytotoxic effect and antioxidant activity of fractions isolated from Stenochlaena palustris (Burm.F.) Bedd. Leaves. Indian J Pharm Educ Res 51:s735–ss40. https://doi.org/10.5530/ijper.51.4s.106

    Article  CAS  Google Scholar 

  8. Paramawidhita RY, Adawiyah R, Umaternate A (2021) The formulation and physical evaluation of emulgel the kalakai (Stenochlaena palustris Bedd) roots ethanol extract as a sunscreen. J Phys Conf Ser 1764(1):012021. https://doi.org/10.1088/1742-6596/1764/1/012021

    Article  CAS  Google Scholar 

  9. Sulasmi ES, Suhadi SMS, Mawaddah K (2019) Alkaloids identification from the fronds of 5 species pterydophyta in Baluran Nasional Park. AIP Conf Proc 2120(1):030015. https://doi.org/10.1063/1.5115619

    Article  CAS  Google Scholar 

  10. Wijaya E, Widiputri DI, Rahmawati D (2017, 1904) Optimizing the antioxidant activity of kelakai (Stenochlaena palustris) through multiplestage extraction process. AIP Conf Proc (1):020034. https://doi.org/10.1063/1.5011891

  11. Sofiyanti N, Iriani D, Wati F, Marpaung A (2019) Morphology, palynology, and stipe anatomy of four common ferns from Pekanbaru, Riau Province, Indonesia. Biodivers J 20:327–336. https://doi.org/10.13057/biodiv/d200138

    Article  Google Scholar 

  12. Sofiyanti N, Iriani D, Fitmawati D, Roza AA (2015) Stenochlaena riauensis (Blechnaceae), a new fern species from Riau. Indonesia Bangladesh J Plant Taxon 22(2):137–141. https://doi.org/10.3329/bjpt.v22i2.26075

    Article  Google Scholar 

  13. Awang-Kanak F, Abu Bakar MF (2020) Traditional vegetable salad (ulam) of Borneo as source of functional food. Food Res 4(1):1–12. https://doi.org/10.26656/fr.2017.4(1).138

    Article  Google Scholar 

  14. Chear NJ-Y, Khaw K-Y, Murugaiyah V, Lai C-S (2016) Cholinesterase inhibitory activity and chemical constituents of Stenochlaena palustris fronds at two different stages of maturity. J Food Drug Anal 24(2):358–366. https://doi.org/10.1016/j.jfda.2015.12.005

    Article  CAS  Google Scholar 

  15. Uda SK, Hein L, Adventa A (2020) Towards better use of Indonesian peatlands with paludiculture and low-drainage food crops. Wetl Ecol Manag 28(3):509–526. https://doi.org/10.1007/s11273-020-09728-x

    Article  Google Scholar 

  16. Nicholas D, Chua HP, Saniah K (2013) Postharvest treatment and packaging system for Sarawak's indigenous midin fern (Stenochlaena palustris). Acta Hortic 979:131–137. https://doi.org/10.17660/ActaHortic.2013.979.11

    Article  Google Scholar 

  17. Chai T-T, Kwek M-T, Ong H-C, Wong F-C (2015) Water fraction of edible medicinal fern Stenochlaena palustris is a potent α-glucosidase inhibitor with concurrent antioxidant activity. Food Chem 186:26–31. https://doi.org/10.1016/j.foodchem.2014.12.09

    Article  CAS  Google Scholar 

  18. Liu H, Orjala J, Sticher O, Rali T (1999) Acylated flavonol glycosides from leaves of Stenochlaena palustris. J Nat Prod 62(1):70–75. https://doi.org/10.1021/np980179f

    Article  CAS  Google Scholar 

  19. Zuraini Z, Sasidharan S, Roopin Kaur S, Nithiyayini M (2010) Antimicrobial and antifungal activities of local edible fern Stenochlaena palustris (Burm. F.) Bedd. Pharmacologyonline 1:233–237

    Google Scholar 

  20. Zakaria Z, Sanduran S, Sreenivasan S (2010) Antifungal activity of the edible ferns: application for public health. Int J Humanit 8(8):113–118. https://doi.org/10.18848/1447-9508/CGP/v08i08/43008

    Article  Google Scholar 

  21. Gunawan-Puteri MDPT, Kato E, Rahmawati D, Teji S, Santoso JA, Pandiangan FI et al (2021) Post-harvest and extraction conditions for the optimum alpha glucosidase inhibitory activity of Stenochlaena palustris. Int J Technol 12(3):291–319. https://doi.org/10.14716/ijtech.v12i3.4409

    Article  Google Scholar 

  22. Chear NJ-Y, Fauzi AN, Khaw K-Y, Choi S-B, Yaacob NS, Lai C-S (2019) Free radical scavenging and cytotoxic properties of acylated and non-acylated kaempferol glycosides from Stenochlaena palustris: a perspective on their structure – activity relationships. Pharm Chem J53(3):188–193. https://doi.org/10.1007/s11094-019-01977-2

    Article  CAS  Google Scholar 

  23. Chai T-T, Panirchellvum E, Ong H-C, Wong F-C (2012) Phenolic contents and antioxidant properties of Stenochlaena palustris, an edible medicinal fern. Bot Stud 53:439–446

    CAS  Google Scholar 

  24. Mahdiyah D, Rahmawati D, Waty DS (2021) The effect of giving Kelakai (Stenochlaena palustris) juice on the volume of breastfeeding for postpartum mothers in the working area of the Pekauman health Center, Banjarmasin. IOP Conf Ser Earth Environ Sci 755(1):012040. https://doi.org/10.1088/1755-1315/755/1/012040

    Article  Google Scholar 

  25. Rudra S, Islam KN, Rahman MM, Uddin SB (2021) Medicinal plant diversity and their therapeutic uses in selected village common forests in Chittagong Hill tracts, Bangladesh. Int J Geogr Inf Syst 27(1):83–107. https://doi.org/10.1080/10496475.2020.1786874

    Article  CAS  Google Scholar 

  26. Neamsuvan O, Sengnon N, Seemaphrik N, Chouychoo M, Rungrat R, Bunrasri S (2015) A survey of medicinal plants around upper Songkhla lake, Thailand. Afr J Tradit Complement Altern Med 12:133. https://doi.org/10.4314/ajtcam.v12i2.20

    Article  CAS  Google Scholar 

  27. Sen A, Ghosh P (2011) A note on the ethnobotanical studies of some pteridophytes in Assam. Indian J Tradit Knowl 10:292–295

    Google Scholar 

  28. Kulip J (2014) The ethnobotany of Dusun people in Tikolod village, Tambunan district, Sabah, Malaysia. Reinwardtia 14:101–121

    Article  Google Scholar 

  29. Noorasmah S, Ainul Asyira S, Muta Harah ZY, Shahrul Razid S, Nurul Aisyah Y (2020) An ethnobotanical study of indigenous leafy vegetables among local communities in Bintulu, Sarawak, Malaysia. Borneo J Resour Sci Technol 10(2). https://doi.org/10.33736/bjrst.2623.2020

  30. Chai PPK (2006) Medicinal plants of Sarawak. Paul Chai P.K

    Google Scholar 

  31. Abdul Wahab N, Ahdan R, Ahmad Aufa Z, Kong KW, Johar MH, Shariff Mohd Z et al (2015) Nutritional values and bioactive components of under-utilised vegetables consumed by indigenous people in Malaysia. J Sci Food Agric 95(13):2704–2711. https://doi.org/10.1002/jsfa.7006

    Article  CAS  Google Scholar 

  32. Lodevico DP, Enot MM, Mendez RA, Abarquez VR, Monisit GFB, Coritico FP et al (2018) Phytochemical and antioxidant activity variation of processed edible ferns. CMU J Sci 22(2):57–67

    Google Scholar 

  33. Pardede A, Adfa M, Kusnanda AJ, Ninomiya M, Koketsu M (2018) Isolation of secondary metabolites from Stenochlaena palustris stems and structure-activity relationships of 20-hydroxyecdysone derivatives on antitermite activity. Holzforschung 72(10):899–904. https://doi.org/10.1515/hf-2017-0212

    Article  CAS  Google Scholar 

  34. Erwin E, Anggeraini D, Suryani S (2016) Chemical analysis and antibacterial activity of the ethanolic extract of Stenochlaena palustris. Pharm Lett 8(1):233–236

    Google Scholar 

  35. Abubakar AR, Haque M (2020) Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes. J Pharm Bioallied Sci 12(1):1–10. https://doi.org/10.4103/jpbs.JPBS_175_19

    Article  CAS  Google Scholar 

  36. Samad A, Makhbar S, Sharifulazar H, Basri AM, Lim SA (2022) The effects of Diplazium esculentum Retz. And Stenochlaena palustris incorporated with sodium alginate as edible coating on packaged figs (Ficus carica L.): a preliminary study. J Food Process Preserv:e16611. https://doi.org/10.1111/jfpp.16611

  37. Tena N, Martín J, Asuero AG (2020) State of the art of anthocyanins: antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 9(5):451. https://doi.org/10.3390/antiox9050451

    Article  CAS  Google Scholar 

  38. Ahmad A, Kaleem M, Ahmed Z, Shafiq H (2015) Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections – a review. Int Food Res J 77:221–235. https://doi.org/10.1016/j.foodres.2015.06.021

    Article  CAS  Google Scholar 

  39. Tsuda T, Ueno Y, Aoki H, Koda T, Horio F, Takahashi N et al (2004) Anthocyanin enhances adipocytokine secretion and adipocyte-specific gene expression in isolated rat adipocytes. Biochem Biophys Res Commun 316(1):149–157. https://doi.org/10.1016/j.bbrc.2004.02.031

    Article  CAS  Google Scholar 

  40. Liu Y, Li D, Zhang Y, Sun R, Xia M (2014) Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction. Am J Physiol Endocrinol Metab 306(8):E975–EE88. https://doi.org/10.1152/ajpendo.00699.2013

    Article  CAS  Google Scholar 

  41. Pojer E, Mattivi F, Johnson D, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci 12(5):483–508. https://doi.org/10.1111/1541-4337.12024

    Article  CAS  Google Scholar 

  42. Minh NP (2021) Effectiveness of pickling on the phytochemical composition and antioxidant ability in kelakai (Stenochlaena palustris) creeping fern. Res on Crops 22(4):948–952. https://doi.org/10.31830/2348-7542.2021.155

    Article  Google Scholar 

  43. Kalra S (2014) Alpha glucosidase inhibitors. J Pak Med Assoc 64(4):474–476

    Google Scholar 

  44. Chai T-T, Mohan M, Ong HC, Wong F-C (2014) Antioxidant, iron-chelating and anti-glucosidase activities of Typha domingensis Pers (Typhaceae). Trop J Pharm Res 13(1):67–72. https://doi.org/10.4314/tjpr.v13i1.10

    Article  CAS  Google Scholar 

  45. Graf BL, Raskin I, Cefalu WT, Ribnicky DM (2010) Plant-derived therapeutics for the treatment of metabolic syndrome. Curr Opin Investig Drugs (London, England: 2000) 11(10):1107–1115

    CAS  Google Scholar 

  46. Kormin F, Khan M, Iwansyah AC (2016) Microwave assisted extraction; phytochemical evaluation of Malaysian palm oil trunk epiphytes ferns. Int J Pharm Pharm Sci 8(4):174–180

    CAS  Google Scholar 

  47. Parejo I, Bastida J, Viladomat F, Codina C (2005) Acylated quercetagetin glycosides with antioxidant activity from Tagetes maxima. Phytochemistry 66(19):2356–2362. https://doi.org/10.1016/j.phytochem.2005.07.004

    Article  CAS  Google Scholar 

  48. Mellou F, Lazari D, Skaltsa H, Tselepis AD, Kolisis FN, Stamatis H (2005) Biocatalytic preparation of acylated derivatives of flavonoid glycosides enhances their antioxidant and antimicrobial activity. J Biotechnol 116(3):295–304. https://doi.org/10.1016/j.jbiotec.2004.12.002

    Article  CAS  Google Scholar 

  49. Awad AB, Williams H, Fink CS (2003) Effect of phytosterols on cholesterol metabolism and MAP kinase in MDA-MB-231 human breast cancer cells. J Nutr Biochem 14(2):111–119. https://doi.org/10.1016/s0955-2863(02)00274-7

    Article  CAS  Google Scholar 

  50. Shahzad N, Khan W, Md S, Ali A, Saluja SS, Sharma S et al (2017) Phytosterols as a natural anticancer agent: current status and future perspective. Biomed Pharmacother 88:786–794. https://doi.org/10.1016/j.biopha.2017.01.068

    Article  CAS  Google Scholar 

  51. Bae H, Park S, Yang C, Song G, Lim W (2021) Disruption of endoplasmic reticulum and ROS production in human ovarian cancer by campesterol. Antioxidants 10(3):379

    Article  CAS  Google Scholar 

  52. Abdul QA, Choi RJ, Jung HA, Choi JS (2016) Health benefit of fucosterol from marine algae: a review. J Sci Food Agric 96(6):1856–1866. https://doi.org/10.1002/jsfa.7489

    Article  CAS  Google Scholar 

  53. Marisa D, Hayatie L, Juliati S, Suhartono E, Komari N (2021) Molecular docking of phytosterol compounds from kelakai (Stenochlaena palustris) as anti-breast cancer. Acta Bio lna 4(2):59. https://doi.org/10.32889/actabioina.59

    Article  Google Scholar 

  54. Sumathy V Jr, Jothy Lachumy S, Zuraini Z, Sasidharan S (2010) Effects of Stenochlaena palustris leaf extract on growth and morphogenesis of food borne pathogen, aspergillus Niger. Malays J Nutr 16(3):439–446

    Google Scholar 

  55. Biworo A, Azizi NA, Padelia R, Raharja MA, Azima O, Suhartono E (2018) Anti-metalotoxic properties of kelakai (Stenochlaena palustris) leaves extract against cadmium-induced liver tissue damage. Asian J Pharm Clin Res 11(3):43–46. https://doi.org/10.22159/ajpcr.2018.v11s3.30028

    Article  CAS  Google Scholar 

  56. Branca JJV, Fiorillo C, Carrino D, Paternostro F, Taddei N, Gulisano M et al (2020) Cadmium-induced oxidative stress: focus on the central nervous system. Antioxidants 9(6):492. https://doi.org/10.3390/antiox9060492

    Article  CAS  Google Scholar 

  57. Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11(3):315–335. https://doi.org/10.2174/1570159X11311030006

    Article  Google Scholar 

  58. Adenan A, Suhartono E (2016) Stenochlaena palustris aqueous extract reduces hepatic peroxidative stress in Marmota caligata with induced fever. Univ Med 29(3):123–128. https://doi.org/10.18051/UnivMed.2010.v29.123-128

    Article  Google Scholar 

  59. Suhartono E, Muthmainah N, Marisa D, Siahaan SCPT, Komari N (2022) Protective role of kelakai (Stenochlaena Palustris) extract on malathion-induced genotoxic: FTIR spectroscopy study. Int J Drug Deliv Technol 12(1):15–18. https://doi.org/10.25258/ijddt.12.1.3

    Article  Google Scholar 

  60. Hadhiwaluyo K, Rahmawati D, Gunawan Puteri MDPT (2017) Development of antioxidative effect in ice cream with Kalakai (Stenochlaena palustris) water extract. AIP Conf Proc 1904(1):020007. https://doi.org/10.1063/1.5011864

    Article  CAS  Google Scholar 

  61. Adawiyah R, Apriliyanti R, Umaternate A (2021) Formulation and physical properties of lotion Kalakai root ethanol extract (Stenochlaena palustris Bedd). Pharm Educ 21(2):235–240. https://doi.org/10.46542/pe.2021.212.235240

    Article  Google Scholar 

  62. Ma’Radzi AH, Kasim KF, Mahmud N, Rahman N, Jullok N (2018) Development of antioxidant film based on blends of Stenochlaena palustris flour and poly (vinyl alcohol). IOP Conf Ser Mater Sci Eng 429:012066. https://doi.org/10.1088/1757-899x/429/1/012066

    Article  CAS  Google Scholar 

  63. Nata IF, Irawan C, Adawiyah M, Ariwibowo S (2020) Edible film cassava starch/eggshell powder composite containing antioxidant: preparation and characterization. IOP Conf Ser Earth Environ Sci 524(1):012008. https://doi.org/10.1088/1755-1315/524/1/012008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsun-Thai Chai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Quah, Y., Tong, SR., Tan, SA., Chow, YL., Chai, TT. (2022). Phytochemicals and Biological Activities of Stenochlaena palustris. In: Murthy, H.N. (eds) Bioactive Compounds in Bryophytes and Pteridophytes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-97415-2_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97415-2_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97415-2

  • Online ISBN: 978-3-030-97415-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics