Skip to main content

Secondary Metabolites: Treasure Trove for Future Medicine

  • Living reference work entry
  • First Online:
Plant Specialized Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 38 Accesses

Abstract

Secondary metabolites are organic substances produced by various living organisms (e.g., bacteria, fungi, plants, animals) that do not have any direct influence in the normal physiological growth, development, and reproduction of the organism. Secondary plant metabolites serve as the scientific foundation for the utilization of various herbs in traditional medicine as they have been labeled as antibacterial, antifungal, and antiviral and hence safeguard plants from their invasion. Plants synthesize a wide range of these secondary metabolites as an adaptation of self-defense and communication systems with other organisms living in their corresponding environment. They have got a wide array of applications in various diseases including diabetes, Alzheimer’s disease, several cancers, fever, hypotension, and peptic ulcer. They have also been discovered to be excellent candidates for anti-inflammatory and antimicrobial activities. The hunt for novel antimicrobial compounds from nature has escalated since the emergence of antibiotic resistance as a crucial public health concern. To confront bacteria that are resistant to antibiotics, there have been a growing number of studies in recent years to find new bioactive substances with a plant origin. Emerging multidrug-resistant (MDR) pathogens, often known as “ESKAPE” organisms, pose a significant threat to public health today on a global scale. These include Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species. This book chapter will concentrate on the classification and discussion of the major and minor groups of secondary plant metabolites with their widespread application in eradicating various human diseases and will also cover the major concern of using plant-derived secondary metabolites as antimicrobials as opposed to the available antibiotics in the international market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. David S (1998) Seigler, plant secondary metabolism. Springer, Boston. https://doi.org/10.1007/978-1-4615-4913-0

    Book  Google Scholar 

  2. Jones ME (1953) Albrecht Kossel, a biographical sketch. Yale J Biol Med 26(1):80–97

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bennetts HW, Underwood EJ, Shier FL (1946) A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust Vet J 22(1):2–12. https://doi.org/10.1111/j.1751-0813.1946.tb15473.x

    Article  CAS  PubMed  Google Scholar 

  4. Kessler A, Kalske A (2018) Plant secondary metabolite diversity and species interactions. Annu Rev Ecol Evol Syst 49(1):115–138. https://doi.org/10.1146/annurev-ecolsys-110617-062406

    Article  Google Scholar 

  5. Delgoda R, Murray JE (2017) Chapter 7 – evolutionary perspectives on the role of plant secondary metabolites. In: Badal S, Delgoda R (eds) Pharmacognosy. Academic Press, Boston, pp 93–100. https://doi.org/10.1016/B978-0-12-802104-0.00007-X

    Chapter  Google Scholar 

  6. Ashraf MA et al (2018) Environmental stress and secondary metabolites in plants: an overview. In: Ahmad P et al (eds) Plant metabolites and regulation under environmental stress. Academic Press, pp 153–167. https://doi.org/10.1016/B978-0-12-812689-9.00008-X

  7. Anand U et al (2019) A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolism 9(11):258. https://doi.org/10.3390/metabo9110258

    Article  CAS  Google Scholar 

  8. de Kraker MEA, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 13(11):e1002184. https://doi.org/10.1371/journal.pmed.1002184

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kahkeshani N et al (2019) Pharmacological effects of Gallic acid in health and diseases: a mechanistic review. Iran J Basic Med Sci 22(3):225–237. https://doi.org/10.22038/ijbms.2019.32806.7897

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alakomi H-L et al (2007) Weakening of salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids. J Agric Food Chem 55(10):3905–3912. https://doi.org/10.1021/jf070190y

    Article  CAS  PubMed  Google Scholar 

  11. El Mihyaoui A et al (2022) Chamomile (Matricaria chamomilla L.): a review of Ethnomedicinal use, phytochemistry and pharmacological uses. Life 12(4):479. https://doi.org/10.3390/life12040479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yarnell E (2002) Botanical medicines for the urinary tract. World J Urol 20(5):285–293. https://doi.org/10.1007/s00345-002-0293-0

    Article  PubMed  Google Scholar 

  13. Spiller F et al (2008) Anti-inflammatory effects of red pepper (Capsicum Baccatum) on carrageenan- and antigen-induced inflammation. J Pharm Pharmacol 60(4):473–478. https://doi.org/10.1211/jpp.60.4.0010

    Article  CAS  PubMed  Google Scholar 

  14. Hoffmann D (2003) Medical herbalism: the science and practice of herbal medicine. Healing Arts Press One Park Street, Rochester 

    Google Scholar 

  15. Alamri SA, Moustafa MF (2012) Antimicrobial properties of 3 medicinal plants from Saudi Arabia against some clinical isolates of bacteria. Saudi Med J 33(3):272–277

    PubMed  Google Scholar 

  16. Singh B et al (2018) Phenolic compounds as beneficial phytochemicals in pomegranate (Punica Granatum L.) peel: a review. Food Chem 261:75–86. https://doi.org/10.1016/j.foodchem.2018.04.039

    Article  CAS  PubMed  Google Scholar 

  17. Ahmad N et al (2005) Antimicrobial activity of clove oil and its potential in the treatment of vaginal candidiasis. J Drug Target 13(10):555–561. https://doi.org/10.1080/10611860500422958

    Article  CAS  PubMed  Google Scholar 

  18. Catarino M et al (2017) Antioxidant and anti-inflammatory activities of geranium Robertianum L. decoctions. Food Funct 8. https://doi.org/10.1039/C7FO00881C

  19. Yi Z et al (2004) Inhibitory effect of Tellimagrandin I on chemically induced differentiation of human Leukemia K562 cells. Toxicol Lett 147(2):109–119. https://doi.org/10.1016/j.toxlet.2003.12.008

    Article  CAS  PubMed  Google Scholar 

  20. Evans WC (2009) Pharmacognosy, 16th edn. Saunders, US

    Google Scholar 

  21. Goenka P et al (2013) Camellia Sinensis (tea): implications and role in preventing dental decay. Pharmacogn Rev 7(14):152–156. https://doi.org/10.4103/0973-7847.120515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu H et al (2009) Anti-angiogenic effects of green tea Catechin on an experimental endometriosis mouse model. Hum Reprod 24(3):608–618. https://doi.org/10.1093/humrep/den417

    Article  CAS  PubMed  Google Scholar 

  23. Ling X et al (2015) The study on biological and pharmacological activity of Coumarins. In: 2015 Asia-Pacific energy equipment engineering research conference. Atlantis Press, pp 135–138. https://doi.org/10.2991/ap3er-15.2015.33

    Chapter  Google Scholar 

  24. Montanher AB et al (2007) Evidence of anti-inflammatory effects of Passiflora Edulis in an inflammation model. J Ethnopharmacol 109(2):281–288. https://doi.org/10.1016/j.jep.2006.07.031

    Article  PubMed  Google Scholar 

  25. Serafini M, Peluso I, Raguzzini A (2010) Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69(3):273–278. https://doi.org/10.1017/S002966511000162X

    Article  CAS  PubMed  Google Scholar 

  26. Puupponen-Pimiä R et al (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90(4):494–507. https://doi.org/10.1046/j.1365-2672.2001.01271.x

    Article  PubMed  Google Scholar 

  27. Bylka W et al (2004) Antimicrobial activity of Isocytisoside and extracts of aquilegia vulgaris L. Lett Appl Microbiol 39(1):93–97. https://doi.org/10.1111/j.1472-765X.2004.01553.x

    Article  CAS  PubMed  Google Scholar 

  28. Martini ND, Katerere DRP, Eloff JN (2004) Biological activity of five antibacterial flavonoids from Combretum Erythrophyllum (Combretaceae). J Ethnopharmacol 93(2–3):207–212. https://doi.org/10.1016/j.jep.2004.02.030

    Article  CAS  PubMed  Google Scholar 

  29. Rigano D et al (2007) Antibacterial activity of flavonoids and phenylpropanoids from Marrubium Globosum Ssp. Libanoticum. Phytother Res: PTR 21(4):395–397. https://doi.org/10.1002/ptr.2061

    Article  CAS  PubMed  Google Scholar 

  30. Habbu PV et al (2009) Antimicrobial activity of Flavanoid sulphates and other fractions of Argyreia Speciosa (Burm.F) Boj. Indian J Exp Biol 47(2):121–128

    CAS  PubMed  Google Scholar 

  31. Kloucek P et al (2005) Antibacterial screening of some Peruvian medicinal plants used in Callería District. J Ethnopharmacol 99(2):309–312. https://doi.org/10.1016/j.jep.2005.01.062

    Article  CAS  PubMed  Google Scholar 

  32. Basile A et al (2010) Antibacterial and antifungal properties of acetonic extract of Feijoa Sellowiana fruits and its effect on helicobacter pylori growth. J Med Food 13(1):189–195. https://doi.org/10.1089/jmf.2008.0301

    Article  CAS  PubMed  Google Scholar 

  33. Arima H, Danno G-i (2002) Isolation of antimicrobial compounds from guava (Psidium Guajava L.) and their structural elucidation. Biosci Biotechnol Biochem 66(8):1727–1730. https://doi.org/10.1271/bbb.66.1727

    Article  CAS  PubMed  Google Scholar 

  34. Rattanachaikunsopon P, Phumkhachorn P (2010) Contents and antibacterial activity of flavonoids extracted from leaves of Psidium Guajava. J Med Plant Res 4:393–396

    CAS  Google Scholar 

  35. Goyal SN, Prajapati CP, Gore PR, Patil CR, Mahajan UB, Sharma C, Talla SP, Ojha SK (2017) Therapeutic potential and pharmaceutical development of thymoquinone: a multitargeted molecule of natural origin. Front Pharmacol 8:656. https://doi.org/10.3389/fphar.2017.00656

  36. Younus H (2018) Molecular and therapeutic actions of Thymoquinone: actions of Thymoquinone. Springer. https://doi.org/10.1007/978-981-10-8800-1

    Book  Google Scholar 

  37. Ghorbani A, Esmaeilizadeh M (2017) Pharmacological properties of salvia officinalis and its components. J Tradit Complement Med 7(4):433–440. https://doi.org/10.1016/j.jtcme.2016.12.014

    Article  PubMed  PubMed Central  Google Scholar 

  38. Khoo HE et al (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61(1). https://doi.org/10.1080/16546628.2017.1361779

  39. Enaru B et al (2021) Anthocyanins: factors affecting their stability and degradation. Antioxidants 10(12):1967. https://doi.org/10.3390/antiox10121967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lila MA (2004) Anthocyanins and human health: an in vitro investigative approach. J Biomed Biotechnol 2004(5):306–313. https://doi.org/10.1155/S111072430440401X

    Article  PubMed  PubMed Central  Google Scholar 

  41. Speer H et al (2020) Anthocyanins and human health – a focus on oxidative stress, inflammation and disease. Antioxidants 9(5):366. https://doi.org/10.3390/antiox9050366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharma N et al (2020) Evaluation of anthocyanin content, antioxidant potential and antimicrobial activity of black, purple and blue colored wheat flour and wheat-grass juice against common human pathogens. Molecules 25(24):5785. https://doi.org/10.3390/molecules25245785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dong Y et al (2022) Antibacterial effect and mechanism of anthocyanin from Lycium Ruthenicum Murr. Front Microbiol 13:974602. https://doi.org/10.3389/fmicb.2022.974602

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mattioli R et al (2020) Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 25(17):3809. https://doi.org/10.3390/molecules25173809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pizzino G et al (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017:8416763. https://doi.org/10.1155/2017/8416763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hostetler GL, Ralston RA, Schwartz SJ (2017) Flavones: food sources, bioavailability, metabolism, and bioactivity 12. Adv Nutr 8(3):423–435. https://doi.org/10.3945/an.116.012948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zuiter AS (2014) Proanthocyanidin: chemistry and biology: from phenolic compounds to proanthocyanidins. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.11046-7

    Chapter  Google Scholar 

  48. Chagas M d SS et al (2022) Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds. Oxid Med Cell Longev 2022:9966750. https://doi.org/10.1155/2022/9966750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47. https://doi.org/10.1017/jns.2016.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ginwala R et al (2019) Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 8(2):35. https://doi.org/10.3390/antiox8020035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. de Araújo Rêgo RI et al (2022) Flavonoids-rich plant extracts against helicobacter pylori infection as prevention to gastric cancer. Front Pharmacol 13:951125. https://doi.org/10.3389/fphar.2022.951125

    Article  CAS  Google Scholar 

  52. Górniak I, Bartoszewski R, Króliczewski J (2019) Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 18(1):241–272. https://doi.org/10.1007/s11101-018-9591-z

    Article  CAS  Google Scholar 

  53. Paczkowski JE et al (2017) Flavonoids suppress pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J Biol Chem 292(10):4064–4076. https://doi.org/10.1074/jbc.M116.770552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Del Valle JC et al (2020) UV radiation increases phenolic compound protection but decreases reproduction in Silene Littorea. PloS One 15(6):e0231611. https://doi.org/10.1371/journal.pone.0231611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang L-L, Zhang L-F, Jian-Guo X (2020) Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus Pinnatifida Bge.). Sci Rep 10:8876. https://doi.org/10.1038/s41598-020-65802-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265. https://doi.org/10.3390/molecules191016240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guiraud P et al (1994) Comparison of antibacterial and antifungal activities of Lapachol and Beta-Lapachone. Planta Med 60(4):373–374. https://doi.org/10.1055/s-2006-959504

    Article  CAS  PubMed  Google Scholar 

  58. Adeniyi BA et al (2000) Antibacterial activity of diospyrin, isodiospyrin and bisisodiospyrin from the root of Diospyros piscatoria (Gurke) (Ebenaceae). Phytother Res: PTR 14(2):112–117. https://doi.org/10.1002/(sici)1099-1573(200003)14:2<112::aid-ptr488>3.0.co;2-t

    Article  CAS  PubMed  Google Scholar 

  59. Park B-S et al (2006) Antibacterial activity of Tabebuia Impetiginosa Martius Ex DC (Taheebo) against Helicobacter pylori. J Ethnopharmacol 105(1–2):255–262. https://doi.org/10.1016/j.jep.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  60. Song R et al (2020) Naphthoquinone-derivative as a synthetic compound to overcome the antibiotic resistance of methicillin-resistant S. Aureus. Commun Biol 3(1):529. https://doi.org/10.1038/s42003-020-01261-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eden RE, Coviello JM (2022) Vitamin K deficiency. In: StatPearls. StatPearls Publishing, US

    Google Scholar 

  62. Li T et al (2019) Plumbagin inhibits proliferation and induces apoptosis of hepatocellular carcinoma by downregulating the expression of SIVA. Drug Des Devel Ther 13:1289–1300. https://doi.org/10.2147/DDDT.S200610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Al-Rubiay KK et al (2008) Antimicrobial efficacy of henna extracts. Oman Med J 23(4):253

    PubMed  PubMed Central  Google Scholar 

  64. Semwal RB et al (2020) Health benefits of Chromones: common ingredients of our daily diet. Phytochem Rev 19(4):761–785. https://doi.org/10.1007/s11101-020-09681-w

    Article  CAS  Google Scholar 

  65. Vanachayangkul P et al (2011) Prevention of renal crystal deposition by an extract of Ammi Visnaga L. and its constituents Khellin and Visnagin in hyperoxaluric rats. Urol Res 39(3):189–195. https://doi.org/10.1007/s00240-010-0333-y

    Article  CAS  PubMed  Google Scholar 

  66. Johann S et al (2011) Antifungal activity of five species of polygala. Braz J Microbiol 42(3):1065–1075. https://doi.org/10.1590/S1517-838220110003000027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hussein R, El-Anssary A (2019) Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. https://doi.org/10.5772/intechopen.76139

    Book  Google Scholar 

  68. Mattio LM et al (2020) Stilbenoids: a natural arsenal against bacterial pathogens. Antibiotics 9(6):336. https://doi.org/10.3390/antibiotics9060336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vestergaard M, Ingmer H (2019) Antibacterial and antifungal properties of resveratrol. Int J Antimicrob Agents 53(6):716–723. https://doi.org/10.1016/j.ijantimicag.2019.02.015

    Article  CAS  PubMed  Google Scholar 

  70. Khanna D et al (n.d.) Obesity: a chronic low-grade inflammation and its markers. Cureus 14(2):e22711. https://doi.org/10.7759/cureus.22711

  71. Meng T et al (2021) Anti-inflammatory action and mechanisms of resveratrol. Molecules 26(1):229. https://doi.org/10.3390/molecules26010229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shazmeen et al (2021) Role of stilbenes against insulin resistance: a review. Food Sci Nutr 9(11):6389–6405. https://doi.org/10.1002/fsn3.2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Margherita Springer and Sofia Moco (2019) Resveratrol and its human metabolites – effects on metabolic health and obesity. Nutrients 11(1):143. https://doi.org/10.3390/nu11010143

    Article  CAS  PubMed  Google Scholar 

  74. Dyck GJB et al (2019) The effects of resveratrol in patients with cardiovascular disease and heart failure: a narrative review. Int J Mol Sci 20(4):904. https://doi.org/10.3390/ijms20040904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Salehi B et al (2018) Resveratrol: a double-edged sword in health benefits. Biomedicine 6(3):91. https://doi.org/10.3390/biomedicines6030091

    Article  CAS  Google Scholar 

  76. Nanjan MJ, Betz J (2014) Resveratrol for the Management of Diabetes and its Downstream Pathologies. Eu Endocrinol 10(1):31–35. https://doi.org/10.17925/EE.2014.10.01.31

    Article  Google Scholar 

  77. Peuhu E et al (2010) Inhibition of Akt Signaling by the Lignan Matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis. Oncogene 29(6):898–908. https://doi.org/10.1038/onc.2009.386

    Article  CAS  PubMed  Google Scholar 

  78. Lee B et al (2012) Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species. Biochem Biophys Res Commun 421(1):76–80. https://doi.org/10.1016/j.bbrc.2012.03.114

    Article  CAS  PubMed  Google Scholar 

  79. Mahajan M et al (2021) Matairesinol, an active constituent of HC9 Polyherbal formulation, exhibits HDAC8 inhibitory and anticancer activity. Biophys Chem 273:106588. https://doi.org/10.1016/j.bpc.2021.106588

    Article  CAS  PubMed  Google Scholar 

  80. Chang H et al (2017) Lignans from the root of Wikstroemia Indica and their cytotoxic activity against PANC-1 human pancreatic cancer cells. Fitoterapia 121:31–37. https://doi.org/10.1016/j.fitote.2017.06.012

    Article  CAS  PubMed  Google Scholar 

  81. Lee JH et al (2011) Antiasthmatic action of Dibenzylbutyrolactone Lignans from fruits of forsythia Viridissima on asthmatic responses to ovalbumin challenge in conscious Guinea-pigs. Phytother Res 25(3):387–395. https://doi.org/10.1002/ptr.3273

    Article  CAS  PubMed  Google Scholar 

  82. Clavel T et al (2005) Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl Environ Microbiol 71(10):6077–6085. https://doi.org/10.1128/AEM.71.10.6077-6085.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mahendra Kumar C, Singh SA (2015) Bioactive Lignans from sesame (Sesamum Indicum L.): evaluation of their antioxidant and antibacterial effects for food applications. J Food Sci Technol 52(5):2934–2941. https://doi.org/10.1007/s13197-014-1334-6

    Article  CAS  PubMed  Google Scholar 

  84. Suriyaprom S et al (2022) Antioxidants of fruit extracts as antimicrobial agents against pathogenic bacteria. Antioxidants 11(3):602. https://doi.org/10.3390/antiox11030602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marzotto M et al (2016) Arnica Montana stimulates extracellular matrix gene expression in a macrophage cell line differentiated to wound-healing phenotype. PloS One 11(11):e0166340. https://doi.org/10.1371/journal.pone.0166340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hossain S et al (2017) Antibacterial activity of essential oil from lavender (Lavandula Angustifolia) against pet turtle-borne pathogenic bacteria. Lab Anim Res 33(3):195–201. https://doi.org/10.5625/lar.2017.33.3.195

    Article  PubMed  PubMed Central  Google Scholar 

  87. Haida S et al (2021) Chemical composition of essential oil, phenolic compounds content, and antioxidant activity of cistus Monspeliensis from northern Morocco. Biochem Res Int 2021:1–13. https://doi.org/10.1155/2021/6669877

    Article  CAS  Google Scholar 

  88. Bhardwaj K et al (2022) Studies of phytochemicals, antioxidant, and antibacterial activities of Pinus Gerardiana and Pinus Roxburghii seed extracts. Biomed Res Int 2022:5938610. https://doi.org/10.1155/2022/5938610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Peng Y et al (2021) Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Devel Ther 15:4503–4525. https://doi.org/10.2147/DDDT.S327378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hewlings SJ, Kalman DS (2017) Curcumin: a review of its’ effects on human health. Foods 6(10):92. https://doi.org/10.3390/foods6100092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mishra S, Palanivelu K (2008) The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann Indian Acad Neurol 11(1):13–19. https://doi.org/10.4103/0972-2327.40220

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hussain Y et al (2022) Antimicrobial potential of curcumin: therapeutic potential and challenges to clinical applications. Antibiotics 11(3):322. https://doi.org/10.3390/antibiotics11030322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Munir Z et al (2022) Exploitation of the antibacterial properties of photoactivated curcumin as ‘green’ tool for food preservation. Int J Mol Sci 23(5):2600. https://doi.org/10.3390/ijms23052600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Moghadamtousi SZ et al (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int 2014:186864. https://doi.org/10.1155/2014/186864

    Article  CAS  PubMed  Google Scholar 

  95. Jennings MR, Parks RJ (2020) Curcumin as an antiviral agent. Viruses 12(11):1242. https://doi.org/10.3390/v12111242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicine 2(3):251–286. https://doi.org/10.3390/medicines2030251

    Article  CAS  Google Scholar 

  97. Heinrich M, Mah J, Amirkia V (2021) Alkaloids used as medicines: structural phytochemistry meets biodiversity – an update and forward look. Molecules 26(7):1836. https://doi.org/10.3390/molecules26071836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li D-D et al (2013) Fluconazole assists Berberine to kill fluconazole-resistant Candida Albicans. Antimicrob Agents Chemother 57(12):6016–6027. https://doi.org/10.1128/AAC.00499-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rao KN, Venkatachalam SR (2000) Inhibition of dihydrofolate reductase and cell growth activity by the phenanthroindolizidine alkaloids pergularinine and tylophorinidine: the in vitro cytotoxicity of these plant alkaloids and their potential as antimicrobial and anticancer agents. Toxicol In Vitro 14(1):53–59. https://doi.org/10.1016/s0887-2333(99)00092-2

    Article  CAS  PubMed  Google Scholar 

  100. Veale CGL et al (2015) Synthetic analogues of the marine Bisindole Deoxytopsentin: potent selective inhibitors of MRSA pyruvate kinase. J Nat Prod 78(3):355–362. https://doi.org/10.1021/np500755v

    Article  CAS  PubMed  Google Scholar 

  101. Mohtar M et al (2009) Inhibitory and resistance-modifying potential of plant-based alkaloids against methicillin-resistant staphylococcus aureus (MRSA). Curr Microbiol 59(2):181–186. https://doi.org/10.1007/s00284-009-9416-9

    Article  CAS  PubMed  Google Scholar 

  102. Alrumaihi F et al (2019) Tinospora Cordifolia aqueous extract alleviates cyclophosphamide-induced immune suppression, toxicity and systemic candidiasis in immunosuppressed mice: in vivo study in comparison to antifungal drug Fluconazole. Curr Pharm Biotechnol 20(12):1055–1063. https://doi.org/10.2174/1389201019666190722151126

    Article  CAS  PubMed  Google Scholar 

  103. Alsuhaibani S, Khan MA (2017) Immune-stimulatory and therapeutic activity of Tinospora Cordifolia: double-edged sword against salmonellosis. J Immunol Res 2017:1787803. https://doi.org/10.1155/2017/1787803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mishra A et al (2015) Harmful effects of nicotine. Ind J Med Paediatr Oncol 36(1):24–31. https://doi.org/10.4103/0971-5851.151771

    Article  Google Scholar 

  105. Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 49:57–71. https://doi.org/10.1146/annurev.pharmtox.48.113006.094742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Benowitz NL (1990) Clinical pharmacology of caffeine. Annu Rev Med 41:277–288. https://doi.org/10.1146/annurev.me.41.020190.001425

    Article  CAS  PubMed  Google Scholar 

  107. Moudi M et al (2013) Vinca Alkaloids. Int J Prev Med 4(11):1231–1235

    PubMed  PubMed Central  Google Scholar 

  108. Dey P et al (2020) Analysis of Alkaloids (Indole Alkaloids, Isoquinoline Alkaloids, Tropane Alkaloids). Recent Adv Nat Prod Analysis:505–567. https://doi.org/10.1016/B978-0-12-816455-6.00015-9

  109. Divekar PA et al (2022) Plant secondary metabolites as Defense tools against herbivores for sustainable crop protection. Int J Mol Sci 23(5):2690. https://doi.org/10.3390/ijms23052690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Thawabteh A et al (2019) The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins 11(11):656. https://doi.org/10.3390/toxins11110656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hussain G et al (2018) Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int J Biol Sci 14(3):341–357. https://doi.org/10.7150/ijbs.23247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lin M et al (2019) Quinoa secondary metabolites and their biological activities or functions. Molecules 24(13):2512. https://doi.org/10.3390/molecules24132512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lampariello LR et al (2012) The magic velvet bean of Mucuna Pruriens. J Tradit Complement Med 2(4):331–339

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cosquer A et al (2004) Antibacterial activity of glycine betaine analogues: involvement of Osmoporters. Bioorg Med Chem Lett 14:2061–2065. https://doi.org/10.1016/j.bmcl.2004.02.045

    Article  CAS  PubMed  Google Scholar 

  115. Ittoop SM, Seibold LK, Kahook MY (2015) In: Shaarawy TM et al (eds) ‘58-ocular surface disease and the role of preservatives in glaucoma medications’ in glaucoma, 2nd edn. W.B. Saunders, pp 593–597. https://doi.org/10.1016/B978-0-7020-5193-7.00058-3

    Chapter  Google Scholar 

  116. Shi Y-J et al (2022) The untapped potential of spermidine alkaloids: sources, structures, bioactivities and syntheses. Eur J Med Chem 240:114600. https://doi.org/10.1016/j.ejmech.2022.114600

    Article  CAS  PubMed  Google Scholar 

  117. Dräger B (2004) Chemistry and biology of Calystegines. Nat Prod Rep 21:211–223. https://doi.org/10.1039/b300289f

    Article  CAS  PubMed  Google Scholar 

  118. Tomar PC, Lakra N, Mishra SN (2013) Cadaverine. Plant Signal Behav 8:e25850. https://doi.org/10.4161/psb.25850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chowański S et al (2016) A review of bioinsecticidal activity of Solanaceae alkaloids. Toxins 8(3):60. https://doi.org/10.3390/toxins8030060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Huang T, Jander G, de Vos M (2011) Non-protein amino acids in plant Defense against insect herbivores: representative cases and opportunities for further functional analysis. Phytochemistry 72(13):1531–1537. https://doi.org/10.1016/j.phytochem.2011.03.019

    Article  CAS  PubMed  Google Scholar 

  121. Rosenthal GA (1977) The biological effects and mode of action of L-Canavanine, a structural analogue of L-arginine. Q Rev Biol 52(2):155–178. https://doi.org/10.1086/409853

    Article  CAS  PubMed  Google Scholar 

  122. Quanle X et al (2017) β-N-Oxalyl-l-α, β-diaminopropionic acid (β-ODAP) content in Lathyrus Sativus: the integration of nitrogen and sulfur metabolism through β-cyanoalanine synthase. Int J Mol Sci 18(3):526. https://doi.org/10.3390/ijms18030526

    Article  CAS  Google Scholar 

  123. Lachowicz J et al (2020) Metal self-assembly mimosine peptides with enhanced antimicrobial activity: towards a new generation of multitasking chelating agents. Dalton Trans 49:2862–2879. https://doi.org/10.1039/C9DT04545G

  124. Nyirenda KK (2020) Toxicity potential of cyanogenic glycosides in edible plants. In: Medical toxicology. IntechOpen. https://doi.org/10.5772/intechopen.91408

    Chapter  Google Scholar 

  125. Mucha P et al (2021) Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes. Molecules 26(16):4886. https://doi.org/10.3390/molecules26164886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Odilia MR et al (2022) Identification of antinutritional, antioxidant, and antimicrobial activity of plants that cause livestock poisoning in Bojonegoro regency, Indonesia. Vet World 15(9):2131–2140. https://doi.org/10.14202/vetworld.2022.2131-2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Appenteng MK et al (2021) Cyanogenic glycoside analysis in American elderberry. Molecules 26(5):1384. https://doi.org/10.3390/molecules26051384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Parthasarathy A et al (2021) Amino acid–derived Defense metabolites from plants: a potential source to facilitate novel antimicrobial development. J Biol Chem 296:100438. https://doi.org/10.1016/j.jbc.2021.100438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Roy M et al (2018) Lycorine: a prospective natural lead for anticancer drug discovery. Biomed Pharmacother 107:615–624. https://doi.org/10.1016/j.biopha.2018.07.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Habli Z et al (2017) Emerging cytotoxic alkaloids in the Battle against cancer: overview of molecular mechanisms. Molecules 22(2):250. https://doi.org/10.3390/molecules22020250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lei J et al (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11(7):3919–3931

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang M et al (2022) Biosynthesis and chemical synthesis of Albomycin nucleoside antibiotics. Antibiotics 11(4):438. https://doi.org/10.3390/antibiotics11040438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Assa Y et al (1973) Interaction of Alfalfa Saponins with components of the erythrocyte membrane in Hemolysis. Biochim Biophys Acta 307(1):83–91. https://doi.org/10.1016/0005-2736(73)90027-8

    Article  CAS  PubMed  Google Scholar 

  134. Man S et al (2010) Chemical study and medical application of Saponins as anti-cancer agents. Fitoterapia 81(7):703–714. https://doi.org/10.1016/j.fitote.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  135. Sharma V, Katiyar A, Agrawal RC (2017) Glycyrrhiza Glabra: chemistry and pharmacological activity. Sweeteners:87–100. https://doi.org/10.1007/978-3-319-27027-2_21

  136. Bailly C (2021) Medicinal properties and anti-inflammatory components of Phytolacca (Shanglu). Digital Chinese Med 4(3):159–169. https://doi.org/10.1016/j.dcmed.2021.09.001

    Article  CAS  Google Scholar 

  137. Chávez-González ML, Rodríguez-Herrera R, Aguilar CN (2016) Chapter 11 – essential oils: a natural alternative to combat antibiotics resistance. In: Kon K, Rai M (eds) Antibiotic Resistance. Academic Press, pp 227–237. https://doi.org/10.1016/B978-0-12-803642-6.00011-3

    Chapter  Google Scholar 

  138. Barkin RL (2013) The pharmacology of topical analgesics. Postgrad Med 125(4 Suppl 1):7–18. https://doi.org/10.1080/00325481.2013.1110566911

    Article  PubMed  Google Scholar 

  139. Velázquez-Domínguez J et al (2013) Effect of the Sesquiterpene lactone incomptine a in the energy metabolism of Entamoeba Histolytica. Exp Parasitol 135(3):503–510. https://doi.org/10.1016/j.exppara.2013.08.015

    Article  CAS  PubMed  Google Scholar 

  140. Wagner H, Hikino H, Farnsworth NR (1989) Economic and medicinal plant research. Academic Press, US

    Google Scholar 

  141. Bagci E et al (2010) Composition of the essential oil of Teucrium Chamaedrys L. (Lamiaceae) from Turkey. J Med Plant Res 4(23):2588–2590. https://doi.org/10.5897/JMPR.9000398

    Article  CAS  Google Scholar 

  142. Akihisa T et al (1999) Acyclic and incompletely cyclized triterpene alcohols in the seed oils of Theaceae and Gramineae. Lipids 34(11):1151–1157. https://doi.org/10.1007/s11745-999-0466-5

    Article  CAS  PubMed  Google Scholar 

  143. Ishikura H et al (1984) Differentiation of mouse leukemic M1 cells induced by polyprenoids. Leuk Res 8(5):843–852. https://doi.org/10.1016/0145-2126(84)90105-x

    Article  CAS  PubMed  Google Scholar 

  144. Culioli G et al (2003) A Lupane triterpene from frankincense (Boswellia Sp., Burseraceae). Phytochemistry 62(4):537–541. https://doi.org/10.1016/s0031-9422(02)00538-1

    Article  CAS  PubMed  Google Scholar 

  145. Avato P et al (2000) Allylsulfide constituents of garlic volatile oil as antimicrobial agents. Phytomedicine 7(3):239–243. https://doi.org/10.1016/s0944-7113(00)80010-0

    Article  CAS  PubMed  Google Scholar 

  146. Jin Z et al (2021) Diallyl Disulfide, the antibacterial component of garlic essential oil, inhibits the toxicity of bacillus cereus ATCC 14579 at sub-inhibitory concentrations. Food Contr 126:108090. https://doi.org/10.1016/j.foodcont.2021.108090

    Article  CAS  Google Scholar 

  147. Soundararajan P, Kim JS (2018) Anti-carcinogenic Glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules 23(11):2983. https://doi.org/10.3390/molecules23112983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Barba FJ et al (2016) Bioavailability of Glucosinolates and their breakdown products: impact of processing. Front Nutr 3:24. https://doi.org/10.3389/fnut.2016.00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Romeo L et al (2018) Isothiocyanates: an overview of their antimicrobial activity against human infections. Molecules 23(3):624. https://doi.org/10.3390/molecules23030624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Plaszkó T et al (2021) Effects of Glucosinolate-derived isothiocyanates on fungi: a comprehensive review on direct effects, mechanisms, structure-activity relationship data and possible agricultural applications. J Fungi 7(7):539. https://doi.org/10.3390/jof7070539

    Article  CAS  Google Scholar 

  151. Tomas M et al (2022) The direct and indirect effects of bioactive compounds against coronavirus. Food Front 3(1):96–123. https://doi.org/10.1002/fft2.119

    Article  CAS  PubMed  Google Scholar 

  152. Melrose J (2019) The Glucosinolates: a Sulphur glucoside family of mustard anti-tumour and antimicrobial phytochemicals of potential therapeutic application. Biomedicine 7(3):62. https://doi.org/10.3390/biomedicines7030062

    Article  CAS  Google Scholar 

  153. Salehi B et al (2020) Plant-derived bioactives and oxidative stress-related disorders: a key trend towards healthy aging and longevity promotion. Appl Sci 10(3):947. https://doi.org/10.3390/app10030947

    Article  CAS  Google Scholar 

  154. Ranjan A et al (2019) Role of phytochemicals in cancer prevention. Int J Mol Sci 20(20):4981. https://doi.org/10.3390/ijms20204981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jeandet P et al (2014) Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 19(11):18033–18056. https://doi.org/10.3390/molecules191118033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Khan RS et al (2019) Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 9(5):192. https://doi.org/10.1007/s13205-019-1725-5

    Article  Google Scholar 

  157. Dan X, Wuyuan L (2020) Defensins: a double-edged sword in host immunity. Front Immunol 11:764. https://doi.org/10.3389/fimmu.2020.00764

    Article  CAS  Google Scholar 

  158. Sathoff AE, Samac DA (2019) Antibacterial activity of plant Defensins. MPMI 32(5):507–514. https://doi.org/10.1094/MPMI-08-18-0229-CR

    Article  CAS  PubMed  Google Scholar 

  159. Shukia R et al (2000) Medicinal plants for treatment of diabetes mellitus. Indian J Clin Biochem 15(Suppl 1):169–177. https://doi.org/10.1007/BF02867556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kornicka K, Kocherova I, Marycz K (2017) The effects of chosen plant extracts and compounds on mesenchymal stem cells – a bridge between molecular nutrition and regenerative medicine – concise review. Phytother Res: PTR 31(7):947–958. https://doi.org/10.1002/ptr.5812

    Article  PubMed  Google Scholar 

  161. Zhou J, Chan L, Zhou S (2012) Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 19(21):3523–3531. https://doi.org/10.2174/092986712801323171

    Article  CAS  PubMed  Google Scholar 

  162. Han AM, Heo H, Kwon YK (2012) Berberine promotes axonal regeneration in injured nerves of the peripheral nervous system. J Med Food 15(4):413–417. https://doi.org/10.1089/jmf.2011.2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nesterova YV et al (2015) Anxiolytic activity of Diterpene alkaloid Songorine. Bull Exp Biol Med 159(5):620–622. https://doi.org/10.1007/s10517-015-3029-z

    Article  CAS  PubMed  Google Scholar 

  164. Tyagi G et al (2010) DNA interaction studies of an anticancer plant alkaloid, vincristine, using Fourier transform infrared spectroscopy. DNA Cell Biol 29(11):693–699. https://doi.org/10.1089/dna.2010.1035

    Article  CAS  PubMed  Google Scholar 

  165. de Ridder S, van der Kooy F, Verpoorte R (2008) Artemisia Annua as a self-reliant treatment for malaria in developing countries. J Ethnopharmacol 120(3):302–314. https://doi.org/10.1016/j.jep.2008.09.017

    Article  CAS  PubMed  Google Scholar 

  166. Pearce DD, Mitsouras K, Irizarry KJ (2014) Discriminating the effects of cannabis Sativa and cannabis Indica: a web survey of medical cannabis users. J Altern Complement Med 20(10):787–791. https://doi.org/10.1089/acm.2013.0190

    Article  PubMed  Google Scholar 

  167. Metodiewa D, Kochman A, Karolczak S (1997) Evidence for antiradical and antioxidant properties of four biologically active N,N-Diethylaminoethyl ethers of flavanone oximes: a comparison with natural polyphenolic flavonoid (Rutin) action. Biochem Mol Biol Int 41(5):1067–1075. https://doi.org/10.1080/15216549700202141

    Article  CAS  PubMed  Google Scholar 

  168. Konczak-Islam I et al (2003) Potential Chemopreventive properties of anthocyanin-rich aqueous extracts from in vitro produced tissue of Sweetpotato (Ipomoea Batatas L.). J Agric Food Chem 51(20):5916–5922. https://doi.org/10.1021/jf030066o

    Article  CAS  PubMed  Google Scholar 

  169. Rahimi R et al (2005) A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 59(7):365–373. https://doi.org/10.1016/j.biopha.2005.07.002

    Article  CAS  PubMed  Google Scholar 

  170. Lachin T, Reza H (2012) Anti diabetic effect of cherries in Alloxan induced diabetic rats. Recent Pat Endocr Metab Immune Drug Discov 6(1):67–72. https://doi.org/10.2174/187221412799015308

    Article  CAS  PubMed  Google Scholar 

  171. Saleh FA, El-Darra N, Raafat K (2017) Hypoglycemic effects of Prunus Cerasus L. pulp and seed extracts on Alloxan-induced diabetic mice with histopathological evaluation. Biomed Pharmacother 88:870–877. https://doi.org/10.1016/j.biopha.2017.01.155

    Article  CAS  PubMed  Google Scholar 

  172. Varga B et al (2017) Protective effect of Prunus Cerasus (sour cherry) seed extract on the recovery of ischemia/reperfusion-induced retinal damage in Zucker diabetic fatty rat. Molecules 22(10):1782. https://doi.org/10.3390/molecules22101782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Cassidy A et al (2011) Habitual intake of flavonoid subclasses and incident hypertension in adults. Am J Clin Nutr 93(2):338–347. https://doi.org/10.3945/ajcn.110.006783

    Article  CAS  PubMed  Google Scholar 

  174. Cassidy A et al (2013) High anthocyanin intake is associated with a reduced risk of myocardial infarction in Young and middle-aged women. Circulation 127(2):188–196. https://doi.org/10.1161/CIRCULATIONAHA.112.122408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cassidy A, Rogers G, Peterson JJ, Dwyer JT, Lin H, Jacques PF (2015) Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am J Clin Nutr 102(1):172–181. https://doi.org/10.3945/ajcn.115.108555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhu Y et al (2013) Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr Metab Cardiovasc Dis 23(9):843–849. https://doi.org/10.1016/j.numecd.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  177. Rabie AB, Wong RW, Hägg U (2000) Composite autogenous bone and demineralized bone matrices used to repair defects in the parietal bone of rabbits. Br J Oral Maxillofac Surg 38(5):565–570. https://doi.org/10.1054/bjom.2000.0464

    Article  CAS  PubMed  Google Scholar 

  178. Hirata M et al (2009) Naringin suppresses osteoclast formation and enhances bone mass in mice. J Health Sci 55:463–467. https://doi.org/10.1248/jhs.55.463

  179. Tong X et al (2016) The function of Naringin in inducing secretion of osteoprotegerin and inhibiting formation of osteoclasts. Evid Based Complement Alternat Med 2016:8981650. https://doi.org/10.1155/2016/8981650

    Article  Google Scholar 

  180. Heiss C, Keen CL, Kelm M (2010) Flavanols and cardiovascular disease prevention. Eur Heart J 31(21):2583–2592. https://doi.org/10.1093/eurheartj/ehq332

    Article  CAS  PubMed  Google Scholar 

  181. Liwei G et al (2004) Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 134(3):613–617. https://doi.org/10.1093/jn/134.3.613

    Article  Google Scholar 

  182. Heiss C et al (2010) Improvement of endothelial function with dietary Flavanols is associated with mobilization of circulating angiogenic cells in patients with coronary artery disease. J Am Coll Cardiol 56(3):218–224. https://doi.org/10.1016/j.jacc.2010.03.039

    Article  CAS  PubMed  Google Scholar 

  183. Horn P et al (2014) Dietary Flavanol intervention lowers the levels of endothelial microparticles in coronary artery disease patients. Br J Nutr 111(7):1245–1252. https://doi.org/10.1017/S0007114513003693

    Article  CAS  PubMed  Google Scholar 

  184. Wang G, Peng Z, Li Y (2019) Synthesis, anticancer activity and molecular modeling studies of novel Chalcone derivatives containing indole and naphthalene moieties as tubulin polymerization inhibitors. Chem Pharm Bull 67(7):725–728. https://doi.org/10.1248/cpb.c19-00217

    Article  CAS  Google Scholar 

  185. Jia D et al (2015) β-Catenin and NF-ΚB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ 22(2):298–310. https://doi.org/10.1038/cdd.2014.145

    Article  CAS  PubMed  Google Scholar 

  186. Jia D et al (2015) Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo. Oncotarget 7(1):771–785

    Article  PubMed Central  Google Scholar 

  187. Aminov R (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134. https://doi.org/10.3389/fmicb.2010.00134

  188. Kapil A (2005) The challenge of antibiotic resistance: need to contemplate. Indian J Med Res 121(2):83–91

    PubMed  Google Scholar 

  189. Tiwari R, Chakraborty S, Dhama K, Rajagunalan S, Singh S (2013) Antibiotic resistance – an emerging health problem: causes, worries, challenges and solutions – a review. Int J Curr Res 5:1880–1892

    Google Scholar 

  190. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433. https://doi.org/10.1128/MMBR.00016-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria, AIMS. Microbiology 4(3):482–501. https://doi.org/10.3934/microbiol.2018.3.482

    Article  CAS  Google Scholar 

  192. Mendelson M (2015) Role of antibiotic stewardship in extending the age of modern medicine. S Afr Med J 105(5):414–418. https://doi.org/10.7196/samj.9635

    Article  CAS  PubMed  Google Scholar 

  193. WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed July 6, 2023

  194. Varela M, Kumar S (2013) Molecular mechanisms of bacterial resistance to antimicrobial agents. Formatex Research Center, Spain

    Google Scholar 

  195. Beceiro A, Tomás M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26(2):185–230. https://doi.org/10.1128/CMR.00059-12

  196. Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22(4):582–610. https://doi.org/10.1128/CMR.00040-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kourtesi C et al (2013) Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation. Open Microbiol J 7:34–52. https://doi.org/10.2174/1874285801307010034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Bingen E et al (2000) Resistance to macrolides in streptococcus pyogenes in France in pediatric patients. Antimicrob Agents Chemother 44(6):1453. https://doi.org/10.1128/aac.44.6.1453-1457.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332. https://doi.org/10.1016/j.ijantimicag.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  200. Johnstone J et al (2017) Rates of blood cultures positive for vancomycin-resistant enterococcus in Ontario: a quasi-experimental study. CMAJ Open 5(2):E273–E280. https://doi.org/10.9778/cmajo.20160121

    Article  PubMed Central  Google Scholar 

  201. Linden PK (2002) Treatment options for vancomycin-resistant enterococcal infections. Drugs 62(3):425–441. https://doi.org/10.2165/00003495-200262030-00002

    Article  CAS  PubMed  Google Scholar 

  202. Metallidis S et al (2006) Vancomycin-resistant enterococci, colonizing the intestinal tract of patients in a University Hospital in Greece. Braz J Infect Dis 10(3):179–184. https://doi.org/10.1590/s1413-86702006000300005

    Article  PubMed  Google Scholar 

  203. Jeong K-W et al (2009) Screening of flavonoids as candidate antibiotics against Enterococcus Faecalis. J Nat Prod 72(4):719–724. https://doi.org/10.1021/np800698d

    Article  CAS  PubMed  Google Scholar 

  204. Basile A et al (2009) Antimicrobial and antioxidant activities of Coumarins from the roots of Ferulago Campestris (Apiaceae). Molecules 14(3):939–952. https://doi.org/10.3390/molecules14030939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Dubey D, Padhy R (2013) Antibacterial activity of lantana Camara L. against multidrug resistant pathogens from ICU patients of a teaching hospital. J Herbal Med 3:65–75. https://doi.org/10.1016/j.hermed.2012.12.002

    Article  Google Scholar 

  206. Lee G-S (2010) Antibacterial and synergistic activity of Prenylated Chalcone isolated from the roots of Sophora Flavescens. J Korean Soc Appl Biol Chem 53(3):290–296. https://doi.org/10.3839/jksabc.2010.045

    Article  CAS  Google Scholar 

  207. McRae JM et al (2008) Antibacterial compounds from Planchonia Careya leaf extracts. J Ethnopharmacol 116(3):554–560. https://doi.org/10.1016/j.jep.2008.01.007

    Article  CAS  PubMed  Google Scholar 

  208. Office for National Statistics (2008) Deaths involving MRSA: England and Wales, 1993–2006. Health Stat Q 37:57–62

    Google Scholar 

  209. Kali A (2015) Antibiotics and bioactive natural products in treatment of methicillin resistant Staphylococcus Aureus: a brief review. Pharmacogn Rev 9(17):29–34. https://doi.org/10.4103/0973-7847.156329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Tiwari HK et al (2009) Methicillin resistant Staphylococcus aureus: prevalence and antibiogram in a Tertiary Care Hospital in Western Nepal. J Infect Dev Ctries 3(9):681–684. https://doi.org/10.3855/jidc.86

    Article  CAS  PubMed  Google Scholar 

  211. Tanaka M et al (2000) Mechanism of quinolone resistance in staphylococcus aureus. J Infect Chemother 6(3):131–139. https://doi.org/10.1007/s101560070010

    Article  CAS  PubMed  Google Scholar 

  212. Gade ND, Qazi MS (2013) Fluoroquinolone therapy in Staphylococcus aureus infections: where do we stand? J Lab Physician 5(2):109–112. https://doi.org/10.4103/0974-2727.119862

    Article  CAS  Google Scholar 

  213. Shahidur Rahman AKM et al (2009) Antibacterial activity of two Limonoids from Swietenia Mahagoni against multiple-drug-resistant (MDR) bacterial strains. J Nat Med 63(1):41–45. https://doi.org/10.1007/s11418-008-0287-3

    Article  CAS  Google Scholar 

  214. Gould SWJ et al (2009) Anti-microbial activities of pomegranate rind extracts: enhancement by cupric sulphate against clinical isolates of S. Aureus, MRSA and PVL positive CA-MSSA. BMC Complement Altern Med 9:23. https://doi.org/10.1186/1472-6882-9-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Sudjana AN et al (2009) Antimicrobial activity of commercial Olea Europaea (olive) leaf extract. Int J Antimicrob Agents 33(5):461–463. https://doi.org/10.1016/j.ijantimicag.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  216. Hayet E, Maha M, Samia A et al (2008) Antimicrobial, antioxidant, and antiviral activities of Retama raetam (Forssk.) Webb flowers growing in Tunisia. World J Microbiol Biotechnol 24:2933–2940. https://doi.org/10.1007/s11274-008-9835-y

    Article  Google Scholar 

  217. Buenz EJ et al (2007) A randomized phase I study of Atuna Racemosa: a potential new anti-MRSA natural product extract. J Ethnopharmacol 114(3):371–376. https://doi.org/10.1016/j.jep.2007.08.027

    Article  PubMed  Google Scholar 

  218. Gomber C, Saxena S (2007) Anti-staphylococcal potential of Callistemon rigidus. Cent Eur J Med 2:79–88. https://doi.org/10.2478/s11536-007-0004-8

    Article  Google Scholar 

  219. Giang PM, Son PT, Matsunami K et al (2006) Anti-staphylococcal activity of ent-kaurane-type diterpenoids from Croton tonkinensis. J Nat Med 60:93–95. https://doi.org/10.1007/s11418-005-0011-5

    Article  CAS  Google Scholar 

  220. Abu-Shanab et al (2006) Antibacterial activity of four plant extracts used in Palestine in folkloric medicine against methicillin-resistant Staphylococcus aureus. Turk J Biol 30(4):195–198

    Google Scholar 

  221. Akinyemi KO, Oladapo O, Okwara CE, Ibe CC, Fasure KA (2005) Screening of crude extracts of six medicinal plants used in south-west Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity. BMC Complement Altern Med 5:6. https://doi.org/10.1186/1472-6882-5-6

    Article  PubMed  PubMed Central  Google Scholar 

  222. Kyriakidis I et al (2021) Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 10(3):373. https://doi.org/10.3390/pathogens10030373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Vrancianu CO et al (2020) Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter Baumannii. Microorganisms 8(6):935. https://doi.org/10.3390/microorganisms8060935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Mojica MF, Bonomo RA, Fast W (2016) B1-metallo-β-lactamases: where do we stand? Curr Drug Targets 17(9):1029–1050. https://doi.org/10.2174/1389450116666151001105622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Shaikh S et al (2015) Antibiotic resistance and extended Spectrum beta-lactamases: types, epidemiology and treatment. Saudi J Biol Sci 22(1):90–101. https://doi.org/10.1016/j.sjbs.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  226. Poirel L, Nordmann P (2006) Carbapenem resistance in Acinetobacter Baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12(9):826–836. https://doi.org/10.1111/j.1469-0691.2006.01456.x

    Article  CAS  PubMed  Google Scholar 

  227. Halat DH, Moubareck CA (2020) The current burden of Carbapenemases: review of significant properties and dissemination among gram-negative bacteria. Antibiotics 9(4):186. https://doi.org/10.3390/antibiotics9040186

    Article  CAS  Google Scholar 

  228. Abdi SN et al (2020) Acinetobacter Baumannii efflux pumps and antibiotic resistance. Infect Drug Resist 13:423–434. https://doi.org/10.2147/IDR.S228089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Basatian-Tashkan B et al (2020) Antibiotic resistance assessment of Acinetobacter Baumannii isolates from Tehran hospitals due to the presence of efflux pumps encoding genes (AdeA and AdeS genes) by molecular method. BMC Res Notes 13(1):543. https://doi.org/10.1186/s13104-020-05387-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Pérez-Varela M et al (2019) Roles of efflux pumps from different Superfamilies in the surface-associated motility and virulence of Acinetobacter Baumannii ATCC 17978. Antimicrob Agents Chemother 63(3):e02190–e02118. https://doi.org/10.1128/AAC.02190-18

    Article  PubMed  PubMed Central  Google Scholar 

  231. Chen L et al (2020) Impact of an intervention to control imipenem-resistant Acinetobacter Baumannii and its resistance mechanisms: an 8-year survey. Front Microbiol 11:610109. https://doi.org/10.3389/fmicb.2020.610109

    Article  PubMed  Google Scholar 

  232. Sugawara E, Nikaido H (2012) OmpA is the principal nonspecific slow Porin of Acinetobacter Baumannii. J Bacteriol 194(15):4089–4096. https://doi.org/10.1128/JB.00435-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Vázquez-López R et al (2020) Acinetobacter Baumannii resistance: a real challenge for clinicians. Antibiotics 9(4):205. https://doi.org/10.3390/antibiotics9040205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Shankar C et al (2017) Minocycline and Tigecycline: what is their role in the treatment of Carbapenem-resistant gram-negative organisms? Microb Drug Resist 23(4):437–446. https://doi.org/10.1089/mdr.2016.0043

    Article  CAS  PubMed  Google Scholar 

  235. Karaiskos I et al (2019) The ‘old’ and the ‘new’ antibiotics for MDR gram-negative pathogens: for whom, when, and how. Front Public Health 7:151. https://doi.org/10.3389/fpubh.2019.00151

    Article  PubMed  PubMed Central  Google Scholar 

  236. Bagińska N et al (2021) The role of antibiotic resistant A. Baumannii in the pathogenesis of urinary tract infection and the potential of its treatment with the use of bacteriophage therapy. Antibiotics 10(3):281. https://doi.org/10.3390/antibiotics10030281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Konca C, Tekin M, Geyik M (2021) Susceptibility patterns of multidrug-resistant Acinetobacter Baumannii. Indian J Pediatr 88(2):120–126. https://doi.org/10.1007/s12098-020-03346-4

    Article  PubMed  Google Scholar 

  238. Nepka M et al (2016) In vitro bactericidal activity of trimethoprim-sulfamethoxazole alone and in combination with Colistin against Carbapenem-resistant Acinetobacter Baumannii clinical isolates. Antimicrob Agents Chemother 60(11):6903–6906. https://doi.org/10.1128/AAC.01082-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Reiter J et al (2017) Diallylthiosulfinate (Allicin), a volatile antimicrobial from garlic (Allium Sativum), kills human lung pathogenic bacteria, including MDR strains, as a vapor. Molecules 22(10):1711. https://doi.org/10.3390/molecules22101711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Siriyong T et al (2017) Conessine as a novel inhibitor of multidrug efflux pump systems in pseudomonas aeruginosa. BMC Complement Altern Med 17(1):405. https://doi.org/10.1186/s12906-017-1913-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Khan UA et al (2015) Alkanna Tinctoria leaves extracts: a prospective remedy against multidrug resistant human pathogenic bacteria. BMC Complement Altern Med 15:127. https://doi.org/10.1186/s12906-015-0646-z

    Article  PubMed  PubMed Central  Google Scholar 

  242. Dubey D et al (2012) Antimicrobial activity of medicinal plants used by aborigines of Kalahandi, Orissa, India against multidrug resistant bacteria. Asian Pac J Trop Biomed 2(2):S846–S854. https://doi.org/10.1016/S2221-1691(12)60322-0

    Article  Google Scholar 

  243. Miyasaki Y et al (2013) Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter Baumannii. PloS One 8(4):e61594. https://doi.org/10.1371/journal.pone.0061594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Recio R et al (2020) Predictors of mortality in bloodstream infections caused by Pseudomonas aeruginosa and impact of antimicrobial resistance and bacterial virulence. Antimicrob Agents Chemother 64(2):e01759–e01719. https://doi.org/10.1128/AAC.01759-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Henrichfreise B et al (2007) Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother 51(11):4062–4070. https://doi.org/10.1128/AAC.00148-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Frèdi Langendonk R, Neill DR, Fothergill JL (2021) The building blocks of antimicrobial resistance in pseudomonas aeruginosa: implications for current resistance-breaking therapies. Front Cell Infect Microbiol 11:665759. https://doi.org/10.3389/fcimb.2021.665759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Hwang W, Yoon SS (2019) Virulence characteristics and an action mode of antibiotic resistance in multidrug-resistant pseudomonas aeruginosa. Sci Rep 9:487. https://doi.org/10.1038/s41598-018-37422-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Pang Z et al (2019) Antibiotic resistance in pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37(1):177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  249. Sader HS et al (2017) Pseudomonas aeruginosa antimicrobial susceptibility results from four years (2012–2015) of the international network for optimal resistance monitoring program in the United States. Antimicrob Agents Chemother 61(3):e02252–e02216. https://doi.org/10.1128/AAC.02252-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Dehbashi S et al (2020) Distribution of class B and class A β-lactamases in clinical strains of pseudomonas aeruginosa: comparison of phenotypic methods and high-resolution melting analysis (HRMA) assay. Infect Drug Resist 13:2037–2052. https://doi.org/10.2147/IDR.S255292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Pachori P, Gothalwal R, Gandhi P (2019) Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit – a critical review. Genes Dis 6(2):109–119. https://doi.org/10.1016/j.gendis.2019.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  252. Berrazeg M et al (2015) Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal Cephalosporins. Antimicrob Agents Chemother 59(10):6248–6255. https://doi.org/10.1128/AAC.00825-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Ahmed S, Sony SA, Chowdhury MB, Ullah MM, Paul S, Hossain T (2020) Retention of antibiotic activity against resistant bacteria harbouring aminoglycoside-N-acetyltransferase enzyme by adjuvants: a combination of in-silico and in-vitro study. Sci Rep 10:19381. https://doi.org/10.1038/s41598-020-76355-0

  254. Pungcharoenkijkul S et al (2020) Antimicrobials as single and combination therapy for Colistin-resistant pseudomonas aeruginosa at a University Hospital in Thailand. Antibiotics 9(8):475. https://doi.org/10.3390/antibiotics9080475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Pachori G, Gandhi (2019) Emergence of antibiotic resistance pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis 6(2):109–119

    Article  PubMed  PubMed Central  Google Scholar 

  256. Althunibat OY, Qaralleh H, Al-Dalin SYA, Abboud M, Khleifat K, Majali IS, Hammad KH, Aldal’in, Rayyan WA, Jaafraa A (2016) Effect of thymol and Carvacrol, the major components of Thymus capitatus on the growth of Pseudomonas aeruginosa. J Pure Appl Microbiol 10(1):367–374

    CAS  Google Scholar 

  257. Rathinam P, Kumar HSV, Viswanathan P (2017) Eugenol exhibits anti-virulence properties by competitively binding to quorum sensing receptors. Biofouling 33(8):624–639. https://doi.org/10.1080/08927014.2017.1350655

    Article  CAS  PubMed  Google Scholar 

  258. Boberek JM, Stach J, Good L (2010) Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PloS One 5(10):e13745. https://doi.org/10.1371/journal.pone.0013745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Gutiérrez S et al (2017) The usefulness of non-toxic plant metabolites in the control of bacterial proliferation. Probiotics Antimicrob Proteins 9(3):323–333. https://doi.org/10.1007/s12602-017-9259-9

    Article  CAS  PubMed  Google Scholar 

  260. Tyagi P et al (2015) Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PloS One 10(3):e0121313. https://doi.org/10.1371/journal.pone.0121313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016:2475067. https://doi.org/10.1155/2016/2475067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Eghbalpoor F, Habibi M, Azizi O, Asadi Karam MR, Bouzari S (2019) Antibiotic resistance, virulence and genetic diversity of Klebsiella pneumoniae in community- and hospital-acquired urinary tract infections in Iran. Acta Microbiol Immunol Hung 66(3):349–366. https://doi.org/10.1556/030.66.2019.006 

    Article  CAS  PubMed  Google Scholar 

  263. Young TM et al (2020) Animal model to study Klebsiella Pneumoniae gastrointestinal colonization and host-to-host transmission. Infect Immun 88(11):e00071–e00020. https://doi.org/10.1128/IAI.00071-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Effah CY et al (2020) Klebsiella Pneumoniae: an increasing threat to public health. Ann Clin Microbiol Antimicrob 19(1). https://doi.org/10.1186/s12941-019-0343-8

  265. Lasko MJ, Nicolau DP (2020) Carbapenem-resistant Enterobacterales: considerations for treatment in the era of new antimicrobials and evolving enzymology. Curr Infect Dis Rep 22(3):6. https://doi.org/10.1007/s11908-020-0716-3

  266. Davin-Regli A, Jm P (2015) Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00392

  267. Álvarez-Marín R et al (2021) Clinical characteristics and outcome of bacteraemia caused by Enterobacter Cloacae and Klebsiella Aerogenes: more similarities than differences. J Glob Antimicrob Resist 25:351–358. https://doi.org/10.1016/j.jgar.2021.04.008

    Article  CAS  PubMed  Google Scholar 

  268. Uzunović S, Ibrahimagić A, Bedenić B (2018) Antibiotic resistance in Enterobacter cloacae strains with derepressed/partly derepressed/inducible AmpC and extendedspectrum beta-lactamases in Zenica-Doboj Canton, Bosnia and Herzegovina, vol 1. Medicinski Glasnik. https://doi.org/10.17392/925-18

    Book  Google Scholar 

  269. Di Franco S et al (2021) Blood stream infections from MDR bacteria. Life 11(6):575. https://doi.org/10.3390/life11060575

    Article  PubMed  PubMed Central  Google Scholar 

  270. De Oliveira DMP et al (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33(3):10. https://doi.org/10.1128/cmr.00181-19

    Article  CAS  Google Scholar 

  271. Sun M et al (2021) Osthole: an overview of its sources, biological activities, and modification development. Med Chem Res 30(10):1767–1794. https://doi.org/10.1007/s00044-021-02775-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Rizwana H, Alwhibi MS, Soliman DA (2016) Antimicrobial activity and chemical composition of flowers of Matricaria aurea a native herb of Saudi Arabia. Int J Pharmacol 12:576–586. https://doi.org/10.3923/ijp.2016.576.586

  273. Qian W et al (2020) Antimicrobial activity of eugenol against Carbapenem-resistant Klebsiella Pneumoniae and its effect on biofilms. Microb Pathog 139:103924. https://doi.org/10.1016/j.micpath.2019.103924

    Article  CAS  PubMed  Google Scholar 

  274. Nayim P et al (2018) Antibacterial and antibiotic-potentiating activities of thirteen Cameroonian edible plants against gram-negative resistant phenotypes. Sci World J 2018:4020294. https://doi.org/10.1155/2018/4020294

    Article  CAS  Google Scholar 

  275. Seukep JA et al (2016) Antibacterial and antibiotic-resistance modifying activity of the extracts and compounds from Nauclea Pobeguinii against gram-negative multi-drug resistant phenotypes. BMC Complement Altern Med 16:193. https://doi.org/10.1186/s12906-016-1173-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Voukeng IK et al (2017) Antibacterial activities of the methanol extract, fractions and compounds from Elaeophorbia Drupifera (Thonn.) Stapf. (Euphorbiaceae). BMC Complement Altern Med 17(1):28. https://doi.org/10.1186/s12906-016-1509-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Djeussi DE et al (2015) Antibacterial activities of the methanol extracts and compounds from Erythrina Sigmoidea against gram-negative multi-drug resistant phenotypes. BMC Complement Altern Med 15:453. https://doi.org/10.1186/s12906-015-0978-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Ambadiang MMM et al (2020) Bark extract of Cassia Sieberiana DC. (Caesalpiniaceae) displayed good antibacterial activity against MDR gram-negative phenotypes in the presence of phenylalanine-arginine β-naphthylamide. BMC Complement Med Ther 20(1):342. https://doi.org/10.1186/s12906-020-03148-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Guefack M-GF et al (2022) Antibacterial and antibiotic-potentiation activity of the constituents from aerial part of Donella Welwitshii (Sapotaceae) against multidrug resistant phenotypes. BMC Complement Med Ther 22(1):194. https://doi.org/10.1186/s12906-022-03673-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Guefack M-GF et al (2022) Antibacterial and antibiotic-potentiation activities of the hydro-Ethanolic extract and protoberberine alkaloids from the stem bark of Enantia Chlorantha against multidrug-resistant bacteria expressing active efflux pumps. J Ethnopharmacol 296:115518. https://doi.org/10.1016/j.jep.2022.115518

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avik Acharya Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mitra, R., Ghosh, S., Mukherjee, G., Acharya Chowdhury, A. (2023). Secondary Metabolites: Treasure Trove for Future Medicine. In: Mérillon, JM., Ramawat, K.G. (eds) Plant Specialized Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-30037-0_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30037-0_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30037-0

  • Online ISBN: 978-3-031-30037-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics