Skip to main content

Biological and Ecological Roles of Club Mosses (Lycopodiaceae) Alkaloids

  • Living reference work entry
  • First Online:
Plant Specialized Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 30 Accesses

Abstract

This paper is a critical overview of studies concerning the Lycopodium alkaloids and presentation of hypotheses that address the biological purpose of alkaloid presence in club mosses. Alkaloids are the largest class of nitrogen-containing secondary metabolites. It is estimated that over 20% of seed-bearing plants produce alkaloids and in the club moss species of the order Lycopodiales, alkaloids are the main secondary metabolites. The very high alkaloid content in club mosses and their chemical structure and biological properties are unparalleled among all cryptogams. To date, about 400 alkaloids have been identified in 12–15% of the investigated club moss species of the Lycopodiaceae, which means that the Lycopodiaceae are the most abundant source of alkaloids among vascular plants. The Lycopodium alkaloids are piperidine derivatives, biogenetically derived from lysine. To date, a number of genes and their products have been identified, which are involved in the biosynthesis of alkaloids. These are a type III polyketide synthase, which catalyzes a crucial imine-polyketide condensation, and Fe (II)/2-oxoglutarane-dependent dioxygenase (2OGD) enzymes that catalyze pyridine ring-forming desaturation, pyridine ring cleavage, and redox-neutral isomerization. Also of key importance is the bifunctional lysine/ornithine decarboxylase (L/ODC) that catalyzes decarboxylation of the alkaloid biosynthesis precursor lysine to cadaverine. There is no scientific explanation for the abundance of specific alkaloids in the Lycopodiaceae and their putative diverse biological properties. The polyamine (PA) cadaverine and its derivatives are likely to be involved in the processes of plant growth and development as growth regulators.

Investigations have demonstrated that PAs are ubiquitous in plants, frequently species-, organ-, and tissue-specific, and their cellular content depends on the equilibrium between their biosynthesis, transmembrane transport, and apoplastic catabolism. In plants, polyamine oxidases and diamine oxidases oxidize PAs and generate reactive oxygen species (ROS) directly involved in the processes of plant growth and development. In club mosses, the products of lysine decarboxylation and alkaloids may serve as nitrogen donors, possibly included in the biosynthetic pathways of PAs or nitric oxide (NO). Nitric oxide may regulate the expression of genes associated with the processes of plant maturation, senescence, and the response to pathogens. The evident structural resemblance of huperzine A (HupA) and some other structurally similar alkaloids to acetylcholine (ACh) and to the active center of acetylcholine esterase (AChE) indirectly indicates a likely role of alkaloids in the signal transduction involving the plant cholinergic system. As reported in the literature, alkaloids with the AChE inhibitory activity enhanced tissue sensitivity to the effects of red light and ACh in experimental models. In club mosses variations in the levels of alkaloid biosynthesis and alterations in their qualitative composition potentially may act to initiate morphogenetic processes. It has been demonstrated that in L. annotinum reverting to the generative growth and formation of strobili is associated with altered activities of two genes LAMB1 and LAMB2. It is possible that alkaloids that are AChE inhibitors acting on the phytochrome controlling signaling cascades are involved in the regulation of these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2OGD:

Fe (II)/2-oxoglutarane-dependent dioxygenase

4PAA:

4-(2-Piperidyl) acetoacetate

4PAACoA:

4-(2-Piperidyl)acetyl-CoA

ABA:

Abscisic acid

ACh:

Acetylocholine

AChE:

Acetylcholinesterase

BuChE:

Pseudocholinesterase

ChE:

Pseudocholinesterase

CuAO:

Copper amine oxidase

DAO:

Diamine oxidase

DW:

Dry weight

GUS:

The GUS (β-glucuronidase) reporter gene system

HPLC-DAD:

Liquid chromatography with diode-array detection

HupA:

Huperzine A (selagine)

HupB:

Huperzine B

IAA:

3-Acetic acid

L/ODC:

Bifunctional lysine/ornithine decarboxylase

LA/LAs:

Lycopodium alkaloids

LC-TOF-MS:

Liquid chromatography/time-of-flight/mass spectrometry

Lys:

Lysine

NADPH:

Reduced nicotinamide adenine dinucleotide phosphate

NOX:

NADPH oxidase

NO:

Nitric oxide

PA/PAs:

Polyamine/polyamines

PAO:

Polyamine oxidase

PCA:

Principal component analysis

PKS:

III polyketide synthase

POWO:

Plants of the World Online https://powo.science.kew.org/

PPG I:

Pteridophyte Phylogeny Group

subsp:

Subspecies

TLC:

Thin layer chromatography

References

  1. Wink M (2008) Ecological roles of alkaloids. In: Fattorusso E, Taglialatela-Scafati O (eds) Modern alkaloids: structure, isolation, synthesis and biology. Wiley-VCH, Weinheim, pp 1–24

    Google Scholar 

  2. Hegnauer R (1962) Chemotaxonomie der Pflanzen, Band 1. Birkhäuser Verlag Basel und Stuttgart

    Book  Google Scholar 

  3. Hegnauer R (1986) Chemotaxonomie der Pflanzen, Band VII. Birkhäuser Verlag Basel und Stuttgart

    Book  Google Scholar 

  4. Lawrence JP, Rojas B, Blanchette A, Saporito RA, Mappes J, Fouquet A, Noonan BP (2023) Linking predator responses to alkaloid variability in poison frogs. J Chem Ecol 49:195–204. https://doi.org/10.1007/s10886-023-01412-7

    Article  CAS  PubMed  Google Scholar 

  5. Imane B, Laila B, Fouzia H, Ismail G, Ahmed E, Kaoutar B, Samira E, Jamila B (2022) Chemical characterization, antiproliferative activity and molecular docking of bioactive compounds from brown algae Fucus spiralis. Algal Res 68:102887

    Article  Google Scholar 

  6. Grindberg RV, Shuman CF, Sorrels CM, Wingerd J, Gerwick WH (2007) Neurotoxic alkaloids from cyanobacteria. In: Fattorusso E (ed) Modern alkaloids. Wiley-VCH, Weinheim, pp 139–170

    Chapter  Google Scholar 

  7. Zhou X, Abulimit M, Ababakri S (2007) Study on extraction and anti-microbial activities of Total alkaloids from Dryopteris filix-mas (L.) Schott. Endemic Dis Bull 22(5):14

    Google Scholar 

  8. Singha S, Nath R, Das S, Kityania S, Nath D, Das Talukdar A (2023) Phytochemicals from the pteridaceae family and their prospects as future drugs. In: Murthy HN (ed) Bioactive compounds in bryophytes and pteridophytes, reference series in phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-23243-5_16

    Chapter  Google Scholar 

  9. Singha S, Nath R, Das S, Kityania S, Talukdar AD, Nath D (2023) Phytochemicals and their bioactivity from plants of Dryopteridaceae family. In: Murthy HN (ed) Bioactive compounds in bryophytes and pteridophytes, reference series in phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-23243-5_23

    Chapter  Google Scholar 

  10. Hirono I (1986) Carcinogenicity of plant constituents: pyrrolizidine alkaloids, flavonoids, bracken fern. Prog Clin Biol Res 206:45–53

    CAS  PubMed  Google Scholar 

  11. PPG I (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54(6):563–603. https://doi.org/10.1111/jse.12229

    Article  Google Scholar 

  12. Trennheuser F, Burkhard G, Becker H (1994) Anthocerodiazonin an alkaloid from Anthoceros agrestis. Phytochemistry 37(3):899–903

    Article  CAS  Google Scholar 

  13. Ma X, Gang DR (2004) The lycopodium alkaloids. Nat Prod Rep 21(6):752–772. https://doi.org/10.1039/B409720N

    Article  CAS  PubMed  Google Scholar 

  14. Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, Stein WE (1998) Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu Rev Ecol Evol Syst 29:263–292. https://doi.org/10.1146/annurev.ecolsys.29.1.263

    Article  Google Scholar 

  15. Kenrick P, Crane PR (1997) The origin and early diversification of land plants: a cladistic study. Smithsonian Institution Press. https://doi.org/10.1017/s0016756899242367

    Book  Google Scholar 

  16. Kenrick P, Crane PR (1997) The origin and early evolution plants on land. Nature 389(6646):33–39. https://doi.org/10.1038/37918

    Article  CAS  Google Scholar 

  17. Stein WE, Berry CM, Hernick LV, Mannolini F (2012) Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature 483:78–81. https://doi.org/10.1038/nature10819

    Article  CAS  PubMed  Google Scholar 

  18. Wikström N, Kenrick P (2001) Evolution of Lycopodiaceae (Lycopsida): estimating divergence times from rbcL gene sequences by use of nonparametric rate smoothing. Mol Phylogenet Evol 19(2):177–186

    Article  PubMed  Google Scholar 

  19. Chen D-K, Zhou X-M, Rothfels CJ, Shepherd LD, Knapp R, Zhang L, Lu NT, Fan X-P, Wan X, Gao X-F, He H, Zhang L-B (2022) A global phylogeny of Lycopodiaceae (Lycopodiales; lycophytes) with the description of a new genus, Brownseya, from Oceania. Taxon 71(1):25–51. https://doi.org/10.1002/tax.12597

    Article  Google Scholar 

  20. Wikström N, Kenrick P (2000) Phylogeny of epiphytic Huperzia (Lycopodiaceae): paleotropical and neotropical clades corroborated by rbcL sequences. Nord J Bot 20(2):165–171. https://doi.org/10.1111/j.1756-1051.2000.tb01561.x

    Article  Google Scholar 

  21. Yatsentyuk SP, Valiejo-Roman KM, Samigullin TH, Wilkström N, Troitsky AV (2001) Evolution of Lycopodiaceae inferred from spacer sequencing of chloroplast rRNA genes. Russ J Gen 37(9):1068–1073. https://doi.org/10.1023/A:1011969716528

    Article  CAS  Google Scholar 

  22. Holub J (1964) Lycopodiella, nový rod řádu Lycopodiales [Lycopodiella, new genus of the order Lycopodiales]. Preslia 36(1):16–22

    Google Scholar 

  23. POWO (2023) Plants of the world online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/. Retrieved 16 November 2021. Accessed 25 July 2023

    Google Scholar 

  24. Øllgaard B (2015) Six new species and some nomenclatural changes in neotropical Lycopodiaceae. Nord J Bot 33(2):186–196. https://doi.org/10.1111/njb.00652

    Article  Google Scholar 

  25. Field AR, Testo W, Bostock PD, Holtum JAM, Waycott M (2016) Molecular phylogenetics and the morphology of the Lycopodiaceae subfamily Huperzioideae supports three genera: Huperzia, Phlegmariurus, and Phylloglossum. Mol Phylogenet Evol 94(B):635–657. https://doi.org/10.1016/j.ympev.2015.09.024

    Article  CAS  PubMed  Google Scholar 

  26. Ma X, Tan C, Zhu D, Gang DR, Xiao P (2007) Huperzine a from Huperzia species – an ethnopharmacological review. J Ethnopharmacol 113:15–34. https://doi.org/10.1016/j.jep.2007.05.030

    Article  CAS  PubMed  Google Scholar 

  27. Ma X, Tan C, Zhu D, Gang D (2006) A survey of potential Huperzine a natural resources in China: the Huperziaceae. J Ethnopharmacol 104:54–67. https://doi.org/10.1016/j.jep.2005.08.042

    Article  CAS  PubMed  Google Scholar 

  28. Ayer WA, Trifonov LS (1994) Lycopodium alkaloids. The alkaloids: chemistry and pharmacology. In: The alkaloids, vol 45. Academic, San Diego, pp 233–266

    Google Scholar 

  29. Siengalewicz P, Mulzer J, Rinner U (2013) Lycopodium alkaloids-synthetic highlights and recent developments. Alkaloids Chem Biol 72:1–151. https://doi.org/10.1016/B978-0-12-407774-4.00001-7

    Article  CAS  PubMed  Google Scholar 

  30. Wang B, Guan C, Fu Q (2022) The traditional uses, secondary metabolites, and pharmacology of Lycopodium species. Phytochem Rev 21:1–79. https://doi.org/10.1007/s11101-021-09746-4

    Article  CAS  Google Scholar 

  31. Szypuła WJ, Pietrosiuk A (2021) Production of cholinesterase-inhibiting compounds in in vitro cultures of club mosses. In: Ramawat KG, Ekiert HM, Goyal S (eds) Plant cell and tissue differentiation and secondary metabolites. Springer, pp 921–960. https://doi.org/10.1007/978-3-030-11253-0_30-1

    Chapter  Google Scholar 

  32. Szypuła WJ, Pietrosiuk A (2021) Biology, phytochemistry, pharmacology, and biotechnology of European ferns, club mosses, and horsetails: a review. In: Ekiert HM, Ramawat KG, Arora J (eds) Medicinal plants. Sustainable development and biodiversity, vol 28. Springer, Cham, pp 605–660. https://doi.org/10.1007/978-3-030-74779-4_19

    Chapter  Google Scholar 

  33. Murthy HN, Yadav GG, Bhat MA (2023) Bioactive compounds of pteridophytes. In: Murthy HN (ed) Bioactive compounds in bryophytes and pteridophytes, Reference series in phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-23243-5_10

    Chapter  Google Scholar 

  34. Braekman JC, Nyembo L, Bourdoux P, Kahindo N, Hootele C (1974) Distributions des Alcaloïdes Dans le Genre Lycopodium. Phytochemistry 13:2519–2528

    Article  CAS  Google Scholar 

  35. Braekman JC, Nyembo L, Symonens JJ (1980) Chimotaxonomie des Lycopodiales: Distributions des Alcaloïdes. Phytochemistry 19:803–807

    Article  CAS  Google Scholar 

  36. Wilce JH (1965) Section Complanata of the genus Lycopodium. Nova Hedwigia 19:1–233

    Google Scholar 

  37. Ma X-Q, Jiang S-H, Zhu D-Y (1998) Alkaloid patterns in Huperzia and some related genera of Lyopodiaceae sensu lato occurring in China and their contribution to classification. Biochem Syst Ecol 26:723–728

    Article  CAS  Google Scholar 

  38. Xu M, Heidmarsson S, de Boer HJ, Kool A, Olafsdottir ES (2019) Ethnopharmacology of the club moss subfamily Huperzioideae (Lycopodiaceae, Lycopodiophyta): a phylogenetic and chemosystematic perspective. J Ethnopharmacol 245:112130

    Article  CAS  PubMed  Google Scholar 

  39. Bienaime C, Melin A, Bensaddek L, Attoumbré J, Nava-Saucedo E (2015) Effects of plant growth regulators on cell growth and alkaloids production by cell cultures of Lycopodiella inundata. Plant Cell Tissue Organ Cult 123(3):523–533. https://doi.org/10.1007/s11240-015-0856-6

    Article  CAS  Google Scholar 

  40. Choo CY, Mohd Nor NA, Sahidan N, Hitotsuyanagi Y (2018) Biomarkers identification of Lycopodiaceae and Huperziaceae species from peninsular Malaysia with HPLC chromatographic profiling and partial least square analysis. Sep Sci Plus 1(10):660–668

    Article  CAS  Google Scholar 

  41. Böedeker K (1881) Lycopodin, das erste Alkaloïd der Gefäfskryptogamen. Liebig’s Ann Chem 208:36–367. https://doi.org/10.1002/jlac.18812080308

    Article  Google Scholar 

  42. Szypuła W (2008) Wroniec widlasty Huperzia sealgo w kulturze in vitro jako źródło hupercyny A [Fir clubmoss Huperzia selago in in vitro culture as a source of huperzine A]. Dissertation, Medical University of Warsaw

    Google Scholar 

  43. Ayer WA, Browne MLM, Orszanska H, Valenta Z, Liu J-S (1989) Alkaloids of Lycopodium selago. On the identity of selagine with huperzine A and the structure of a related alkaloid. Can J Chem 67:1538–1540

    Article  CAS  Google Scholar 

  44. Wu Q-Q, Gu Y (2006) Quantification of Huperzine A in Huperzia serrata by HPLC-UV and identification of the major constituents in its alkaloid extracts by HPLC-DAD-MS-MS. J Pharm Biomed Anal 40:993–998. https://doi.org/10.1016/j.jpba.2005.07.047

    Article  CAS  PubMed  Google Scholar 

  45. Luo H, Li Y, Sun C, Wu Q, Song J, Sun Y, Steinmetz A, Chen S (2010) Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation. BMC Plant Biol 10:209. https://doi.org/10.1186/1471-2229-10-209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luo H, Sun C, Li Y, Wu Q, Song J, Wang D, Jia X, Li R, Chen S (2010) Analysis of expressed sequence tags from the Huperzia serrata leaf for gene discovery in the areas of secondary metabolite biosynthesis and development regulation. Physiol Plant 139(1):1–12. https://doi.org/10.1111/j.1399-3054.2009.01339.x. Epub 2009 Dec 3

    Article  CAS  PubMed  Google Scholar 

  47. Bunsupa S, Yamazaki M, Saito K (2012) Quinolizidine alkaloid biosynthesis: recent advances and future prospects. Front Plant Sci 3:239

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nett RS, Dho Y, Low Y, Sattely ES (2021) A metabolic regulon reveals early and late acting enzymes in neuroactive lycopodium alkaloid biosynthesis. Proc Natl Acad Sci U S A 118:e2102949118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gupta RN, Castillo M, MacLean DB, Spenser ID, Wrobel JT (1968) Biosynthesis of Lycopodine. J Am Chem Soc 90:1360–1361

    Article  CAS  PubMed  Google Scholar 

  50. Marshall WD, Nguyen TT, MacLean DB, Spenser ID (1975) Biosynthesis of Lycopodine. The question of the intermediacy of Piperidine −2-acetic acid. Can J Chem 53(1):41–50

    Article  CAS  Google Scholar 

  51. Braekman JC, Spenser ID (1972) Biosynthesis of Lycopodine. Can J Chem 50(16):2591–2602

    Article  CAS  Google Scholar 

  52. Spenser ID (1970) Biosynthesis of alkaloids. In: Pelletier SW (ed) Chemistry of the alkaloids. Van Nostrand Reinhold Company

    Google Scholar 

  53. Kączkowski J (1993) Biochemia roślin Tom 2, Metabolizm wtórny [Plant biochemistry Vol 2, secondary metabolism]. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  54. Castillo M, Gupta RN, MacLean DB, Spenser ID (1970) Biosynthesis of lycopodine from lysine and acetate. The pelletierine hypothesis. Can J Chem 48:1893–1903

    Article  CAS  Google Scholar 

  55. Castillo M, Gupta RN, Ho YK, MacLean DB, Spenser ID (1970) Biosynthesis of lycopodine. The incorporation of pelletierine. J Am Chem Soc 92:1074–1075

    Article  CAS  Google Scholar 

  56. Castillo M, Gupta RN, Ho YK, MacLean DB, Spenser ID (1970) Biosynthesis of lycopodine – incorporation of Δ1-piperideine and of pelletierine. Can J Chem 48:2911–2918

    Article  CAS  Google Scholar 

  57. Hemscheidt T, Spenser ID (1990) Biosynthesis of N-methylpelletierine: vindication of a classical biogenetic concept. J Am Chem Soc 112:6360–6363

    Article  CAS  Google Scholar 

  58. Hemscheidt T, Spenser ID (1996) A classical paradigm of alkaloid biogenesis revisited: Acetonedicarboxylic acid as a biosynthetic precursor of Lycopodine. J Am Chem Soc 118:1799–1800

    Article  CAS  Google Scholar 

  59. Peng Q-Z, Long H, Ci D, Li J, Xie D-Y (2020) RNA-seq of aboveground sporophyte’s transcriptome of Huperzia serrata and transcriptional understanding of early steps associated with huperzine biosynthesis in forest. Curr Plant Biol 24:100159. https://doi.org/10.1016/j.cpb.2020.100159

    Article  Google Scholar 

  60. Sun J, Morita H, Chen G, Noguchi H, Abe I (2012) Molecular cloning and characterization of copper amine oxidase from Huperzia serrata. Bioorg Med Chem Lett 22(18):5784–5790. https://doi.org/10.1016/j.bmcl.2012.07.102

    Article  CAS  PubMed  Google Scholar 

  61. Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, Yamazaki M (2012) Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae. Plant Cell 24(3):1202–1216. https://doi.org/10.1105/tpc.112.095885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bunsupa S, Hanada K, Maruyama A, Aoyagi K, Komatsu K, Ueno H, Yamashita M, Sasaki R, Oikawa A, Saito K, Yamazaki M (2016) Molecular evolution and functional characterization of a bifunctional decarboxylase involved in lycopodium alkaloid biosynthesis. Plant Physiol 171(4):2432–2444. https://doi.org/10.1104/pp.16.00639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Agudelo-Romero P, Bortolloti C, Pais MS, Tiburcio AF, Fortes AM (2013) Study of polyamines during grape ripening indicate an important role of polyamine catabolism. Plant Physiol Biochem 67:105–119. https://doi.org/10.1016/j.plaphy.2013.02.024

    Article  CAS  PubMed  Google Scholar 

  64. Tomar PC, Lakra N, Mishra SN (2013) Cadaverine: a lysine catabolite involved in plant growth and development. Plant Signal Behav 8(10):e25850. https://doi.org/10.4161/psb.25850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rajpal C, Tomar PC (2020) Cadaverine: a potent modulator of plants against abiotic stresses: cadaverine: a potent modulator. J Microbiol Biotechnol Food Sci 10(2):205–210. https://doi.org/10.15414/jmbfs.2020.10.2.205-210

    Article  CAS  Google Scholar 

  66. Ishiuchi K, Park JJ, Long RM, Gang DR (2013) Production of Huperzine A and other Lycopodium alkaloids in Huperzia species grown under controlled conditions and in vitro. Phytochemistry 91:208–219. https://doi.org/10.1016/j.phytochem.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  67. Szypuła WJ, Wileńska B, Misicka A, Pietrosiuk A (2020) Huperzine A and huperzine B production by prothallus cultures of Huperzia selago (L.) Bernh. ex Schrank et Mart. Molecules 25:3262. https://doi.org/10.3390/molecules25143262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mikuła A, Tomaszewicz W, Dziurka M, Kaźmierczak A, Grzyb M, Sobczak M, Zdańkowski P, Rybczyński J (2021) The origin of the Cyathea delgadii Sternb. Somatic embryos is determined by the developmental state of donor tissue and mutual balance of selected metabolites. Cells 10(6):1388. https://doi.org/10.3390/cells10061388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Majumdar A, Kar RK (2023) Polyamines and their metabolism play pivotal role in ROS-mediated regulation of early root growth in Vigna Radiata (L.) Wilczek. J Plant Growth Regul:1–14. https://doi.org/10.1007/s00344-023-11050-8

  70. Federico R, Angelini R (1991) Polyamine catabolism in plants. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 41–56

    Google Scholar 

  71. Cona A, Rea G, Botta M, Corelli F, Federico R, Angelini R (2006) Flavin-containing polyamine oxidase is a hydrogen peroxide source in the oxidative response to the protein phosphatase inhibitor cantharidin in Zea mays L. J Exp Bot 57(10):2277–2289. https://doi.org/10.1093/jxb/erj19

    Article  CAS  PubMed  Google Scholar 

  72. Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60(15):4249–4262. https://doi.org/10.1093/jxb/erp256

    Article  CAS  PubMed  Google Scholar 

  73. Deeb F, van der Weele CM, Wolniak SM (2010) Spermidine is a morphogenetic determinant for cell fate specification in the male gametophyte of the water Fern Marsilea vestita. Plant Cell 22(11):3678–3691. https://doi.org/10.1105/tpc.109.073254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Asthir B, Duffus CM, Smith RC, Spoor W (2002) Diamine oxidase is involved in H2O2 production in the chalazal cells during barley grain filling. J Exp Bot 53(369):677–682. https://doi.org/10.1093/jexbot/53.369.677

    Article  CAS  PubMed  Google Scholar 

  75. Cervelli M, Bianchi M, Cona A, Crosatti C, Stanca M, Angelini R, Federico R, Mariottini P (2006) Barley polyamine oxidase isoforms 1 and 2, a peculiar case of gene duplication. FEBS J 273(17):3990–4002. https://doi.org/10.1111/j.1742-4658.2006.05402.x

    Article  CAS  PubMed  Google Scholar 

  76. Liu T, Kim DW, Niitsu M, Berberich T, Kusano T (2014) Polyamine oxidase 1 from rice (Oryza sativa) is a functional ortholog of Arabidopsis polyamine oxidase 5. Plant Signal Behav 9(9):e29773. https://doi.org/10.4161/psb.29773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945. https://doi.org/10.3389/fpls.2018.01945

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ma S, Zhou X, Jahan MS, Guo S, Tian M, Zhou R, Liu H, Feng B, Shu S (2022) Putrescine regulates stomatal opening of cucumber leaves under salt stress via the H2O2-mediated signaling pathway. Plant Physiol Biochem 170:87–97. https://doi.org/10.1016/j.plaphy.2021.11.028

    Article  CAS  PubMed  Google Scholar 

  79. Jahan MS, Hasan MM, Alotaibi FS, Alabdallah NM, Alharbi BM, Ramadan KMA, Bendary ESA, Alshehri D, Jabborova D, Al-Balawi DA, Dessoky ES, Ibrahim MFM, Guo S (2022) Exogenous putrescine increases heat tolerance in tomato seedlings by regulating chlorophyll metabolism and enhancing antioxidant defense efficiency. Plants (Basel Switzerland) 11(8):1038. https://doi.org/10.3390/plants11081038

    Article  CAS  PubMed  Google Scholar 

  80. Chen BX, Li WY, Gao YT, Chen ZJ, Zhang WN, Liu QJ, Chen Z (2016) Involvement of polyamine oxidase-produced hydrogen peroxide during coleorhiza-limited germination of Rice seeds. Front Plant Sci 7:1219. https://doi.org/10.3389/fpls.2016.01219

    Article  PubMed  PubMed Central  Google Scholar 

  81. Agudelo-Romero P, Bortolloti C, Pais MS, Tiburcio AF, Fortes AM (2013) Study of polyamines during grape ripening indicate an important role of polyamine catabolism. Plant Physiol Biochem 67:105–119. https://doi.org/10.1016/j.plaphy.2013.02.02

    Article  CAS  PubMed  Google Scholar 

  82. Su G-X, Zhang W-H, Liu Y-L (2006) Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean. J Integr Plant Biol 48:426–432. https://doi.org/10.1111/j.1744-7909.2006.00236.x

    Article  CAS  Google Scholar 

  83. Han B, Yang Z, Xie Y, Nie L, Cui J, Shen W (2014) Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. Mol Plant 7(2):388–403. https://doi.org/10.1093/mp/sst122

    Article  CAS  PubMed  Google Scholar 

  84. Tretyn A, Kendrick RE (1991) Acetylcholine in plants – presence, metabolism and mechanism of action. Bot Rev 57:33–73

    Article  Google Scholar 

  85. Kopcewicz J, Tretyn A, Cymerski M (1992) Fitochrom i morfogeneza roślin [Phytochrome and plant morphogenesis]. PWN, Warszawa

    Google Scholar 

  86. Dettbarn W (1962) Acetylcholinesterase activity in Nitella. Nature 194:1175–1176. https://doi.org/10.1038/1941175b0

    Article  CAS  PubMed  Google Scholar 

  87. Fluck RA, Jaffe MJ (1974) The distribution of cholinesterases in plant species. Phytochemistry 13:2475–2480. https://doi.org/10.1016/S0031-9422(00)86923-X

    Article  CAS  Google Scholar 

  88. Miura GA, Broomfield CA, Lawson MA, Worthley EG (1982) Widespread occurrence of cholinesterase activity in plant leaves. Physiol Plant 56(1):28–32

    Article  CAS  Google Scholar 

  89. Tanada T (1968) A rapid photoreversible response of barley root tips in the presence of 3-indoleacetic acid. Proc Natl Acad Sci U S A 59(2):376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tanada T (1968) Substances essential for a red, far-red light reversible attachment of mung bean root tips to glass. Plant Physiol 43(12):2070–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jaffe MJ (1970) Evidence for the regulation of Phytochrome-mediated processes in bean roots by the Neurohumor, acetylcholine. Plant Physiol 46(6):768–777. https://doi.org/10.1104/pp.46.6.768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jukonienė L, Dobravolskaittė R, Sendžikaitė J (2016) Characteristics of atypical Huperzia selago subsp. arctica habitats to the south of distribution area. Acta Soc Bot Pol 81(2):87–92. https://doi.org/10.5586/asbp.2012.016

    Article  Google Scholar 

  93. Kukkonen I (2000) Lycopodiaceae. In: Jonsell B, Karlsson T (eds) Flora Nordica, Lycopodiaceae to Polygonaceae, vol 1. Bergius Foundation, Royal Swedish Academy of Sciences, Stockholm, pp 1–13

    Google Scholar 

  94. Elven R, Murray DF, Razzhivin V, Yurtsev BA (eds) (2011) Annotated checklist of the Panarctic Flora (PAF) http://panarcticflora.org/

  95. Gilman AV, Testo WL (2015) Use of gemma characters to identify North American Huperzia (Lycopodiaceae). Am Fern J 105(33):145–161. https://doi.org/10.1640/0002-8444-105.3.145

    Article  Google Scholar 

  96. Svensson ME, Johannesson H, Engström P (2000) The LAMB1 gene from the clubmoss, Lycopodium annotinum, is a divergent MADS-box gene, expressed specifically in sporogenic structures. Gene 253(1):31–43

    Article  CAS  PubMed  Google Scholar 

  97. Gola EM, Dolzblasz A, Otręba P, Śliwińska-Wyrzychowska A (2015) Development of abnormal strobili in Lycopodium annotinum as an example of the reversion phenomenon in lower vascular plants. Botany 93(10):701–707

    Article  CAS  Google Scholar 

  98. Gola EM (2008) Reproductive strategies of Huperzia. In: Szczęśniak E, Gola EM (eds) Club mosses, horsetails and ferns in Poland: resources and protection. Polish Botanical Society, Institute of Plant Biology, University of Wrocław, Wrocław, pp 5–14

    Google Scholar 

  99. Szypula WJ, Mistrzak P, Olszowska O (2013) A new and fast method to obtain in vitro cultures of Huperzia selago (Huperziaceae) sporophytes, a club moss which is a source of huperzine A. Acta Soc Bot Pol 82(4):313–320. https://doi.org/10.5586/asbp.2013.034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech J. Szypuła .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Szypuła, W.J., Pietrosiuk, A. (2023). Biological and Ecological Roles of Club Mosses (Lycopodiaceae) Alkaloids. In: Mérillon, JM., Ramawat, K.G. (eds) Plant Specialized Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-30037-0_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30037-0_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30037-0

  • Online ISBN: 978-3-031-30037-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics