Skip to main content

The Importance and Potential of Duckweeds as a Model and Crop Plant for Biomass-Based Applications and Beyond

  • Living reference work entry
  • First Online:
Handbook of Environmental Materials Management

Abstract

The accelerated explosive growth of human population poses profound threats to sustainable living on the planet in the coming century. Especially finite resources, such as fossil fuels, clean water, and raw materials, will soon become stretched, while the amount of waste and pollution is on the rise. This book chapter examines the broad range of applications in which duckweed, an emerging crop plant, is being used in phytoremediation, wastewater treatment, and in the recently explored fields ranging from biofuels, bioplastics production, and even human food. Being one of the first plant models known to academia, duckweed has been extensively studied because of its unique characteristics including small size, fast life cycles, and ease of aseptic cultivation. Duckweed-based wastewater remediation has been widely applied due to high efficiency of N, P absorption together with low investment and operation cost. The biomass of duckweed (up to 100 tons dry matter/ha/year) has been recently proposed to become a renewable and sustainable feedstock. Available high-quality reference genomes of duckweeds open up an enormous genetic source for modern and sustainable agriculture tools such as genomic selection and genome editing. Importantly, clonal growth (via asexual reproduction) and global distribution of duckweed makes duckweed-based environmental technologies, for instance combination of wastewater treatment and biomass production for bioplastics or biofuels, robust, applicable, and transferable across continents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alvarado S, Guédez M, Lué-Merú MP, Nelson G, Alvaro A, Jesús AC, Gyula Z (2008) Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor). Bioresour Technol 99:8436–8440

    Article  Google Scholar 

  • Appenroth KJ, Sree KS, Fakhoorian T, Lam E (2015) Resurgence of duckweed research and applications: report from the 3rd international duckweed conference. Plant Mol Biol 89:647–654. https://doi.org/10.1007/s11103-015-0396-9

    Article  Google Scholar 

  • Appenroth KJ, Sree KS, Böhm V, Hammann S, Vetter W, Leiterer M, Jahreis G (2017) Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem 217:266–273

    Article  Google Scholar 

  • Boehm R, Kruse C, Voeste D, Barth S, Schnabl H (2001) A transient transformation system for duckweed (Wolffia columbiana) using Agrobacterium-mediated gene transfer. J Appl Bot 75:107–111

    Google Scholar 

  • Bog M, Baumbach H, Schween U, Hellwig F, Landolt E, Appenroth KJ (2010) Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta 232:609–619. https://doi.org/10.1007/s00425-010-1201-2

    Article  Google Scholar 

  • Bog M, Schneider P, Hellwig F, Sachse S, Kochieva EZ, Martyrosian E, Landolt E, Appenroth K-J (2013) Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid.(Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP). Planta 237:1–13

    Article  Google Scholar 

  • Borisjuk N, Chu P, Gutierrez R, Zhang H, Acosta K, Friesen N, Sree KS, Garcia C, Appenroth KJ, Lam E (2015) Assessment, validation and deployment strategy of a two-barcode protocol for facile genotyping of duckweed species. Plant Biol (Stuttg) 17:42–49. https://doi.org/10.1111/Plb.12229

    Article  Google Scholar 

  • Cantó-Pastor A, Mollá-Morales A, Ernst E, Dahl W, Zhai J, Yan Y, Meyers BC, Shanklin J, Martienssen R (2015) Efficient transformation and artificial miRNA gene silencing in Lemna minor. Plant Biol (Stuttg) 17:59–65. https://doi.org/10.1111/plb.12215

    Article  Google Scholar 

  • Cao HX, Vu GTH, Wang W, Messing J, Schubert I (2015) Chromatin organisation in duckweed interphase nuclei in relation to the nuclear DNA content. Plant Biol (Stuttg) 17:120–124. https://doi.org/10.1111/plb.12194

    Article  Google Scholar 

  • Cao HX, Vu GT, Wang W, Appenroth KJ, Messing J, Schubert I (2016a) The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. New Phytol 209:354–363. https://doi.org/10.1111/nph.13592

    Article  Google Scholar 

  • Cao HX, Wang W, Le HTT, Vu GTH (2016b) The power of CRISPR-Cas9-induced genome editing to speed up plant breeding. Int J Genomics 2016:10. https://doi.org/10.1155/2016/5078796

    Article  Google Scholar 

  • Chhabra G, Chaudhary D, Sainger M, Jaiwal PK (2011) Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiol Mol Biol Plants 17:129–136. https://doi.org/10.1007/s12298-011-0059-5

    Article  Google Scholar 

  • Cui W, Cheng JJ (2015) Growing duckweed for biofuel production: a review. Plant Biol (Stuttg) 17:16–23. https://doi.org/10.1111/plb.12216

    Article  Google Scholar 

  • Feng B, Fang Y, Xu Z, Xiang C, Zhou C, Jiang F, Wang T, Zhao H (2017) Development of a new marker system for identification of Spirodela polyrhiza and Landoltia punctata. Int J Genomics 2017:8. https://doi.org/10.1155/2017/5196763

    Article  Google Scholar 

  • Fu L, Huang M, Han B, Sun X, Sree KS, Appenroth KJ, Zhang J (2017) Flower induction, microscope-aided cross-pollination, and seed production in the duckweed Lemna gibba with discovery of a male-sterile clone. Sci Rep 7:3047. https://doi.org/10.1038/s41598-017-03240-8

    Article  Google Scholar 

  • Goopy J, Murray P (2003) A review on the role of duckweed in nutrient reclamation and as a source of animal feed. Asian Australas J Anim Sci 16:297–305

    Article  Google Scholar 

  • Gwaze FR, Mwale M (2015) The prospect of duckweed in pig nutrition: a review. J Agric Sci 7:189

    Google Scholar 

  • Hou W, Chen X, Song G, Wang Q, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    Article  Google Scholar 

  • Khvatkov P, Chernobrovkina M, Okuneva A, Pushin A, Dolgov S (2015) Transformation of Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell Tissue Organ Cult 123:299–307. https://doi.org/10.1007/s11240-015-0834-z

    Article  Google Scholar 

  • Kuehdorf K, Jetschke G, Ballani L, Appenroth KJ (2013) The clonal dependence of turion formation in the duckweed Spirodela polyrhiza – an ecogeographical approach. Physiol Plant 150:46. https://doi.org/10.1111/ppl.12065

    Article  Google Scholar 

  • Kutschera U, Niklas KJ (2015) Darwin-Wallace Demons: survival of the fastest in populations of duckweeds and the evolutionary history of an enigmatic group of angiosperms. Plant Biol (Stuttg) 17:24–32. https://doi.org/10.1111/Plb.12171

    Article  Google Scholar 

  • Lam E, Appenroth KJ, Michael T, Mori K, Fakhoorian T (2014) Duckweed in bloom: the 2nd international conference on duckweed research and applications heralds the return of a plant model for plant biology. Plant Mol Biol 84:737–742. https://doi.org/10.1007/s11103-013-0162-9

    Article  Google Scholar 

  • Landolt E (1986) The family of Lemnaceae – a monographic study, vol 1. Veroffentlichungen des Geobotanischen Institutes der Eidgenossischen Technischen Hochschule, Stiftung Rubel, Zurich

    Google Scholar 

  • Martirosyan EV, Ryzhova NN, Skryabin KG, Kochieva EZ (2008) RAPD analysis of genome polymorphism in the family Lemnaceae. Russ J Genet 44:360–364. https://doi.org/10.1134/s1022795408030198

    Article  Google Scholar 

  • Michael TP, Bryant D, Gutierrez R, Borisjuk N, Chu P, Zhang H, Xia J, Zhou J, Peng H, El Baidouri M, Ten Hallers B, Hastie AR, Liang T, Acosta K, Gilbert S, McEntee C, Jackson SA, Mockler TC, Zhang W, Lam E (2017) Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. Plant J 89:617–635. https://doi.org/10.1111/tpj.13400

    Article  Google Scholar 

  • Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336:81–89

    Article  Google Scholar 

  • Nauheimer L, Metzler D, Renner SS (2012) Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils. New Phytol 195:938–950. https://doi.org/10.1111/j.1469-8137.2012.04220.x

    Article  Google Scholar 

  • Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599

    Article  Google Scholar 

  • Schmitz U, Kelm H (2017) First discovery of flowering Wolffia arrhiza in Central Europe. Aquat Bot 143:33–35

    Article  Google Scholar 

  • Skillicorn P, Spira W, Journey W (1993) Duckweed aquaculture: a new aquatic farming system for developing countries. World Bank, Washington, DC

    Google Scholar 

  • Sree KS, Maheshwari SC, Boka K, Khurana JP, Keresztes A, Appenroth KJ (2015a) The duckweed Wolffia microscopica: a unique aquatic monocot. Flora 210:31–39. https://doi.org/10.1016/j.flora.2014.10.006

    Article  Google Scholar 

  • Sree KS, Sudakaran S, Appenroth K-J (2015b) How fast can angiosperms grow? Species and clonal diversity of growth rates in the genus Wolffia (Lemnaceae). Acta Physiol Plant 37:204

    Article  Google Scholar 

  • Sree KS, Bog M, Appenroth KJ (2016) Taxonomy of duckweeds (Lemnaceae), potential new crop plants. Emir J Food Agric 28:291–302. https://doi.org/10.9755/ejfa.2016-01-038

    Article  Google Scholar 

  • Tang J, Li Y, Ma J, Cheng J (2015) Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains. Plant Biol (Stuttg) 17:1066–1072

    Article  Google Scholar 

  • Tao X, Fang Y, Xiao Y, Jin YL, Ma XR, Zhao Y, He KZ, Zhao H, Wang HY (2013) Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. Biotechnol Biofuels 6:72. https://doi.org/10.1186/1754-6834-6-72

    Article  Google Scholar 

  • Tippery N, Les D, Crawford D (2015) Evaluation of phylogenetic relationships in Lemnaceae using nuclear ribosomal data. Plant Biol (Stuttg) 17:50–58

    Article  Google Scholar 

  • van der Spiegel M, Noordam M, Fels-Klerx H (2013) Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Compr Rev Food Sci Food Saf 12:662–678

    Article  Google Scholar 

  • Van Hoeck A, Horemans N, Monsieurs P, Cao HX, Vandenhove H, Blust R (2015) The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotechnol Biofuels 8:188. https://doi.org/10.1186/s13068-015-0381-1

    Article  Google Scholar 

  • Van Hoeck A, Horemans N, Nauts R, Van Hees M, Vandenhove H, Blust R (2017) Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies. Plant Sci 257:84–95. https://doi.org/10.1016/j.plantsci.2017.01.010

    Article  Google Scholar 

  • Vunsh R, Li J, Hanania U, Edelman M, Flaishman M, Perl A, Wisniewski JP, Freyssinet G (2007) High expression of transgene protein in Spirodela. Plant Cell Rep 26:1511–1519. https://doi.org/10.1007/s00299-007-0361-4

    Article  Google Scholar 

  • Wang W, Wu Y, Yan Y, Ermakova M, Kerstetter R, Messing J (2010) DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biol 10:205. https://doi.org/10.1186/1471-2229-10-205

    Article  Google Scholar 

  • Wang WQ, Kerstetter R, Michael TP (2011) Evolution of genome size in duckweeds (Lemnaceae). J Bot 2011:1300099. https://doi.org/10.1155/2011/570319

    Google Scholar 

  • Wang W, Haberer G, Gundlach H, Glasser C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J, Byrant DW, Mockler TC, Appenroth KJ, Grimwood J, Jenkins J, Chow J, Choi C, Adam C, Cao XH, Fuchs J, Schubert I, Rokhsar D, Schmutz J, Michael TP, Mayer KF, Messing J (2014a) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311. https://doi.org/10.1038/ncomms4311

    Google Scholar 

  • Wang WQ, Wu YR, Messing J (2014b) RNA-Seq transcriptome analysis of Spirodela dormancy without reproduction. BMC Genomics 15:60. https://doi.org/10.1186/1471-2164-15-60

    Article  Google Scholar 

  • Wang W, Li R, Zhu Q, Tang X, Zhao Q (2016) Transcriptomic and physiological analysis of common duckweed Lemna minor responses to NH4(+) toxicity. BMC Plant Biol 16:92. https://doi.org/10.1186/s12870-016-0774-8

    Article  Google Scholar 

  • Xue H, Xiao Y, Jin Y, Li X, Fang Y, Zhao H, Zhao Y, Guan J (2012) Genetic diversity and geographic differentiation analysis of duckweed using inter-simple sequence repeat markers. Mol Biol Rep 39:547–554

    Article  Google Scholar 

  • Yamamoto Y, Rajbhandari N, Lin X, Bergmann B, Nishimura Y, Stomp A-M (2001) Genetic transformation of duckweed Lemna gibba and Lemna minor. In Vitro Cell Dev Biol Plant 37:349–353. https://doi.org/10.1007/s11627-001-0062-6

    Article  Google Scholar 

  • Yan Y, Candreva J, Shi H, Ernst E, Martienssen R, Schwender J, Shanklin J (2013) Survey of the total fatty acid and triacylglycerol composition and content of 30 duckweed species and cloning of a Δ6-desaturase responsible for the production of γ-linolenic and stearidonic acids in Lemna gibba. BMC Plant Biol 13:201

    Article  Google Scholar 

  • Zhang X, Zhao FJ, Huang Q, Williams PN, Sun GX, Zhu YG (2009) Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytol 182:421–428

    Article  Google Scholar 

  • Zhang C, Duan P, Xu Y, Wang B, Wang F, Zhang L (2014a) Catalytic upgrading of duckweed biocrude in subcritical water. Bioresour Technol 166:37–44

    Article  Google Scholar 

  • Zhang DQ, Jinadasa K, Gersberg RM, Liu Y, Ng WJ, Tan SK (2014b) Application of constructed wetlands for wastewater treatment in developing countries–a review of recent developments (2000–2013). J Environ Manag 141:116–131

    Article  Google Scholar 

  • Zhao H, Appenroth K, Landesman L, Salmean AA, Lam E (2012) Duckweed rising at Chengdu: summary of the 1st international conference on duckweed application and research. Plant Mol Biol 78:627–632. https://doi.org/10.1007/s11103-012-9889-y

    Article  Google Scholar 

  • Zhao Y, Fang Y, Jin Y, Huang J, Bao S, Fu T, He Z, Wang F, Zhao H (2014) Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: a pilot-scale comparison with water hyacinth. Bioresour Technol 163:82–91. https://doi.org/10.1016/j.biortech.2014.04.018

    Article  Google Scholar 

  • Ziegler P, Adelmann K, Zimmer S, Schmidt C, Appenroth KJ (2015) Relative in vitro growth rates of duckweeds (Lemnaceae) – the most rapidly growing higher plants. Plant Biol (Stuttg) 17:33–41. https://doi.org/10.1111/plb.12184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hieu X. Cao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cao, H.X., Fourounjian, P., Wang, W. (2018). The Importance and Potential of Duckweeds as a Model and Crop Plant for Biomass-Based Applications and Beyond. In: Hussain, C. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_67-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_67-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics