Skip to main content

Bioactive Compounds from Garcinia Fruits of High Economic Value for Food and Health

  • Reference work entry
  • First Online:
Bioactive Molecules in Food

Abstract

Garcinias (Mangosteen, Brindle berry, and Kokum) are tropical fruits, and are rich source of nutrients, minerals, vitamins, and dietary fibers. They are also abundant with bioactive compounds namely xanthones, benzophenones, hydroxycitric acid, and anthocyanins. Many studies have detailed that these compounds possess antioxidant, anti-inflammatory, anticancer, antimicrobial, antiallergy, antiulcer, antiparasitic, and antihelminthic activities to aid in human health and also weight loss and appetite-reducing properties, making them good dietary supplements. Therefore, bioactive compounds extracted from Garcinia fruits could be used in the preparation of pharmaceuticals and nutraceuticals. This review presents an overview of the bioactive compounds derived from Garcinia fruits and their biological activities for promoting human health as food and drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lim TK (2012) Edible medicinal and non-medicinal plants. Fruits, vol 2. Springer, Heidelberg

    Google Scholar 

  2. Jung HA, Su BN, Keller WJ, Mehta RG, Kinghorn AD (2006) Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem 54:2077–2082. https://doi.org/10.1021/jf052649z

    Article  CAS  PubMed  Google Scholar 

  3. Fu C, Loo AEK, Chia FPP, Huang D (2007) Oligomeric proanthocyanidins from mangosteen pericarps. J Agric Food Chem 55:7689–7694. https://doi.org/10.1021/jf071166n

    Article  CAS  PubMed  Google Scholar 

  4. Farnsworth RN, Bunyapraphatsara N (1992) Garcinia mangostana Linn. In: Thai medicinal plants. Prachachon Co Ltd, Bangkok, pp 160–162

    Google Scholar 

  5. Ji X, Avula B, Khan IA (2007) Quantitative and qualitative determination of six xanthones in Garcinia mangostana L. by LC-PDA and LC-ESI-MS. J Pharm Biomed Anal 43:1270–1276. https://doi.org/10.1016/j.jpba.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  6. Nakatani K, Atsumi M, Arakawa T, Oosawa K, Shimura S, Nakahata N, Ohizumi Y (2002) Inhibitions of histamine release and prostaglandin E2 synthesis by mangosteen, a Thai medicinal plant. Biol Pharm Bull 25:1137–1141. https://doi.org/10.1248/bpb.25.1137

    Article  CAS  PubMed  Google Scholar 

  7. Moongkarndi P, Kosem N, Luanratana O, Jongsomboonkusol S, Pongpan N (2004) Antiproliferative activity of Thai medicinal plant extracts on human breast adenocarcinoma cell line. Fitoterapia 75:375–377. https://doi.org/10.1016/j.fitote.2004.01.010

    Article  PubMed  Google Scholar 

  8. Saralamp P, Chuakul W, Temsirirkkul R, Clayton T (1996) Medicinal plants in Thailand. Department of Pharmaceutical Botany, Faculty of Pharmacy, Bangkok, p 98

    Google Scholar 

  9. Yu L, Zhao M, Yang B, Zhao Q, Jiang Y (2007) Phenolics from hull of Garcinia mangostana fruit and their antioxidant activities. Food Chem 104:176–181. https://doi.org/10.1016/j.foodchem.2006.11.018

    Article  CAS  Google Scholar 

  10. Sato A, Fujiwara H, Oku H, Ishiguro K, Ohizumi Y (2004) Alpha-mangostin induces Ca2+-ATPase-dependent apoptosis via mitochondrial pathway in PC12 cells. J Pharmacol Sci 95:33–40. https://doi.org/10.1254/jphs.95.33

    Article  CAS  PubMed  Google Scholar 

  11. Jena BS, Jayaprakasha GK, Singh RP, Sakariah KK (2002) Chemistry and biochemistry of (−) hydroxycitric acid from Garcinia. J Agric Food Chem 50:10–22. https://doi.org/10.1021/jf010753k

    Article  CAS  PubMed  Google Scholar 

  12. Abraham Z, Malik SK, Rao GE, Narayanan SL, Biju S (2006) Collection and characterisation of Malabar tamarind [Garcinia cambogia (Gaertn.) Desr.] Genet Resour Crop Evol 53:401–406. https://doi.org/10.1007/s10722-004-0584-y

    Article  Google Scholar 

  13. Ketsa S, Paull RE (2011) Mangosteen (Garcinia mangostana L.) In: Yahia EM (ed) Postharvest biology and technology of tropical and subtropical fruits, vol 4. Woodhead Publishing, Cambridge

    Google Scholar 

  14. Nazarudeen A (2010) Nutritional composition of some lesser-known fruits used by ethnic communities and local folks of Kerala. Indian J Tradit Knowl 9:398–402

    Google Scholar 

  15. Krishnamurthy N, Lewis YS, Ravindranath B (1982) Chemical constituents of kokam fruit rind. J Food Sci Technol 19:97–100

    CAS  Google Scholar 

  16. Nayak CA, Rastogi NK, Raghavarao KSMS (2010) Bioactive constituents present in Garcinia indica Choisy and its potential food applications: a review. Int J Food Prop 13:441–453. https://doi.org/10.1080/10942910802626754

    Article  CAS  Google Scholar 

  17. Mishra A, Bapat MM, Tilak JC, Devasagayam TPA (2006) Antioxidant activity of Garcinia indica (kokam) and its syrup. Curr Sci 91:90–93

    CAS  Google Scholar 

  18. Peres V, Nagem TJ, De Oliveira FF (2000) Tetraoxygenated naturally occurring xanthones. Phytochemistry 55:683–710. https://doi.org/10.1016/S0031-9422(00)00303-4

    Article  CAS  PubMed  Google Scholar 

  19. Huang YL, Chen CC, Chen YJ, Huang RL, Shieh BJ (2001) Three xanthones and a benzophenone from Garcinia mangostana. J Nat Prod 64:903–906. https://doi.org/10.1021/np000583q

    Article  CAS  PubMed  Google Scholar 

  20. Pinto MMM, Sousa ME, Nascimento MSJ (2005) Xanthone derivatives: new insights in biological activities. Curr Med Chem 12:2517–2538. https://doi.org/10.2174/092986705774370691

    Article  CAS  PubMed  Google Scholar 

  21. Schmid W (1855) Ueber das mangostin. Liebigs Ann Chem 93:83–88

    Google Scholar 

  22. Dragendorff O (1930) Uber das harz von Garcinia mangostana L. Liebigs Ann 482:280–301

    CAS  Google Scholar 

  23. Chen LG, Yang LL, Wang CC (2008) Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem Toxicol 46:688–693. https://doi.org/10.1016/j.fct.2007.09.096

    Article  CAS  PubMed  Google Scholar 

  24. Matsumoto K, Akao Y, Kobayashi E, Ohguchi K, Ito T, Tanaka T, Iinuma M, Nozawa Y (2003) Induction of apoptosis by xanthones from mangosteen in human leukemia cell lines. J Nat Prod 66:1124–1127. https://doi.org/10.1021/np020546u

    Article  CAS  PubMed  Google Scholar 

  25. Suksamrarn S, Komutiban O, Ratananukul P, Chimnoi N, Lartpornmatulee N, Suksamrarn A (2006) Cytotoxic prelylated xanthones from the young fruit of Garcinia mangostana. Chem Pharm Bull 54:301–305

    Google Scholar 

  26. Suksamrarn S, Suwannapoch N, Phakhodee W, Thanuhiranlert J, Ratananukul P, Chimnoi N, Suksamrarn A (2003) Antimycobacterial activity of prenylated xanthones from the fruits of Garcinia mangostana. Chem Pharm Bull (Tokyo) 51:857–859. https://doi.org/10.1248/cpb.51.857

    Article  CAS  PubMed  Google Scholar 

  27. Gopalakrishnan G, Banumathi B, Suresh G (1997) Evaluation of the antifungal activity of natural xanthones from Garcinia mangostana and their synthetic derivatives. J Nat Prod 60:519–524. https://doi.org/10.1021/np970165u

    Article  CAS  PubMed  Google Scholar 

  28. Yates P, Stout GH (1958) The structure of mangostin. J Am Chem Soc 80:1691–1700

    CAS  Google Scholar 

  29. Stout GH, Krahn MM, Yates P, Bhat HB (1968) The structure of mangostin. Chem Commun 4:211–212

    Google Scholar 

  30. Asai F, Tosa H, Tanaka T, Iinuma M (1995) A xanthone from pericarps of Garcinia mangostana. Phytochemistry 39:943–944. https://doi.org/10.1016/0031-9422(95)00042-6

    Article  CAS  Google Scholar 

  31. Mahabusarakam W, Wiriyachitra P, Taylor WC (1987) Chemical constituents of Garcinia mangostana. J Nat Prod 50:474–478

    CAS  Google Scholar 

  32. Chin YW, Jung HA, Chai H, Keller WJ, Kinghorn AD (2008) Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen). Phytochemistry 69:754–758. https://doi.org/10.1016/j.phytochem.2007.09.023

    Article  CAS  PubMed  Google Scholar 

  33. Chairungsrilerd N, Takeuchi K, Ohizumi Y, Nozoe S, Ohta T (1996) Mangostanol, a prenyl xanthone from Garcinia mangostana. Phytochemistry 43:1099–1102. https://doi.org/10.1016/S0031-9422(96)00410-4

    Article  CAS  Google Scholar 

  34. Ho CK, Huang YL, Chen CC (2002) Garcinone E, a xanthone derivative, has potent cytotoxic effect against hepatocellular carcinoma cell lines. Planta Med 68:975–979. https://doi.org/10.1055/s-2002-35668

    Article  CAS  PubMed  Google Scholar 

  35. Suksamrarn S, Suwannapoch N, Ratananukul P, Aroonlerk N, Suksamrarn A (2002) Xanthones from the green fruit hulls of Garcinia mangostana. J Nat Prod 65:761–763. https://doi.org/10.1021/np010566g

    Article  CAS  PubMed  Google Scholar 

  36. Jefferson A, Quillinan AJ, Scheinmann F, Sim KY (1970) Isolation of γ-mangostin from Garcinia mangostana and preparation of the natural mangostins by selective demethylation. Aust J Chem 23:2539–2543

    CAS  Google Scholar 

  37. Jinsart W, Ternai B, Buddhasukh D, Polya GM (1992) Inhibition of wheat embryo calcium-dependant protein kinase and other kinases by mangostin and γ-mangostin. Phytochemistry 31:3711–3713

    CAS  PubMed  Google Scholar 

  38. Gopalakrishnan G, Balaganesan B (2000) Two novel xanthones from Garcinia mangostana. Fitoterapia 71:607–609. https://doi.org/10.1016/S0367-326X(00)00199-4

    Article  CAS  PubMed  Google Scholar 

  39. Sen AK, Sarkar KK, Mazumder PC, Banerji N (1980) A xanthone from Garcinia mangostana. Phytochemistry 19:2223–2225

    CAS  Google Scholar 

  40. Govindachari TR, Kalyanaraman PS, Muthukumaraswamy N, Pai BR (1971) Xanthones of Garcinia mangostana Linn. Tetrahedron 27:3919–3926

    CAS  Google Scholar 

  41. Balasubramanian K, Rajagopalan K (1988) Novel xanthones from Garcinia mangostana, structures of BR-xanthone-A and BR-xanthone-B. Phytochemistry 27:1552–1554

    CAS  Google Scholar 

  42. Sen AK, Sarkar KK, Mazumder PC, Banerji N, Uusvuori R, Hase TA (1982) The structures of garcinones A, B and C: three new xanthones from Garcinia mangostana. Phytochemistry 21:1747–1750. https://doi.org/10.1016/S0031-9422(82)85052-8

    Article  CAS  Google Scholar 

  43. Sen AK, Sarkar KK, Mazumder PC, Banerji N (1986) Garcinone-D, a new xanthone from Garcinia mangostana Linn. Indian J Chem 25B:1157–1158

    CAS  Google Scholar 

  44. Sakai S, Katsura M, Takayama H, Aimi N, Chokethaworn N, Suttajit M (1993) The structure of Garcinone E. Chem Pharm Bull 41:958–960

    CAS  Google Scholar 

  45. Ohno R, Moroishi N, Sugawa H, Maejima K, Saigusa M, Yamanaka M, Nagai M, Yoshimura M, Amakura Y, Nagai R (2015) Mangosteen pericarp extract inhibits the formation of pentosidine and ameliorates skin elasticity. J Clin Biochem Nutr 57:27–32

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Du CT, Francis FJ (1977) A research note anthocyanins of mangosteen, Garcinia mangostana. J Food Sci 42:1667–1668

    CAS  Google Scholar 

  47. Zarena AS, Udaya Sankar K (2012) Isolation and identification of pelargonidin 3-glucoside in mangosteen pericarp. Food Chem 130:665–670. https://doi.org/10.1016/j.foodchem.2011.07.106

    Article  CAS  Google Scholar 

  48. Lewis YS, Neelakantan S (1965) (−)-Hydroxycitric acid – the principal acid in the fruits of Garcinia cambogia Desr. Phytochemistry 4:619–625. https://doi.org/10.1016/S0031-9422(00)86224-X

  49. Jayaprakasha GK, Sakariah KK (1998) Determination of organic acids in Garcinia cambogia (Desr.) by high- performance liquid chromatography. J Chromatogr A 806:337–339. https://doi.org/10.1016/S0021-9673(98)00054-5

    Article  CAS  Google Scholar 

  50. Jayaprakasha GK, Sakariah KK (2000) Determination of (−) hydroxycitric acid in commercial samples of Garcinia cambogia extract by liquid chromatography with ultraviolet detection. J Liq Chromatogr Relat Technol 23:915–923. https://doi.org/10.1081/JLC-100101498

    Article  CAS  Google Scholar 

  51. Mahapatra S, Mallik SB, Rao GV, Reddy GC, Row TNG (2007) Garcinia lactone. Acta Crystallogr E63:o3869. https://doi.org/10.1107/S160053680703838X

    Article  CAS  Google Scholar 

  52. Masullo M, Bassarello C, Bifulco G, Piacente S (2010) Polyisoprenylated benzophenone derivatives from the fruits of Garcinia cambogia and their absolute configuration by quantum chemical circular dichroism calculations. Tetrahedron 66:139–145. https://doi.org/10.1016/j.tet.2009.11.034

    Article  CAS  Google Scholar 

  53. Masullo M, Bassarello C, Suzuki H, Pizza C, Piacente S (2008) Polyisoprenylated benzophenones and an unusual polyisoprenylated tetracyclic xanthone from the fruits of Garcinia cambogia. J Agric Food Chem 56:5205–5210. https://doi.org/10.1021/jf800416j

    Article  CAS  PubMed  Google Scholar 

  54. Kolodziejczyk J, Masullo M, Olas B, Piacente S, Wachowicz B (2009) Effects of garcinol and guttiferone K isolated from Garcinia cambogia on oxidative/nitrative modifications in blood platelets and plasma. Platelets 20:487–492. https://doi.org/10.3109/09537100903165182

    Article  CAS  PubMed  Google Scholar 

  55. Masullo M, Menegazzi M, Di Micco S, Beffy P, Bifulco G, Dal Bosco M, Novelli M, Pizza C, Masiello P, Piacente S (2014) Direct interaction of garcinol and related polyisoprenylated benzophenones of Garcinia cambogia fruits with the transcription factor STAT-1 as a likely mechanism of their inhibitory effect on cytokine signaling pathways. J Nat Prod 77:543–549. https://doi.org/10.1021/np400804y

    Article  CAS  PubMed  Google Scholar 

  56. Jayaprakasha GK, Sakariah KK (2002) Determination of organic acids in leaves and rinds of Garcinia indica (Desr.) by LC. J Pharm Biomed Anal 28:379–384. https://doi.org/10.1016/S0731-7085(01)00623-9

    Article  CAS  PubMed  Google Scholar 

  57. Krishnamurthy N, Lewis YS, Ravindranath B (1981) On the structures of garcinol, isogarcinol and camboginol. Tetrahedron Lett 22:793–796

    CAS  Google Scholar 

  58. Chattopadhyay SK, Kumar S (2006) Identification and quantification of two biologically active polyisoprenylated benzophenones xanthochymol and isoxanthochymol in Garcinia species using liquid chromatography-tandem mass spectrometry. J Chromatogr B 844:67–83. https://doi.org/10.1016/j.jchromb.2006.07.045

    Article  CAS  Google Scholar 

  59. Nayak CA, Srinivas P, Rastogi NK (2010) Characterization of anthocyanins from Garcinia indica Choisy. Food Chem 118:719–724. https://doi.org/10.1016/j.foodchem.2009.05.052

    Article  CAS  Google Scholar 

  60. Jamila N, Choi JY, Hong JH, Nho EY, Khan N, Jo CH, Chun HS, Kim KS (2016) Identification and quantification of adulteration in Garcinia cambogia commercial products by chromatographic and spectrometric methods. Food Addit Contam Part A Chem 33:1751–1760. https://doi.org/10.1080/19440049.2016.1244733

    Article  CAS  Google Scholar 

  61. Padhye S, Ahmad A, Oswal N, Sarkar FH (2009) Emerging role of garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J Hematol Oncol 2(38):1–13. https://doi.org/10.1186/1756-8722-2-38

    Article  CAS  Google Scholar 

  62. Chin YW, Kinghorn AD (2008) Structural characterization, biological effects, and synthetic studies on xanthones from mangosteen (Garcinia mangostana), a popular botanical dietary supplement. Mini Rev Org Chem 5:355–364. https://doi.org/10.2174/157019308786242223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pedraza-Chaverri J, Cárdenas-Rodríguez N, Orozco-Ibarra M, Pérez-Rojas JM (2008) Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol 46:3227–3239. https://doi.org/10.1016/j.fct.2008.07.024

    Article  CAS  PubMed  Google Scholar 

  64. Obolskiy D, Pischel I, Siriwatanametanon N, Heinrich M (2009) Garcinia mangostana L.: a phytochemical and pharmacological review. Phytother Res 23:1047–1065

    CAS  PubMed  Google Scholar 

  65. Shan T, Ma Q, Guo K, Liu J, Li W, Wang F, Wu E (2011) Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Curr Mol Med 11:666–677. https://doi.org/10.2174/156652411797536679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Williams P, Ongsakul M, Proudfoot J, Croft K, Beilin L (1995) Mangostin inhibits the oxidative modification of human low density lipoprotein. Free Radic Res 23:175–184. https://doi.org/10.3109/10715769509064030

    Article  CAS  PubMed  Google Scholar 

  67. Mahabusarakam W, Proudfoot J, Taylor W, Croft K (2000) Inhibition of lipoprotein oxidation by prenylated xanthones derived from mangostin. Free Radic Res 33:643–659. https://doi.org/10.1080/10715760000301161

    Article  CAS  PubMed  Google Scholar 

  68. Sampath PD, Vijayaraghavan K (2007) Cardioprotective effect of α-mangostin, a xanthone derivative from mangosteen on tissue defense system against isoproterenol-induced myocardial infarction in rats. J Biochem Mol Toxicol 21:336–339

    CAS  Google Scholar 

  69. Pérez-Rojas JM, Cruz C, García-López P, Sánchez-González DJ, Martínez-Martínez CM, Ceballos G, Espinosa M, Meléndez-Zajgla J, Pedraza-Chaverri J (2009) Renoprotection by α -mangostin is related to the attenuation in renal oxidative/nitrosative stress induced by cisplatin nephrotoxicity. Free Radic Res 43:1122–1132. https://doi.org/10.1080/10715760903214447

    Article  CAS  PubMed  Google Scholar 

  70. Buelna-Chontal M, Correa F, Hernández-Reséndiz S, Zazueta C, Pedraza-Chaverri J (2011) Protective effect of α-mangostin on cardiac reperfusion damage by attenuation of oxidative stress. J Med Food 14:1370–1374. https://doi.org/10.1089/jmf.2010.0238

    Article  CAS  PubMed  Google Scholar 

  71. Shankaranarayan D, Gopalakrishnan C, Kameswaran L (1979) Pharmacological profile of mangostin and its derivatives. Arch Int Pharmacodyn Ther 239:257–269

    CAS  PubMed  Google Scholar 

  72. Deschamps JD, Gautschi JT, Whitman S, Johnson TA, Gassner NC, Crews P, Holman TR (2007) Discovery of platelet-type 12-human lipoxygenase selective inhibitors by high-throughput screening of structurally diverse libraries. Bioorg Med Chem 15:6900–6908. https://doi.org/10.1016/j.bmc.2007.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chae HS, Oh SR, Lee HK, Joo SH, Chin YW (2012) Mangosteen xanthones, α- and γ-mangostins, inhibit allergic mediators in bone marrow-derived mast cell. Food Chem 134:397–400. https://doi.org/10.1016/j.foodchem.2012.02.075

    Article  CAS  Google Scholar 

  74. Akao Y, Nakagawa Y, Iinuma M, Nozawa Y (2008) Anti-cancer effects of xanthones from pericarps of mangosteen. Int J Mol Sci 9:355–370. https://doi.org/10.3390/ijms9030355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Matsumoto K, Akao Y, Ohguchi K, Ito T, Tanaka T, Iinuma M, Nozawa Y (2005) Xanthones induce cell-cycle arrest and apoptosis in human colon cancer DLD-1 cells. Bioorg Med Chem 13:6064–6069. https://doi.org/10.1016/j.bmc.2005.06.065

    Article  CAS  PubMed  Google Scholar 

  76. Kurose H, Shibata M-A, Iinuma M, Otsuki Y (2012) Alterations in cell cycle and induction of apoptotic cell death in breast cancer cells treated with α -mangostin extracted from mangosteen pericarp. J Biomed Biotechnol 2012:1–9. https://doi.org/10.1155/2012/672428

    Article  CAS  Google Scholar 

  77. Hung S-H, Shen K-H, C-H W, Liu C-L, Shih Y-W (2009) α-Mangostin suppresses PC-3 human prostate carcinoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen expression through the JNK signaling pathway. J Agric Food Chem 57:1291–1298

    CAS  PubMed  Google Scholar 

  78. Wang Y, Xia Z, JR X, Wang YX, Hou LN, Qiu Y, Chen HZ (2012) α-Mangostin, a polyphenolic xanthone derivative from mangosteen, attenuates β-amyloid oligomers-induced neurotoxicity by inhibiting amyloid aggregation. Neuropharmacology 62:871–881. https://doi.org/10.1016/j.neuropharm.2011.09.016

    Article  CAS  PubMed  Google Scholar 

  79. Aisha AFA, Abu-Salah KM, Ismail Z, Majid AMSA (2012) In vitro and in vivo anti-colon cancer effects of Garcinia mangostana xanthones extract. BMC Complement Altern Med 12:104–113. https://doi.org/10.1186/1472-6882-12-104

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mahabusarakam W, Wiriyachitra P, Phongpaichit S (1986) Antimicrobial activities of chemical constituents from Garcinia mangostana Linn. J Sci Soc Thail 12:239–242

    CAS  Google Scholar 

  81. Iinuma M, Tosa H, Tanaka T, Asai F, Kobayashi Y, Shimano R, Miyauchi KI (1996) Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphyloococcus aureus. J Pharm Pharmacol 48:861–865. https://doi.org/10.1111/j.2042-7158.1996.tb03988.x

    Article  CAS  PubMed  Google Scholar 

  82. Chomnawang MT, Surassmo S, Wongsariya K, Bunyapraphatsara N (2009) Antibacterial activity of Thai medicinal plants against methicillin-resistant Staphylococcus aureus. Fitoterapia 80:102–104

    CAS  PubMed  Google Scholar 

  83. Koh JJ, Qiu S, Zou H, Lakshminarayanan R, Li J, Zhou X, Tang C, Saraswathi P, Verma C, Tan DTH, Tan AL, Liu S, Beuerman RW (2013) Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochim Biophys Acta Biomembr 1828:834–844. https://doi.org/10.1016/j.bbamem.2012.09.004

    Article  CAS  Google Scholar 

  84. Torrungruang K, Vichienroj P, Chutimaworapan S (2007) Antibacterial activity of mangosteen pericarp extract against cariogenic Streptococcus mutans. CU. Dent J 30:1–10

    Google Scholar 

  85. Sundaram BM, Gopalakrishnan C, Subramanian S, Shankaranarayanan D, Kameswaran L (1983) Antimicrobial activities of Garcinia mangostana. Planta Med 48:59–60. https://doi.org/10.1055/s-2007-969882

    Article  CAS  PubMed  Google Scholar 

  86. Chen SX, Wan M, Loh BN (1996) Active constituents against HIV-1 protease from Garcinia mangostana. Planta Med 62:381–382. https://doi.org/10.1055/s-2006-957916

    Article  CAS  PubMed  Google Scholar 

  87. Kaomongkolgit R, Jamdee K, Chaisomboon N (2009) Antifungal activity of alpha-mangostin against Candida albicans. J Oral Sci 51:401–406. https://doi.org/10.2334/josnusd.51.401

    Article  CAS  PubMed  Google Scholar 

  88. Ee GCL, Daud S, Taufiq-Yap YH, Ismail NH, Rahmani M (2006) Xanthones from Garcinia mangostana (Guttiferae). Nat Prod Res 20:1067–1073. https://doi.org/10.1080/14786410500463114

    Article  CAS  PubMed  Google Scholar 

  89. Bullangpoti V, Visetson S, Milne J, Milne M, Sudthongkong C, Pronbanlualap S (2007) Effects of alpha-mangostin from mangosteen pericarp extract and imidacloprid on Nilaparvata lugens (Stal.) and non-target organisms: toxicity and detoxification mechanism. Commun Agric Appl Biol Sci 72:431–441

    CAS  PubMed  Google Scholar 

  90. Larson RT, Lorch JM, Pridgeon JW, Becnel JJ, Clark GG, Lan Q (2010) The biological activity of α-Mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor. J Med Entomol 47:249–257

    CAS  PubMed  Google Scholar 

  91. Kim M-S, Lan Q (2011) Larvicidal activity of α-mangostin in the Colorado potato beetle, Leptinotarsa decemlineata. J Pestic Sci 36:370–375. https://doi.org/10.1584/jpestics.G11-09

    Article  CAS  Google Scholar 

  92. Bullangpoti V, Visetson S, Milne J, Pornbanlualap S (2004) Effects of mangosteen’s peels and rambutan’s seeds on toxicity, esterase and glutathione-S-transferase in rice weevil (Sitophilus oryzae L.) Kasetsart J (Nat Sci) 38:84–89

    Google Scholar 

  93. Bullangpoti V, Visetson S, Milne M, Milne J, Pornbanlualap S, Sudthongkongs C, Tayapat S (2006) The novel botanical insecticide for the control brown planthopper (Nilaparvata lugens Stal.) Commun Agric Appl Biol Sci 71:475–481

    CAS  PubMed  Google Scholar 

  94. Keiser J, Vargas M, Winter R (2012) Anthelminthic properties of mangostin and mangostin diacetate. Parasitol Int 61:369–371. https://doi.org/10.1016/j.parint.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  95. Wu S-B, Long C, Kennelly EJ (2014) Structural diversity and bioactivities of natural benzophenones. Nat Prod Rep 31:1158–1174. https://doi.org/10.1039/C4NP00027G

    Article  CAS  PubMed  Google Scholar 

  96. Yamaguchi F, Ariga T, Yoshimura Y, Nakazawa H (2000) Antioxidative and anti-glycation activity of garcinol from Garcinia indica fruit rind. J Agric Food Chem 48:180–185

    CAS  PubMed  Google Scholar 

  97. Yamaguchi F, Saito M, Ariga T, Yoshimura Y (2000) Free radical scavenging activity and antiulcer activity of garcinol from Garcinia indica fruit rind. J Agric Food Chem 48:2320–2325

    CAS  PubMed  Google Scholar 

  98. Hong J, Sang S, Park H-J, Kwon SJ, Suh N, Huang M-T, Ho C-T, Yang CS (2006) Modulation of arachidonic acid metabolism and nitric oxide synthesis by garcinol and its derivatives. Carcinogenesis 27:278–286. https://doi.org/10.1093/carcin/bgi208

    Article  CAS  PubMed  Google Scholar 

  99. Sang S, Pan M, Cheng X, Bai N, Stark RE, Rosen RT, Lin-Shiau SY, Lin JK, Ho CT (2001) Chemical studies on antioxidant mechanism of garcinol: analysis of radical reaction products of garcinol with their antitumor activities. Tetrahedron 57:9931–9938

    CAS  Google Scholar 

  100. Sang S, Liao CH, Pan MH, Rosen RT, Lin-Shiau SY, Lin JK, Ho CT (2002) Chemical studies on antioxidant mechanism of garcinol: analysis of radical reaction products of garcinol with peroxyl radicals and their antitumor activities. Tetrahedron 58:10095–10102. https://doi.org/10.1016/S0040-4020(02)01411-4

    Article  CAS  Google Scholar 

  101. Hung W, Liu C, Lai C, Ho C, Pan M (2015) Inhibitory effect of garcinol against 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumorigenesis in mice. J Funct Foods 18:65–73

    Google Scholar 

  102. Koeberle A, Northoff H, Werz O (2009) Identification of 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 as functional targets of the anti-inflammatory and anti-carcinogenic garcinol. Biochem Pharmacol 77:1513–1521

    CAS  PubMed  Google Scholar 

  103. Tanaka T, Kohno H, Shimada R, Kagami S, Yamaguchi F, Kataoka S, Ariga T, Murakami A, Koshimizu K, Ohigashi H (2000) Prevention of colonic aberrant crypt foci by dietary feeding of garcinol in male F344 rats. Carcinogenesis 21:1183–1189. https://doi.org/10.1093/carcin/21.6.1183

    Article  CAS  PubMed  Google Scholar 

  104. Liao C, Ho C, Lin J (2005) Effects of garcinol on free radical generation and NO production in embryonic rat cortical neurons and astrocytes. Biochem Biophys Res Commun 329:1306–1314. https://doi.org/10.1016/j.bbrc.2005.02.110

    Article  CAS  PubMed  Google Scholar 

  105. Hong J, Joo S, Sang S, Ju J, Zhou J (2007) Effects of garcinol and its derivatives on intestinal cell growth : inhibitory effects and autoxidation-dependent growth-stimulatory effects. Free Radic Biol Med 42:1211–1221. https://doi.org/10.1016/j.freeradbiomed.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  106. Pan M, Chang W, Ho C, Lin J (2001) Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 49:1464–1474

    CAS  PubMed  Google Scholar 

  107. Ahmad A, Wang Z, Ali R, Maitah MY, Kong D, Banerjee S, Padhye S, Sarkar FH (2010) Apoptosis-inducing effect of garcinol is mediated by NF-κB signaling in breast cancer cells. J Cell Biochem 109:1134–1141. https://doi.org/10.1002/jcb.22492

    Article  CAS  PubMed  Google Scholar 

  108. Ahmad A, Wang Z, Wojewoda C, Ali R, Kong D, Maitah MY, Banerjee S, Bao B, Padhye S, Sarkar FH (2011) Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- kB signaling. Front Biosci (Elite Ed) 3:1483–1492

    PubMed  Google Scholar 

  109. Miller TA (1987) Mechanisms of stress-related mucosomal damage. Am J Med 83:8–14

    CAS  PubMed  Google Scholar 

  110. Perry MA, Wadhwa S, Parks DA, Pickard WES, Granger DN (1986) Role of oxygen radicals in ischemia-induced lesions in the cat stomach. Gastroenterology 90:362–367

    CAS  PubMed  Google Scholar 

  111. De Haar JL, Wielinga PY, Scheurink AJW, Nieuwenhuizen AG (2005) Comparison of the effects of three different (−)-hydroxycitric acid preparations on food intake in rats. Nutr Metab 2:1–9

    Google Scholar 

  112. Chuah LO, Ho WY, Beh BK, Yeap SK (2013) Updates on antiobesity effect of Garcinia origin (−)-HCA. Evid Based Complement Alternat Med 2013:1–17. https://doi.org/10.1155/2013/751658

    Article  Google Scholar 

  113. Sullivan AC, Triscari J, Spiegel HE (1977) Metabolic regulation as a control for lipid disorders. I. Influence of, (−)-hydroxycitrate on experimentally induced obesity in the rodent. Am J Clin Nutr 30:767–776

    CAS  PubMed  Google Scholar 

  114. Sullivan AC, Triscari J, Spiegel HE (1977) Metabolic regulation as a control for lipid disorders. II. Influence of (−)-hydroxycitrate on genetically and experimentally induced hypertriglyceridemia in the rat. Am J Clin Nutr 30:777–784

    CAS  PubMed  Google Scholar 

  115. Preuss HG, Bagchi D, Bagchi M, Rao CVS, Dey DK, Satyanarayana S (2004) Effects of a natural extract of (−)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacin-bound chromium and Gymnema sylvestre extract on weight loss. Diabetes Obes Metab 6:171–180

    CAS  PubMed  Google Scholar 

  116. Asghar M, Zeyssig R, Monjok E, Kouamou G, Ohia SE, Lokhandwala MF, Bagchi D (2006) Hydroxycitric acid (HCA-SX) decreases oxidative stress and insulin resistance and increases brain serotonin levels in obese Zucker rats. Exp Biol Meet 20:A655.4

    Google Scholar 

  117. Sullivan AC, Triscari J, Hamilton JG (1974) Effect of (−)-hydroxycitrate upon the accumulation of lipid in the rat: I. Lipogenesis. Lipids 9:121–128

    CAS  PubMed  Google Scholar 

  118. Sullivan AC, Triscari J, Hamilton JG, Miller ON (1974) Effect of (−)-hydroxycitrate upon the accumulation of lipid in the rat: II. Appetite. Lipids 9:129–134

    CAS  PubMed  Google Scholar 

  119. Ishihara K, Oyaizu S, Onuki K, Lim K, Fushiki T (2000) Chronic (−)-hydroxycitrate administration spares carbohydrate utilization and promotes lipid oxidation during exercise in mice. J Nutr 130:2990–2995

    CAS  PubMed  Google Scholar 

  120. Lim K, Ryu S, Ohishi Y, Watanabe I, Tomi H, Suh H, Lee W, Kwon T (2002) Short-term (−)-hydroxycitrate ingestion increases fat oxidation during exercise in athletes. J Nutr Sci Vitaminol 48:128–133

    CAS  PubMed  Google Scholar 

  121. Lim K, Ryu S, Nho H, Choi S, Kwon T, Suh H, So J, Tomita K, Okuhara Y, Shigematsu N (2003) (−)-Hydroxycitric acid ingestion increases fat utilization during exercise in untrained women. J Nutr Sci Vitaminol 49:163–167

    CAS  PubMed  Google Scholar 

  122. Bhat DJ, Kamat N, Shirodkar A (2005) Compendium and proceedings of 2nd National seminar on Kokum (Garcinia indica Choicy), March 4–5, 2005 held at Goa University

    Google Scholar 

  123. Francis FJ, Markakis PC (1989) Food colorants : anthocyanins. Crit Rev Food Sci Nutr 28:273–314

    CAS  PubMed  Google Scholar 

  124. Scazzocchio B, Varì R, Filesi C, D’Archivio M, Santangelo C, Giovannini C, Iacovelli A, Silecchia G, Volti GL, Galvano F, Masella R (2011) Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes 60:2234–2244. https://doi.org/10.2337/db10-1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pojer E, Mattivi F, Johnson D, Stockley CS (2013) The case for anthocyanin consumption to promote human health: a review. Compr Rev Food Sci Food Saf 12:483–508. https://doi.org/10.1111/1541-4337.12024

    Article  CAS  PubMed  Google Scholar 

  126. Ferrari D, Cimino F, Fratantonio D, Molonia MS, Bashllari R, Busà R, Saija A, Speciale A (2017) Cyanidin-3-O-glucoside modulates the in vitro inflammatory crosstalk between intestinal epithelial and endothelial cells. Mediators Inflamm. 2017, 8 pages doi: https://doi.org/10.1155/2017/3454023

  127. Min J, Yu SW, Baek SH, Nair KM, Bae ON, Bhatt A, Kassab M, Nair MG, Majid A (2011) Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia. Neurosci Lett 500:157–161. https://doi.org/10.1016/j.neulet.2011.05.048

    Article  CAS  PubMed  Google Scholar 

  128. Wang L, Li H, Yang S, Ma W, Liu M, Guo S, Zhan J, Zhang H, Tsang SY, Zhang Z, Wang Z, Li X, Guo Y-D, Li X (2016) Cyanidin-3-O-glucoside directly binds to ERα36 and inhibits EGFR-positive triple-negative breast cancer. Oncotarget 7:68864–68882. https://doi.org/10.18632/oncotarget.12025

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gutierrez-Orozco F, Failla ML (2013) Biological activities and bioavailability of mangosteen xanthones: a critical review of current evidences. Forum Nutr 5:3163–3183

    CAS  Google Scholar 

  130. Marquez F, Babio N, Bullo M, Salas-Salvodo J (2012) Evaluation of the safety and efficacy of hydroxycitric acid or Garcinia cambogia extracts in humans. Crit Rev Food Sci 52:585–594

    Google Scholar 

  131. Saadat N, Gupta SV (2012) Potential review of garcinol as an anticancer agent. J Oncol 2012:1–8. https://doi.org/10.1155/2012/647206

    Article  CAS  Google Scholar 

  132. Yousuf B, Gul K, Wani AA, Singh P (2016) Health benefits of anthocyanins and their encapsulation for potential used in food system: a review. Crit Rev Food Sci 56:2223–2230

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by DST-PURSE-PHASE-II program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosakatte Niranjana Murthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Murthy, H.N., Dandin, V.S., Dalawai, D., Park, SY., Paek, KY. (2019). Bioactive Compounds from Garcinia Fruits of High Economic Value for Food and Health. In: Mérillon, JM., Ramawat, K.G. (eds) Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_65

Download citation

Publish with us

Policies and ethics