Skip to main content

Alkaloids Derived from Anthranilic Acid: Quinoline, Acridone, and Quinazoline

  • Reference work entry
  • First Online:
Natural Products

Abstract

In this chapter, some of the latest developments in the groups of natural products collectively known as the quinolin/one, quinazolin/one, and acridone alkaloids are presented. Emphasis is placed on their biogenesis, biological activities, and natural distribution. Quinolin/ones and acridones undoubtedly occur in greatest abundance in plants from the Rutaceae family. The 2-alkylquinolin/4(1H)-ones are typical constituents of the Rutaceae but, surprisingly, they have also been isolated from some bacteria, mainly from Pseudomanas. Fungus Penicillium has yielded a novel class of quinolin/ones, which is based on the combination of amino acids l-valine and l-isoleucine, anthranilic acid, and acetic acid, or these amino acids and tryptamine. They constitute two small groups quinolactacins and quinocitrinines, which are alkaloid types at present unknown from any other source. Quinazoline derivatives are less common in Rutaceae, and a variety of them are produced by bacteria, fungi, and marine animals. In recent years, a number of these alkaloids have been found to possess real pharmacological activity, which is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACP:

Acyl carrier protein

AMP:

Adenosine monophosphate

Ant:

Anthranilic acid

ATP:

Adenosine triphosphate

AuaAE:

Genes required for quinoline alkaloid aurachin synthesis

CF:

Cystic fibrosis

CML:

Chronic myelogenous leukemia

CoA:

Coenzyme A as part of a thioester, e.g., acetyl-CoA (CH3COSCoA)

CoASH:

Coenzyme A

DMAPP:

Dimethylallyl diphosphate

FPP:

Farnesyl diphosphate

GC-MS:

Gas chromatograph-mass spectrometry

Ger:

Geranyl

Gln:

Glutamine

INCA:

Instituto Nacional do Cancer (Brazil – www.inca.gov.br)

l-Ala:

l-alanine

l-Asp:

Aspartic acid

l-Trp:

l-tryptophan

NADP+ :

Nicotinamide adenine dinucleotide phosphate

NADPH:

Nicotinamide adenine dinucleotide phosphate (reduced)

NMR:

Nuclear magnetic resonance spectroscopy

NRPS:

Nonribosomal peptide synthetase

Phe:

Phenylalanine

PKSs:

Polyketide synthases

PPi:

Inorganic diphosphate

PQS:

Pseudomonas quinolone signal

pqsABCD:

Genes required for PQS synthesis

pqsE:

The function of the pqsE gene is not known but it is required for PQS synthesis

Pro:

Proline

TNF:

Tumor necrosis factor

Val:

Valine

References

  1. Openshaw HT (1953) Quinoline alkaloids, other than those of Cinchona. In: Manske RHF, Holmes HL (eds) The alkaloids, vol III. Academic, New York, pp 65–100

    Google Scholar 

  2. Openshaw HT (1960) Quinoline alkaloids, other than those of Cinchona. In: Manske RHF, Holmes HL (eds) The alkaloids, vol VII. Academic, New York, pp 229–246

    Google Scholar 

  3. Openshaw HT (1967) Quinoline alkaloids, other than those of Cinchona. In: Manske RHF, Holmes HL (eds) The alkaloids, vol IX. Academic, New York

    Google Scholar 

  4. Saxton JE, Snieckus VA (1972) Quinoline, quinazoline, acridone, and related alkaloids. In: The alkaloids, vol 2. The Chemical Society, London, pp 86–96

    Chapter  Google Scholar 

  5. Saxton JE, Snieckus VA (1973) Quinoline, quinazoline, acridone, and related alkaloids. In: The alkaloids, vol 3. The Chemical Society, London, pp 104–115

    Chapter  Google Scholar 

  6. Saxton JE, Snieckus VA (1974) Quinoline, quinazoline, acridone, and related alkaloids. In: The alkaloids, vol 4. The Chemical Society, London, pp 117–127

    Chapter  Google Scholar 

  7. Saxton JE, Snieckus VA (1975) Quinoline, quinazoline, acridone, and related alkaloids. In: The alkaloids, vol 5. The Chemical Society, London, pp 103–110

    Chapter  Google Scholar 

  8. Grundon MF (1976) Quinoline, quinazoline and acridone alkaloids. In: The alkaloids, vol 6. The Chemical Society, London, pp 103–109

    Chapter  Google Scholar 

  9. Grundon MF (1977) Quinoline, quinazoline and acridone alkaloids. In: The alkaloids, vol 7. The Chemical Society, London, pp 81–91

    Chapter  Google Scholar 

  10. Grundon MF (1978) Quinoline, quinazoline and acridone alkaloids. In: The alkaloids, vol 8. The Chemical Society, London, pp 77–86

    Chapter  Google Scholar 

  11. Grundon MF (1979) Quinoline, quinazoline and acridone alkaloids. In: The alkaloids, vol 9. The Chemical Society, London, pp 78–88

    Chapter  Google Scholar 

  12. Grundon MF (1979) Quinoline alkaloids related to anthranilic acid. In: Manske RHF, Rodrigo RGA (eds) The alkaloids, vol XVII. Academic, New York, pp 105–198

    Chapter  Google Scholar 

  13. Grundon MF (1981) Quinoline, quinazoline and acridone alkaloids. In: The alkaloids, vol 10. The Chemical Society, London, pp 74–83

    Chapter  Google Scholar 

  14. Grundon MF (1981) Quinoline, quinazoline and acridone alkaloids. In: The alkaloids, vol 11. The Chemical Society, London, pp 71–77

    Chapter  Google Scholar 

  15. Grundon MF (1982) Quinoline, quinazoline and acridone alkaloids. In: The alkaloids, vol 12. The Chemical Society, London, pp 84–93

    Chapter  Google Scholar 

  16. Grundon MF (1983) Quinoline and acridone alkaloids. In: The alkaloids, vol 13. The Chemical Society, London, pp 99–121

    Chapter  Google Scholar 

  17. Grundon MF (1984) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 1:195–200

    Article  CAS  Google Scholar 

  18. Grundon MF (1985) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 2:393–400

    Article  CAS  Google Scholar 

  19. Grundon MF (1987) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 4:225–236

    Article  CAS  Google Scholar 

  20. Grundon MF (1988) Quinoline alkaloids related to antrhranilic acid. In: Brossi A (ed) The alkaloids, vol 32. Academic, London, pp 341–439

    Google Scholar 

  21. Grundon MF (1988) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 5:293–307

    Article  CAS  Google Scholar 

  22. Grundon MF (1990) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 7:131–138

    Article  CAS  Google Scholar 

  23. Michael JP (1991) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 8:53–68

    Article  CAS  Google Scholar 

  24. Michael JP (1992) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 9:25–35

    Article  CAS  Google Scholar 

  25. Michael JP (1993) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 10:99–108

    Article  CAS  Google Scholar 

  26. Michael JP (1994) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 11:163–172

    Article  CAS  Google Scholar 

  27. Michael JP (1995) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 12:77–89

    Article  CAS  Google Scholar 

  28. Michael JP (1995) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 12:465–475

    Article  CAS  Google Scholar 

  29. Michael JP (1997) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 14:11–20

    Article  CAS  Google Scholar 

  30. Michael JP (1997) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 14:605–618

    Article  CAS  Google Scholar 

  31. Michael JP (1998) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 15:595–606

    Article  CAS  Google Scholar 

  32. Michael JP (1999) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 16:697–709

    Article  CAS  Google Scholar 

  33. Michael JP (2000) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 17:603–620

    Article  CAS  Google Scholar 

  34. Michael JP (2001) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 18:543–559

    Article  CAS  Google Scholar 

  35. Michael JP (2002) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 19:742–760

    Article  CAS  Google Scholar 

  36. Michael JP (2003) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 20:476–493

    Article  CAS  Google Scholar 

  37. Michael JP (2004) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 21:650–668

    Article  CAS  Google Scholar 

  38. Michael JP (2005) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 22:627–646

    Article  CAS  Google Scholar 

  39. Michael JP (2007) Quinoline, quinazoline, and acridone alkaloids. Nat Prod Rep 24:223–246

    Article  CAS  Google Scholar 

  40. Michael JP (2008) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 25:166–187

    Article  CAS  Google Scholar 

  41. Silva MFGF, Soares MS, Fernandes JB, Vieira PC (2007) Alkyl, aryl, alkylarylquinoline, and related alkaloids. The Alkaloids 64:139–214

    Google Scholar 

  42. Mester I (1973) The occurrence of alkaloids in Rutaceae. Fitoterapia (Milano) 44:123–152

    CAS  Google Scholar 

  43. Intekhab J, Aslam M, Khalid H (2011) Phytochemical Study of Glycosmis Mauritiana. Am J Plant Sci 2:657–659

    Article  CAS  Google Scholar 

  44. Mester I (1983) Structural diversity and distribution of alkaloids in the Rutales. In: Waterman PG, Grundon MF (eds) Chemistry and chemical taxonomy of the Rutales. Academic, London, pp 31–96

    Google Scholar 

  45. Lacroix D, Prado S, Kamoga D, Kasenene J, Bodo B (2011) Structure and in vitro antiparasitic activity of constituents of Citropsis articulata root bark. J Nat Prod 74:2286–2289

    Article  CAS  Google Scholar 

  46. Luo XM, QI SH, Yin H, Gao CH, Zhang S (2009) Alkaloids from the stem bark of Micromelum falcatum. Chem Pham Bull 57:600–602

    Article  CAS  Google Scholar 

  47. Varamini P, Javidnia K, Soltani M, Mehdipour AR, Ghaderi A (2009) Cytotoxic activity and cell cycle analysis of quinoline alkaloids isolated from Haplophyllum canaliculatum Boiss. Plant Med 75:1509–1516

    Article  CAS  Google Scholar 

  48. Yang X, Feng Y, Duffy S, Avery VM, Camp D, Quinn RJ, Davis RA (2011) A new quinoline epoxide from the Australian plant Drummondita calida. Plant Med 77:1644–1647

    Article  CAS  Google Scholar 

  49. Cuca-Suarez LE, Barrera EDC, Caballero JMA (2011) Quinoline alkaloids and friedelane-type triterpenes isolated from leaves and wood of Esenbeckia alata Kunt (Rutaceae). Quim Nova 34:984–986

    Article  CAS  Google Scholar 

  50. Takahashi N, Subehan, Kadota S, Tezuka Y (2012) Mechanism-based CYP2D6 inactivation by acridone alkaloids of Indonesian medicinal plant Lunasia amara. Fitoterapia 83:774–779

    Article  CAS  Google Scholar 

  51. Scherlach K, Hertweck C (2006) Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids, from Aspergillus nidulans, motivated by genome mining. Org Biomol Chem 4:3517–3520

    Article  CAS  Google Scholar 

  52. Yang J-L, Liu L-L, Shi Y-P (2011) Limonoids and quinoline alkaloids from Dictamnus dasycarpus. Plant Med 77:271–276

    Article  CAS  Google Scholar 

  53. Tsassi BV, Hussain H, Geagni A, Dongo E, Ahmed I, Riaz M, Krohn K (2011) Citropremide and citropridone: a new ceramide and a new acridone alkaloid from the stem bark of Citropsis gabunensis. Helv Chim Acta 94:1035–1040

    Article  CAS  Google Scholar 

  54. Takahashi NS, Kadota S, Tezuka Y (2011) Cytochrome P450 2D6 inhibitory constituints of Lunasia amara. Phytochem Lett 4:30–33

    Article  CAS  Google Scholar 

  55. Li S-G, Tian H-Y, Ye W-C, Jiang R-W (2011) Benzopyrans and furoquinoline alkaloids from Melicope pteleifolia. Biochem Syst Ecol 39:64–67

    Article  CAS  Google Scholar 

  56. Barrera CAC, Barrera EDC, Falla DSG, Murcia GD, Suarez LEC (2011) seco-limonoids and quinoline alkaloids from Raputia heptaphylla and their antileishmanial activity. Chem Pharm Bull 59:855–859

    Article  CAS  Google Scholar 

  57. Sultana N, Choudhary MI, Akhter F (2007) X-ray diffraction studies on inhibitor of platelet aggregation dictamnine. J Chem Soc Pak 29:194–197

    CAS  Google Scholar 

  58. Utkina NK, Denisenko VA (2007) Ophiuroidine, the first indolo[2,1-b]quinazoline alkaloid from the Caribbean brittle star Ophiocoma riisei. Tetrahedron Lett 48:4445–4447

    Article  CAS  Google Scholar 

  59. Huang H-Y, Ishikawa T, Peng C-F, Tsai IL, Chen IS (2008) Constituents of the root wood of Zanthoxylum wutaiense with antitubercular activity. J Nat Prod 71:1146–1151

    Article  CAS  Google Scholar 

  60. Yang G, Chen D (2008) Alkaloids from the roots of Zanthoxylum nitidum and their antiviral and antifungal effects. Chem Biodiv 5:1718–1721

    Article  CAS  Google Scholar 

  61. Cao S, Al-Rehaily AJ, Brodie P, Wisse JH, Moniz E, Malone S, Kingston DGI (2008) Furoquinoline alkaloids of Ertela (Monnieria) trifolia (L.) Kuntze from the Suriname rainforest. Phytochemistry 69:553–557

    Article  CAS  Google Scholar 

  62. Dolabela MF, Oliveira SG, Nascimento JM, Peres JM, Wagner H, Póvoa MM, de Oliveira AB (2008) In vitro antiplasmodial activity of extract and constituents from Esenbeckia febrifuga, a plant traditionally used to treat Malaria in the Brazilian Amazon. Phytomedicine 15:367–372

    Article  CAS  Google Scholar 

  63. Wansi JD, Mesaik MA, Chiozem DD, Devkota KP, Gaboriaud-Kolar N, Lallemand M-C, Wandji J, Choudhary MI, Sewald N (2008) Oxidative burst inhibitory and cytotoxic indoloquinazoline and furoquinoline alkaloids from Oricia suaweolens. J Nat Prod 71:1942–1945

    Article  CAS  Google Scholar 

  64. Magadula JJ, Kapingu MC, Mbwambo ZH, Mulholland DA (2008) Secondary metabolites from Teclea amanuensis (Rutaceae) from Tanzania. Nat Prod Commun 3:1683–1686

    CAS  Google Scholar 

  65. Coombes PH, Mwangi EM, Peters BK, Crouch NR, Mulholland DA (2009) The cyclobuta[b]quinoline alkaloid cyclomegistine from Teclea gerrardii I. Verd. (Toddalioideae: Rutaceae). Biochem Syst Ecol 37:494–496

    Article  CAS  Google Scholar 

  66. Waffo AFK, Coombes PH, Crouch NR, Mulholland DA, El Amin SMM, Smith PJ (2007) Acridone and furoquinoline alkaloids from Teclea gerrardii (Rutaceae: Toddalioideae) of southern Africa. Phytochemistry 68:633–667

    Google Scholar 

  67. Gao X, Zhao P-H, Hu J-F (2011) Chemical constituents of plants from the genus Dictamnus. Chem Biodiver 8:1234–1244

    Article  CAS  Google Scholar 

  68. Li Y-K, Zhao Q-J, Hu J, Zou Z, He X-Y, Yuan H-B, Shi X-Y (2009) Two new quinoline alkaloid mannopyranosides from Solidago Canadensis. Helv Chim Acta 92:928–931

    Article  CAS  Google Scholar 

  69. Rahman A-U, Khalid K, Sultana N, Ghayur MN, Mesaik MA, Khan MR, Gilani AH, Choudhary MI (2006) New natural cholinesterase inhibiting and calcium channel blocking quinoline alkaloids. J Enzyme Inhib Med Chem 21:703–710

    Article  CAS  Google Scholar 

  70. Tchinda AT, Fuendjiep V, Sajjad A, Matchawe C, Wafo P, Khan S, Tane P, Choudhary MI (2009) Bioactive compounds from the fruits of Zanthoxylum leprieurii. Pharmacologyonline 1:406–415

    Google Scholar 

  71. Bacher M, Brader G, Greger H, Hofer O (2010) Complete 1H and 13C NMR data assigment of new constituents from Severinia buxifolia. Magn Reson Chem 48:83–88

    CAS  Google Scholar 

  72. Chukaew A, Ponglimanont C, Karalai C, Tewtrakul S (2008) Potential anti-allergic acridone alkaloids from the roots of Atalantia monophylla. Phytochemistry 69:2616–2620

    Article  CAS  Google Scholar 

  73. Purcaro R, Schrader KK, Burandt C, Dellagreca M, Meepagala KM (2009) Algicide constituents from Swinglea glutinosa. J Agric Food Chem 57:10632–10635

    Article  CAS  Google Scholar 

  74. Ngoumfo RM, Jouda J-B, Mouafo FT, Komguema J, Mbazoa CD, Shiao TC, Choudhary MI, Laatsch H, Legault J, Pichette A, Roy R (2010) In vitro cytotoxic activity of isolated acridones alkaloids from Zanthoxylum leprieurii Guill. Et Perr. Bioorg Med Chem 18:3601–3605

    Article  CAS  Google Scholar 

  75. Yang X-L, Xie Z-H, Jiang X-J, Huang Y-B, Liu J-K (2009) A new acridone alkaloid from Micromelum integerrimum. Chem Pharm Bull 57:734–735

    Article  CAS  Google Scholar 

  76. Chansriniyom C, Ruangrungsi N, Lipipun V, Kumamoto T, Ishikawa T (2009) Isolation of acridone alkaloids and N-[(4-Monoterpenyloxy)phenylethyl]-substituted sulfur-containing propanamide derivatives from Glycosmis parva and their anti-herpes simplex virus activity. Chem Pharm Bull 57:1246–1250

    Article  CAS  Google Scholar 

  77. dos Santos DAP, Vieira PC, da Silva MFGF, Fernandes JB, Rattray L, Croft SL (2009) Antiparasitic activities of acridone alkaloids from Swinglea glutinosa (Bl.) Merr. J Braz Chem Soc 20:644–651

    Article  Google Scholar 

  78. Kumar S, Raj K, Khare P (2009) Flavones and acridones from Atalantia wightii. Indian J Chem 48B:291–294

    CAS  Google Scholar 

  79. Braga PAC, dos Santos DAP, da Silva MFGF, Vieira PC, Fernandes JB, Houghton PJ, Fang R (2007) In vitro cytotoxicity activity on several cancer cell lines of acridone alkaloids and N-phenylethyl-benzamide derivatives from Swinglea glutinosa (Bl.) Merr. Nat Prod Res 21:47–55

    Article  CAS  Google Scholar 

  80. Yahayu MA, Rahmani M, Hashim MN, Amin MAM, Ee GCL, Sukari MA, Akim AM (2011) Two new acridone alkaloids from Glycosmis macrantha. Molecules 16:4401–4407

    Article  CAS  Google Scholar 

  81. Happi EN, Waffo AFK, Wansi JD, Ngadjui BT, Sewald NS (2011) I-prenylated acridone alkaloids from the stems of Balsamocitrus paniculata (Rutaceae). Plant Med 77:934–938

    Article  CAS  Google Scholar 

  82. Hong B, Gao J, Wu J, Zhao C (2012) Chemical constituents from Rauvolfia verticillata and bioactivities research. Chem Nat Comp 48:276–280

    Article  CAS  Google Scholar 

  83. Yoon M-A, Jeong T-S, Park D-S, Xu M-Z, Oh H-W, Song K-B, Lee WS, Park H-Y (2006) Antioxidant effects of quinoline alkaloids and 2,4-Di-tert-butylphenol isolated from Scolopendra subspinipes. Biol Pharm Bull 29:735–739

    Article  CAS  Google Scholar 

  84. Höfle G, Kunze B (2008) Biosynthesis of aurachins A-L in Stigmatella aurantiaca: a feeding study. J Nat Prod 71:1843–1849

    Article  CAS  Google Scholar 

  85. Teichert A, Schmidt J, Porzel A, Arnold N, Wessjohann L (2008) (Iso)-quinoline alkaloids from fungal fruiting bodies of Cortinarius subtortus. J Nat Prod 71:1092–1094

    Article  CAS  Google Scholar 

  86. Yang X-W, Zhang H, Li M, Du L-J, Yang Z, Xiao S-Y (2006) Studies on the alkaloids constituents of Evodia rutaecarpa (Juss) Benth var. bodinaieri (Dode) Huang and their acute toxicity in mice. J Asian Nat Prod Res 8:697–703

    Article  CAS  Google Scholar 

  87. Staerk D, Kesting JR, Sairafianpour M, Witt M, Asili J, Emami SA, Jaroszewski JW (2009) Accelerated dereplication of crude extracts using HPLC–PDA–MS–SPE–NMR: quinolinone alkaloids of Haplophyllum acutifolium. Phytochemistry 70:1055–1061

    Article  CAS  Google Scholar 

  88. Awaad MS, Maitland DJ, Moier S (2006) New antihypertensive alkaloids from Casmeroa edulis fruits. Egypt J Biomed Sci 21:14–22

    CAS  Google Scholar 

  89. Horn G, Kupfer A, Kalbitz J, Gerdelbracht H-J, Kluge H, Eder K, Draeger B (2008) Great globe thistle fruit (Echinops sphaerocephalus L.), a potential new oil crop. Eur J Lipid Technol 110:662–667

    Article  CAS  Google Scholar 

  90. Mohn T, Plitzko I, Hamburger M (2009) A comprehensive metabolite profiling of Isatis tinctoria leaf extracts. Phytochemistry 70:924–934

    Article  CAS  Google Scholar 

  91. Astulla A, Zaima K, Matsuno Y, Hirasawa Y, Ekasari W, Widyawaruyanti A, Zaini NC, Morita H (2008) Alkaloids from the seeds of Peganum harmala showing antiplasmodial and vasorelaxant activities. J Nat Med 62:470–472

    Article  CAS  Google Scholar 

  92. Xin ZH, Fang Y, Du L, Zhu T, Duan L, Chen J, Gu Q-Q, Zhu W-M (2007) Aurantiomides A − C, quinazoline alkaloids from the sponge-derived fungus Penicillium aurantiogriseum SP0-19. J Nat Prod 70:853–855

    Article  CAS  Google Scholar 

  93. Leong S-L, Schnürer J, Broberg A (2008) Verrucine F, a quinazoline from Penicillium verrucosum. J Nat Prod 71:1455–1457

    Article  CAS  Google Scholar 

  94. Ames BD, Liu X, Walsh CT (2010) Enzymatic processing of fumiquinazoline F: a tandem oxidative-acylation strategy for the generation of multicyclic scaffolds in fungal indole alkaloid biosynthesis. Biochemistry 49:8564–8576

    Article  CAS  Google Scholar 

  95. Gao X, Chooi Y-H, Ames BD, Wang P, Walsh CT, Tang Y (2011) Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum. J Am Chem Soc 133:2729–2741

    Article  CAS  Google Scholar 

  96. Ames BD, Walsh CT (2010) Anthranilate-activating modules from fungal nonribosomal peptide assembly lines. Biochemistry 49:3351–3365

    Article  CAS  Google Scholar 

  97. Wang L, Zhang M, Zhang C, Wang Z (2008) Alkaloid and sesquiterpenes from the root tuber of Curcuma longa. Yao Xue Xue Bao 43:724–727

    CAS  Google Scholar 

  98. Arunakumari A, Ramani MV, Subbaraju GV (2007) 10H-Indolo[3,2-b]quinoline, a potent brine shrimp toxin from Justicia betonica. Asina J Chem 19:539–542

    CAS  Google Scholar 

  99. Liu J-F, Zhang X-M, Xue D-Q, Jiang Z-Y, Gu Q, Chen J-J (2006) Studies on chemical constituents from leaves of Isatis indigotica. China J Chin Mat Med 31:1961–1965

    CAS  Google Scholar 

  100. Oliveira AB, Dolabela MF, Braga FC, Jácome RLRP, Varotti FP, Póvoa MM (2009) Plant-derived antimalarial agents: new leads and efficient phythomedicines. Part I. Alkaloids. An Acad Bras Cienc 81:715–740

    Article  CAS  Google Scholar 

  101. Baumert A, Crèche J, Rideau M, Chénieux J-C, Gröger D (1990) Anthranilic acid-specific enzymes in alkaloid-producing tissue cultures of Choisya ternata and Ruta graveolens. Plant Physiol Biochem 28:587–592

    CAS  Google Scholar 

  102. Bowman RM, Grundon MF (1966) Quinoline alkaloids. Part VIII. The synthesis and nuclear magnetic resonance spectra of (±)-platydesmine, (±)-isobalfourodine, and related compounds. R. M. Bowman and M. F. Grundon J. Chem. Soc. C, 1966, 1504–1507. DOI: 10.1039/J39660001504

    Google Scholar 

  103. Diment TA, Ritchie E, Taylor WC (1969) The conversion of platydesmine into dictamnine. Aust J Chem 22:1797–1801

    Article  CAS  Google Scholar 

  104. Boulanger D, Bailey BK, Steck W (1973) Formation of edulinine and furoquinoline alkaloids from quinoline derivatives by cell suspension cultures of Ruta graveolens. Phytochemistry 12:2399–2405

    Article  CAS  Google Scholar 

  105. Collins JF, Gray GA, Grundon MF, Harrison DM, Spyropoulos CG (1973) Quinoline alkaloids. Part XIII. A convenient synthesis of furoquinoline alkaloids of the dictamnine type. J Chem Soc Perkin Trans 1:94–97

    Article  Google Scholar 

  106. Collins JF, Donnelly WJ, Grundon MF, James KJ (1974) Biosynthesis of aromatic isoprenoids. Part I. The role of 3-prenylquinolines and of platydesmine in the biosnthesis of the furuquinoline alkaloid, dictamnine. J Chem Soc Perkin Trans 1:2177–2181

    Article  Google Scholar 

  107. Neville CF, Grundon MF, Ramachandran VN, Reisch G, Reisch J (1991) Quinoline alkaloids. Part 28. The biosynthesis of furoquinolines and other hemiterpenoids in Ptelea trifoliata. J Chem Soc Perkin Trans 1:2261–2268

    Article  Google Scholar 

  108. Hifnawy MS, Vaquette J, Sévenet T, Pousset JL, Cavé A (1977) Produits neutres et alcaloides de Myrtopsis macrocarpa, M. myrtoidea, M. novae-caledoniae et M. sellingii. Phytochemistry 16:1035–1039

    Article  CAS  Google Scholar 

  109. James KF, Grundon MF (1979) Quinoline alkaloids. Part 17. Mechanism of base-catalysed rearrangement of hydroxyisopropyldihydrofuroquinolones and of dihydrodimethylpyranoquinolones. J Chem Soc Perkin Trans 1:1467–1471

    Article  Google Scholar 

  110. Grundon MF, Surgenor SA (1978) Asymmetric synthesis and absolute stereochemistry of the alkaloies araliopsine, isoplatydesmine, and ribalinine. Dual mechanism for a dihydrofuroquinolone–dihydropyranoquinolone rearrangement. J Chem Soc Chem Commun 14:624–626

    Google Scholar 

  111. Bowman RM, Collins JF, Grundon MF (1973) Quinoline alkaloids. Part XIV. Asymmetric synthesis by the peroxy-acid–olefin reaction. The absolute stereochemistry of balfourodine, isobalfourodine, and related compounds, and the biosynthesis of isomeric dihydrofuro- and dihydropyrano-derivatives. J Chem Soc Perkin Trans 1:626–632

    Article  Google Scholar 

  112. Grundon MF (1983) Aspects of the biosynthesis of coumarins and quinoline alkaloids in the Rutales. In: Waterman PG, Grundon MF (eds) Chemistry and chemical taxonomy of the Rutales. Academic, London, pp 9–30

    Google Scholar 

  113. Bartholomeusz TA, Bhogal RK, Molinie R, Felpin F-X, Mathé-Allainmat M, Meier A-C, Dräger B, Lebreton J, Roscher A, Robins RJ, Mesnard F (2005) Nicotine demethylation in Nicotiana cell suspension cultures: N-formylnornicotine is not involved. Phytochemistry 66:2432–2440

    Article  CAS  Google Scholar 

  114. Siminszky B, Gavilano L, Bowen SW, Dewey RE (2005) Conversion of nicotine to nornicotine in Nicotiana tabacum is mediated by CYP82E4, a cytochrome P450 monooxygenase. Proc Natl Acad Sci USA 102:14919–14924

    Article  CAS  Google Scholar 

  115. Baumert A, Schmidt J, Groger D (1993) Synthesis and mass spectral analysis of coenzyme a thioesters of anthranilic acid and its N-methyl derivative involved in acridone alkaloid biosynthesis. Phytochem Anal 4:165–170

    Article  CAS  Google Scholar 

  116. Baumert A, Maier W, Groger D, Deutzmann R (1994) Purification and properties of acridone synthase from cell suspension cultures of Ruta graveolens L. Z Naturforsch C 49:26–32

    CAS  Google Scholar 

  117. Rohde B, Hans J, Martens S, Baumert A, Hunziker P, Matern U (2008) Anthranilate N-methyltransferase, a branch-point enzyme of acridone biosynthesis. Plant J 53:541–553

    Article  CAS  Google Scholar 

  118. Maier W, Schumann B, Groger D (1990) Biosynthesis of acridone alkaloids formation of rutacridone by cell-free extracts of Ruta graveolens cell suspension cultures. FEBS Lett 263:289–291

    Article  CAS  Google Scholar 

  119. Endler A, Martens S, Wellmann F, Matern U (2008) Unusually divergent 4-coumarate: CoA-ligases from Ruta graveolens L. Plant Mol Biol 67:335–346

    Article  CAS  Google Scholar 

  120. Wanibuchi K, Zhang P, Abe T, Morita H, Kohno T, Chen G, Noguchi H, Abe I (2007) An acridone-producing novel multifunctional type III polyketide synthase from Huperzia serrate. FEBS J 274:1073–1082

    Article  CAS  Google Scholar 

  121. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480

    Article  CAS  Google Scholar 

  122. Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344

    Article  CAS  Google Scholar 

  123. Bredenbruch F, Nimtz M, Wray V, Morr M, Müller R, Häussler S (2005) Biosynthetic pathway of Pseudomonas aeruginosa 4-Hydroxy-2-Alkylquinolines. J Bacteriol 187:3630–3635

    Article  CAS  Google Scholar 

  124. Ritter C, Luckner M (1971) Zur Biosynthese der 2-n-Alkyl-4-hydroxychinolinderivate (Pseudane) bei Pseudomonas aeruginosa. Eur J Biochem 18:391–400

    Article  CAS  Google Scholar 

  125. Calfee MW, Coleman JP, Pesci EC (2001) Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98:11633–11637

    Article  CAS  Google Scholar 

  126. Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, Chhabra SR, Cámara M, Williams P (2006) Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Bio 13:701–710

    Article  CAS  Google Scholar 

  127. Sandmann A, Dickschat J, Jenke-Kodama H, Kunze B, Dittmann E, Müller R (2007) A type II polyketide synthase from the gram-negative bacterium Stigmatella aurantiaca is involved in aurachin alkaloid biosynthesis. Angew Chem Int Ed 46:2712–2716

    Article  CAS  Google Scholar 

  128. Li Y, Müller R (2009) Non-modular polyketide synthases in myxobacteria. Phytochemistry 70:1850–1857

    Article  CAS  Google Scholar 

  129. Pistorius D, Li Y, Sandmann A, Müller R (2011) Completing the puzzle of aurachin biosynthesis in Stigmatella aurantiaca Sg a15. Mol Biosyst 7:3308–3315

    Article  CAS  Google Scholar 

  130. Ward RS (1995) Lignans, neolignans, and related compounds. Nat Prod Rep 12:183–205

    Article  CAS  Google Scholar 

  131. Blaschke-Cobet M, Luckner M (1973) Zur biosynthese des graveolins bei Ruta angustifolia. Phytochemistry 12:2393–2398

    Article  CAS  Google Scholar 

  132. Mphahlele MJ, El-Nahas AM (2004) Tautomeric 2-arylquinolin-4(1H)-one derivatives- spectroscopic, X-ray and quantum chemical structural studies. J Mol Struct 688:129–136

    Article  CAS  Google Scholar 

  133. Tatsuta K, Misawa H, Chikauchi K (2001) Biomimetic total synthesis of quinolactacin B, TNF production inhibitor, and its analogs. J Antibiot 54:109–112

    Article  CAS  Google Scholar 

  134. Zhang X, Jiang W, Sui Z (2003) Concise enantioselective syntheses of quinolactacins A and B through alternative Winterfeldt oxidation. J Org Chem 68:4523–4526

    Article  CAS  Google Scholar 

  135. Groger D, Mornas K (1960) On the biogenesis of peganine. Arch Pharm 293:1049–1052

    Article  CAS  Google Scholar 

  136. Johne S, Groger D (1968) Investigation in the biosynthesis of peganines (vasicine) Engl Sum. Phytochemistry 7:429–440

    Article  CAS  Google Scholar 

  137. Johne S, Groger D, Richter G (1968) Contribution to the biosynthesis of peganine in Adhatoda vasica-D alkaloid inst auto radiography succinic-acid malic-acid aspartic-acid anthranilic-acid glutamine amino-acids. Arch Pharm 301:721–727

    Article  CAS  Google Scholar 

  138. Liljegren DR (1968) The biosynthesis of quinazoline alkaloids of Peganum harmala L. Phytochemistry 7:1299–1306

    Article  CAS  Google Scholar 

  139. Liljegren DR (1971) Biosynthesis of quinazoline alkaloids of Peganum harmala. Phytochemistry 10:2661–2669

    Article  CAS  Google Scholar 

  140. Waiblinger K, Johne S, Gröger D (1972) Zur biosynthese des pyrrolidinringes in peganin. Phytochemistry 11:2263–2265

    Article  CAS  Google Scholar 

  141. Fersht AR, Jencks WP (1970) Acetylpyridinium ion intermediate in pyridine-catalyzed hydrolysis and acyl transfer reactions of acetic anhydride – observation, kinetics, structure-reactivity correlations, and effects of concentrated salt solutions. J Am Chem Soc 92:5432–5442

    Article  CAS  Google Scholar 

  142. Chang F-R, Lee Y-H, Yang Y-L, Hsieh P-W, Khalil AT, Chen C-Y, Wu Y-C (2003) Secoiridoid glycoside and alkaloid constituents of Hydrangea chinensis. J Nat Prod 66:1245–1248

    Article  CAS  Google Scholar 

  143. Chan-Bacab MJ, Peña-Rodríguez LM (2001) Plant natural products with leishmanicidal activity. Nat Prod Rep 18:674–688

    Article  CAS  Google Scholar 

  144. Fournet A, Barrios AA, Muñoz V, Hocquemiller R, Cavé A, Bruneton J (1993) 2-substituted quinoline alkaloids as potential antileishmanial drugs. Antimicrob Agents Chemother 37:859–863

    Article  CAS  Google Scholar 

  145. Fournet A, Gantier JC, Gautheret A, Leysalles L, Munos MH, Mayrargue J, Moskowitz H, Cavé A, Hocquemiller R (1994) The activity of 2-substituted quinoline alkaloids in BALB/c mice infected with Leishmania donovani. J Antimicrob Chemother 33:537–544

    Article  CAS  Google Scholar 

  146. Fournet A, Ferreira ME, Arias AR, Ortiz ST, Fuentes S, Nakayama H, Schinini A, Hocquemiller R (1996) In vivo efficacy of oral and intralesional administration of 2-substituted quinolines in experimental treatment of new world cutaneous leishmaniasis caused by Leishmania amazonensis. Antimicrob Agents Chemother 40:2447–2451

    CAS  Google Scholar 

  147. Brener Z, Andrade ZA, Barral-Netto M (2000) Trypanosoma cruzi e doença de Chagas. Editora Guanabara Koogan AS, Rio de Janeiro, Brazil

    Google Scholar 

  148. Wahlgren M, Perlmann P (1999) Malaria: molecular and clinical aspects. Hardwood Academic, Canada

    Google Scholar 

  149. Gantier JC, Fournet A, Munos MH, Hocquemiller R (1996) The effect of some 2-substituted quinolines isolated from Galipea longiflora on Plasmodium vinckei petteri Infected Mice. Planta Med 62:285–286

    Article  CAS  Google Scholar 

  150. Souza CP (1995) Molluscicide control of snail vectors of schistosomiasis. Mem Inst Oswaldo Cruz 90:165–168

    Article  CAS  Google Scholar 

  151. Huang LJ, Hsieh MC, Teng CM, Lee KH, Kuo SC (1998) Synthesis and antiplatelet activity of phenyl quinolones. Bioorg Med Chem 6:1657–1662

    Article  CAS  Google Scholar 

  152. Towers GHN, Graham EA, Spenser ID, Abromowski Z (1981) Phototoxic furanoquinolines of the Rutaceae. Planta Med 41:136–142

    Article  CAS  Google Scholar 

  153. Basco L, Mitaku S, Skaltsounis A-L, Ravelomanantsoa N, Tillequin F, Koch M, Le Bras J (1994) In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum. Antimicrob Agents Chemother 38:1169–1171

    Article  CAS  Google Scholar 

  154. Winter RW, Kelly JX, Smilkstein MJ, Dodean R, Bagby GC, Rathbun RK, Levin JI, Hinrichs D, Riscoe MK (2006) Evaluation and lead optimization of anti-malarial acridones. Exp Parasitol 114:47–56

    Article  CAS  Google Scholar 

  155. Adams M, Mahringer A, Kunert O, Fricker G, Efferth T, Bauer R (2007) Cytotoxicity and P-glycoprotein modulating effects of quinolones and indoloquinazolines from the Chinese Herb Evodia rutaecarpa. Plant Med 73:1554–1557

    Article  CAS  Google Scholar 

  156. Jansen O, Akhmedjanova V, Angenot L, Balansard G, Chariot A, Ollivier E, Titsa M, Frédérich M (2006) Screening of 14 alkaloids isolated from Haplophyllum A. Juss. for their cytotoxic properties. J Ethnopharm 105:241–245

    Article  CAS  Google Scholar 

  157. Won K-J, Chung K-S, Lee YS, Alia MS, Pervez MK, Fatima S, Choi J-H, Lee K-T (2010) Haplophytin-A induces caspase-8-mediated apoptosis via the formation of death-inducing signaling complex in human promyelocytic leukemia HL-60 cells. Chem Biol Interact 188:505–511

    Article  CAS  Google Scholar 

  158. Maiti A, Reddy PVN, Sturdy M, Marler L, Pegan SD, Mesecar AD, Pezzuto JM, Cushman M (2009) Synthesis of casimiroin and optimization of its quinone reductase 2 and aromatase inhibitory activities. J Med Chem 52:1873–1884

    Article  CAS  Google Scholar 

  159. Réthy B, Zupkó I, Minorics R, Hohmann J, Ocsovszki I, Falkay G (2007) Investigation of cytotoxic activity on human cancer cell lines of arborinine and furanoacridones isolated from Ruta graveolens. Plant Med 73:41–48

    Article  CAS  Google Scholar 

  160. Severino RP, Guido RVC, Marques EF, Brömme D, da Silva MFGF, Fernandes JB, Andricopulo AD, Vieira PC (2011) Acridone alkaloids as potent inhibitors of cathepsin V. Bioorg Med Chem 19:1477–1481

    Article  CAS  Google Scholar 

  161. Aguinaldo AM, Dalangin-Mallari VM, Macabeo APG, Byrne LT, Abe F, Yamauchi T, Franzblau SG (2007) Quinoline alkaloids from Lunasia amara inhibit Mycobacterium tuberculosis H37Rv in vitro. Int J Antimicrob Agents 29:744–746

    Article  CAS  Google Scholar 

  162. Zhu X, Zhang X, Ma G, Yan J, Wang H, Yang Q (2011) Transport characteristics of tryptanthrin and its inhibitory effect on P-gp and MRP2 in Caco-2 Cells. J Pharm Pharmaceut Sci 14:325–335

    Google Scholar 

  163. Global status report on noncommunicable diseases 2010, Editors: World Health Organization, Number of pages: 176, Publication date: April 2011, ISBN: 978 92 4 156422 9

    Google Scholar 

  164. http://www1.inca.gov.br/vigilancia/mortalidade.html: Estatísticas do câncer. Accessed in December 2011.

Download references

Acknowledgments

The authors thank the Brazilian agencies: Institutos Nacionais de Ciência e Tecnologia, do Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq/MCT, INCT, 573742/2008-1), Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, INCT, 08/57859-5), Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), and Financiadora de Estudos e Projetos (FINEP) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fátima das Graças Fernandes da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

da Silva, M.F.d.G.F., Fernandes, J.B., Forim, M.R., Vieira, P.C., de Sá, I.C.G. (2013). Alkaloids Derived from Anthranilic Acid: Quinoline, Acridone, and Quinazoline. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_25

Download citation

Publish with us

Policies and ethics