Skip to main content

Advertisement

Log in

The role of apoptosis in the pathogenesis of osteoarthritis

  • Review
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Apoptosis is an important physiological process, making a great difference to development and tissue homeostasis. Osteoarthritis (OA) is a chronic joint disease characterized by degeneration and destruction of articular cartilage and bone hyperplasia. This purpose of this study is to provide an updated review of the role of apoptosis in the pathogenesis of osteoarthritis.

Methods

A comprehensive review of the literature on osteoarthritis and apoptosis was performed, which mainly focused on the regulatory factors and signaling pathways associated with chondrocyte apoptosis in osteoarthritis and other pathogenic mechanisms involved in chondrocyte apoptosis.

Results

Inflammatory mediators such as reactive oxygen species (ROS), nitric oxide (NO), IL-1β, tumor necrosis factor-α (TNF-α), and Fas are closely related to chondrocyte apoptosis. NF-κB signaling pathway, Wnt signaling pathway, and Notch signaling pathway activate proteins and gene targets that promote or inhibit the progression of osteoarthritis disease, including chondrocyte apoptosis and ECM degradation. Long non-coding RNAs (LncRNAs) and microRNAs (microRNAs) have gradually replaced single and localized research methods and become the main research approaches. In addition, the relationship between cellular senescence, autophagy, and apoptosis was also briefly explained.

Conclusion

This review offers a better molecular delineation of apoptotic processes that may help in designing new therapeutic options for OA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data (review of the literature) are available in a data repository.

References

  1. Liem Y, Judge A, Kirwan J, Ourradi K, Li Y, Sharif M (2020) Multivariable logistic and linear regression models for identification of clinically useful biomarkers for osteoarthritis. Sci Rep 10:11328. https://doi.org/10.1038/s41598-020-68077-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wallace IJ, Worthington S, Felson DT et al (2017) Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc Natl Acad Sci USA 114:9332–9336. https://doi.org/10.1073/pnas.1703856114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salmon JH, Rat AC, Sellam J et al (2016) Economic impact of lower-limb osteoarthritis worldwide: a systematic review of cost-of-illness studies. Osteoarthr Cartil 24:1500–1508. https://doi.org/10.1016/j.joca.2016.03.012

    Article  CAS  Google Scholar 

  4. Mukherjee S, Nazemi M, Jonkers I, Geris L (2020) Use of computational modeling to study joint degeneration: a review. Front Bioeng Biotechnol 8:93. https://doi.org/10.3389/fbioe.2020.00093

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim J-H, Jeon J, Shin M et al (2014) Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156:730–743. https://doi.org/10.1016/j.cell.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  6. Peshkova M, Lychagin A, Lipina M, Di Matteo B, Anzillotti G, Ronzoni F, Kosheleva N, Shpichka A, Royuk V, Fomin V, Kalinsky E, Timashev P, Kon E (2022) Gender-related aspects in osteoarthritis development and progression: a review. Int J Mol Sci 23(5):2767. https://doi.org/10.3390/ijms23052767

  7. Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3:107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aigner T, Söder S, Gebhard PM, McAlinden A, Haag J (2007) Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis—structure, chaos and senescence. Nat Clin Pract Rheumatol 3:391–399

    Article  CAS  PubMed  Google Scholar 

  9. Zamli Z, Sharif M (2011) Chondrocyte apoptosis: a cause or consequence of osteoarthritis? Int J Rheum Dis 14:159–166. https://doi.org/10.1111/j.1756-185X.2011.01618.x

    Article  PubMed  Google Scholar 

  10. Goldring MB, Marcu KB (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11:224. https://doi.org/10.1186/ar2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Héraud F, Héraud A, Harmand MF (2000) Apoptosis in normal and osteoarthritic human articular cartilage. Ann Rheum Dis 59:959–965

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aigner T, Hemmel M, Neureiter D et al (2001) Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum 44:1304–1312

    Article  CAS  PubMed  Google Scholar 

  13. Hwang HS, Kim HA (2015) Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci 16:26035–26054. https://doi.org/10.3390/ijms161125943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Charlier E, Relic B, Deroyer C, Malaise O, Neuville S, Collée J, Malaise MG, De Seny D (2016) Insights on molecular mechanisms of chondrocytes death in osteoarthritis. Int J Mol Sci 17(12):2146. https://doi.org/10.3390/ijms17122146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang J, Hu S, Bian Y et al (2021) Targeting cell death: pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front Cell Dev Biol 9:789948. https://doi.org/10.3389/fcell.2021.789948

    Article  PubMed  Google Scholar 

  16. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257. https://doi.org/10.1038/bjc.1972.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146(1):3–15

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Guicciardi ME, Gores GJ (2009) Life and death by death receptors. Faseb j 23:1625–1637. https://doi.org/10.1096/fj.08-111005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peng F, Liao M, Qin R et al (2022) Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 7:286. https://doi.org/10.1038/s41392-022-01110-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mahmood Z, Shukla Y (2010) Death receptors: targets for cancer therapy. Exp Cell Res 316:887–899. https://doi.org/10.1016/j.yexcr.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  21. Lee E-W, Seo J, Jeong M, Lee S, Song J (2012) The roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep 45:496–508

    Article  CAS  PubMed  Google Scholar 

  22. Kretz AL, Trauzold A, Hillenbrand A, Knippschild U, Henne-Bruns D, von Karstedt S, Lemke J (2019) TRAILblazing Strategies for cancer treatment. Cancers (Basel) 11(4):456. https://doi.org/10.3390/cancers11040456

    Article  CAS  PubMed  Google Scholar 

  23. Cavalcante GC, Schaan AP, Cabral GF, Santana-da-Silva MN, Pinto P, Vidal AF, Ribeiro-Dos-Santos  (2019) A Cell’s fate: an overview of the molecular biology and genetics of apoptosis. Int J Mol Sci 20(17):4133. https://doi.org/10.3390/ijms20174133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mandal R, Barron JC, Kostova I, Becker S, Strebhardt K (2020) Caspase-8: the double-edged sword. Biochim Biophys Acta Rev Cancer 1873:188357. https://doi.org/10.1016/j.bbcan.2020.188357

    Article  CAS  PubMed  Google Scholar 

  25. Hughes MA, Powley IR, Jukes-Jones R et al (2016) Co-operative and hierarchical binding of c-FLIP and caspase-8: a unified model defines how c-FLIP isoforms differentially control cell fate. Mol Cell 61:834–849. https://doi.org/10.1016/j.molcel.2016.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seyrek K, Ivanisenko NV, Richter M, Hillert LK, König C, Lavrik IN (2020) Controlling cell death through post-translational modifications of DED proteins. Trends Cell Biol 30:354–369. https://doi.org/10.1016/j.tcb.2020.02.006

    Article  CAS  PubMed  Google Scholar 

  27. Oh YT, Sun SY (2021) Regulation of Cancer metastasis by TRAIL/death receptor signaling. Biomolecules 11(4):499. https://doi.org/10.3390/biom11040499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    Article  CAS  PubMed  Google Scholar 

  29. Griewahn L, Köser A, Maurer U (2019) Keeping cell death in check: ubiquitylation-dependent control of TNFR1 and TLR signaling. Front Cell Dev Biol 7:117. https://doi.org/10.3389/fcell.2019.00117

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539. https://doi.org/10.1038/cdd.2014.216

    Article  CAS  PubMed  Google Scholar 

  31. Galluzzi L, López-Soto A, Kumar S, Kroemer G (2016) Caspases connect cell-death signaling to organismal homeostasis. Immunity 44:221–231. https://doi.org/10.1016/j.immuni.2016.01.020

    Article  CAS  PubMed  Google Scholar 

  32. Van Opdenbosch N, Lamkanfi M (2019) Caspases in cell death, inflammation, and disease. Immunity 50:1352–1364. https://doi.org/10.1016/j.immuni.2019.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. VandenBerghe T, Kaiser WJ, Bertrand MJ, Vandenabeele P (2015) Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol 2:e975093. https://doi.org/10.4161/23723556.2014.975093

    Article  CAS  Google Scholar 

  34. Estaquier J, Vallette F, Vayssiere J-L, Mignotte B (2012) The mitochondrial pathways of apoptosis. Adv Exp Med Biol 942:157–183. https://doi.org/10.1007/978-94-007-2869-1_7

    Article  CAS  PubMed  Google Scholar 

  35. Bock FJ, Tait SWG (2020) Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 21(2):85–100. https://doi.org/10.1038/s41580-019-0173-8

    Article  CAS  PubMed  Google Scholar 

  36. Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632. https://doi.org/10.1038/nrm2952

    Article  CAS  PubMed  Google Scholar 

  37. Bao Q, Shi Y (2007) Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ 14:56–65. https://doi.org/10.1038/sj.cdd.4402028

    Article  CAS  PubMed  Google Scholar 

  38. Dorstyn L, Akey CW, Kumar S (2018) New insights into apoptosome structure and function. Cell Death Differ 25:1194–1208. https://doi.org/10.1038/s41418-017-0025-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862

    Article  CAS  PubMed  Google Scholar 

  40. Lv Z, Song X, Xu J et al (2019) The modulation of Smac/DIABLO on mitochondrial apoptosis induced by LPS in Crassostrea gigas. Fish Shellfish Immunol 84:587-598.https://doi.org/10.1016/j.fsi.2018.10.035

  41. Wiehe RS, Gole B, Chatre L et al (2018) Correction: Endonuclease G promotes mitochondrial genome cleavage and replication. Oncotarget 9:27908. https://doi.org/10.18632/oncotarget.25645

  42. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  CAS  PubMed  Google Scholar 

  43. Frezza C, Cipolat S, Martins de Brito O et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189

    Article  CAS  PubMed  Google Scholar 

  44. Olichon A, Baricault L, Gas N et al (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746

    Article  CAS  PubMed  Google Scholar 

  45. Quarato G, Llambi F, Guy CS et al (2022) Ca-mediated mitochondrial inner membrane permeabilization induces cell death independently of Bax and Bak. Cell Death Differ 29:1318–1334. https://doi.org/10.1038/s41418-022-01025-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramirez MLG, Salvesen GS (2018) A primer on caspase mechanisms. Semin Cell Dev Biol 82:79–85. https://doi.org/10.1016/j.semcdb.2018.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kesavardhana S, Malireddi RKS, Kanneganti T-D (2020) Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol 38:567–595. https://doi.org/10.1146/annurev-immunol-073119-095439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumar S, Dorstyn L, Lim Y (2022) The role of caspases as executioners of apoptosis. Biochem Soc Trans 50:33–45. https://doi.org/10.1042/BST20210751

    Article  PubMed  Google Scholar 

  49. Chowdhury I, Tharakan B, Bhat GK (2008) Caspases — an update. Comp Biochem Physiol B Biochem Mol Biol 151:10–27. https://doi.org/10.1016/j.cbpb.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  50. Mishra R, Das MK, Singh S, Sharma RS, Sharma S, Mishra V (2017) Articulatin-D induces apoptosis via activation of caspase-8 in acute T-cell leukemia cell line. Mol Cell Biochem 426:87–99. https://doi.org/10.1007/s11010-016-2883-y

    Article  CAS  PubMed  Google Scholar 

  51. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042. https://doi.org/10.1038/sj.cdd.4400598

    Article  CAS  PubMed  Google Scholar 

  52. Henry CM, Martin SJ (2017) Caspase-8 acts in a non-enzymatic role as a scaffold for assembly of a pro-inflammatory “FADDosome” complex upon TRAIL stimulation. Mol Cell 65(4):715–729.e5. https://doi.org/10.1016/j.molcel.2017.01.022

    Article  CAS  PubMed  Google Scholar 

  53. Oberst A, Dillon CP, Weinlich R et al (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367. https://doi.org/10.1038/nature09852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Flores-Romero H, García-Sáez AJ (2019) The incomplete puzzle of the BCL2 proteins. Cells 8(10):1176. https://doi.org/10.3390/cells8101176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tait SWG, Oberst A, Quarato G et al (2013) Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep 5:878–885. https://doi.org/10.1016/j.celrep.2013.10.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25:65–80. https://doi.org/10.1038/cdd.2017.186

    Article  CAS  PubMed  Google Scholar 

  57. Siddiqui WA, Ahad A, Ahsan H (2015) The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 89:289–317. https://doi.org/10.1007/s00204-014-1448-7

    Article  CAS  PubMed  Google Scholar 

  58. Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3:697–707. https://doi.org/10.1046/j.1365-2443.1998.00223.x

    Article  CAS  PubMed  Google Scholar 

  59. Popgeorgiev N, Sa JD, Jabbour L, Banjara S, Nguyen TTM, Akhavan-E-Sabet A, Gadet R, Ralchev N, Manon S, Hinds MG, Osigus HJ, Schierwater B, Humbert PO, Rimokh R, Gillet G, Kvansakul M (2020) Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. Sci Adv 6(40):eabc4149. https://doi.org/10.1126/sciadv.abc4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang K, O’Neill KL, Li J et al (2019) BH3-only proteins target BCL-xL/MCL-1, not BAX/BAK, to initiate apoptosis. Cell Res 29:942–952. https://doi.org/10.1038/s41422-019-0231-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Flores-Romero H, Hohorst L, John M et al (2022) BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J 41:e108690. https://doi.org/10.15252/embj.2021108690

  62. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  CAS  PubMed  Google Scholar 

  63. Kantari C, Walczak H (2011) Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochem Biophys Acta 1813:558–563. https://doi.org/10.1016/j.bbamcr.2011.01.026

    Article  CAS  PubMed  Google Scholar 

  64. Ke FS, Holloway S, Uren RT et al (2022) The BCL-2 family member BID plays a role during embryonic development in addition to its BH3-only protein function by acting in parallel to BAX, BAK and BOK. EMBO J 41:e110300. https://doi.org/10.15252/embj.2021110300

  65. Delbridge AR, Grabow S, Strasser A, Vaux DL (2016) Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat Rev Cancer 16:99–109. https://doi.org/10.1038/nrc.2015.17

    Article  CAS  PubMed  Google Scholar 

  66. Ramesh P, Medema JP (2020) BCL-2 family deregulation in colorectal cancer: potential for BH3 mimetics in therapy. Apoptosis Int J Program Cell Death 25:305–320. https://doi.org/10.1007/s10495-020-01601-9

    Article  CAS  Google Scholar 

  67. Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL (2022) The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer 22:45–64. https://doi.org/10.1038/s41568-021-00407-4

    Article  CAS  PubMed  Google Scholar 

  68. Klanova M, Klener P (2020) BCL-2 proteins in pathogenesis and therapy of B-Cell non-hodgkin lymphomas. Cancers (Basel) 12(4):938. https://doi.org/10.3390/cancers12040938

    Article  CAS  PubMed  Google Scholar 

  69. Lessene G, Czabotar PE, Sleebs BE et al (2013) Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol 9:390–397. https://doi.org/10.1038/nchembio.1246

    Article  CAS  PubMed  Google Scholar 

  70. Blombery P, Anderson MA, Gong JN et al (2019) Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to Venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov 9:342–353. https://doi.org/10.1158/2159-8290.Cd-18-1119

    Article  CAS  PubMed  Google Scholar 

  71. Kotschy A, Szlavik Z, Murray J et al (2016) The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538:477–482. https://doi.org/10.1038/nature19830

    Article  CAS  PubMed  Google Scholar 

  72. Caenepeel S, Brown SP, Belmontes B et al (2018) AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov 8:1582–1597. https://doi.org/10.1158/2159-8290.CD-18-0387

    Article  CAS  PubMed  Google Scholar 

  73. Tron AE, Belmonte MA, Adam A et al (2018) Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun 9:5341. https://doi.org/10.1038/s41467-018-07551-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7:33–42. https://doi.org/10.1038/nrrheum.2010.196

    Article  CAS  PubMed  Google Scholar 

  75. Wojdasiewicz P, Poniatowski LA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat Inflamm 2014:561459. https://doi.org/10.1155/2014/561459

    Article  CAS  Google Scholar 

  76. Carames B, Lopez-Armada MJ, Cillero-Pastor B et al (2008) Differential effects of tumor necrosis factor-alpha and interleukin-1beta on cell death in human articular chondrocytes. Osteoarthr Cartil 16:715–722. https://doi.org/10.1016/j.joca.2007.10.006

    Article  CAS  Google Scholar 

  77. López-Armada MJ, Caramés B, Lires-Deán M et al (2006) Cytokines, tumor necrosis factor-alpha and interleukin-1beta, differentially regulate apoptosis in osteoarthritis cultured human chondrocytes. Osteoarthr Cartil 14:660–669

    Article  Google Scholar 

  78. van Dalen SC, Blom AB, Sloetjes AW et al (2017) Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis. Osteoarthr Cartil 25:385–396. https://doi.org/10.1016/j.joca.2016.09.009

    Article  Google Scholar 

  79. Nasi S, Ea HK, So A, Busso N (2017) Revisiting the role of interleukin-1 pathway in osteoarthritis: interleukin-1alpha and -1beta, and NLRP3 inflammasome are not involved in the pathological features of the murine menisectomy model of osteoarthritis. Front Pharmacol 8:282. https://doi.org/10.3389/fphar.2017.00282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Blanco FJ, Ochs RL, Schwarz H, Lotz M (1995) Chondrocyte apoptosis induced by nitric oxide. Am J Pathol 146:75–85

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kühn K, Shikhman AR, Lotz M (2003) Role of nitric oxide, reactive oxygen species, and p38 MAP kinase in the regulation of human chondrocyte apoptosis. J Cell Physiol 197:379–387

    Article  PubMed  Google Scholar 

  82. Relic B, Bentires-Alj M, Ribbens C et al (2002) TNF-alpha protects human primary articular chondrocytes from nitric oxide-induced apoptosis via nuclear factor-kappaB. Lab Invest 82:1661–1672. https://doi.org/10.1097/01.lab.0000041714.05322.c0

    Article  CAS  PubMed  Google Scholar 

  83. Kuhn K, Hashimoto S, Lotz M (2000) IL-1 beta protects human chondrocytes from CD95-induced apoptosis. J Immunol 164:2233–2239. https://doi.org/10.4049/jimmunol.164.4.2233

    Article  CAS  PubMed  Google Scholar 

  84. Raymond L, Eck S, Hays E, Tomek I, Kantor S, Vincenti M (2007) RelA is required for IL-1beta stimulation of Matrix Metalloproteinase-1 expression in chondrocytes. Osteoarthr Cartil 15:431–441

    Article  CAS  Google Scholar 

  85. Yoshimura F, Kanno H, Uzuki M, Tajima K, Shimamura T, Sawai T (2006) Downregulation of inhibitor of apoptosis proteins in apoptotic human chondrocytes treated with tumor necrosis factor-alpha and actinomycin D. Osteoarthr Cartil 14:435–441. https://doi.org/10.1016/j.joca.2005.11.003

    Article  CAS  Google Scholar 

  86. Ng C-P, Zisman A, Bonavida B (2002) Synergy is achieved by complementation with Apo2L/TRAIL and actinomycin D in Apo2L/TRAIL-mediated apoptosis of prostate cancer cells: role of XIAP in resistance. Prostate 53:286–299

    Article  CAS  PubMed  Google Scholar 

  87. Jun Qin LS, Ping A-S, Li J, Li X-J, Hong Yu, Magdalou J, Chen L-B, Wang H (2012) TNF/TNFR signal transduction pathway-mediated anti-apoptosis and anti-inflammatory effects of sodium ferulate on IL-1b-induced rat osteoarthritis chondrocytes in vitro. Arthritis Res Ther 14:R242

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yang H, Zhang M, Wang X et al (2015) TNF accelerates death of mandibular condyle chondrocytes in rats with biomechanical stimulation-induced temporomandibular joint disease. PloS One 10:e0141774. https://doi.org/10.1371/journal.pone.0141774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang J, Li Q, Chang S (2019) The effects of particle density in moxa smoke on the ultrastructure of knee cartilage and expressions of TNF-alpha, IL-1b, BAX, and Bcl-2 mRNA in a rat model for osteoarthritis. J Cell Biochem 120:6589–6595. https://doi.org/10.1002/jcb.27952

    Article  CAS  PubMed  Google Scholar 

  90. Yan S, Wang M, Zhao J et al (2016) MicroRNA-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis. Int J Mol Med 38:201–209. https://doi.org/10.3892/ijmm.2016.2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tao H, Cheng L, Yang R (2020) Downregulation of miR-34a promotes proliferation and inhibits apoptosis of rat osteoarthritic cartilage cells by activating PI3K/Akt pathway. Clin Interv Aging 15:373–385. https://doi.org/10.2147/CIA.S241855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen C, Yin P, Hu S, Sun X, Li B (2020) Circular RNA-9119 protects IL-1β-treated chondrocytes from apoptosis in an osteoarthritis cell model by intercepting the microRNA-26a/PTEN axis. Life Sci 256:117924. https://doi.org/10.1016/j.lfs.2020.117924

    Article  CAS  PubMed  Google Scholar 

  93. Ghafouri-Fard S, Poulet C, Malaise M et al (2021) The emerging role of non-coding RNAs in osteoarthritis. Front Immunol 12:773171. https://doi.org/10.3389/fimmu.2021.773171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li J, Huang J, Dai L et al (2012) miR-146a, an IL-1β responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Res Ther 14:R75. https://doi.org/10.1186/ar3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jin L, Zhao J, Jing W et al (2014) Role of miR-146a in human chondrocyte apoptosis in response to mechanical pressure injury in vitro. Int J Mol Med 34:451–463. https://doi.org/10.3892/ijmm.2014.1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhou X, Jiang L, Fan G et al (2019) Role of the ciRS-7/miR-7 axis in the regulation of proliferation, apoptosis and inflammation of chondrocytes induced by IL-1β. Int Immunopharmacol 71:233–240. https://doi.org/10.1016/j.intimp.2019.03.037

    Article  CAS  PubMed  Google Scholar 

  97. Zhou X, Li J, Zhou Y et al (2020) Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis. Aging 12:20163–20183. https://doi.org/10.18632/aging.103731

  98. Makki MS, Haqqi TM (2015) miR-139 modulates MCPIP1/IL-6 expression and induces apoptosis in human OA chondrocytes. Exp Mol Med 47:e189. https://doi.org/10.1038/emm.2015.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Boraldi F, Lofaro FD, Quaglino D (2021) Apoptosis in the extraosseous calcification process. Cells 10(1):131. https://doi.org/10.3390/cells10010131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang J, Chen L, Jin S et al (2016) MiR-98 promotes chondrocyte apoptosis by decreasing Bcl-2 expression in a rat model of osteoarthritis. Acta Biochim Biophys Sin (Shanghai) 48:923–929. https://doi.org/10.1093/abbs/gmw084

    Article  CAS  PubMed  Google Scholar 

  101. Wang J, Chen L, Jin S et al (2017) Altered expression of microRNA-98 in IL-1β-induced cartilage degradation and its role in chondrocyte apoptosis. Mol Med Rep 16:3208–3216. https://doi.org/10.3892/mmr.2017.7028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ji B, Guo W, Ma H et al (2017) Isoliquiritigenin suppresses IL-1beta induced apoptosis and inflammation in chondrocyte-like ATDC5 cells by inhibiting NF-kappaB and exerts chondroprotective effects on a mouse model of anterior cruciate ligament transection. Int J Mol Med 40:1709–1718. https://doi.org/10.3892/ijmm.2017.3177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sun K, Luo J, Jing X et al (2021) Hyperoside ameliorates the progression of osteoarthritis: an in vitro and in vivo study. Phytomedicine Int J Phytother Phytopharmacol 80:153387. https://doi.org/10.1016/j.phymed.2020.153387

    Article  CAS  Google Scholar 

  104. Yu H, Li M, Wen X et al (2022) Elevation of α-1,3 fucosylation promotes the binding ability of TNFR1 to TNF-α and contributes to osteoarthritic cartilage destruction and apoptosis. Arthritis Res Ther 24:93. https://doi.org/10.1186/s13075-022-02776-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Barbero A, Grogan S, Schäfer D, Heberer M, Mainil-Varlet P, Martin I (2004) Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr Cartil 12:476–484

    Article  Google Scholar 

  106. Huang D, Xiao J, Deng X et al (2018) Association between Fas/FasL gene polymorphism and musculoskeletal degenerative diseases: a meta-analysis. BMC Musculoskelet Disord 19:137. https://doi.org/10.1186/s12891-018-2057-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kühn K, Lotz M (2001) Regulation of CD95 (Fas/APO-1)-induced apoptosis in human chondrocytes. Arthritis Rheum 44:1644–1653

    Article  PubMed  Google Scholar 

  108. Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tummers B, Green DR (2017) Caspase-8: regulating life and death. Immunol Rev 277:76–89. https://doi.org/10.1111/imr.12541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alvarez-Diaz S, Dillon CP, Lalaoui N et al (2016) The pseudokinase MLKL and the kinase RIPK3 have distinct roles in autoimmune disease caused by loss of death-receptor-induced apoptosis. Immunity 45:513–526. https://doi.org/10.1016/j.immuni.2016.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tummers B, Mari L, Guy CS, Heckmann BL, Rodriguez DA, Rühl S, Moretti J, Crawford JC, Fitzgerald P, Kanneganti TD, Janke LJ, Pelletier S, Blander JM, Green DR (2020) Caspase-8-dependent inflammatory responses are controlled by its adaptor, FADD, and necroptosis. Immunity 52(6):994–1006.e8. https://doi.org/10.1016/j.immuni.2020.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wei L, Sun X-j, Wang Z, Chen Q (2006) CD95-induced osteoarthritic chondrocyte apoptosis and necrosis: dependency on p38 mitogen-activated protein kinase. Arthritis Res Ther 8:R37

    Article  PubMed  PubMed Central  Google Scholar 

  113. Eskandari E, Eaves CJ (2022) Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol 221(6):e202201159. https://doi.org/10.1083/jcb.202201159

  114. Larsen BD, Sørensen CS (2017) The caspase-activated DNase: apoptosis and beyond. FEBS J 284:1160–1170. https://doi.org/10.1111/febs.13970

    Article  CAS  PubMed  Google Scholar 

  115. Khalil H, Peltzer N, Walicki J et al (2012) Caspase-3 protects stressed organs against cell death. Mol Cell Biol 32:4523–4533. https://doi.org/10.1128/MCB.00774-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vaillancourt F, Fahmi H, Shi Q et al (2008) 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: the protective role of glutathione-S-transferase. Arthritis Res Ther 10:R107. https://doi.org/10.1186/ar2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ryu JH, Shin Y, Huh YH, Yang S, Chun CH, Chun JS (2012) Hypoxia-inducible factor-2α regulates Fas-mediated chondrocyte apoptosis during osteoarthritic cartilage destruction. Cell Death Differ 19:440–450. https://doi.org/10.1038/cdd.2011.111

    Article  CAS  PubMed  Google Scholar 

  118. Bolduc JA, Collins JA, Loeser RF (2019) Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 132:73–82. https://doi.org/10.1016/j.freeradbiomed.2018.08.038

    Article  CAS  PubMed  Google Scholar 

  119. Cheleschi S, De Palma A, Pascarelli NA, Giordano N, Galeazzi M, Tenti S, Fioravanti A (2017) Could oxidative stress regulate the expression of microRNA-146a and MicroRNA-34a in human osteoarthritic chondrocyte cultures? Int J Mol Sci 18(12):2660. https://doi.org/10.3390/ijms18122660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li S, Yang X, Feng Z, Wang P, Zhu W, Cui S (2018) Catalase enhances viability of human chondrocytes in culture by reducing reactive oxygen species and counteracting tumor necrosis factor-α-induced apoptosis. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 49:2427–2442. https://doi.org/10.1159/000493841

    Article  CAS  Google Scholar 

  121. Lepetsos P, Papavassiliou AG (2016) ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta 1862:576–591. https://doi.org/10.1016/j.bbadis.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  122. Collins JA, Wood ST, Nelson KJ et al (2016) Oxidative stress promotes peroxiredoxin hyperoxidation and attenuates pro-survival signaling in aging chondrocytes. J Biol Chem 291:6641–6654. https://doi.org/10.1074/jbc.M115.693523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yu SM, Kim SJ (2014) Withaferin A-caused production of intracellular reactive oxygen species modulates apoptosis via PI3K/Akt and JNKinase in rabbit articular chondrocytes. J Korean Med Sci 29:1042–1053. https://doi.org/10.3346/jkms.2014.29.8.1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Khan NM, Ansari MY, Haqqi TM (2017) Sucrose, but not glucose, blocks IL1-β-induced inflammatory response in human chondrocytes by inducing autophagy via AKT/mTOR pathway. J Cell Biochem 118:629–639. https://doi.org/10.1002/jcb.25750

    Article  CAS  PubMed  Google Scholar 

  125. Lepetsos P, Papavassiliou KA, Papavassiliou AG (2019) Redox and NF-κB signaling in osteoarthritis. Free Radic Biol Med 132:90–100. https://doi.org/10.1016/j.freeradbiomed.2018.09.025

    Article  CAS  PubMed  Google Scholar 

  126. Abusarah J, Bentz M, Benabdoune H et al (2017) An overview of the role of lipid peroxidation-derived 4-hydroxynonenal in osteoarthritis. Inflamm Res 66:637–651. https://doi.org/10.1007/s00011-017-1044-4

    Article  CAS  PubMed  Google Scholar 

  127. Khan NM, Ahmad I, Haqqi TM (2018) Nrf2/ARE pathway attenuates oxidative and apoptotic response in human osteoarthritis chondrocytes by activating ERK1/2/ELK1-P70S6K-P90RSK signaling axis. Free Radic Biol Med 116:159–171. https://doi.org/10.1016/j.freeradbiomed.2018.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Marchev AS, Dimitrova PA, Burns AJ, Kostov RV, Dinkova-Kostova AT, Georgiev MI (2017) Oxidative stress and chronic inflammation in osteoarthritis: can NRF2 counteract these partners in crime? Ann N Y Acad Sci 1401:114–135. https://doi.org/10.1111/nyas.13407

    Article  CAS  PubMed  Google Scholar 

  129. He XF, Li W, Zhu LM, Zhang JW (2018) Investigation for effects of iNOS on biological function of chondrocytes in rats with post-traumatic osteoarthritis. Eur Rev Med Pharmacol Sci 22:7140–7147. https://doi.org/10.26355/eurrev_201811_16245

  130. He XF, Li W, Zhu LM, Zhang JW (2018) Investigation for effects of iNOS on biological function of chondrocytes in rats with post-traumatic osteoarthritis. Eur Rev Med Pharmacol Sci 22:7140–7147. https://doi.org/10.26355/eurrev_201811_16245

  131. Balaganur V, Pathak NN, Lingaraju MC et al (2014) Effect of S-methylisothiourea, an inducible nitric oxide synthase inhibitor, in joint pain and pathology in surgically induced model of osteoarthritis. Connect Tissue Res 55:367–377. https://doi.org/10.3109/03008207.2014.953629

    Article  CAS  PubMed  Google Scholar 

  132. Fu X, He S, Wang L et al (2022) Madecassic acid ameliorates the progression of osteoarthritis: an in vitro and in vivo study. Drug Des Dev Ther 16:3793–3804. https://doi.org/10.2147/DDDT.S383632

    Article  CAS  Google Scholar 

  133. Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034. https://doi.org/10.1101/cshperspect.a000034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jimi E, Fei H, Nakatomi C (2019) NF-κB signaling regulates physiological and pathological chondrogenesis. Int J Mol Sci 20(24):6275. https://doi.org/10.3390/ijms20246275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Niederberger E, Geisslinger G (2008) The IKK-NF-kappaB pathway: a source for novel molecular drug targets in pain therapy? FASEB J Off Publ Fed Am Soc Exp Biol 22:3432–3442. https://doi.org/10.1096/fj.08-109355

    Article  CAS  Google Scholar 

  136. Oliver KM, Garvey JF, Ng CT et al (2009) Hypoxia activates NF-kappaB-dependent gene expression through the canonical signaling pathway. Antioxid Redox Signal 11:2057–2064. https://doi.org/10.1089/ARS.2008.2400

    Article  CAS  PubMed  Google Scholar 

  137. Hayden MS, Ghosh S (2014) Regulation of NF-κB by TNF family cytokines. Semin Immunol 26:253–266. https://doi.org/10.1016/j.smim.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sun S-C (2017) The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 17:545–558. https://doi.org/10.1038/nri.2017.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. DiDonato JA, Mercurio F, Karin M (2012) NF-κB and the link between inflammation and cancer. Immunol Rev 246:379–400. https://doi.org/10.1111/j.1600-065X.2012.01099.x

    Article  CAS  PubMed  Google Scholar 

  140. Jimi E, Ghosh S (2005) Role of nuclear factor-kappaB in the immune system and bone. Immunol Rev 208:80–87

    Article  CAS  PubMed  Google Scholar 

  141. Kobayashi H, Chang SH, Mori D et al (2016) Biphasic regulation of chondrocytes by RelA through induction of anti-apoptotic and catabolic target genes. Nat Commun 7:13336. https://doi.org/10.1038/ncomms13336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Park M, Yong Y, Choi S-W, Kim JH, Lee JE, Kim D-W (2007) Constitutive RelA activation mediated by Nkx3.2 controls chondrocyte viability. Nat Cell Biol 9:287–298

    Article  CAS  PubMed  Google Scholar 

  143. Oh H-K, Park M, Choi S-W et al (2021) Suppression of osteoarthritis progression by post-natal induction of Nkx3.2. Biochem Biophys Res Commun 571:188–194. https://doi.org/10.1016/j.bbrc.2021.07.074

    Article  CAS  PubMed  Google Scholar 

  144. Saito T, Tanaka S (2017) Molecular mechanisms underlying osteoarthritis development: Notch and NF-κB. Arthritis Res Ther 19:94. https://doi.org/10.1186/s13075-017-1296-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Knobloch TJ, Madhavan S, Nam J, Agarwal S, Agarwal S (2008) Regulation of chondrocytic gene expression by biomechanical signals. Crit Rev Eukaryot Gene Expr 18:139–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fan Z, Yang H, Bau B, Söder S, Aigner T (2006) Role of mitogen-activated protein kinases and NFkappaB on IL-1beta-induced effects on collagen type II, MMP-1 and 13 mRNA expression in normal articular human chondrocytes. Rheumatol Int 26:900–903

    Article  CAS  PubMed  Google Scholar 

  147. Jenei-Lanzl Z, Meurer A, Zaucke F (2019) Interleukin-1β signaling in osteoarthritis — chondrocytes in focus. Cell Signal 53:212–223. https://doi.org/10.1016/j.cellsig.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  148. Ulivi V, Giannoni P, Gentili C, Cancedda R, Descalzi F (2008) p38/NF-kB-dependent expression of COX-2 during differentiation and inflammatory response of chondrocytes. J Cell Biochem 104:1393–1406. https://doi.org/10.1002/jcb.21717

    Article  CAS  PubMed  Google Scholar 

  149. Miwa M, Saura R, Hirata S, Hayashi Y, Mizuno K, Itoh H (2000) Induction of apoptosis in bovine articular chondrocyte by prostaglandin E(2) through cAMP-dependent pathway. Osteoarthr Cartil 8:17–24

    Article  CAS  Google Scholar 

  150. Fang T, Zhou X, Jin M, Nie J, Li X (2021) Molecular mechanisms of mechanical load-induced osteoarthritis. Int Orthop 45:1125–1136. https://doi.org/10.1007/s00264-021-04938-1

    Article  PubMed  Google Scholar 

  151. Murahashi Y, Yano F, Kobayashi H et al (2018) Intra-articular administration of IκBα kinase inhibitor suppresses mouse knee osteoarthritis via downregulation of the NF-κB/HIF-2α axis. Sci Rep 8:16475. https://doi.org/10.1038/s41598-018-34830-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Feng T, Wu Q-F (2022) A review of non-coding RNA related to NF-κB signaling pathway in the pathogenesis of osteoarthritis. Int Immunopharmacol 106:108607. https://doi.org/10.1016/j.intimp.2022.108607

    Article  CAS  PubMed  Google Scholar 

  153. Schulte G, Bryja V (2017) WNT signalling: mechanisms and therapeutic opportunities. Br J Pharmacol 174:4543–4546. https://doi.org/10.1111/bph.14065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Liu J, Xiao Q, Xiao J et al (2022) Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 7:3. https://doi.org/10.1038/s41392-021-00762-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Monteagudo S, Lories RJ (2017) Cushioning the cartilage: a canonical Wnt restricting matter. Nat Rev Rheumatol 13:670–681. https://doi.org/10.1038/nrrheum.2017.171

    Article  CAS  PubMed  Google Scholar 

  156. Usami Y, Gunawardena AT, Iwamoto M, Enomoto-Iwamoto M (2016) Wnt signaling in cartilage development and diseases: lessons from animal studies. Lab Invest J Tech Methods Pathol 96:186–196. https://doi.org/10.1038/labinvest.2015.142

    Article  CAS  Google Scholar 

  157. Stampella A, Monteagudo S, Lories R (2017) Wnt signaling as target for the treatment of osteoarthritis. Best Pract Res Clin Rheumatol 31:721–729. https://doi.org/10.1016/j.berh.2018.03.004

    Article  PubMed  Google Scholar 

  158. Kovács B, Vajda E, Nagy EE (2019) Regulatory effects and interactions of the wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis. Int J Mol Sci 20(18):4653. https://doi.org/10.3390/ijms20184653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hwang S-G, Ryu J-H, Kim I-C et al (2004) Wnt-7a causes loss of differentiated phenotype and inhibits apoptosis of articular chondrocytes via different mechanisms. J Biol Chem 279:26597–26604

    Article  CAS  PubMed  Google Scholar 

  160. Nalesso G, Thomas BL, Sherwood JC et al (2017) WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis. Ann Rheum Dis 76:218–226. https://doi.org/10.1136/annrheumdis-2015-208577

    Article  CAS  PubMed  Google Scholar 

  161. Ma B, Zhong L, van Blitterswijk CA, Post JN, Karperien M (2013) T cell factor 4 is a pro-catabolic and apoptotic factor in human articular chondrocytes by potentiating nuclear factor κB signaling. J Biol Chem 288:17552–17558. https://doi.org/10.1074/jbc.M113.453985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ma B, Hottiger MO (2016) Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol 7:378

    Article  PubMed  PubMed Central  Google Scholar 

  163. Huang X, Zhong L, Hendriks J, Post JN, Karperien M (2018) The effects of the WNT-signaling modulators BIO and PKF118-310 on the chondrogenic differentiation of human mesenchymal stem cells. Int J Mol Sci 19(2):561. https://doi.org/10.3390/ijms19020561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Blom AB, Brockbank SM, van Lent PL et al (2009) Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: prominent role of Wnt-induced signaling protein 1. Arthritis Rheum 60:501–512. https://doi.org/10.1002/art.24247

    Article  CAS  PubMed  Google Scholar 

  165. Zhong L, Huang X, Karperien M, Post JN (2015) The regulatory role of signaling crosstalk in hypertrophy of MSCs and human articular chondrocytes. Int J Mol Sci 16:19225–19247. https://doi.org/10.3390/ijms160819225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Xia H, Cao D, Yang F et al (2020) Jiawei Yanghe decoction ameliorates cartilage degradation in vitro and vivo via Wnt/β-catenin signaling pathway. Biomed Pharmacother 122:109708. https://doi.org/10.1016/j.biopha.2019.109708

    Article  CAS  PubMed  Google Scholar 

  167. Luyten FP, Tylzanowski P, Lories RJ (2009) Wnt signaling and osteoarthritis. Bone 44:522–527. https://doi.org/10.1016/j.bone.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  168. Wang Y, Fan X, Xing L, Tian F (2019) Wnt signaling: a promising target for osteoarthritis therapy. Cell Commun Signal 17:97. https://doi.org/10.1186/s12964-019-0411-x

    Article  PubMed  PubMed Central  Google Scholar 

  169. Li T-F, Chen D, Wu Q et al (2006) Transforming growth factor-beta stimulates cyclin D1 expression through activation of beta-catenin signaling in chondrocytes. J Biol Chem 281:21296–21304. https://doi.org/10.1074/jbc.M600514200

    Article  CAS  PubMed  Google Scholar 

  170. Zhang M, Wang M, Tan X, Li T-F, Zhang YE, Chen D (2010) Smad3 prevents beta-catenin degradation and facilitates beta-catenin nuclear translocation in chondrocytes. J Biol Chem 285:8703–8710. https://doi.org/10.1074/jbc.M109.093526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Papathanasiou I, Malizos KN, Tsezou A (2012) Bone morphogenetic protein-2-induced Wnt/β-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes. Arthritis Res Ther 14:R82. https://doi.org/10.1186/ar3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. van den Bosch MH, Blom AB, Maeda A et al (2015) WISP1 aggravates osteoarthritis by modulation of TGF-beta signaling and positive regulation of canonical Wnt signaling. Osteoarthr Cartil 23:A44–A45. https://doi.org/10.1016/j.joca.2015.02.098

    Article  Google Scholar 

  173. van den Bosch MH, Blom AB, van Lent PL et al (2014) Canonical Wnt signaling skews TGF-β signaling in chondrocytes towards signaling via ALK1 and Smad 1/5/8. Cell Signal 26:951–958. https://doi.org/10.1016/j.cellsig.2014.01.021

    Article  CAS  PubMed  Google Scholar 

  174. Shen W, Huang J, Wang Y (2021) Biological significance of NOTCH signaling strength. Front Cell Dev Biol 9:652273. https://doi.org/10.3389/fcell.2021.652273

    Article  PubMed  PubMed Central  Google Scholar 

  175. Platonova N, Lesma E, Basile A et al (2017) Targeting Notch as a therapeutic approach for human malignancies. Curr Pharm Des 23:108–134. https://doi.org/10.2174/1381612822666161006160524

    Article  CAS  PubMed  Google Scholar 

  176. Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255

    Article  CAS  PubMed  Google Scholar 

  177. Iso T, Sartorelli V, Poizat C et al (2001) HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol 21:6080–6089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ustunel I, Ozenci AM, Sahin Z et al (2008) The immunohistochemical localization of notch receptors and ligands in human articular cartilage, chondroprogenitor culture and ultrastructural characteristics of these progenitor cells. Acta Histochem 110:397–407. https://doi.org/10.1016/j.acthis.2007.12.005

    Article  PubMed  Google Scholar 

  179. Karlsson C, Brantsing C, Egell S, Lindahl A (2008) Notch1, Jagged1, and HES5 are abundantly expressed in osteoarthritis. Cells Tissues Organs 188:287–298. https://doi.org/10.1159/000121610

    Article  CAS  PubMed  Google Scholar 

  180. Mirando AJ, Liu Z, Moore T et al (2013) RBP-Jκ-dependent Notch signaling is required for murine articular cartilage and joint maintenance. Arthritis Rheum 65:2623–2633. https://doi.org/10.1002/art.38076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Haller R, Schwanbeck R, Martini S et al (2012) Notch1 signaling regulates chondrogenic lineage determination through Sox9 activation. Cell Death Differ 19:461–469. https://doi.org/10.1038/cdd.2011.114

    Article  CAS  PubMed  Google Scholar 

  182. Sugita S, Hosaka Y, Okada K et al (2015) Transcription factor Hes1 modulates osteoarthritis development in cooperation with calcium/calmodulin-dependent protein kinase 2. Proc Natl Acad Sci USA 112:3080–3085. https://doi.org/10.1073/pnas.1419699112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ju B-G, Solum D, Song EJ et al (2004) Activating the PARP-1 sensor component of the groucho/ TLE1 corepressor complex mediates a CaMKinase IIdelta-dependent neurogenic gene activation pathway. Cell 119:815–829

    Article  CAS  PubMed  Google Scholar 

  184. Liu Z, Chen J, Mirando AJ et al (2015) A dual role for NOTCH signaling in joint cartilage maintenance and osteoarthritis. Sci Signal 8:ra71. https://doi.org/10.1126/scisignal.aaa3792

  185. Chen S, Lee BH, Bae Y (2014) Notch signaling in skeletal stem cells. Calcif Tissue Int 94:68–77. https://doi.org/10.1007/s00223-013-9773-z

    Article  CAS  PubMed  Google Scholar 

  186. Ratneswaran A, Beier F (2015) A top-notch dilemma: the complex role of NOTCH signaling in osteoarthritis. Sci Signal 8:fs14. https://doi.org/10.1126/scisignal.aac7862

    Article  CAS  PubMed  Google Scholar 

  187. Oswald F, Liptay S, Adler G, Schmid RM (1998) NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa. Mol Cell Biol 18:2077–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhang H, Hilton MJ, Anolik JH et al (2014) NOTCH inhibits osteoblast formation in inflammatory arthritis via noncanonical NF-κB. J Clin Investig 124:3200–3214. https://doi.org/10.1172/JCI68901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Qi L, Wang M, He J, Jia B, Ren J, Zheng S (2022) E3 ubiquitin ligase ITCH improves LPS-induced chondrocyte injury by mediating JAG1 ubiquitination in osteoarthritis. Chem Biol Interact 360:109921. https://doi.org/10.1016/j.cbi.2022.109921

    Article  CAS  PubMed  Google Scholar 

  190. Matsui M, Corey DR (2017) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16:167–179. https://doi.org/10.1038/nrd.2016.117

    Article  CAS  PubMed  Google Scholar 

  191. Wright MW, Bruford EA (2011) Naming ‘junk’: human non-protein coding RNA (ncRNA) gene nomenclature. Hum Genomics 5:90–98. https://doi.org/10.1186/1479-7364-5-2-90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Abdelmohsen K (2020) Noncoding RNAs in control of gene expression. Biochim Biophys Acta Gene Regul Mech 1863:194520. https://doi.org/10.1016/j.bbagrm.2020.194520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141:1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  194. Malemud CJ (2018) MicroRNAs and osteoarthritis. Cells 7(8):92. https://doi.org/10.3390/cells7080092

    Article  CAS  PubMed  Google Scholar 

  195. Lu X, Li Y, Chen H, Pan Y, Lin R, Chen S (2021) miR-335-5P contributes to human osteoarthritis by targeting HBP1. Exp Ther Med 21:109. https://doi.org/10.3892/etm.2020.9541

    Article  CAS  PubMed  Google Scholar 

  196. Wang W-T, Huang Z-P, Sui S, Liu J-H, Yu D-M, Wang W-B (2020) microRNA-1236 promotes chondrocyte apoptosis in osteoarthritis via direct suppression of PIK3R3. Life Sci 253:117694. https://doi.org/10.1016/j.lfs.2020.117694

    Article  CAS  PubMed  Google Scholar 

  197. Sun Y, Bao X, Chen H, Zhou L (2022) MicroRNA-128-3p suppresses interleukin-1β-stimulated cartilage degradation and chondrocyte apoptosis via targeting zinc finger E-box binding homeobox 1 in osteoarthritis. Bioengineered 13:1736–1745. https://doi.org/10.1080/21655979.2021.2019879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zhang H, Chen C, Song J (2022) microRNA-4701-5p protects against interleukin-1β induced human chondrocyte CHON-001 cells injury via modulating HMGA1. J Orthop Surg Res 17:246. https://doi.org/10.1186/s13018-022-03083-8

    Article  PubMed  PubMed Central  Google Scholar 

  199. Li H, Li Z, Pi Y et al (2020) MicroRNA-375 exacerbates knee osteoarthritis through repressing chondrocyte autophagy by targeting ATG2B. Aging (Albany NY) 12:7248–7261. https://doi.org/10.18632/aging.103073

  200. Zhang M, Mou L, Liu S, Sun F, Gong M (2021) Circ_0001103 alleviates IL-1β-induced chondrocyte cell injuries by upregulating SIRT1 via targeting miR-375. Clin Immunol 227:108718. https://doi.org/10.1016/j.clim.2021.108718

    Article  CAS  PubMed  Google Scholar 

  201. Shao J, Ding Z, Peng J et al (2020) MiR-146a-5p promotes IL-1β-induced chondrocyte apoptosis through the TRAF6-mediated NF-kB pathway. Inflamm Res Off J Eur Histamine Res Soc 69:619–630. https://doi.org/10.1007/s00011-020-01346-w

    Article  CAS  Google Scholar 

  202. Zhang H, Zheng W, Li D, Zheng J (2021) miR-146a-5p promotes chondrocyte apoptosis and inhibits autophagy of osteoarthritis by targeting NUMB. Cartilage 13:1467S-1477S. https://doi.org/10.1177/19476035211023550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wang Y, Shen S, Li Z, Li W, Weng X (2020) MIR-140-5p affects chondrocyte proliferation, apoptosis, and inflammation by targeting HMGB1 in osteoarthritis. Inflamm Res 69:63–73. https://doi.org/10.1007/s00011-019-01294-0

    Article  CAS  PubMed  Google Scholar 

  204. Pan H, Dai H, Wang L et al (2020) MicroRNA-410-3p modulates chondrocyte apoptosis and inflammation by targeting high mobility group box 1 (HMGB1) in an osteoarthritis mouse model. BMC Musculoskelet Disord 21:486. https://doi.org/10.1186/s12891-020-03489-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Yu CD, Miao WH, Zhang YY, Zou MJ, Yan XF (2018) Inhibition of miR-126 protects chondrocytes from IL-1β induced inflammation via upregulation of Bcl-2. Bone Joint Res 7:414–421. https://doi.org/10.1302/2046-3758.76.Bjr-2017-0138.R1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Miao G, Zang X, Hou H et al (2019) Bax targeted by miR-29a regulates chondrocyte apoptosis in osteoarthritis. Biomed Res Int 2019:1434538. https://doi.org/10.1155/2019/1434538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wang WT, Huang ZP, Sui S, Liu JH, Yu DM, Wang WB (2020) microRNA-1236 promotes chondrocyte apoptosis in osteoarthritis via direct suppression of PIK3R3. Life Sci 253:117694. https://doi.org/10.1016/j.lfs.2020.117694

    Article  CAS  PubMed  Google Scholar 

  208. Tu Y, Ma T, Wen T et al (2020) MicroRNA-377-3p alleviates IL-1β-caused chondrocyte apoptosis and cartilage degradation in osteoarthritis in part by downregulating ITGA6. Biochem Biophys Res Commun 523:46–53. https://doi.org/10.1016/j.bbrc.2019.11.186

    Article  CAS  PubMed  Google Scholar 

  209. Ma F, Li G, Yu Y, Xu J, Wu X (2019) MiR-33b-3p promotes chondrocyte proliferation and inhibits chondrocyte apoptosis and cartilage ECM degradation by targeting DNMT3A in osteoarthritis. Biochem Biophys Res Commun 519:430–437. https://doi.org/10.1016/j.bbrc.2019.09.022

    Article  CAS  PubMed  Google Scholar 

  210. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159. https://doi.org/10.1038/nrg2521

    Article  CAS  PubMed  Google Scholar 

  211. Huynh NP, Anderson BA, Guilak F, McAlinden A (2017) Emerging roles for long noncoding RNAs in skeletal biology and disease. Connect Tissue Res 58:116–141. https://doi.org/10.1080/03008207.2016.1194406

    Article  CAS  PubMed  Google Scholar 

  212. Boon RA, Jaé N, Holdt L, Dimmeler S (2016) Long noncoding RNAs: from clinical genetics to therapeutic targets? J Am Coll Cardiol 67:1214–1226. https://doi.org/10.1016/j.jacc.2015.12.051

    Article  CAS  PubMed  Google Scholar 

  213. Umlauf D, Fraser P, Nagano T (2008) The role of long non-coding RNAs in chromatin structure and gene regulation: variations on a theme. Biol Chem 389:323–331. https://doi.org/10.1515/BC.2008.047

    Article  CAS  PubMed  Google Scholar 

  214. Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227. https://doi.org/10.1038/nature07672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  CAS  PubMed  Google Scholar 

  216. Gu LP, Jin S, Xu RC et al (2019) Long non-coding RNA PCAT-1 promotes tumor progression by inhibiting miR-129-5p in human ovarian cancer. Arch Med Sci 15:513–521. https://doi.org/10.5114/aoms.2018.75534

    Article  CAS  PubMed  Google Scholar 

  217. Huang N, Dai W, Li Y, Sun J, Ma C, Li W (2020) LncRNA PCAT-1 upregulates RAP1A through modulating miR-324-5p and promotes survival in lung cancer. Arch Med Sci 16:1196–1206. https://doi.org/10.5114/aoms.2019.84235

    Article  CAS  PubMed  Google Scholar 

  218. Zhou L, Gu M, Ma X et al (2020) Long non-coding RNA PCAT-1 regulates apoptosis of chondrocytes in osteoarthritis by sponging miR-27b-3p. J Bone Miner Metab. https://doi.org/10.1007/s00774-020-01128-8

    Article  PubMed  Google Scholar 

  219. Fan H, Ding L, Yang Y (2021) lncRNA SNHG16 promotes the occurrence of osteoarthritis by sponging miR-373-3p. Mol Med Rep 23(2):117. https://doi.org/10.3892/mmr.2020.11756

    Article  CAS  PubMed  Google Scholar 

  220. Cheng W, Hao CY, Zhao S, Zhang LL, Liu D (2019) SNHG16 promotes the progression of osteoarthritis through activating microRNA-93–5p/CCND1 axis. Eur Rev Med Pharmacol Sci 23:9222–9229. https://doi.org/10.26355/eurrev_201911_19414

  221. Zhang H, Li J, Shao W, Shen N (2020) LncRNA SNHG9 is downregulated in osteoarthritis and inhibits chondrocyte apoptosis by downregulating miR-34a through methylation. BMC Musculoskelet Disord 21:511. https://doi.org/10.1186/s12891-020-03497-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Chen C, Xu Y (2021) Long noncoding RNA LINC00671 exacerbates osteoarthritis by promoting ONECUT2-mediated Smurf2 expression and extracellular matrix degradation. Int Immunopharmacol 90:106846. https://doi.org/10.1016/j.intimp.2020.106846

    Article  CAS  PubMed  Google Scholar 

  223. Wang B, Li J, Tian F (2021) Downregulation of lncRNA SNHG14 attenuates osteoarthritis by inhibiting FSTL-1 mediated NLRP3 and TLR4/NF-κB pathway through miR-124–3p. Life Sci 270:119143. https://doi.org/10.1016/j.lfs.2021.119143

  224. Fu Q, Zhu J, Wang B, Wu J, Li H, Han Y, Xiang D, Chen Y, Li L (2021) LINC02288 promotes chondrocyte apoptosis and inflammation through miR-374a-3p targeting RTN3. J Gene Med 23(5):e3314. https://doi.org/10.1002/jgm.3314

  225. Chen Y, Zhang L, Li E et al (2020) Long-chain non-coding RNA HOTAIR promotes the progression of osteoarthritis via sponging miR-20b/PTEN axis. Life Sci 253:117685. https://doi.org/10.1016/j.lfs.2020.117685

    Article  CAS  PubMed  Google Scholar 

  226. Gao Y, Zhao H, Li Y (2019) LncRNA MCM3AP-AS1 regulates miR-142-3p/HMGB1 to promote LPS-induced chondrocyte apoptosis. BMC Musculoskelet Disord 20:605. https://doi.org/10.1186/s12891-019-2967-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. JJiang H, Pang H, Wu P, Cao Z, Li Z, Yang X, (2021) LncRNA SNHG5 promotes chondrocyte proliferation and inhibits apoptosis in osteoarthritis by regulating miR-10a-5p/H3F3B axis. Connect Tissue Res 62(6):605–614. https://doi.org/10.1080/03008207.2020.1825701

    Article  CAS  Google Scholar 

  228. Xu J, Pei Y, Lu J et al (2021) LncRNA SNHG7 alleviates IL-1β-induced osteoarthritis by inhibiting miR-214–5p-mediated PPARGC1B signaling pathways. Int Immunopharmacol 90:107150. https://doi.org/10.1016/j.intimp.2020.107150

    Article  CAS  PubMed  Google Scholar 

  229. Tian F, Wang J, Zhang Z, Yang J (2020) LncRNA SNHG7/miR-34a-5p/SYVN1 axis plays a vital role in proliferation, apoptosis and autophagy in osteoarthritis. Biol Res 53:9. https://doi.org/10.1186/s40659-020-00275-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Zhang X, Huang CR, Pan S et al (2020) Long non-coding RNA SNHG15 is a competing endogenous RNA of miR-141–3p that prevents osteoarthritis progression by upregulating BCL2L13 expression. Int Immunopharmacol 83:106425. https://doi.org/10.1016/j.intimp.2020.106425

    Article  CAS  PubMed  Google Scholar 

  231. Duan R, Xie H, Liu ZZ (2020) The role of autophagy in osteoarthritis. Front Cell Dev Biol 8:608388. https://doi.org/10.3389/fcell.2020.608388

    Article  PubMed  PubMed Central  Google Scholar 

  232. Li H, Xie S, Li H, Zhang R, Zhang H (2020) LncRNA MALAT1 mediates proliferation of LPS treated-articular chondrocytes by targeting the miR-146a-PI3K/Akt/mTOR axis. Life Sci 254:116801. https://doi.org/10.1016/j.lfs.2019.116801

    Article  CAS  PubMed  Google Scholar 

  233. Zhang Y, Wang F, Chen G, He R, Yang L (2019) LncRNA MALAT1 promotes osteoarthritis by modulating miR-150-5p/AKT3 axis. Cell Biosci 9:54. https://doi.org/10.1186/s13578-019-0302-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6

    Article  CAS  PubMed  Google Scholar 

  235. Rim YA, Nam Y, Ju JH (2020) The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. Int J Mol Sci 21(7):2358. https://doi.org/10.3390/ijms21072358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:412–420. https://doi.org/10.1038/nrrheum.2016.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Buckwalter JA, Roughley PJ, Rosenberg LC (1994) Age-related changes in cartilage proteoglycans: quantitative electron microscopic studies. Microsc Res Tech 28:398–408

    Article  CAS  PubMed  Google Scholar 

  238. DeGroot J, Verzijl N, Bank RA, Lafeber FP, Bijlsma JW, TeKoppele JM (1999) Age-related decrease in proteoglycan synthesis of human articular chondrocytes: the role of nonenzymatic glycation. Arthritis Rheum 42:1003–1009

    Article  CAS  PubMed  Google Scholar 

  239. Xu M, Bradley EW, Weivoda MM et al (2017) Transplanted senescent cells induce an osteoarthritis-like condition in mice. J Gerontol A Biol Sci Med Sci 72:780–785. https://doi.org/10.1093/gerona/glw154

    Article  CAS  PubMed  Google Scholar 

  240. Tan L, Register TC, Yammani RR (2020) Age-related decline in expression of molecular chaperones induces endoplasmic reticulum stress and chondrocyte apoptosis in articular cartilage. Aging Dis 11:1091–1102. https://doi.org/10.14336/ad.2019.1130

  241. Wu G, Zhang C, Xu L et al (2022) BAK plays a key role in A-1331852-induced apoptosis in senescent chondrocytes. Biochem Biophys Res Commun 609:93–99. https://doi.org/10.1016/j.bbrc.2022.03.155

    Article  CAS  PubMed  Google Scholar 

  242. Galluzzi L, Baehrecke EH, Ballabio A et al (2017) Molecular definitions of autophagy and related processes. Embo j 36:1811–1836. https://doi.org/10.15252/embj.201796697

  243. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132–139. https://doi.org/10.1016/j.ceb.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  245. Zachari M, Ganley IG (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61:585–596. https://doi.org/10.1042/EBC20170021

    Article  PubMed  PubMed Central  Google Scholar 

  246. Wang J, Li J, Song D et al (2020) AMPK: implications in osteoarthritis and therapeutic targets. Am J Transl Res 12:7670–7681

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Shi J, Zhang C, Yi Z, Lan C (2016) Explore the variation of MMP3, JNK, p38 MAPKs, and autophagy at the early stage of osteoarthritis. IUBMB Life 68:293–302. https://doi.org/10.1002/iub.1482

    Article  CAS  PubMed  Google Scholar 

  248. Zhang F-J, Luo W, Lei G-H (2015) Role of HIF-1α and HIF-2α in osteoarthritis. Joint Bone Spine 82:144–147. https://doi.org/10.1016/j.jbspin.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  249. Settembre C, Di Malta C, Polito VA et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433. https://doi.org/10.1126/science.1204592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Zheng G, Zhan Y, Li X et al (2018) TFEB, a potential therapeutic target for osteoarthritis via autophagy regulation. Cell Death Dis 9:858. https://doi.org/10.1038/s41419-018-0909-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Maimaitijuma T, Yu JH, Ren YL et al (2020) PHF23 negatively regulates the autophagy of chondrocytes in osteoarthritis. Life Sci 253:117750. https://doi.org/10.1016/j.lfs.2020.117750

    Article  CAS  PubMed  Google Scholar 

  252. Hu PF, Chen WP, Bao JP, Wu LD (2018) Paeoniflorin inhibits IL-1beta-induced chondrocyte apoptosis by regulating the Bax/Bcl-2/caspase-3 signaling pathway. Mol Med Rep 17:6194–6200. https://doi.org/10.3892/mmr.2018.8631

    Article  CAS  PubMed  Google Scholar 

  253. Chen J, Gu YT, Xie JJ et al (2018) Gastrodin reduces IL-1beta-induced apoptosis, inflammation, and matrix catabolism in osteoarthritis chondrocytes and attenuates rat cartilage degeneration in vivo. Biomed Pharmacother 97:642–651. https://doi.org/10.1016/j.biopha.2017.10.067

    Article  CAS  PubMed  Google Scholar 

  254. Lifeng Jiang KX, Li J, Zhou X, Langhai Xu, Zhipeng Wu, Ma C, Ran J, Pengfei Hu, Bao J, Lidong Wu, Xiong Y (2020) Nesfatin-1 suppresses interleukin-1β-induced inflammation, apoptosis, and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats. Aging 12:1762–1777

    Google Scholar 

  255. Velard F, Chatron-Colliet A, Côme D et al (2020) Adrenomedullin and truncated peptide adrenomedullin(22–52) affect chondrocyte response to apoptotis in vitro: downregulation of FAS protects chondrocyte from cell death. Sci Rep 10:16740. https://doi.org/10.1038/s41598-020-73924-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Uzan B, Ea HK, Launay JM et al (2006) A critical role for adrenomedullin-calcitonin receptor-like receptor in regulating rheumatoid fibroblast-like synoviocyte apoptosis. J Immunol 176:5548–5558. https://doi.org/10.4049/jimmunol.176.9.5548

    Article  CAS  PubMed  Google Scholar 

  257. Chosa E, Hamada H, Kitamura K et al (2003) Expression of adrenomedullin and its receptor by chondrocyte phenotype cells. Biochem Biophys Res Commun 303:379–386. https://doi.org/10.1016/s0006-291x(03)00347-4

    Article  CAS  PubMed  Google Scholar 

  258. Yang L, Wang Z, Zou C, Mi Y, Tang H, Wu X (2020) Ubiquitin-specific protease 49 attenuates IL-1β-induced rat primary chondrocyte apoptosis by facilitating Axin deubiquitination and subsequent Wnt/β-catenin signaling cascade inhibition. Mol Cell Biochem 474:263–275. https://doi.org/10.1007/s11010-020-03850-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This publication was supported by the Jiangsu Provincial Science and Technology Program Special Funds Project (Key R&D Program for Social Development) (BE2022801), The Priority Academic Program Development of Jiangsu Higher Education Institutions (Integration of Chinese and Western Medicine), and Jiangsu Postgraduate Practice Innovation Program Project (SJCX21_0727).

Author information

Authors and Affiliations

Authors

Contributions

Si-Qi Xiao and Miao Cheng contributed equally. X. H. and Y. H. contributed to suggesting ideas and critically revise the manuscript; M. C. and S. X. participated in original writing of the manuscript; L. W., J. C., and L. F. involved in literature search; and X. Z. did the data analysis.

Corresponding authors

Correspondence to Xiao-Jin He or Yu-Feng Hu.

Ethics declarations

Ethical approval

A systematic review is not required.

Consent to participate

This is a review article not involving studies on human subjects and obtaining a consent to participate is not required.

Consent for publication

This is a review article not involving studies on human subjects and obtaining a consent to publish is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, SQ., Cheng, M., Wang, L. et al. The role of apoptosis in the pathogenesis of osteoarthritis. International Orthopaedics (SICOT) 47, 1895–1919 (2023). https://doi.org/10.1007/s00264-023-05847-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-05847-1

Keywords

Navigation