Skip to main content

Advertisement

Log in

Socio-Ecological Approach to a Forest-Swamp-Savannah Mosaic Landscape Using Remote Sensing and Local Knowledge: a Case Study in the Bas-Ogooué Ramsar Site, Gabon

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Studies of landscape dynamics in protected areas often rely exclusively on remotely-sensed data, leading to bias by neglecting how local inhabitants, who often have a long history of interaction with their environment, perceive and structure the landscape over time. Using a socio-ecological system (SES) approach in a forest-swamp-savannah mosaic within the Bas-Ogooué Ramsar site in Gabon, we assess how human populations participate in landscape dynamics over time. We first conducted a remote sensing analysis to produce a land-cover map representing the biophysical dimension of the SES. This map is based on pixel-oriented classifications, using a 2017 Sentinel-2 satellite image and 610 GPS points, that categorized the landscape in 11 ecological classes. To study the landscape’s social dimension, we collected data on local knowledge to understand how local people perceive and use the landscape. These data were collected through 19 semi-structured individual interviews, three focus groups and 3 months of participant observation during an immersive field mission. We developed a systemic approach by combining data on biophysical and social dimensions of the landscape. Our analysis shows that in the absence of continued anthropic interventions, both savannahs and swamps dominated by herbaceous vegetation will experience closure by encroaching woody vegetation, leading to eventual biodiversity loss. Our methodology based on an SES approach to landscapes could improve the conservation programs developed by Ramsar site managers. Designing actions at the local scale, rather than applying one set of actions to the entire protected area, allows the integration of human perceptions, practices and expectations, a challenge that is more than essential in the context of global change.

Highlights

  • Integrates remote sensing and local knowledge, including perceptions and practices, to develop a socio-ecological approach to the landscape.

  • Shows the advantages of using an approach based on local knowledge to map and study tropical wetlands and understand their dynamics.

  • Uses comprehension of the links between land use and land cover to produce spatial information on a specific wetland that is difficult to monitor.

  • Enables a better understanding of human-environment interactions and their associated ecosystem services within the Bas-Ogooué Ramsar site.

  • Can contribute to integration of the perceptions and practices of local populations in the planning of conservation and development programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The remote sensing image (2017 Sentinel-2 satellite image) is available online (https://earthexplorer.usgs.gov). Because of restrictions imposed by ethics committee, other data have not been publicly deposited, but our main results can be found on the Vulcar-Fate project website (https://vulcar-fate.obs-mip.fr/). Upon reasonable request, the corresponding author may make available certain data following agreement by the principal investigator of the research project of which this study is a part.

References

  • Abreu RC, Hoffmann WA, Vasconcelos HL, Pilon NA, Rossatto DR, Durigan G (2017) The biodiversity cost of carbon sequestration in tropical savanna. Sci Adv 3(8):e1701284[Online]. https://doi.org/10.1126/sciadv.1701284

    Article  Google Scholar 

  • Adam E, Mutanga O, Abdel-Rahman EM, Ismail R (2014) Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: Exploratory of in situ hyperspectral indices and random forest regression. Int J Remote Sens 35(2):693–714. https://doi.org/10.1080/01431161.2013.870676

    Article  Google Scholar 

  • Azevedo JA, Valdujo PH, de C Nogueira C (2016) Biogeography of anurans and squamates in the Cerrado hotspot: coincident endemism patterns in the richest and most impacted savanna on the globe. J Biogeogr 43(12):2454–2464. https://doi.org/10.1111/jbi.12803

    Article  Google Scholar 

  • Azzurro E, Moschella P, Maynou F (2011) Tracking signals of change in Mediterranean fish diversity based on local ecological knowledge. PLoS One 6(9):e24885[Online]. https://doi.org/10.1371/journal.pone.0024885

    Article  CAS  Google Scholar 

  • Beaudreau AH, Levin PS (2014) Advancing the use of local ecological knowledge for assessing data-poor species in coastal ecosystems. Ecol Appl 24(2):244–256. https://doi.org/10.1890/13-0817.1

    Article  Google Scholar 

  • Berkes F, Colding J, Folke C (2008) Introduction. In: Berkes F, Colding J, Folke C (eds) Navigating social-ecological systems: Building resilience for complexity and change. Cambridge University Press, Cambridge, UK, p 1–29

    Google Scholar 

  • Bond WJ (2019) Open ecosystems. Ecology and evolution beyond the forest edge. Oxford University Press, Oxford, UK, p 192. 10.1093/oso/9780198812456.001.0001

    Book  Google Scholar 

  • Bonilla-Moheno M, Rangel Rivera CE, García-Frapolli E, Ríos Beltrán FL, Espadas-Manrique C, Aureli F, Ayala-Orozco B, Ramos-Fernández G (2021) Changes in the socio-ecological system of a protected area in the Yucatan peninsula: a case study on land-use, vegetation cover, and household management strategies. Land 10(11):1147[Online]. https://doi.org/10.3390/land10111147

    Article  Google Scholar 

  • Boucka FN, Obame CV, Manfoumbi F, Armel NZUE, Michel NGUI, Ovono V, Ndjoungui AM (2021) Cartographie de l’occupation du sol du Gabon en 2015-changements entre 2010 et 2015. Rev Française de Photogrammétrie et de Télédétection 223:118–128. https://doi.org/10.52638/rfpt.2021.567

    Article  Google Scholar 

  • Bucini G, Lambin EF (2002) Fire impacts on vegetation in Central Africa: A remote-sensing-based statistical analysis. Appl Geogr 22(1):27–48. https://doi.org/10.1016/s0143-6228(01)00020-0

    Article  Google Scholar 

  • Buisson E, Archibald S, Fidelis A, Suding KN (2022) Ancient grasslands guide ambitious goals in grassland restoration. Science 377(6606):594–598. https://doi.org/10.1126/science.abo4605

    Article  CAS  Google Scholar 

  • Clec’h SL, Oszwald J, Jégou N, Dufour S, Cornillon PA, Miranda IDS, Gonzaga L, Grimaldi M, Gond V, de Sartre XA (2013) Cartographier le carbone stocké dans la végétation: Perspectives pour la spatialisation d’un service écosystémique. Bois et êts Trop 316:35–47. https://doi.org/10.19182/bft2013.316.a20529

    Article  Google Scholar 

  • Dawson NM, Coolsaet B, Sterling EJ, Loveridge R, Gross-Camp ND, Wongbusarakum S, Sangha KK, Scherl LM, Phuong Phan H, Zafra-Calvo N, Lavey WG, Byakagaba P, Idrobo CJ, Chenet A, Bennett NJ, Mansourian S, Rosado-May FJ (2021) The role of Indigenous peoples and local communities in effective and equitable conservation. Ecol Soc 26(3):19[Online]. https://doi.org/10.5751/ES-12625-260319

    Article  Google Scholar 

  • Del Rio T, Groot JC, DeClerck F, Estrada-Carmona N (2018) Integrating local knowledge and remote sensing for eco-type classification map in the Barotse Floodplain, Zambia. Data Brief 19:2297–2304. https://doi.org/10.1016/j.dib.2018.07.009

    Article  Google Scholar 

  • De Araujo Barbosa CC, Atkinson PM, Dearing JA (2015) Remote sensing of ecosystem services: A systematic review. Ecol Indic 52:430–443. https://doi.org/10.1016/j.ecolind.2015.01.007

    Article  Google Scholar 

  • Demichelis C, Oszwald J, Gasquet-Blanchard C, Narat V, Bokika JC, Pennec F, Giles-Vernick T (2020) Multidimensional analysis of landscape dynamics in a Central African forest-savannah mosaic. Afr J Ecol 58(4):692–708. https://doi.org/10.1111/aje.12750

    Article  Google Scholar 

  • Engo APM (2014) Étude et analyse anthropologique de la politique environnementale au Gabon: le cas du parc national des Monts De Cristal. Doctoral dissertation, University of Strasbourg, France, p 466, https://theses.hal.science/tel-02364449

    Google Scholar 

  • Eva H, Lambin EF (2000) Fires and land-cover change in the tropics: A remote sensing analysis at the landscape scale. J Biogeogr 27(3):765–776. https://doi.org/10.1046/j.1365-2699.2000.00441.x

    Article  Google Scholar 

  • Fichet, LV, Sannier C, Makaga EM, Seyler F, Mertens B (2012) Monitoring forest cover change at national level in Gabon for 1990, 2000 and 2010 with optical imagery. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (pp. 1668–1671), Munich, Germany, p 1668–1971. https://doi.org/10.1109/IGARSS.2012.6351206

  • Frampton WJ, Dash J, Watmough G, Milton EJ (2013) Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J Photogramm Remote Sens 82:83–92. https://doi.org/10.1016/j.isprsjprs.2013.04.007

    Article  Google Scholar 

  • Gond V, Cornu G, Viennois G, Betbeder J, Rejou-Mechain M, Fayolle A, Gourlet-Fleury S, Baghdadi N, Barbier N, Mortier F, Benedet F, Doumenge C (2016) De l’arbre au satellite: comment cartographier la diversité des forêts tropicales d’Afrique Centrale? In: Rakotoarisoa NR, Blackmore S, Riera B (eds) Botanists of the twenty-first century: Roles, challenges and opportunities. UNESCO, Paris, France, p 112–118

    Google Scholar 

  • Huntington HP (2000) Using traditional ecological knowledge in science: Methods and applications. Ecol Appl 10(5):1270–1274. https://doi.org/10.2307/2641282

    Article  Google Scholar 

  • Jiang Y, Zhou L, Raghavendra A (2020) Observed changes in fire patterns and possible drivers over Central Africa. Environ Res Lett 15(9):0940b8[Online]. https://doi.org/10.1088/1748-9326/ab9db2

    Article  Google Scholar 

  • Kabuanga JM, Kankonda OM, Horning N, Saqalli M, Maestripieri N, Imwangana FM, Mané L (2020) Random forest algorithm for mapping deforestation in the Ituri-Epulu-Aru landscape (Democratic Republic of Congo). Preprints [Online]. https://doi.org/10.20944/preprints202012.0752.v1

  • Kerr JT, Ostrovsky M (2003) From space to species: Ecological applications for remote sensing. Trends Ecol Evol 18(6):299–305. https://doi.org/10.1016/s0169-5347(03)00071-5

    Article  Google Scholar 

  • Kono LD, Essono DM, Ambombo ME, Bindzi MAM, Biye EH (2020) Influence des facteurs biotopiques sur les stocks de carbone des marécages à herbacées de la ville de Yaoundé (Cameroun) et ses environs. Afr Sci 16(6):1–13 [Online]. ISSN 1813-548X

    Google Scholar 

  • Laporte N, Justice C, Kendall J (1995) Mapping the dense humid forest of Cameroon and Zaire using AVHRR satellite data. Int J Remote Sens 16(6):1127–1145. https://doi.org/10.1080/01431169508954467

    Article  Google Scholar 

  • Leifeld J, Menichetti L (2018) The underappreciated potential of peatlands in global climate change mitigation strategies. Nat Commun 9(1):1–7. https://doi.org/10.1038/s41467-018-03406-6

    Article  CAS  Google Scholar 

  • Leng LY, Ahmed OH, Jalloh MB (2019) Brief review on climate change and tropical peatlands. Geosci Front 10(2):373–380. https://doi.org/10.1016/j.gsf.2017.12.018

    Article  Google Scholar 

  • Mallick J, Talukdar S, Pal S, Rahman A (2021) A novel classifier for improving wetland mapping by integrating image fusion techniques and ensemble machine learning classifiers. Ecol Inform 65:101426[Online]. https://doi.org/10.1016/j.ecoinf.2021.101426

    Article  Google Scholar 

  • Mayaux P, Richards T, Janodet E (1999) A vegetation map of Central Africa derived from satellite imagery. J Biogeogr 26(2):353–366. https://doi.org/10.1046/j.1365-2699.1999.00270.x

    Article  Google Scholar 

  • Mayaux P, Gond V, Massart M, Pain-Orcet M, Achard F (2003) Evolution du couvert forestier du bassin du Congo mesurée par télédétection spatiale. Bois et êts Trop 57(277):45–52. https://doi.org/10.19182/bft2003.277.a20183

    Article  Google Scholar 

  • Mayaux P, Bartholomé E, Fritz S, Belward A (2004) A new land-cover map of Africa for the year 2000. J Biogeogr 31(6):861–877. https://doi.org/10.1111/j.1365-2699.2004.01073.x

    Article  Google Scholar 

  • Melton JR, Chan E, Millard K, Fortier M, Winton RS, Martín-López JM, Cadillo-Quiroz H, Kidd D, Verchot LV(2022) A map of global peatland extent created using machine learning (Peat-ML). Geosci Model Dev 15:4709–4738. https://doi.org/10.5194/gmd-15-4709-2022

    Article  CAS  Google Scholar 

  • Meunier Q, Moumbogou C, Doucet JL (2015) Les arbres utiles du Gabon. Presses agronomiques de Gembloux, Liège, Belgique, p 340. ISBN 978-2-87016-134-0

    Google Scholar 

  • Mistry J, Berardi A (2016) Bridging indigenous and scientific knowledge. Science 352(6291):1274–1275. https://doi.org/10.1126/science.aaf1160

    Article  CAS  Google Scholar 

  • Moumaneix C, Nkombe R (2017) Le « Gabon vert », pilier de l’émergence? Exemple du parc national de la Lopé: ressources, conflits et arrangements. Bull de l’Assoc Géogr Fr 94(2):330–352. https://doi.org/10.4000/bagf.1506

    Article  Google Scholar 

  • Nerlekar AN, Chorghe AR, Dalavi JV, Kusom RK, Karuppusamy S, Kamath V, Pokar R, Rengaian G, Sardesai MM, Kambale SS (2022) Exponential rise in the discovery of endemic plants underscores the need to conserve the Indian savannas. Biotropica 54(2):405–417. https://doi.org/10.1111/btp.13062

    Article  Google Scholar 

  • Ostrom E (2009) A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 325(5939):419–422. https://doi.org/10.1126/science.1172133

  • Oszwald J, Atta JMK, Kergomard C, Robin M (2007) Représenter l’espace pour structurer le temps: approche des dynamiques de changements forestiers dans le sud-est de la Côte d’Ivoire par télédétection. Télédétection 7:271–282. halshs-00437064

    Google Scholar 

  • Oszwald J, Gond V, Tchiengué B, Boucka FN, Dallery D, Garcia C (2015) Description des éléments paysagers des classifications d’occupation des sols. Projet CoForTips, rapport technique, Cameroun, Yaoundé, p 40, https://www.cofortips.org/content/download/4263/32571/version/2/file/Oszwald_2015_Rapport_CoForTips_paysage.pdf

    Google Scholar 

  • Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetl Ecol Manag 10:381–402. https://doi.org/10.1023/A:1020908432489

    Article  Google Scholar 

  • Palla, F. (2012) Caractérisation des groupements végétaux d’une mosaique forêt-savane: Traits d’histoire de vie et images Radar, des outils d’aide à gestion d’une aire protégée. Éditions universitaires européennes, p 193-207. ISBN 978-3-8381-8003-8

  • Philippe MT, Karume K (2019) Assessing Forest cover change and deforestation hot-spots in the north Kivu Province, DR-Congo using remote Sensing GIS. Am J Geogr Inform Syst 8(2):39–54. https://doi.org/10.5923/j.ajgis.20190802.01

    Article  Google Scholar 

  • Ploton P, Viennois G, Féret JB, Sonké B, Couteron P, Barbier N (2022) Monitoring vegetation dynamics with open earth observation tools: the case of fire-modulated savanna to forest transitions in Central Africa. ISPRS J Photogramm Remote Sens 188:142–156. https://doi.org/10.1016/j.isprsjprs.2022.04.008

    Article  Google Scholar 

  • Potapov P, Yaroshenko A, Turubanova S, Dubinin M, Laestadius L, Thies C, Aksenov D, Egorov A, Yesipova Y, Glushkov I, Karpachevskiy M, Kostikova A, Manisha A, Tsybikova E, Zhuravleva I (2008) Mapping the world’s intact forest landscapes by remote sensing. Ecol Soc 13(2):1–16. https://doi.org/10.5751/es-02670-130251

    Article  Google Scholar 

  • Pottier P, Allogho-Nkoghe FM, Koumba JP, Ntsame Ondo N (2017) Chapitre 7-L’urbanisation à l’assaut du littoral du Gabon. In: Pottier P, Menie Ovono Z, Faure FE, Bignoumba GS (eds) Les Régions littorales du Gabon. Éléments de réflexion pour une planification stratégique du territoire. Géolittomer, Raponda-Walker, France, Gabon, p 181–195. ISBN 978-2-9552583-2-3

    Google Scholar 

  • Puttick JR, Timm Hoffman M, O’Connor TG (2022) The effect of changes in human drivers on the fire regimes of South African grassland and savanna environments over the past 100 years. Afr J Range Forage Sci 39(1):107–123. https://doi.org/10.2989/10220119.2022.2033322

    Article  Google Scholar 

  • Reyes-García V, Fernández-Llamazares Á, García-del-Amo D, Cabeza M (2020) Operationalizing local ecological knowledge in climate change research: challenges and opportunities of citizen science. In: Welch-Devine M, Sourdril A, Burke B (eds) Changing Climate, Changing Worlds. Ethnobiology book series. Springer, Cham, p 183–197. 10.1007/978-3-030-37312-2_9

    Chapter  Google Scholar 

  • Sannier C, McRoberts RE, Fichet LV, Makaga EMK (2014) Using the regression estimator with Landsat data to estimate proportion forest cover and net proportion deforestation in Gabon. Remote Sens Environ 151:138–148. https://doi.org/10.1016/j.rse.2013.09.015

    Article  Google Scholar 

  • Sebag D, Brémond L, Jeffery KJ, Nguetsop F, Oslisly R, Oszwald J, Saulieu Gde (2016) Le rôle des bas-fonds dans l’évolution des paysages du Parc National de la Lopé. In: de Saulieu G, Elouga M, Sonké B (eds) Pour une écologie historique en Afrique centrale. IRD, Yaoundé AUF, Yaoundé, Cameroun, p 141–156

    Google Scholar 

  • Silvano RAM, Valbo-Jørgensen J (2008) Beyond fishermen’s tales: Contributions of fishers’ local ecological knowledge to fish ecology and fisheries management. Environ, Dev Sustain 10(5):657–675. 10.1007/s1066 8-008-9149-0

    Article  Google Scholar 

  • Sonwa DJ, Lewis SL, Ifo SA, Ewango C, Mitchard ETA, Dargie GC, Lawson IT, Gourlet-Fleury S, Doumenge C, Gond V, Betbeder J, Kamdem Toham A, Van Offelen J, Kopansky D, D’Annunzio R, Monsembula R, Nuutinen M, Villegas L, Milliken K, Philippon N, Bigot S, Freeman OE, Bambuta JJ, Jungers Q, Roman-Cuesta R (2022) Les tourbières de la cuvette centrale du bassin du Congo. Réalités et perspectives. In: Eba’a Atyi R, Hiol Hiol F, Lescuyer G, Mayaux P, Defourny P, Bayol N, Saracco F, Pokem D, Sufo Kankeu R, Nasi R (eds) Les forêts du bassin du Congo: état des forêts 2021. CIFOR, Bogor Barat, Indonesia, p 255–282. https:ifor.org/knowledge/publication/8574

    Google Scholar 

  • Stevens N, Lehmann CE, Murphy BP, Durigan G (2017) Savanna woody encroachment is widespread across three continents. Glob Change Biol 23(1):235–244. https://doi.org/10.1111/gcb.13409

    Article  Google Scholar 

  • Sulieman HM, Ahmed AGM (2013) Monitoring changes in pastoral resources in eastern Sudan: A synthesis of remote sensing and local knowledge. Pastoralism: Res, Policy Pract 3(1):22[Online]. https://doi.org/10.1186/2041-7136-3-22

    Article  Google Scholar 

  • Van Passel J, De Keersmaecker W, Somers B (2020) Monitoring woody cover dynamics in tropical dry forest ecosystems using Sentinel-2 satellite imagery. Remote Sens 12(8):1276 [Online]. https://doi.org/10.3390/rs12081276

    Article  Google Scholar 

  • Vancutsem C, Pekel J-F, Evrard C, Malaisse F, Defourny P (2009) Mapping and characterizing the vegetation types of the Democratic Republic of Congo using SPOT VEGETATION time series. Int J Appl Earth Obs Geoinform 11(1):62–76. https://doi.org/10.1016/j.jag.2008.08.001

    Article  Google Scholar 

  • Vande Weghe JP, Bidault E, Stévart T (2016) Plantes à fleurs du Gabon. Agence Nationale des Parcs Nationaux, Libreville, Gabon, p 792. ISBN 979-10-94862-00-1

    Google Scholar 

  • Verhegghen A, Eva H, Ceccherini G, Achard F, Gond V, Gourlet-Fleury S, Cerutti PO (2016) The potential of Sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests. Remote Sens 8(12):986[Onlmine]. https://doi.org/10.3390/rs8120986

    Article  Google Scholar 

  • Viennois G, Stévart T, Weghe JPV, Saatchi S, Schill S, Aldous A, Paiz MC, Boupoya A, Barbier N (2017) Cartographie de la végétation. In: Vande Weghe JP, Stévart T (eds) Le delta de l’Ogooué. Agence Nationale des Parcs Nationaux, Libreville, Gabon, p 199–222. ISBN 979-10-94862-01-8. 〈hal-01614663〉

    Google Scholar 

  • Walters GM, Nguema D, Niangadouma R (2022) Flora and fire in an old-growth Central African forest-savanna mosaic. Plant Ecol Evol 155(2):189–206. https://doi.org/10.5091/plecevo.85954

    Article  Google Scholar 

  • Wheeler HC, Root‐Bernstein M (2020) Informing decision‐making with Indigenous and local knowledge and science. J Appl Ecol 57(9):1634–1643. https://doi.org/10.1111/1365-2664.13734

    Article  Google Scholar 

  • White L, Abernethy K (1997) A guide to the vegetation of the Lopé Reserve. Wildlife Conservation Society, ECOFAC Gabon, Libreville, p 224. ISBN 0-9632064-2-7

    Google Scholar 

  • Williams RJ, Cook GD, Liedloff AC, Bond WJ (2017) Australia’s tropical savannas: vast, ancient and rich landscapes. In: Keith DA (eds) Australian vegetation. Cambridge University Press, Cambridge, UK, p 368–388. 10.1017/9781316339701

    Google Scholar 

  • Yiran GAB, Kusimi JM, Kufogbe SK (2012) A synthesis of remote sensing and local knowledge approaches in land degradation assessment in the Bawku East District, Ghana. Int J Appl Earth Obs Geoinform 14(1):204–213. https://doi.org/10.1016/j.jag.2011.09.016

    Article  Google Scholar 

  • Zhou Y, Singh J, Butnor JR, Coetsee C, Boucher PB, Case MF, Hockridge EG, Davies AB, Staver AC (2022) Limited increases in savanna carbon stocks over decades of fire suppression. Nature 603(7901):445–449. https://doi.org/10.1038/s41586-022-04438-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the entire ANPN team for their support in the organization of the field mission, especially Karl, a local ecoguard who was our main interlocutor and support in the field. We sincerely thank the European Space Agency (ESA) for making the Sentinel-2 satellite image freely available. Finally, we are most grateful to all local participants in this study for their hospitality and knowledge, and especially to Rogo, for his daily support all around the landscape mosaic, and to Serge, for his help in organizing focus groups and interviews, in addition to his daily drive of the dugout canoe on the Ogooué River.

Funding

This work is part of the VULCAR-FATE project (Global change impact on vulnerable carbon reservoirs: carbon sequestration and emissions in soils and waters From the Arctic To the Equator, 2021–2024), supported by the Belmont Forum and funded by the French National Research Agency [grant numbers ANR-21-SOIL-0005]. In addition, the Belmont Soils 2020 International Scholarship awarded by the U.S. National Science Foundation also allowed extension of the initial duration of the field mission for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CD and JO. The first draft of the manuscript was written by CD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Christophe Demichelis.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Consent to Participate and Publish

All participants in this study were voluntary and signed a consent form after a presentation of the project. During this presentation, the use of the collected data for the publication of scientific papers and reports was explicitly explained. All data collected were anonymized to protect the integrity of the participants.

Ethics Approval

All data collection protocols for the project were approved by the France’s Institute for Development Research (IRD) Review Board and the VULCARE-FATE ethics committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demichelis, C., Oszwald, J., Mckey, D. et al. Socio-Ecological Approach to a Forest-Swamp-Savannah Mosaic Landscape Using Remote Sensing and Local Knowledge: a Case Study in the Bas-Ogooué Ramsar Site, Gabon. Environmental Management 72, 1241–1258 (2023). https://doi.org/10.1007/s00267-023-01827-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-023-01827-8

Keywords

Navigation