Skip to main content
Log in

The earliest record of the genus Cola (Malvaceae sensu lato: Sterculioideae) from the Late Oligocene (28–27 Ma) of Ethiopia and leaf characteristics within the genus

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

A fossil leaf compression from the Late Oligocene (28–27 Ma) of northwestern Ethiopia is the earliest record of the African endemic moist tropical forest genus Cola (Malvaceae sensu lato: Sterculioideae). Based on leaf and epidermal morphology, the fossil is considered to be very similar to two extant Guineo-Congolian species but differences warrant designation of a new species. This study also includes a review of the fossil record of Cola, a comprehensive summary of leaf characteristics within several extant species of Cola, Octolobus, and Pterygota, and a brief discussion of the paleogeographic implications of the fossil species affinity and occurrence in Ethiopia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2–7
Fig. 8–15
Fig. 16–23
Fig. 24

Similar content being viewed by others

References

  • Alverson WS, Whitlock BA, Nyffeler R, Bayer C, Baum DA (1999) Phylogeny of the core Malvales: evidence from ndhF sequence data. Am J Bot 86:1474–1486

    Article  CAS  PubMed  Google Scholar 

  • Bayer C, Kubitzki K (2003) Malvaceae. In: Kubitzki K, Bayer C (eds) The families and genera of vascular plants. Springer, Berlin, pp 225–310

    Google Scholar 

  • Bodard M (1962) Contributions a l’étude systématique du genre Cola en Afrique Occidentale. Annales de Faculté des Sciences de l’Université de Dakar 7:1–187

    Google Scholar 

  • Brenan JPM (1978) A new species of Cola (Sterculiaceae) from East Africa. Kew Bull 33:283–286

    Article  Google Scholar 

  • Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research 100:6093–6095

    Article  Google Scholar 

  • Cheek M (2002) A new species of Cola (Sterculiaceae) from the Usambara Mountains, Tanzania. Kew Bull 57:417–422

    Article  Google Scholar 

  • Cheek M, Frimodt-Møller C (1998) The genus Octolobus (Sterculiaceae) new to East Africa. Kew Bull 53:682

    Article  Google Scholar 

  • Cheek M, Cable S, Hepper FN, Ndam N, Watts J (1996) Mapping plant diversity on Mount Cameroon. In: van der Maesen LJG, van der Burgt XM, de Rooy JM (eds) The Biodiversity of African Plants: Proceedings XIV AETFAT Congress 22–27 August 1994. Kluwer Academic Publishers, Wageningen, pp 110–120

    Google Scholar 

  • Coates Palgrave K (1977) Trees of Southern Africa. C. Struik Publishers, Cape Town

    Google Scholar 

  • Dilcher DL (1974) Approaches to the identification of angiosperm leaf remains. The Bot Rev 40:1–157

    Article  Google Scholar 

  • Ellis B, Daly DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL (2009) Manual of leaf architecture. Cornell University Press, Ithaca

    Google Scholar 

  • Friis I (1992) Forests and forest trees of northeast tropical Africa. Royal Botanic Gardens, Kew

    Google Scholar 

  • García Massini JL, Jacobs BF, Pan AD, Tabor N, Kappelman J (2006) The occurrence of the fern Acrostichum in Oligocene volcanic strata of the northwestern Ethiopian plateau. International Journal of Plant Sciences 167:909–918

    Article  Google Scholar 

  • Gehrig M (1938) Beiträge zur Pharmakognosie der Malvales. Anatomie des Laubblattes. Thesis, Base

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographic gradients. Ann Mo Bot Gard 75:1–34

    Article  Google Scholar 

  • Germain R (1963) Flora Du Congo & du Rwanda et du Burundi. Spermatophytes 10(88): Sterculiaceae. Jardin botanique national de Belgique, Brussels

  • Hallé N (1961) Flore du Gabon, volume 2: Sterculiacées. Muséum National d’Histoire Naturelle, Paris

    Google Scholar 

  • Hamilton A (1968) Some plant fossils from Bukwa. Ug J 32:157–164

    Google Scholar 

  • Hamilton AC (1976) The significance of pattern of distribution. Palaeoecol Afr Surround Isl 9:63–97

    Google Scholar 

  • Holmgren M, Poorter L, Siepel A, Bongers F, Buitelaar M, Chatelain C, Gautier L, Hawthorne WD, Helmink ATF, Jongkind CCH, Os-Breijer HJ, Wieringa JJ, van Zoest AR (2004) Ecological profiles of rare and endemic species. In: Poorter L, Bongers F, Kouamé FN, Hawthorne WD (eds) Biodiversity of West African Forests: an ecological atlas of woody plant species. CABI Publishing, Oxford, pp 101–389

    Google Scholar 

  • Inamdar JA, Balakrishna Baht R, Ramana Rao TV (1983) Structure, ontogeny, classification, and taxonomic significance of trichomes in Malvales. K J Bot 26:151–160

    Google Scholar 

  • Jacobs BF, Winkler DA (1992) Taphonomy of a middle Miocene autochthonous forest assemblage, Ngorora Formation, central Kenya. Palaeogeogr Palaeoclimatol Palaeoecol 99:31–40

    Article  Google Scholar 

  • Jacobs BF, Tabor N, Feseha M, Pan A, Kappelman J, Rasmussen T, Sanders W, Wiemann M, Crabaugh J, Garcia Massini JL (2005) Oligocene-age (32.7–27.5 Ma) terrestrial strata of northwestern Ethiopia: lithology, paleontology, and paleoclimate. Palaeontologia Electronica 8:1–19. http://palaeoelectronica.org/2005_1/jacobs25/issue1_05.htm

  • Judd WS, Manchester SR (1997) Circumscription of Malvaceae (Malvales) as determined by a preliminary cladistic analysis of morphological, anatomical, palynological, and chemical characters. Brittonia 49:384–405

    Article  Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ (2008) Plant systematics: a phylogenetic approach, 3rd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Kappelman J, Rasmussen DT, Sanders WJ, Feseha M, Bown T, Copeland P, Crabaugh J, Fleagle J, Glantz M, Gordon A, Jacobs B, Maga M, Muldoon K, Pan A, Pyne L, Richmond B, Ryan T, Seiffert ER, Sen S, Todd L, Wiemann MC, Winkler A (2003) Oligocene mammals from Ethiopia and faunal exchange between Afro-Arabia and Eurasia. Nature 426:549–552

    Article  CAS  PubMed  Google Scholar 

  • Keay RWJ, Brenan JPM (1973) Cola. In: Keay RWJ (ed) Flora of West Tropical Africa, volume 1, part 2, 2nd edn. The Whitefriare Press Ltd., London, pp 321–332

    Google Scholar 

  • Koeniguer JC (1973) Les bois hétéroxylés de l’oasis de Kirdimi (Tchad). C.R. 96e Congr. Nat. Soc. Sav., Toulouse, 1971. Paris Sci 5:191–214

  • Lebrun J-P, Stork AL (2003) Tropical African flowering plants: ecology and distributions, volume 1 Annonaceae-Balanitaceae. Conservatoire et Jardin botanique de la ville de Genève, Switzerland

    Google Scholar 

  • Lemoigne Y (1978) Flores tertiaires de la haute vallée de l’Omo (Ethiopia) Palaeontogr. Abt B Palaeophytol 165:89–157

    Google Scholar 

  • Linder HP (2001) Plant diversity and endemism in sub-Saharan tropical Africa. J Biogeogr 28:169–182

    Article  Google Scholar 

  • Mabberley DJ (1997) The plant book: a portable dictionary of vascular plants, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Mack GH, James WC, Monger HC (1993) Classification of paleosols. Geol Soc Am Bull 105:129–136

    Article  Google Scholar 

  • MacLatchy L, Deino A, Kingston J (2006) An updated chronology for the Early Miocene of NE Uganda. J Vertebr Paleontol 26(Supplement to 3):93A, abstract

  • Menzel P (1920) Über Pflanzenreste aus Basalttuffen des Kamerungebietes. Beiträge zur Geologischen Erforschung der Deutschen Schutzgebiete 18:17–32

    Google Scholar 

  • Metcalfe CR, Chalk L (1950) Anatomy of the dicotyledons, volume I. Oxford University Press, London

    Google Scholar 

  • Mohr PA (1971) The geology of Ethiopia. Addis Ababa University Press, Addis Ababa

    Google Scholar 

  • Monteillet J, Lappartient J-R (1981) Fruits et graines du Cretace superieur des carriers de Paki (Senegal). Rev Palaeobot Palynol 34:331–344

    Article  Google Scholar 

  • Nkongmeneck B-A (1985) Un nouveau Cola (Sterculiaceae) du Cameroun. Bull. Mus. natn. Hist. nat. Paris, 4e sér., 7, section B. Adansonia 3:337–339

    Google Scholar 

  • Pan AD (2007) The Late Oligocene (28–27 Ma) Guang River flora from the northwestern plateau of Ethiopia. Dissertation, Southern Methodist University, Dallas

  • Pan AD, Jacobs BF, Dransfield J, Baker WJ (2006) The fossil history of palms (Arecaceae) in Africa and new records from the Late Oligocene (28–27 Mya) of north-western Ethiopia. Bot J Linn Soc 151:69–81

    Article  Google Scholar 

  • Phillips O, Miller JS (2002) Global patterns of plant diversity: Alwyn H. Gentry’s forest transect data set. Missouri Botanical Garden, St. Louis

    Google Scholar 

  • Sanders WJ, Kappelman J, Rasmussen DT (2004) New large-bodied mammals from the late Oligocene site of Chilga, Ethiopia. Acta Palaeontologica Polonica 49:365–392

    Google Scholar 

  • Verdoorn IC (1981) The genus Cola in southern Africa. Bothalia 13:277–279

    Google Scholar 

  • Vincens A, Tiercelin J-J, Buchet G (2006) New Oligocene-early Miocene microflora from the southwestern Turkana Basin, palaeoenvironmental implications in the northern Kenya Rift. Palaeogeography Palaeoclimatology Palaeoecology 239:470–486

    Article  Google Scholar 

  • Vollesen K (1995) Sterculiaceae. In: Edwards S, Tadesse M, Hedberg I (eds) Flora of Ethiopia and Eritrea, volume 2, part 2: Canellaceae to Euphorbiaceae. The National Herbarium and Uppsala University, Addis Ababa and Uppsala, pp 165–185

    Google Scholar 

  • White F, Dowsett-Lemaire F, Chapman JD (2001) Evergreen forest flora of Malawi. Royal Botanic Gardens, Kew

    Google Scholar 

  • Wilkie P, Clark A, Pennington RT, Cheek M, Bayer C, Wilcock CC (2006) Phylogenetic relationships within the subfamily Sterculioideae (Malvaceae/Sterculiaceae-Sterculieae) using the chloroplast gene ndhF. Syst Bot 31:160–170

    Article  Google Scholar 

  • Yemane K, Robert C, Bonnefille R (1987) Pollen and clay mineral assemblages of a late Miocene lacustrine sequence from the northwestern Ethiopian highlands. Palaeogeogr Palaeoclimatol Palaeoecol 60:123–141

    Google Scholar 

Download references

Acknowledgment

We would like to thank the Authority for Research and Conservation of Cultural Heritage, the Ministry of Culture and Tourism, Ethiopia, and especially Ato Jara for permission to conduct our continuing research in northwestern Ethiopia, and the Director Mamitu Yilga and staff of the National Museum, Addis Ababa, and the Gondar ARCCH and Chilga Ministry of Culture and Sports Affairs for logistical support. We thank the Missouri Botanical Garden, the Royal Botanic Gardens at Kew, and the collectors of the herbaria specimens examined for assistance and access to their collections. We are grateful to the National Museums of Kenya, the Baringo Paleontological Research Project, the East African Herbarium, and Christine Kabuye for their collaborative support of work in Kenya. This project was funded by grants from the National Science Foundation (EAR-0001259, EAR-0240251, and EAR-0617306), the National Geographic Society, and the Dallas Paleontological Society. Tillehun Selassie, Misege Birara, Habtewold Habtemichael, Mesfin Mekonnen, and Drs. Ambachew Kebede and Aklilou Asfaw provided valuable field assistance. We thank Dr. Martin Cheek for generously sharing information about Cola and other sterculioids, for providing advice, and for supplying cuticle specimens from the Royal Botanic Gardens at Kew. We are grateful to Dr. Thomas Denk for images of the Cameroon sterculioid fossils housed at the Swedish Museum of Natural History. We also appreciatively acknowledge help from Yohannes Desta, Yeshiwass Sitotaw, Gebremeskel Ayele, Elias Addissu, and Teshome Yohannes at Chilga and laboratory assistance from Kathryn Larson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron David Pan.

Appendix

Appendix

Leaf and epidermal characteristics and states

  1. 1.

    Leaf type: (0) simple, (1) palmately compound, (2) pinnately compound

  2. 2.

    Leaf(let) shape: (0) elliptic, (1) obovate, (2) ovate, (3) oblong, (4) special (needles, awls, etc.)

  3. 3.

    Leaf(let) attachment: (0) petiolate [petiolulate for compound-leaved species], (1) subsessile/sessile

  4. 4.

    Leaf(let) texture: (0) chartaceous (1) semicoriaceous, (2) coriaceous

  5. 5.

    Leaf(let) margin type: (0) entire, (1) lobed, (2) toothed

  6. 6.

    Leaf(let) base angle: (0) acute, (1) obtuse, (2) wide obtuse

  7. 7.

    Leaf(let) base shape: (0) cuneate/concave/decurrent, (1) convex/rounded, (2) truncate, (3) subcordate/cordate/lobate

  8. 8.

    Leaf(let) apex morphology: (0) acute, (1) subacuminate, (2) acuminate, (3) obtuse/rounded/slightly emarginate, (4) deltate/cuspidate, (5) emarginate

  9. 9.

    Primary venation: (0) pinnate, (1) tri-nerved at the base, (2) palmately veined

  10. 10.

    Number of secondary vein pairs: (0) 0–5; (1) 6–10; (2) 11–15; (3) >16

  11. 11.

    Secondary vein categories: (0) brochidodromous, (1) eucamptodromous, (2) festooned brochidodromous, (3) cladodromous, (4) reticulodromous, (5) toothed-craspedodromous, (6) toothed-semicraspedodromous, (7) toothed-festooned semicraspedodromous

  12. 12.

    Tertiary venation: (0) random reticulate, (1) opposite percurrent, (2) alternate percurrent, (3) mixed opposite/alternate percurrent

  13. 13.

    Abaxial epidermal cell shape: (0) isodiameteric, (1) rectangular

  14. 14.

    Abaxial cell size: indicated by length (first set of numbers) and width ranges, rounded to the nearest 0.5 µm

  15. 15.

    Abaxial epidermal cell arrangement: (0) random (a combination of any of the following cellular arrangements), (1) nonrandom–tetragonal, (2) nonrandom–pentagonal, (3) nonrandom–hexagonal, (4) nonrandom–polyagonal (>6-sided cells), (5) nonrandom–linear

  16. 16.

    Abaxial anticlinal cell wall pattern: (0) straight, (1) rounded, (2) undulate

  17. 17.

    Abaxial anticlinal cell wall shape of undulation: (0) U, (1) V, (2) Ω

  18. 18.

    Abaxial epidermal cell surface ornamentation: (0) absent, (1) stippled, (2) striate

  19. 19.

    Abaxial stoma: (0) absent, (1) present

  20. 20.

    Abaxial stomatal complex type: (0) polycytic types (anomocyptic, cyclocytic), (1) anisocytic, (2) paracytic types (paracytic, brachyparacytic, amphibrachyparacytic, hemiparacytic), (3) tetracytic types (staurocytic, anomotetracytic, paratetracytic, brachyparatetracytic)

  21. 21.

    Abaxial stomatal complex chains or clusters: (0) absent, (1) present

  22. 22.

    Abaxial stomatal ornamentation: (0) absent, (1) striate, (2) papillate, (3) thickened areas on periclinal wall

  23. 23.

    Abaxial guard cells: (0) level, (1) sunken, (2) raised

  24. 24.

    Number of abaxial trichomes types: (0) glabrous/absent (no trichomes present), (1) one, (2) two, (3) three, (4) four, (5) five or more

  25. 25.

    Abaxial hair types present: (0) unicellular simple, (1) unicellular glandular, (2) multicellular glandular, (3) stellate/peltate (usually only the polygonal base is preserved),

  26. 26.

    Abaxial trichome dominance: (0) glandular trichomes predominate [≥70% glandular], (1) no trichome type predominates (29–69%), (2) stellate/peltate trichomes predominate [≥70% stellate/peltate], (3) simple hairs predominate (≥70% simple)

  27. 27.

    Abaxial glandular hair pairs: (0) absent, (1) present

  28. 28.

    Adaxial epidermal cell shape: (0) isodiameteric, (1) rectangular

  29. 29.

    Adaxial cell size: indicated by length (first set of numbers) and width ranges, rounded to the nearest 0.5 µm

  30. 30.

    Adaxial epidermal cell arrangement: (0) random (a combination of any of the following cellular arrangements), (1) nonrandom–tetragonal, (2) nonrandom–pentagonal, (3) nonrandom–hexagonal, (4) nonrandom–polyagonal (>6-sided cells), (5) nonrandom–linear

  31. 31.

    Adaxial anticlinal cell wall pattern: (0) straight, (1) rounded, (2) undulate

  32. 32.

    Adaxial anticlinal cell wall shape of undulation: (0) U, (1) V, (2) Ω

  33. 33.

    Adaxial epidermal cell surface ornamentation: (0) absent, (1) stippled, (2) striate

  34. 34.

    Adaxial stoma: (0) absent, (1) present

  35. 35.

    Adaxial stomatal complex type: (0) polycytic types (anomocyptic, cyclocytic), (1) anisocytic, (2) paracytic types (paracytic, brachyparacytic, amphibrachyparacytic, hemiparacytic), (3) tetracytic types (staurocytic, anomotetracytic, paratetracytic, brachyparatetracytic)

  36. 36.

    Abaxial stomatal complex chains or clusters: (0) absent, (1) present

  37. 37.

    Adaxial stomatal ornamentation: (0) absent, (1) striate, (2) papillate, (3) thickened areas on periclinal wall

  38. 38.

    Adaxial guard cells: (0) level, (1) sunken, (2) raised

  39. 39.

    Number of adaxial trichomes types: (0) glabrous/absent (no trichomes present), (1) one, (2) two, (3) three, (4) four, (5) five or more

  40. 40.

    Adaxial hair types present: (0) unicellar simple, (1) unicellular glandular, (2) multicellular glandular, (3) stellate/peltate (usually only the polygonal base is preserved)

  41. 41.

    Adaxial trichome dominance: (0) glandular trichomes predominate (≥70% glandular), (1) no trichome type predominates (29–69%), (2) stellate/peltate trichomes predominate (≥70% stellate/peltate), (3) simple hairs predominate (≥70% simple)

  42. 42.

    Adaxial glandular hair pairs: (0) absent, (1) present

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, A.D., Jacobs, B.F. The earliest record of the genus Cola (Malvaceae sensu lato: Sterculioideae) from the Late Oligocene (28–27 Ma) of Ethiopia and leaf characteristics within the genus. Plant Syst Evol 283, 247–262 (2009). https://doi.org/10.1007/s00606-009-0225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-009-0225-1

Keywords

Navigation