Skip to main content
Log in

The aquatic carnivorous plant Aldrovanda vesiculosa (Droseraceae) exhibits altered developmental stages in male gametophyte

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Aldrovanda vesiculosa (Droseraceae) is a rare aquatic carnivorous plant, distributed in Europe, Asia, Africa, and Australia. Aldrovanda populations can flower prolifically under favourable conditions, but seed set is very limited. We studied the structure of Aldrovanda pollen collected from flowers in different developmental stages (opened and non-opened anthers) from both European and Australian populations to elucidate pollination traits and the basis of poor seed set on the basis of microscopic observation of pollen and anther structure. Microscopic analyses of Aldrovanda pollen showed that this plant has pollen arranged in tetrads like other species in the Droseraceae family. In hydrated pollen, cytoplasmic protrusions originate from pores located along the equatorial wall of monads, and can develop into pollen tubes. Interestingly, pollen development from microspores occurs in open anthers, suggesting a delay of the developmental stages. In addition, pollen development displays altered sperm cell formation and precocious pollen germination. Precocious germination may characterize recalcitrant pollen, which naturally do not undergo dehydration before anthesis and remain partially hydrated, particularly in aquatic and wetland plants. These alterations of male gametophyte development could affect fertilization processes, and be the reason for the low reproductive capability of Aldrovanda observed both in the field and in cultures. Generally, reduced pollen longevity and very quick germination are considered an adaptation to aquatic or wet environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamec L (1995) Ecological requirements and the European distribution of the aquatic carnivorous plant Aldrovanda vesiculosa L. Folia Geobot Phytotax 30:53–61

    Google Scholar 

  • Adamec L (1999) Further notes on flowering and seed set of Aldrovanda vesiculosa. Flytrap News (Sydney) 12(4):9–12

    Google Scholar 

  • Adamec L (2000) Rootless aquatic plant Aldrovanda vesiculosa: physiological polarity, mineral nutrition, and importance of carnivory. Biol Plant 43:113–119

    CAS  Google Scholar 

  • Adamec L (2018) Biological flora of Central Europe: Aldrovanda vesiculosa L. Perspect Plant Ecol Evol Syst 35:8–21

    Google Scholar 

  • Adamec L, Tichý M (1997) Flowering of Aldrovanda vesiculosa in outdoor culture in the Czech Republic and isozyme variability of its European populations. Carniv Plant Newsl 26:99–103

    Google Scholar 

  • Angold RE (1968) The formation of the generative cell in the pollen grain of Endymion non-scriptus (L). J Cell Sci 3:573–578

    CAS  PubMed  Google Scholar 

  • Atsuzawa K, Kanaizumi D, Ajisaka M, Kamada T, Sakamoto K, Matsushima H, Kaneko K (2020) Fine structure of Aldrovanda vesiculosa L.: the peculiar lifestyle of an aquatic carnivorous plant elucidated by electron microscopy using cryo-techniques. Microscopy (in press):dfaa019. https://doi.org/10.1093/jmicro/dfaa019

  • Blackmore S, Crane PR (1988) The systematic implications of pollen and spore ontogeny. In: Humphries CJ (ed) Ontogeny and systematics. Columbia University Press, New York, USA, pp 83–115

    Google Scholar 

  • Brewbaker JL (1967) The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the angiosperms. Am J Bot 9:1069–1083

    Google Scholar 

  • Carrizo García C (2002) An approach to the diversity of endothecial thickenings in Solanaceae. Flora 197:214–223

    Google Scholar 

  • Carrizo García C, Nepi M, Pacini E (2017) It is a matter of timing: asynchrony during pollen development and its consequences on pollen performance in angiosperms—a review. Protoplasma 254:57–73

    PubMed  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation and filament elongation. Plant Cell 20:1760–1774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chanda S (1965) The pollen morphology of Droseraceae with special reference to taxonomy. Pollen Spores 7:509–528

    Google Scholar 

  • Copenhaver GP (2005) A compendium of plant species producing pollen tetrads. J N Carol Acad Sci 121:17–35

    Google Scholar 

  • Cresti M, Ciampolini F, Pacini E, Sarfatti G, Donini B (1979) Ultrastructural features of Prunus avium L. pollen tube in vivo. Caryologia 32:433–440

    Google Scholar 

  • Cross A (2012) Aldrovanda. The waterwheel plant. Redfern Natural History Productions, Poole

    Google Scholar 

  • Cross AT, Skates LM, Adamec L, Hammond CM, Sheridan PM, Dixon KW (2015) Population dynamics of the endangered aquatic carnivorous macrophyte Aldrovanda vesiculosa at a naturalised site in North America. Freshw Biol 60:1772–1783

    Google Scholar 

  • Cross AT, Adamec L, Turner SR, Dixon KW, Merritt DJ (2016) Seed reproductive biology of the rare aquatic carnivorous plant Aldrovanda vesiculosa (Droseraceae). Bot J Linn Soc 180:515–529

    Google Scholar 

  • Dawson J, Sozen E, Vizir I, Van Waeyenberge S, Wilson ZA, Mulligan BJ (1999) Characterization and genetic mapping of a mutation (ms35) which prevents anther dehiscence in Arabidopsis thaliana by affecting secondary wall thickening in the endothecium. New Phytol 144:213–222

    CAS  Google Scholar 

  • De Fossard RA (1969) Development and histochemistry of the endothecium in the anthers of in vitro grown Chenopodium rubrum L. Bot Gaz 130:10–22

    Google Scholar 

  • Elansary HOM, Adamec L, Štorchová H (2010) Uniformity of organellar DNA in Aldrovanda vesiculosa, an endangered aquatic carnivorous species, distributed across four continents. Aquat Bot 92:214–220

    CAS  Google Scholar 

  • Eliseu SA, Dinis AM (2008) Ultrastructure and cytochemistry of Eucalyptus globulus (Myrtaceae) pollen grain. Grana 47:39–51

    Google Scholar 

  • Erdtman G (1960) The acetolysis method, a revised description. Sven Bot Tidskr 54:561–564

    Google Scholar 

  • Firon N, Nepi M, Pacini E (2012) Water status and associated processes mark critical stages in pollen development and functioning. Ann Bot 109:1201–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischmann A, Cross AT, Gibson R, Gonella PM, Dixon KW (2018) Systematics and evolution of Droseraceae. In: Ellison AM, Adamec L (eds) Carnivorous plants: physiology, ecology, and evolution. Oxford University Press, Oxford, pp 45–57

    Google Scholar 

  • Franchi GG, Nepi M, Dafni A, Pacini E (2002) Partially hydrated pollen: taxonomic distribution, ecological and evolutionary significance. Plant Syst Evol 234:211–227

    CAS  Google Scholar 

  • Franchi GG, Piotto B, Nepi M, Baskin CC, Baskin JM, Pacini E (2011) Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal, and survival. J Exp Bot 62:5267–5281

    CAS  PubMed  Google Scholar 

  • Gardner RO (1975) A survey of the distribution of binucleate and trinucleate pollen in the New Zealand flora. New Zealand J Bot 13:361–366

  • Glöckle B, Urban WJ, Nagahara S, Andersen ED, Higashiyama T, Grini PE, Schnittger A (2018) Pollen differentiation as well as pollen tube guidance and discharge are independent of the presence of gametes. Development 145:e152645

    Google Scholar 

  • Gómez JF, Talle B, Wilson ZA (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 57:876–891

    PubMed  PubMed Central  Google Scholar 

  • Halbritter H, Hesse M, Weber M (2012) The unique design of pollen tetrads in Dionaea and Drosera. Grana 51:148–157

    Google Scholar 

  • Herben T, Šerá B, Klimešová J (2014) Clonal growth and sexual reproduction: tradeoffs and environmental constraints. Oikos 124:469–476

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, Moscatelli A (1988) Cytoskeletal elements, cell shaping and movement in the angiosperm pollen tube. J Cell Sci 91:49–60

    Google Scholar 

  • Johnson SA, McCormick S (2001) Pollen germinates precociously in the anthers of raring-to-go, an Arabidopsis gametophytic mutant. Plant Physiol 126:685–695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur S, Nayyar H, Bhanwra RK, Kumar S (2005) Precocious germination of pollen grains in anthers of soybean (Glycine max (L.) Merr.). Soybean Genet Newsl 32:1–10

    Google Scholar 

  • Kuprianova LA (1973) Pollen morphology within the genus Drosera. Grana 13:103–107

    Google Scholar 

  • Lora J, Herrero M, Hormaza JI (2009) The coexistence of bicellular and tricellular pollen in Annona cherimola (Annonaceae): implications for pollen evolution. Am J Bot 96:802–808

    PubMed  Google Scholar 

  • Lora J, Herrero M, Hormaza JI (2014) Microspore development in Annona (Annonaceae): differences between monad and tetrad pollen. Am J Bot 101:1508–1518

    PubMed  Google Scholar 

  • Lord E (1979) The development of cleistogamous and chasmogamous flowers in Lamium amplexicaule (Labiatae); an example of heteroblastic inflorescence development. Bot Gaz 140:39–50

    Google Scholar 

  • Manning JC (1996) Diversity of endothecial patterns in the angiosperms. In: D’Arcy WG, Keating RC (eds) The anther, form, function and phylogeny. Cambridge University Press, Cambridge, pp 136–158

    Google Scholar 

  • Marquez J, Seoane-Camba JA, Suarez-Cervera M (1997) The role of the intine and cytoplasm in the activation and germination processes of Poaceae pollen grains. Grana 36:328–342

    Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    CAS  PubMed  Google Scholar 

  • Okada H (2008) Pollination system of Aldrovanda vesiculosa (Droseraceae), a critically endangered aquatic plant in Japan. Makinoa New Ser (Kochi) 7:93–100

    Google Scholar 

  • Pacini E, Dolferus R (2019) Pollen developmental arrest: maintaining pollen fertility in a world with a changing climate. Front Plant Sci 10:e679

    Google Scholar 

  • Pacini E, Franchi GG (1982) Germination of pollen inside anthers in some non-cleistogamous species. Caryologia 35:205–215

    Google Scholar 

  • Pacini E, Hesse M (2005) Pollenkitt – its composition, forms and functions. Flora 200:399–415

    Google Scholar 

  • Pacini E, Juniper B (1984) The ultrastructure of pollen grain development in Lycopersicum peruvianum. Caryologia 37:21–50

    Google Scholar 

  • Pacini E, Jacquard C, Clément C (2011) Pollen vacuoles and their significance. Planta 234:217–227

    CAS  PubMed  Google Scholar 

  • Rodondi G, Beretta M, Andreis C (2004) The genus Drosera L. in northern Italy: pollen morphology as a taxonomic tool. Plant Biosyst 138:157–164

    Google Scholar 

  • Sahai K, Rawat KK, Gupta D (2016) A note on precocious pollen germination in Woodfordia fruticosa (L.) Kurz. Trop Plant Res 3:606–610

    Google Scholar 

  • Sahashi N, Ikuse M (1973) Pollen morphology of Aldrovanda vesiculosa. J Jap Bot 48:374–379

    Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl 1):S46–S60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sirová D, Adamec L, Vrba J (2003) Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia. New Phytol 159:669–675

    Google Scholar 

  • Takahashi H (1988) Ontogenetic development of pollen tetrads of Drosera capensis L. Bot Gaz 149:275–282

    Google Scholar 

  • Takahashi H, Sohma K (1982) Pollen morphology of the Droseraceae and its related taxa. Sci Rep Res Inst Tohoku Univ (Biol) 38:81–156

  • Vega-Maray A, Fernández-González D, Valencia-Barrera R, Seoane-Camba J, Suárez-Cervera M (2003) Ultrastructural modifications in the apertural intine of Parietaria judaica L. (Urticaceae) pollen during the early stages of hydration. Grana 42:220–226

    Google Scholar 

  • Wang Y, Chu YJ, Xue HW (2012) Inositol polyphosphate 5-phosphatase-controlled Ins(1,4,5)P3/Ca2+ is crucial for maintaining pollen dormancy and regulating early germination of pollen. Development 139:2221–2233

    CAS  PubMed  Google Scholar 

  • Weber HE (1995) Aldrovanda. In: Hegi G (ed) Illustrierte Flora von Mitteleuropa, Band IV, Teil 2A, 3. Auflage. Blackwell Wissenschafts, Berlin, pp 34–37

    Google Scholar 

  • Whatley JM (1982) Fine structure of the endothecium and developing xylem in Phaseolus vulgaris. New Phytol 91:561–570

    Google Scholar 

  • Wilson ZA, Song J, Taylor B, Yang C (2011) The final split: the regulation of anther dehiscence. J Exp Bot 62:1633–1649

    CAS  PubMed  Google Scholar 

  • Xie B, Wang X, Hong Z (2010) Precocious pollen germination in Arabidopsis plants with altered callose deposition during microsporogenesis. Planta 231:809–823

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Sincere thanks are due to Mr. Curtis Lubbe (Institute of Botany CAS, Třeboň, Czech Rep.) for English correction. Thanks are also due to two anonymous reviewers for correcting the manuscript and valuable comments.

Funding

This research was partly supported by the Czech Long-term research development project No. RVO 67985939 (for LA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubomír Adamec.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Handling Editor: Peter Nick

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onelli, E., Beretta, M., Moscatelli, A. et al. The aquatic carnivorous plant Aldrovanda vesiculosa (Droseraceae) exhibits altered developmental stages in male gametophyte. Protoplasma 258, 71–85 (2021). https://doi.org/10.1007/s00709-020-01553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-020-01553-6

Keywords

Navigation