Skip to main content

Advertisement

Log in

Aquatic macroinvertebrate assemblages associated with two floating macrophyte species of contrasting root systems in a tropical wetland

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

Aquatic macrophytes play an important role in structuring biotic communities. A comparative study of macroinvertebrate community structures associated with Salvinia auriculata Aublet and Eichhornia crassipes (Mart.) Solms was conducted in a Brazilian wetland (São Paulo State) during two periods. Our working hypothesis is that the aquatic macrophyte with the highest root system biomass and volume (E. crassipes) will result in the highest abundance and richness of associated macroinvertebrates. There were significant differences in the taxa richness and density of macroinvertebrates between macrophytes and sampling periods. The density of macroinvertebrates was higher in S. auriculata than in E. crassipes during both sampling periods, but there was little difference in mean taxa richness. Negative correlations between the macrophyte root biomass and volume and macroinvertebrate density were found. Insecta, Crustacea and Annelida were the most numerous groups of invertebrates sampled during the study, and Diptera (Insecta) dominated in the root systems of both macrophytes. Macroinvertebrates associated with E. crassipes roots may have undergone a vertical gradient of decreased oxygen concentration in the water, as well as of the available periphyton biomass, because of the low penetration of light in the region of the root system, which resulted in a lower density of macroinvertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albertoni EF, Palma-Silva C (2006) Macroinvertebrados associados à macrófitas aquáticas flutuantes em canais urbanos de escoamento pluvial (Balneário Cassino, Rio Grande, RS). Neotrop Biol Conserv 1:90–100

    Google Scholar 

  • Araki NK, Silva CV, Henry R (2018) Temporal variability of the macroinvertebrate community associated with Eichhornia azurea (Swarts) Kunth (Pontederiaceae) in a lake marginal to a tropical river. Turkish J Zool 42:557–566

    CAS  Google Scholar 

  • Barker JE, Hutchens JJ, Luken JO (2014) Macroinvertebrates associated with water hyacinth roots and a root analog. Freshw Sci 33:159–167

    Google Scholar 

  • Barnes JB, Vaughan IP, Ormerod SJ (2013) Reappraising the effects of habitat structure on river macroinvertebrates. Freshw Biol 58:2154–2167

    Google Scholar 

  • Bartholomew A, Hafezi SA, Karimi S (2016) Effects of habitat complexity on the abundance, species richness and size of darkling beetles (Tenebrionidae) in artificial vegetation. J Arid Environ 129:35–41

    Google Scholar 

  • Bogut I, Cerba D, Vidakovi J, Gvozdic V (2010) Interactions of weed-bed invertebrates and Ceratophyllum demersum stands in a floodplain lake. Biologia 65:113–121

    Google Scholar 

  • Bowman MF, Bailey RC (1997) Does taxonomic resolution affect the multivariate description of the structure of freshwater benthic macroinvertebrate communities? Can J Fish Aquat Sci 54:1802–1807

    Google Scholar 

  • Brendonck L, Maes J, Rommens W, Dekeza N, Nhiwatiwa T, Barson M, Callebaut V, Phiri C, Moreau K, Gratwicke B, Stevens M, Alyn N, Holsters E, Ollevier F, Marshall B (2003) The impacts of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe) II. Species diversity. Archiv für Hydrobiologie 158:389–405

    Google Scholar 

  • Buss DF, Vitorino AS (2010) Rapid bioassessment protocols using benthic macroinvertebrates in Brazil: evaluation of taxonomic sufficiency. J N Am Benthol Soc 29:562–571

    Google Scholar 

  • Cacabelos E, Olabarria C, Incera M, Troncoso JS (2010) Effects of habitat structure and tidal height on epifaunal assemblages associated with macroalgae. Estuar Coast Shelf Sci 89:43–52

    Google Scholar 

  • Cesar DAS, Henry R (2017) Is similar the distribution of Chironomidae (Diptera) and Oligochaeta (Annelida, Clitellata) in a river and a lateral fluvial area? Acta Limnol Bras 29:e6

    Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E, Plymouth

    Google Scholar 

  • Coetzee JA, Jones RW, Hill MP (2014) Water hyacinth, Eichhornia crassipes (Pontederiaceae), reduces benthic macroinvertebrates diversity in a protected subtropical lake in South Africa. Biodivers Conserv 23:1319–1330

    Google Scholar 

  • Cremona F, Planas D, Lucotte M (2008) Biomass and composition of macroinvertebrate communities associated with different types of macrophyte architectures and habitats in a large fluvial lake. Archiv für Hydrobiologie 171:119–130

    Google Scholar 

  • Cyr H, Downing JA (1988) Empirical relationships of phytomacrofaunal abundance to plant biomass and macrophyte bed characteristics. Can J Fish Aquat Sci 45:976–984

    Google Scholar 

  • Diarra B, Konan KJ, Yapo LM, Kouassi KP (2018) Aquatic macroinvertebrates associated with free-floating macrophytes in a marginal lentic ecosystem (Ono Lagoon, Côte d’Ivoire). J Entomol Zool Stud 6:1432–1441

    Google Scholar 

  • Domínguez E, Fernández HR (2009) Macroinvertebrados bentónicos sudamericanos. Fund Miguel Lillo, Tucumán

    Google Scholar 

  • Eppo (2008) Eichhornia crassipes. Bull OEPP/EPPO Bul 38:441–449

    Google Scholar 

  • Fernandes UL, Oliveira ECC, Lacerda SR (2016) Role of macrophyte life forms in driving periphytic microalgal assemblages in a Brazilian reservoir. J Limnol 75:44–51

    Google Scholar 

  • Ferreiro N (2014) Evidence on night movements of macroinvertebrates to macrophytes in a pampean stream. Open J Mod Hydrol 4:95–100

    Google Scholar 

  • Ferreiro N, Feijoó C, Giorgi A, Leggieri L (2011) Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia 664:199–211

    Google Scholar 

  • Ferreiro N, Giorgi A, Feijoó C (2013) Effects of macrophyte architecture and leaf shape complexity on structural parameters of the epiphytic algal community in a Pampean stream. Aquat Ecol 47:389–401

    Google Scholar 

  • Golterman KL, Clymo RS, Ohmstad MAM (1978) Methods for physical and chemical analysis of freshwaters. Scientific Publications, Oxford

    Google Scholar 

  • Hansen JP, Sagerman J, Wikström SA (2010) Effects of plant morphology on small-scale distribution of invertebrates. Mar Biol 157:2143–2155

    Google Scholar 

  • Henry-Silva GG, Camargo AFM (2000) Composição química de quatro espécies de macrófitas aquáticas e possibilidades de uso de suas biomassas. Naturalia 25:111–125

    Google Scholar 

  • Henry-Silva GG, Camargo AFM (2002) Valor nutritivo de macrófitas aquáticas flutuantes (Eichhornia crassipes, Pistia stratiotes e Salvinia molesta) utilizadas no tratamento de efluentes de aqüicultura. Acta Scientiarum 24:519–526

    Google Scholar 

  • Henry-Silva GG, Pezzato MM, Benassi RF, Camargo AFM (2001) Chemical composition of five species of aquatic macrophytes from lotic ecosystems of the southern coast of the state of São Paulo (Brazil). Acta Limnol Bras 13:11–17

    Google Scholar 

  • Higuti J, Declerck SAJ, Lansac-Tôha FA, Velho LFM, Martens K (2010) Variation in ostracod (Crustacea, Ostracoda) communities in the alluvial valley of the upper Paraná River (Brazil) in relation to substrate. Hydrobiologia 644:261–278

    CAS  Google Scholar 

  • Junk WJ, Piedade MTF, Lourival R, Whittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchik L, Schongart J, Schaeffer-Novelii Y, Agostinho AA, Nóbrega RLB (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management and protection. Aquat Conserv Mar Freshw Ecosyst 24:5–22

    Google Scholar 

  • Kornijów R, Strayer DL, Caraco NF (2010) Macroinvertebrate communities of hypoxic habitats created by an invasive plant (Trapa natans) in the freshwater tidal Hudson river. Fundam Appl Limnol Archiv für Hydrobiologie 176:199–207

    Google Scholar 

  • Kouamé MK, Dietoa MY, Edia EO, Da Costa SK, Ouattara A, Gourène G (2011) Macroinvertebrate communities associated with macrophyte habitats in a tropical man-made lake (Lake Taabo, Côte d’Ivoire). Knowl Manag Aquat Ecosyst 400:1–18

    Google Scholar 

  • Leite I, Fogaça CA, Matos DRM, Felix ES, Gomes KF, Oliveira RF, Honorio RKA (2012) A bacia de drenagem, a geomorfologia, os usos do solo, a cobertura vegetal, a precipitação e o canal fluvial do rio Guareí. In: Henry R (ed) O diagnóstico da qualidade das águas do rio Guareí (Angatuba, SP). Uma cooperação Ensino Superior—Educação Básica. FUNDIBIO, Botucatu, pp 31–50

  • Lodge DM (1991) Herbivory on freshwater macrophytes. Aquat Bot 41:195–224

    Google Scholar 

  • Lopes A, Paula JD, Mardegan SF, Hamada N, Piedade MTF (2011) Influência do hábitat na estrutura da comunidade de macroinvertebrados aquáticos associados às raízes de Eichhornia crassipes na região do Lago Catalão, Amazonas, Brasil. Acta Amazonica 41:493–502

    Google Scholar 

  • Mackereth FIH, Heron J, Talling JF (1978) Water analysis: some revised methods for limnologists. Freshwater Biological Association, London

    Google Scholar 

  • Masifwa WF, Twongo T, Denny P (2001) The impact of water hyacinth, Eichhornia crassipes (Mart) Solms on the abundance and diversity of aquatic macroinvertebrates along the shores of northern lake Victoria, Uganda. Hydrobiologia 452:79–88

    Google Scholar 

  • Matsuda JT, Lansac-Tôha FA, Martens K, Velho LFM, Mormul RP, Higuti J (2015) Association of body size and behavior of freshwater ostracods (Crustacea, Ostracoda) with aquatic macrophytes. Aquat Ecol 49:321–331

    CAS  Google Scholar 

  • McAbendroth L, Ramsay PM, Foggo A, Rundle SD, Bilton DT (2005) Does macrophytes fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111:279–290

    Google Scholar 

  • Monteiro SM, Chapman MG, Underwood AJ (2002) Patches of the ascidian Pyura stolonifera (Heller, 1878): structure of habitat and associated intertidal assemblages. J Exp Mar Biol Ecol 270:171–189

    Google Scholar 

  • Mugnai R, Nessimian JL, Baptista DF (2010) Manual de identificação de Macroinvertebrados Aquáticos do estado do Rio de Janeiro. Technical Books, Rio de Janeiro

    Google Scholar 

  • Muotka T, Syrjänen JT (2007) Changes in habitat structure, benthic invertebrate diversity, trout populations and ecosystem processes in restored forest streams: a boreal perspective. Freshw Biol 52:724–737

    Google Scholar 

  • Ohtaka A, Narita T, Kamiya T, Katakura H, Araki Y, Im S, Chhay R, Tsukawaki S (2011) Composition of aquatic invertebrates associated with macrophytes in lake Tonle Sap, Cambodia. Limnology 12:137–144

    Google Scholar 

  • Pierre JIS, Kovalenko KE (2014) Effect of habitat complexity attributes on species richness. Ecosphere 5:1–10

    Google Scholar 

  • Poi de Neiff A, Neiff JJ (2006) Riqueza de especies y similaridad de los invertebrados que viven en plantas flotantes de la Planicie de Inundación del Río Paraná. Interciencia 31:220–225

    Google Scholar 

  • Prado J (2006) Criptógamos do Parque Estadual das Fontes do Ipiranga, São Paulo, SP. Pteridophyta: 18 Salviniaceae. Hoehnea 33:107–110

    Google Scholar 

  • Rennie MD, Jackson LJ (2005) The influence of habitat complexity on littoral invertebrate distribuitions: patterns differ in shallow prairie lakes with and without fish. Can J Fish Aquat Sci 62:2088–2099

    CAS  Google Scholar 

  • Rommens W, Maes J, Dekeza N, Inghelbrecht P, Nhiwatiwa T, Holsters E, Ollevier F, Marshall B, Brendonck L (2003) The impact of water hyacinth (Eichhornia crassipes) in an eutrophic subtropical impoundment (lake Chivero, Zimbabwe) I. Water quality. Archiv für Hydrobiologie 158:373–388

    Google Scholar 

  • Sami UB, Dar GA, Sofi AH, Dar NA, Pandit AK (2012) Macroinvertebrate community assossiciations on three different macrophytic species in Manasbal Lake. Res J Environ Sci 6:62–76

    Google Scholar 

  • Santos AMV, Pinto VF, Antunes EJ, Fogaça GR, Santi RA, Antunes VJ, Rodrigues HA, Costa, JN (2012) Características químicas (oxigênio, demanda bioquímica, pH, condutividade, nutrientes), físicas (transparência, temperatura) e hidrológicas (velocidade da correnteza e vazão) da água do rio Guareí: variabilidade espacial temporal. In: Henry R (ed) O diagnóstico da qualidade das águas do rio Guareí (Angatuba, SP). Uma cooperação Ensino Superior—Educação Básica. FUNDIBIO, Botucatu, pp 61–77

  • Saulino HHL, Trivinho-Strixino S (2014) Macroinvertebrados aquáticos associados às raízes de Eichhornia azurea (Swartz) Kunth (Pontederiaceae) em uma lagoa marginal no Pantanal, MS. Biotemas 27:65–72

    Google Scholar 

  • Silva CV, Henry R (2013) Aquatic macroinvertebrates associated with Eichhornia azurea (Swartz) Kunth and relationships with abiotic factors in marginal lentic ecosystems (São Paulo, Brazil). Braz J Biol 73:149–162

    CAS  PubMed  Google Scholar 

  • Sipaúba-Tavares LH, Dias SG (2014) Water quality and communities associated with macrophytes in a shallow water-supply reservoir on an aquaculture farm. Braz J Biol 74:420–428

    PubMed  Google Scholar 

  • Strickland JDH, Parsons TRA (1960) Manual of seawater analysis. Bull Fish Res Board Can 125:1–185

    Google Scholar 

  • Stripari NL, Henry R (2002) The invertebrate colonization during decomposition of Eichhornia azurea Kunth in a lateral lake in the mouth zone of Paranapanema River into Jurumirim Reservoir (São Paulo, Brazil). Braz J Biol 62:293–310

    CAS  PubMed  Google Scholar 

  • Teixeira C, Kutner MB (1962) Plankton studies in a mangrove environment. I—first assessment of standing stock and ecological factors. Boletim do Instituto Oceanográfico 12:101–124

    Google Scholar 

  • Tessier C, Cattaneo A, Pinel-Alloul B, Galanti G, Morabito G (2004) Biomass, composition and size structure of invertebrate communities associated to different types of aquatic vegetation during summer in Lago di Candia (Italy). J Limnol 63:190–198

    Google Scholar 

  • Thomaz SM, Dibble ED, Evangelista LR, Higuti J, Bini LM (2008) Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw Biol 53:358–367

    Google Scholar 

  • Torreias SRS, Ferreira-Keppler R, Ronderos MM (2013) Biting midges (Ceratopogonidae: Diptera) present in aquatic macrophytes from wetlands of Marchantaria Island, Iranduba, Central Amazonia, Brazil. J Nat Hist 1:1–14

    Google Scholar 

  • Tundisi JG, Matsumura-Tundisi T (2008) Limnologia. Oficina de Textos, São Paulo

    Google Scholar 

  • Villamagna AM, Murphy BR (2010) Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshw Biol 55:282–298

    Google Scholar 

  • Wang Z, Zhang Z, Zhang J, Zhang Y, Liu H, Yan S (2012) Large-scale utilization of water hyacinth for nutrient removal in lake Dianchi in China: the effects on the water quality, macrozoobenthos and zooplankton. Chemosphere 89:1255–1261

    CAS  PubMed  Google Scholar 

  • Warfe DM, Barmuta LA, Wotherspoon S (2008) Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos 117:1764–1773

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to: Fundação do Instituto de Biociências-FUNDIBIO for supporting this research financially; Hamilton Antonio Rodrigues, Joaquim Nunes da Costa and Lucio Miguel de Oliveira for helping in the field; Lisa Hunt, Jorge Laço Portinho, and Danilo Augusto Naliato for helping us with the English edition, some statistical analyses, and the elaboration of the map of study area, respectively. The first author is also grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-CAPES for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Vieira da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Roger P. MORMUL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, C.V., Henry, R. Aquatic macroinvertebrate assemblages associated with two floating macrophyte species of contrasting root systems in a tropical wetland. Limnology 21, 107–118 (2020). https://doi.org/10.1007/s10201-019-00588-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-019-00588-w

Keywords

Navigation