Skip to main content
Log in

The interaction between heterochrony and mechanical forces as main driver of floral evolution

  • JPR Symposium
  • Mechanical Forces in Plant Growth and Development
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Heterochrony acts as a fundamental process affecting the early development of organisms in creating a subtle shift in the timing of initiation or the duration of a developmental process. In flowers this process is linked with mechanical forces that cause changes in the interaction of neighbouring floral organs by altering the timing and rate of initiation of organs. Heterochrony leads to a delay or acceleration of the development of neighbouring primordia, inducing a change in the morphospace of the flowers. As changes in the timing of development may affect organs differently at different stages of development, these shifts eventually lead to major morphological changes such as altered organ positions, fusions, or organ reductions with profound consequences for floral evolution and the diversification of flowers. By concentrating on early developmental stages in flowers it is possible to understand how heterochrony is responsible for shifts in organ position and the establishment of a novel floral Bauplan. However, it remains difficult to separate heterochrony as a process from pattern, as both are intimately linked. Therefore it is essential to connect different patterns in flowers through the process of developmental change.

Examples illustrating the importance of heterochronic shifts affecting different organs of the flower are presented and discussed. These cover the transition from inflorescence to flower through the interaction of bracts and bracteoles, the pressure exercised by the perianth on the androecium and gynoecium, the inversed influence of stamens on petals, and the centrifugal influence of carpels on the androecium. Different processes are explored, including the occurrence of obdiplostemony, the onset of common primordia, variable carpel positions, and organ reduction and loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alberch P (1980) Ontogenesis and morphological diversification. Amer Zool 20:653–667

    Article  Google Scholar 

  • Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317

    Article  Google Scholar 

  • Appleton AD, Schenk JJ (2021) Evolution and development of staminodes in Paronychia (Caryophyllaceae). Int J Plant Sci 182:377–388

    Article  Google Scholar 

  • Bohte A, Drinnan A (2005) Floral development and systematic position of Arillastrum, Allosycarpia, Stockwellia and Eucalyptopsis (Myrtaceae). Plant Syst Evol 251:53–70

    Article  Google Scholar 

  • Box MS, Glover BJ (2010) A plant developmentalist’s guide to paedomorphosis: reintroducing a classic concept to a new generation. Trends Plant sci 15:241–246

  • Brett JF, Posluszny U (1982) Floral development of Caulophyllum thalictroides (Berberidaceae). Can J Bot 60:2133–2141

    Article  Google Scholar 

  • Brockington SF, Roolse A, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS (2009) Phylogeny of the Caryophyllales Sensu Lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int J Plant Sci 170:627–643

    Article  Google Scholar 

  • Brockington SF, Rudall PJ, Frohlich MW, Oppenheimer DG, Soltis PS, Soltis DE (2012) Living stones’ reveal alternative petal identity programs within the core eudicots. Plant J 69:193–203

    Article  CAS  PubMed  Google Scholar 

  • Brockington SF, Dos Santos P, Glover B, De Ronse LP (2013) Evolution of the androecium in Caryophyllales: insights from a paraphyletic Molluginaceae. Amer J Bot 100:1757–1778

    Article  Google Scholar 

  • Buendia-Monreal M, Gillmor CS (2018) The times they are A-changin’: heterochrony in plant development and evolution. Front Plant Sci 9:1349. https://doi.org/10.3389/fpls.2018.01349

    Article  PubMed  PubMed Central  Google Scholar 

  • Bukhari G, Zhang J, Stevens PF, Zhang W (2017) Evolution of the process underlying floral zygomorphy development in pentapetalous angiosperms. Amer J Bot 104:1846–1856

    Article  Google Scholar 

  • Bull-Hereñu K, Dos Santos P, Ginerfra Toni JP, Leite El Ottra JH, Thaowetsuwan P, Jeiter J, De Ronse LP, Iwamoto A (2022) Mechanical forces in floral development. Plants 11:661

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao L-M, Ronse De Craene LP, Wang Z-X, Wang Y-H (2017) The floral organogenesis of Eurycorymbus cavaleriei (Sapindaceae) and its systematic implications. Phytotaxa 297:234–244

    Article  Google Scholar 

  • Cao L-M, Liu J, Lin Q, Ronse De Craene LP (2018) The floral organogenesis of Koelreuteria bipinnata and its variety K. bipinnata var. Integrifolia (Sapindaceae): evidence of floral constraints on the evolution of monosymmetry. Plant Syst Evol 304:923–935

    Article  Google Scholar 

  • Caris P (2013) Bloemontogenetische patronen in the Ericales sensu lato. Unpubl. Dissertation, Katholieke Universiteit Leuven, Belgium

  • Caris P, Smets EF (2004) A floral ontogenetic study on the sister group relationship between the genus Samolus (Primulaceae) and the Theophrastaceae. Amer J Bot 91:627–643

    Article  Google Scholar 

  • Carrucan AE, Drinnan AN (2000) The ontogenetic basis for floral diversity in the Baeckea sub-group. Kew Bull 55:593–613

    Article  Google Scholar 

  • Čelakovský LJ (1894) Das Reductionsgesetz Der Blüthen, das Dédoublement Und die Obdiplostemonie. Sitz Ber K Bohm Ges Wiss Math-Nat Cl 3:1–142

    Google Scholar 

  • Charlton WA (2004) Studies in the Alistmataceae. XII. Floral organogenesis in Damasonium alisma and Baldellia ranunculoides, and comparisons with Butomus umbellatus. Can J Bot 82:528–539

    Article  Google Scholar 

  • Choob V (2022) Prophyll in monocots: the starting point of lateral shoot phyllotaxis. Front Plant Sci 13:855146. https://doi.org/10.3389/fpls.2022.855146

    Article  PubMed  PubMed Central  Google Scholar 

  • Choob VV, Penin AA (2004) Structure of flower in Arabidopsis thaliana: spatial pattern formation. Russian J Develop Biol 35:224–227

    Article  Google Scholar 

  • Claßen-Bockhoff R (2016) The shoot concept of the flower: still up to date? Flora 221:46–53

    Article  Google Scholar 

  • Dos Santos P, De Ronse LP (2016) Floral development of Lewisia (Montiaceae): investigating patterns of perianth and stamen diversity. Flora 221:4–13

    Article  Google Scholar 

  • Dos Santos P, Brockington S, Glover B, Ronse De Craene LP (2012) Micromorphological evidence for androecium origin of Claytonia (Montiaceae) petaloids. Mod Phytomorphol 1:23–25

    Google Scholar 

  • Drinnan AN, Ladiges PY (1989) Corolla and androecium development in some Eudesmia eucalypts (Myrtaceae). Plant Syst Evol 165:239–254

    Article  Google Scholar 

  • Drinnan AN, Carrucan A (2005) The ontogenetic basis for floral diversity in Agonis, Leptospermum and Kunzea (Myrtaceae). Plant Syst Evol 251:71–88

  • Einset JW (1987) Botany: the state of art. How development’s clock guides Evolution. Arnoldia 47: 20–25

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Endress PK (2010) Synorganisation without organ fusion in the flowers of Geranium robertianum (Geraniaceae) and its not so trivial obdiplostemony. Ann Bot 106:687–695

    Article  PubMed  PubMed Central  Google Scholar 

  • Endress PK (2012) The immense diversity of floral monosymmetry and asymmetry across angiosperms. Bot Rev 78:345–397

    Article  Google Scholar 

  • Endress PK, Voser P (1976) Zur Androeciumanlage und Antherenentwicklung Bei Caloncoba echinata (Flacourtiaceae). Plant Syst Evol 123:241–253

    Article  Google Scholar 

  • Erbar C, Leins P (1997) Different patterns of floral development in whorled flowers, exemplified by Apiaceae and Brassicaceae. Int J Plant Sci 158:S49–S64

    Article  Google Scholar 

  • Erbar C, Leins P (2006) Floral ontogeny and systematic position of the Didiereaceae. Plant Syst Evol 261:165–185

    Article  Google Scholar 

  • Evans RC, Dickinson TA (1999a) Floral ontogeny and morphology in subfamily Spiraeoideae Endl. (Rosaceae). Int J Plant Sci 160:981–1012

    Article  CAS  PubMed  Google Scholar 

  • Evans RC, Dickinson TA, Rosaceae G (1999b) Int J Plant Sci 160:955–979

    Article  CAS  PubMed  Google Scholar 

  • Feng M, Lu AM (1998) Floral organogenesis and its systematic significance of the genus Nandina (Berberidaceae). Acta Bot Sinica 40:102–108

    Google Scholar 

  • Ge L-P, Lu A-M, Gong C-R (2007) Ontogeny of the fertile flower in Platycrater arguta (Hydrangeaceae). Int J Plant Sci 168:835–844

    Article  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Gould SJ (2000) Of coiled oysters and big brains: how to rescue the terminology of heterochrony now gone astray. Evol Dev 2:241–248

    Article  CAS  PubMed  Google Scholar 

  • Greenberg AK, Donoghue MJ (2011) Molecular systematics and character evolution in Caryophyllaceae. Taxon 60:1637–1652

    Article  Google Scholar 

  • Haeckel E (1875) Die Gastrula and die Eifurchung Der Thiere. Jena Zeitschr Naturwiss 9:402–508

    Google Scholar 

  • Hall BK (2003) Evo-devo. Evolutionary developmental mechanism. Int J Dev Biol 47:91–495

    Google Scholar 

  • Heinig KH (1951) Studies in the floral morphology of the Thymelaeaceae. Amer J Bot 38:113–132

    Article  Google Scholar 

  • Hufford LD (1988) Roles of early ontogenetic modifications in the evolution of floral form of Eucnide (Loasaceae). Bot Jahrb Syst 109:289–333

    Google Scholar 

  • Hufford LD (1989) Structure of the inflorescence and flower of Petalonyx linearis (Loasaceae). Pl Syst Evol 163:211–226

    Article  Google Scholar 

  • Hufford LD (1998) Early development of androecia in polystemonous Hydrangeaceae. Amer J Bot 85:1057–1067

    Article  CAS  Google Scholar 

  • Hufford L (2001a) Ontogenetic sequences: homology, evolution, and the patterning of clade diversity. In: Zelditch ML (ed) Beyond heterochrony: the evolution of development. Wiley-Liss, Inc., pp 27–57

  • Hufford LD (2001b) Ontogeny and morphology of the fertile flowers of Hydrangea and allied genera of tribe Hydrangeeae (Hydrangeaceae). Bot J Linn Soc 137:139–187

    Article  Google Scholar 

  • Iwamoto A, Nakamura A, Kurihara S, Otani A, Ronse De Craene LP (2018) Floral development of petaloid Alismatales as an insight into the origin of the trimerous Bauplan in monocot flowers. J Plant Res 131:395–407

    Article  PubMed  Google Scholar 

  • Iwamoto A, Ichigooka S, Cao L, Ronse De Craene LP (2020) Floral development reveals the existence of a fifth staminode on the labellum of basal globbeae. Front Ecol Evol 8:133. https://doi.org/10.3389/fevo.2020.00133

    Article  Google Scholar 

  • Juncosa AM (1988) Floral development and character evolution in Rhizophoraceae. In: Leins P, Tucker SC, Endress PK (eds) Aspects of floral development. Cramer, Vaduz, pp 83–101

    Google Scholar 

  • Kostyun JL, Preston JC, Moyle LC (2017) Heterochronic developmental shifts underlie floral diversity within Jaltomata (Solanaceae). EvoDevo 8(17). https://doi.org/10.1186/s13227-017-0080-z

  • Kraft E (1917) Experimentelle Und Entwicklungsgeschichtliche Untersuchungen an Caryophyllaceen-Blüten. Flora 109:283–362

    Google Scholar 

  • Kubitzki K (2004) Frankeniaceae. In: Kubitzki K, Bayer C (eds) The families and genera of vascular plants, volume V. Springer, Berlin, pp 209–212

    Google Scholar 

  • Kümpers BMC, Richardson JE, Anderberg AA, Wilkie P, Ronse De Craene LP (2016) The significance of meristic changes in the flowers of Sapotaceae. Bot J Linn Soc 180:161–192

    Article  Google Scholar 

  • Lacroix C, Sattler R (1988) Phyllotaxis theories and tepal-stamen superposition in Basella rubra. Amer J Bot 75:906–917

    Article  Google Scholar 

  • Leins P, Erbar C (2010) Flower and fruit. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Leite VG, Mansano VF, Teixeira SP (2014) Floral ontogeny in Dipterygeae (Fabaceae) reveals new insights into one of the earliest branching tribes in papilionoid legumes. Bot J Linn Soc 174:529–550

    Article  Google Scholar 

  • Li P, Johnston MO (2000) Heterochrony in plant evolutionary studies through the twentieth century. Bot Rev 66:57–88

    Article  Google Scholar 

  • Li P, Johnston MO (2010) Flower development and the evolution of self-fertilization in Amsinckia: the role of heterochrony. Evol Biol 37:143–168

    Article  Google Scholar 

  • Löfstrand SD, Schönenberger J (2015) Comparative floral structure and systematics in the sarracenioid clade (Actinidiaceae, Roridulaceae and Sarraceniaceae) of Ericales. Bot J Linn Soc 178:1–46

    Article  Google Scholar 

  • Lyndon RF (1978) Flower development in Silene: morphology and sequence of initiation of primordia. Ann Bot 42:1343–1348

    Article  Google Scholar 

  • Mansano VF, Tucker SC, Tozzi AMGA (2002) Floral ontogeny of Lecointea, Zollernia, Exostyles, and Harleyodendron (Leguminosae: Papilionoideae: Swartzieae s.l). Amer J Bot 89:1553–1569

    Article  Google Scholar 

  • Minelli A (2015) Biological systematics in the evo-devo era. Eur J Taxon 125:1–23

    Google Scholar 

  • Moody M, Hufford L (2000) Floral ontogeny and morphology of Cevallia, Fuertesia, and Gronovia (Loasaceae subfamily Gronovioideae). Int J Plant Sci 161:869–883

    Article  Google Scholar 

  • Naghiloo S (2020) Patterns of symmetry expression in angiosperms: developmental and evolutionary lability. Front Ecol Evol 8:104. https://doi.org/10.3389/fevo.2020.00104

    Article  Google Scholar 

  • Naghiloo S, Claßen-Bockhoff R (2017) Developmental changes in time and space promote evolutionary diversification of flowers: a case study in Dipsacoideae. Front Plant Sci 8:1665. https://doi.org/10.3389/fpls.2017.01665

    Article  PubMed  PubMed Central  Google Scholar 

  • Naghiloo S, Dadpour MR, Movafeghi A (2012) Floral ontogeny in Astragalus compactus (Leguminosae: Papilionoideae: Galegeae): variable occurrence of bracteoles and variable patterns of sepal initiation. Planta 235:793–805

    Article  CAS  PubMed  Google Scholar 

  • Orlovich DA, Drinnan AN, Ladiges PY (1996) Floral development in the Metrosideros group (Myrtaceae) with special emphasis on the androecium. Telopea 6:689–719

    Article  Google Scholar 

  • Payer JB (1857) Traité d’organogénie comparée de la fleur. Victor Masson, Paris

    Google Scholar 

  • Pedersoli GD, Teixeira SP (2016) Floral development of Parkia multijuga and Stryphnodendron adstringens, two andromonoecious mimosoid trees (Leguminodae). Int J Plant Sci 177:60–75

    Article  Google Scholar 

  • Prenner G (2003) Floral ontogeny in Lathyrus latifolius (Fabaceae-Vicieae). Phyton (Horn) 43:392–400

    Google Scholar 

  • Prenner G (2004a) New aspects in floral development of Papilionoideae: initiated but suppressed bracteoles and variable initiation of sepals. Ann Bot 93:537–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Prenner G (2004b) Floral ontogeny in Calliandra Angustifolia (Leguminosae: Mimosoideae: Ingeae) and its systematic implications. Int J Plant Sci 165:417–426

    Article  Google Scholar 

  • Prenner G, Klitgaard BB (2008) Towards unlocking the deep nodes of Leguminosae: floral development and morphology of the enigmatic Duparquetia orchidacea (Leguminosae, Caesalpinioideae). Amer J Bot 95:1349–1365

    Article  Google Scholar 

  • Prenner G, Cardoso D, Zartman CE, de Quieroz LP (2015) Flowers of the early-branching papilionoid legume petaladenium urceoliferum display unique morphological and ontogenetic features. Amer J Bot 102:1780–1793

    Article  CAS  Google Scholar 

  • Puzey JR, Gerbode SJ, Hodges SA, Kramer EM, Mahadevan L (2012) Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape anisotropy. Proc Roy Soc B 279(1733):1640–1645

    Article  Google Scholar 

  • Remizowa MV (2019) One upward, two steps down: order of floral organ initiation. Russ J Devel Biol 50:325–340

    Article  Google Scholar 

  • Remizowa MV, Shipunov AB, Sokoloff DD (2023) When asymmetry mimics zygomorphy: flower development in Chamaelirium japonicum (Melanthiaceae, Liliales). Bot Pacifica. https://doi.org/10.17581/bp.2023.12s01

    Article  Google Scholar 

  • Roels P, De Ronse LP, Smets E (1997) A floral ontogenetic investigation of the Hydrangeaceae. Nord J Bot 17:235–254

    Article  Google Scholar 

  • Ronse De Craene LP (2011) Floral development of Napoleonaea (Lecythidaceae), a deceptively complex flower. In:Wanntorp L, Ronse De Craene LP (ed), Flowers on the tree of life. Systematics Association Special volume Series 80, Cambridge University Press, Cambridge. pp 279–295

  • Ronse De Craene LP (2022) Floral diagrams. An aid to understanding flower morphology and evolution, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ronse De Craene LP (2016) Meristic changes in flowering plants: how flowers play with numbers. Flora 221:22–37

    Article  Google Scholar 

  • Ronse De Craene LP (2013) Reevaluation of the perianth and androecium in Caryophyllales: implications for flower evolution. Plant Syst Evol 299:1599–1636

    Article  Google Scholar 

  • Ronse De Craene LP (2018) Understanding the role of floral development in the evolution of angiosperm flowers: a clarification from different perspectives. J Plant Res 131:367–393

    Article  Google Scholar 

  • Ronse De Craene LP, Bull-Hereñu K (2016) Obdiplostemony: the occurrence of a transitional stage linking robust flower configurations. Ann Bot 117:709–724

    Article  Google Scholar 

  • Ronse De Craene LP, Clinckemaillie D, Smets E (1993) Stamen-Petal complexes in Magnoliatae. Bull Jard Bot Nat Belg 62:97–112

    Article  Google Scholar 

  • Ronse De Craene LP, Linder HP, Dlamini T, Smets EF (2001) Evolution and development of floral diversity of Melianthaceae, an enigmatic southern African family. Int J Plant Sci 162:59–82

    Article  Google Scholar 

  • Ronse De Craene LP, Smets EF (1992) Complex polyandry in the Magnoliatae: definition, distribution and systematic value. Nord J Bot 12:621–649

    Article  Google Scholar 

  • Ronse De Craene LP, Smets EF (1993) Dédoublement revisited: towards a renewed interpretation of the androecium of the Magnoliophytina. Bot J Linn Soc 113:103–124

    Article  Google Scholar 

  • Ronse De Craene LP, Smets E (1991) The impact of receptacular growth on polyandry in the Myrtales. Bot J Linn Soc 105:257–269

    Article  Google Scholar 

  • Ronse De Craene LP, Smets EF (2001) Floral developmental evidence for the systematic relationships of Tropaeolum (Tropaeolaceae). Ann Bot 88:879–892

    Article  Google Scholar 

  • Ronse De Craene LP, Smets EF (1996) The morphological variation and systematic value of stamen pairs in the Magnoliatae. Feddes Rep 107:1–17

    Article  Google Scholar 

  • Ronse De Craene LP, Smets EF, Vanvinckenroye P (1998) Pseudodiplostemony, and its implications for the evolution of the androecium in the Caryophyllaceae. J Plant Res 111:25–43

    Article  Google Scholar 

  • Ronse De Craene LP, Wei L (2019) Floral development and anatomy of Macarthuria australis (Macarthuriaceae: key to understanding the unusual initiation sequence of Caryophyllales. Aust Syst Bot 32:49–60

    Google Scholar 

  • Sattler R (1962) Zur frühen Infloreszenz Und Blütenentwicklung Der Primulales Sensu Lato Mit Besonderer Berücksichtigung Der Stamen-Petalum-Entwicklung. Bot Jahrb Syst 81:385–396

    Google Scholar 

  • Sattler R, Singh V (1978) Floral organogenesis of Echinodorus Amazonicus Rataj and floral construction of the Alismatales. Bot J Linn Soc 77:141–156

    Article  Google Scholar 

  • Schönenberger J (1999) Floral structure, development and diversity in Thunbergia (Acanthaceae). Bot J Linn Soc 130:1–36

    Article  Google Scholar 

  • Schönenberger J, Endress PK (1998) Structure and development of the flowers in Mendoncia, Pseudocalyx, and Thunbergia (Acanthaceae) and their systematic implications. Int J Plant Sci 159:446–465

  • Schönenberger J, Grenhagen A (2005) Early floral development and androecium organization in Fouquieriaceae (Ericales). Plant Syst Evol 254:233–249

    Article  Google Scholar 

  • Sinjushin AA, Ploshinskaya ME (2020) Flower development in Lythrum salicaria L., Cuphea ignea A. DC and C. Hyssopifolia Kunth (Lythraceae): the making of monosymmetry in hexamerous flowers. Wulfenia 27:303–320

    Google Scholar 

  • Smissen RD, Garnock-Jones PJ (2002) Relationships, classification and evolution of Scleranthus (Caryophyllaceae) as inferred from analysis of morphological characters. Bot J Linn Soc 140:15–29

    Article  Google Scholar 

  • Smith KK (2001) Heterochrony revisited: the evolution of developmental sequences. Biol J Linn Soc 73:169–186

    Article  Google Scholar 

  • Soetiarto SR, Ball E (1969) Ontogenetical and experimental studies of the floral apex of Portulaca grandiflora I. Histology of transformation of the shoot apex into the floral apex. Can J Bot 47:133–140

    Article  Google Scholar 

  • Sterk AA (1970) Reduction of the androecium in Spergularia marina (Caryophyllaceae). Acta Bot Neerl 19:488–494

    Article  Google Scholar 

  • Strelin MM, Zattara EE, Ulrich K, Schallenberg-Rüdinger M, Renzing S (2022) Delayed differentiation of epidermal cells walls can underlie pedomorphosis in plants: the case of pedomorphic petals in the hummingbird–pollinated Caiophora Hibiscifolia (Loasaceae, subfam. Loasoideae) species. EvoDevo 13:1. https://doi.org/10.1186/s13227-021-00186-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Thaowetsuwan P, Honorio Coronado EN, De Ronse LP (2017) Floral morphology and anatomy of Ophiocaryon, a paedomorphic genus of Sabiaceae. Ann Bot 120:819–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaowetsuwan P, Ritchie S, Riina R, Ronse De Craene LP (2020) Divergent developmental pathways in dimorphic flowers of Croton L. (Euphorbiaceae) with special emphasis on petals. Front Ecol Evol 8:253. https://doi.org/10.3389/fevo.2020.00253

    Article  ADS  Google Scholar 

  • The Legume Phylogeny Working Group (LPWG) (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77

    Article  Google Scholar 

  • Tsou C-H, Mori SA (2007) Floral organogenesis and floral evolution of the Lecythidoideae. Amer J Bot 94:716–736

    Article  Google Scholar 

  • Tucker SC (1984) Origin of symmetry in flowers. In: White RA, Dickison WC (eds) Contemporary problems in plant anatomy. Academic Press, London, pp 351–394

    Chapter  Google Scholar 

  • Tucker SC (1988) Heteromorphic flower development in Neptunia pubescens, a mimosoid legume. Amer J Bot 75:205–224

    Article  Google Scholar 

  • Tucker SC (1989) Overlapping organ initiation and common primordia in flowers of Pisum sativum (Leguminosae: Papilionoideae). Amer J Bot 76:714–729

    Article  Google Scholar 

  • Tucker SC (1997) Comparative floral development and evolution in tribe Caesalpinieae (Leguminosae: Caesalpinioideae). Haematoxylum. Amer J Bot 84:047–1063

    Article  Google Scholar 

  • Tucker SC (1998) Floral ontogeny in Legume Genera Petalostylis, Labichea, and Dialium (Caesalpinioideae: Cassieae), a series in floral reduction. Amer J Bot 85:184–208

    Article  CAS  Google Scholar 

  • Tucker SC (1999) Evolutionary lability of symmetry in early floral development. Int J Plant Sci 160(6 Suppl):S25–S39

    Article  CAS  PubMed  Google Scholar 

  • Tucker SC (2000a) Evolutionary loss of sepals and/or petals in Detarioid legume taxa (Aphanocalyx, Brachystegia, and Monopetalanthus (Leguminosae: Caesalpinioideae). Amer J Bot 87:608–624

    Article  CAS  Google Scholar 

  • Tucker SC (2000b) Floral development in tribe detarieae (Leguminosae: Caesalpinioideae): Amherstia, Brownea, and Tamarindus. Amer J Bot 87:1385–1407

    Article  CAS  Google Scholar 

  • Tucker SC (2001) Floral development in Schotia and Cynometra (Leguminosae: Caesalpinioideae: Detarieae). Amer J Bot 88:1164–1180

    Article  CAS  Google Scholar 

  • Tucker SC (2002a) Comparative floral ontogeny in Detarieae (Leguminosae: Caesalpinioideae) 1. Radially symmetrical taxa lacking organ suppression. Amer J Bot 89:875–887

    Article  Google Scholar 

  • Tucker SC (2002b) Comparative floral ontogeny in Detarieae (Leguminosae: Caesalpinioideae) 2. Zygomorphic taxa with petal and stamen suppression. Amer J Bot 89:888–907

    Article  Google Scholar 

  • Tucker SC (2003) Floral development in Legumes. Plant Physiol 131:911–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Heel WA (1987) Androecium development in Actinidia chinensis and A. melanandra (Actinidiaceae). Bot Jahrb Syst 109:17–23

    Google Scholar 

  • Vanvinckenroye P, Smets EF (1996) Floral ontogeny of five species of Talinum and of related taxa (Portulacaceae). J Plant Res 109:387–402

    Article  Google Scholar 

  • Vanvinckenroye P, Smets EF (1999) Floral ontogeny of Anacampseros subg. Anacampseros sect. Anacampseros (Portulacaceae). Syst Geog Pl 68:173–194

    Article  Google Scholar 

  • von Balthazar M, Alverson WS, Schönenberger J, Baum DA (2004) Comparative floral development and androecium structure in Malvoideae (Malvaceaes.l). Int J Plant Sci 165:445–473

    Article  Google Scholar 

  • Wang JR, Wang X, Li Q-J, Zhang X-H, Ma Y-P, Zhao L, Ginefra Toni JF, De Ronse LP (2020) Floral morphology and morphogenesis of Sanguisorba (Rosaceae) and its systematic significance. Bot J Linn Soc 193:47–63

    Article  Google Scholar 

  • Wanntorp L, Puglisi C, Penneys D, De Ronse LP (2011) Multiplications of floral organs in flowers - a case study in Conostegia (Melastomataceae, Myrtales). In: Wanntorp L, Ronse De Craene LP (eds) Flowers on the tree of life. Systematics Association Special volume Series, vol 80. Cambridge University Press, Cambridge, pp 218–235

    Chapter  Google Scholar 

  • Wanntorp L, Ronse De Craene L, Peng C-I, Anderberg AA (2012) Floral ontogeny and morphology of Stimpsonia and Ardisiandra, two aberrant genera of the primuloid clade of Ericales. Int J Plant Sci 173:1023–1035

    Article  Google Scholar 

  • Webster M, Zelditch ML (2005) Evolutionary modifications of ontogeny: heterochrony and beyond. Paleobiology 31:354–372

    Article  Google Scholar 

  • Wei L, De Ronse LP (2019) What is the nature of petals in Caryophyllaceae? Developmental evidence clarifies their evolutionary origin. Ann Bot 124:281–295

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei L, De Ronse LP (2020) Hofmeister’s rule’s paradox: the explanation of the changeable carpel position in Caryophyllaceae. Int J Plant Sci 181:911–925

    Article  Google Scholar 

  • Wray GA, Raff RA (1990) Pattern and process heterochronies in the early development of sea urchins. Semin Cell Dev Biol 1:245–251

    Google Scholar 

  • Xie S-Y, Hou X-Q, Zhang X-H (2022) Are the spurs more complex than other petal types in Epimedium? Evidence from development, micromorphology, and nectar structure. Flora 293:152101

    Article  Google Scholar 

  • Xue L-L, Jian H-L, Yun F-Y, Jun Y-Z (2017) Floral development of Gymnospermium microrhynchum (Berberidaceae) and its systematic significance in the Nandinoideae. Flora 228:10–16

    Article  Google Scholar 

  • Zhang R-J, Schönenberger J (2014) Early floral development of Pentaphylaceae (Ericales) and its systematic implications. Plant Syst Evol 300:1547–1560

    Article  Google Scholar 

  • Zhang Y, Cao L, De Ronse LP (2022) Inflorescence and floral development of Dipteronia sinensis (Sapindaceae): demonstration of developmental constraints in the shaping of the flower. Flora 291:152069. https://doi.org/10.1016/j.flora.2022.152069

    Article  Google Scholar 

  • Zhang Y, Gong J-Z, Gui C-X, Xie S-Y, Yang Z-P, Luo M-R, Ning S-X, Chang Z-Y, Kang B, Zhao L, Ronse De Craene L (2023) Floral morphology and development of Epimedium pubescens and Plagiorhegma pubescens (Berberidaceae) and their systematic significance. Bot J Linn Soc 203:78–93

    Article  Google Scholar 

Download references

Acknowledgements

I wish to thank Professor Akitoshi Iwamoto and Dr Mariko Asaoka for inviting me to give a presentation in the JPR symposium organised for the 84th annual meeting of the Botanical Society of Japan in Kyoto in September 2022 and for helping in securing funding from the Japanese Society for the Promotion of Science. My sincere thanks go to the JSPS for supporting my stay in Japan. I am also grateful to my collaborators, Patricia Dos Santos, Lai Wei, and colleagues of FLO-RE-S for their help and exchange of ideas. Helpful suggestions by two anonymous reviewers are gratefully acknowledged.

Funding

This study was made possible by funding from the Japanese Society for the Promotion of science who financed my visit in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis P. Ronse De Craene.

Ethics declarations

Competing interests

There were no competing interests in the writing of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronse De Craene, L. The interaction between heterochrony and mechanical forces as main driver of floral evolution. J Plant Res (2024). https://doi.org/10.1007/s10265-024-01526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10265-024-01526-3

Keywords

Navigation