Skip to main content
Log in

Application of MaxEnt modeling to evaluate the climate change effects on the geographic distribution of Lippia javanica (Burm.f.) Spreng in Africa

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lippia javanica is a typical indigenous plant species mostly found in the higher elevation or mountainous regions in southern, central, and eastern Africa. The ongoing utilization of the species for ethnobotanical applications and traditional uses, coupled with the changing climate, increases the risk of a potential reduction in its geographic distribution range in the region. Herein, we utilized the MaxEnt species distribution modelling to build the L. javanica distribution models in tropical and subtropical African regions for current and future climates. The MaxEnt models were calibrated and fitted using 286 occurrence records and six environmental variables. Temperatures, including temperature seasonality [Bio 4] and the maximum temperature of the warmest month [Bio 5], were observed to be the most significant determinants of L. javanica’s distribution. The current projected range for L. javanica was estimated to be 2,118,457 km2. Future model predictions indicated that L. javanica may increase its geographic distribution in western areas of the continent and regions around the equator; however, much of the geographic range in southern Africa may shift southwards, causing the species to lose portions of the northern limits of the habitat range. These current findings can help increase the conservation of L. javanica and other species and combat localized species loss induced by climate change and human pressure. We also emphasize the importance of more investigations and enhanced surveillance of traditionally used plant species in regions that are acutely susceptible to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

References

  • Addo-Bediako, A., Chown, S. L., & Gaston, K. J. (2000). Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1445), 739–745.

  • Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541–545. https://doi.org/10.1111/ecog.01132

    Article  Google Scholar 

  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Bahlul, Z. A., Najat, T. H., Prakash, K., Chandu, B. R., Shanta, K. A., & Pratap, C. A. (2011). Antidiarrhoeal activity of Lippia javanica leaves on castor oil induced diarrhoea in albino rats. Pharmanest, 2(1), 5–8.

    Google Scholar 

  • Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819. https://doi.org/10.1016/j.ecolmodel.2013.12.012

    Article  Google Scholar 

  • Bede-Fazekas, Á., & Somodi, I. (2020). The way bioclimatic variables are calculated has an impact on potential distribution models. Methods in Ecology and Evolution, 11(12), 1559–1570. https://doi.org/10.1111/2041-210X.13488

    Article  Google Scholar 

  • Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x

    Article  Google Scholar 

  • Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 5, e4095. https://doi.org/10.7717/peerj.4095

    Article  Google Scholar 

  • Chagonda, L. S., Makanda, C. D., & Chalchat, J. C. (2000). Essential oils of wild and cultivated Lippia javanica (Spreng) and L. oatesii (Rolfe) from Zimbabwe. Journal of Essential Oil Research, 12(1), 1–6. https://doi.org/10.1080/10412905.2000.9712027

    Article  CAS  Google Scholar 

  • de Campos, J. M. S., Sousa, S. M., Silva, P. S., Pinheiro, L. C., Sampaio, F., & Viccini, L. F. (2011). Chromosome numbers and DNA C values in the genus Lippia (Verbenaceae). Plant Systematics and Evolution, 291(1), 133–140. https://doi.org/10.1007/s00606-010-0370-6

    Article  Google Scholar 

  • Deb, J. C., Forbes, G., & MacLean, D. A. (2020). Modelling the spatial distribution of selected North American woodland mammals under future climate scenarios. Mammal Review, 50(4), 440–452. https://doi.org/10.1111/mam.12210

    Article  Google Scholar 

  • Dlamini, T. P. (2006). Isolation and characterization of bioactive compounds from Lippia javanica. M.Sc. thesis, University of Johannesburg. 139 p.

  • Dovie, D. B., Shackleton, C. M., & Witkowski, E. T. (2007). Conceptualizing the human use of wild edible herbs for conservation in South African communal areas. Journal of Environmental Management, 84(2), 146–156. https://doi.org/10.1016/j.jenvman.2006.05.017

    Article  Google Scholar 

  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), 43–57.

  • Feng, X., Park, D. S., Liang, Y., Pandey, R., & Papes, M. (2019). Collinearity in ecological niche modeling: Confusions and challenges. Ecology and Evolution, 9(18), 10365–10376. https://doi.org/10.1002/ece3.5555

    Article  Google Scholar 

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Galíndez, G., Seal, C., Daws, M. I., Lindow, P., & Ortega-Baes, P. H. W. (2017). Alternating temperature combined with darkness resets base temperature for germination (Tb) in photoblastic seeds of Lippia and Aloysia (Verbenaceae). Plant Biology, 19(1), 41–45. https://doi.org/10.1111/plb.12449

    Article  CAS  Google Scholar 

  • IPBES. (2019): Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (pp. 6 –7). E. S. Brondizio, J. Settele, S. Díaz, & H. T. Ngo (Eds.). Bonn, Germany: IPBES Secretariat. https://doi.org/10.5281/zenodo.3831673

  • Khanum, R., Mumtaz, A. S., & Kumar, S. (2013). Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modelling. Acta Oecologica, 49, 23–31. https://doi.org/10.1016/j.actao.2013.02.007

    Article  Google Scholar 

  • Liu, C., White, M., Newell, G., & Griffioen, P. (2013). Species distribution modelling for conservation planning in Victoria, Australia. Ecological Modelling, 249, 68–74. https://doi.org/10.1016/j.ecolmodel.2012.07.003

    Article  Google Scholar 

  • Madzimure, J., Nyahangare, E. T., Hamudikuwanda, H., Hove, T., Stevenson, P. C., Belmain, S. R., & Mvumi, B. M. (2011). Acaricidal efficacy against cattle ticks and acute oral toxicity of Lippia javanica (Burm.f.) Spreng. Tropical Animal Health and Production, 43(2), 481–489. https://doi.org/10.1007/s11250-010-9720-1

    Article  Google Scholar 

  • Malahlela, O. E., Adjorlolo, C., & Olwoch, J. M. (2019). Mapping the spatial distribution of Lippia javanica (Burm. f.) Spreng using Sentinel-2 and SRTM-derived topographic data in malaria endemic environment. Ecological Modelling, 392, 147–158. https://doi.org/10.1016/j.ecolmodel.2018.11.020

    Article  Google Scholar 

  • Manenzhe, N. J., Potgieter, N., & van Ree, T. (2004). Composition and antimicrobial activities of volatile components of Lippia javanica. Phytochemistry, 65(16), 2333–2336. https://doi.org/10.1016/j.phytochem.2004.07.020

    Article  CAS  Google Scholar 

  • Mattana, E., Sacande, M., Sanogo, K. A., Lira, R., Gomez-Barreiro, P., Rogledi, M., & Ulian, T. (2017). Thermal requirements for seed germination of underutilized Lippia species. South African Journal of Botany, 109, 223–230. https://doi.org/10.1016/j.sajb.2016.12.020

    Article  Google Scholar 

  • Mayor, S. J., Schneider, D. C., Schaefer, J. A., & Mahoney, S. P. (2009). Habitat selection at multiple scales. Ecoscience, 16(2), 238–247. https://doi.org/10.2980/16-2-3238

    Article  Google Scholar 

  • Merow, C., Smith, M. J., & Silander, J. A., Jr. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography, 36(10), 1058–1069.

    Article  Google Scholar 

  • Mfengu, M. O., Shauli, M., Engwa, G. A., Musarurwa, H. T., & Sewani-Rusike, C. R. (2021). Lippia javanica (Zumbani) herbal tea infusion attenuates allergic airway inflammation via inhibition of Th2 cell activation and suppression of oxidative stress. BMC Complementary Medicine and Therapies, 21(1), 1–14. https://doi.org/10.1186/s12906-021-03361-8

    Article  CAS  Google Scholar 

  • Mkala, E. M., Jost, M., Wanke, S., Ngarega, B. K., Hughes, A., Mutinda, S., Waswa, E. N., Mwanzia, V. M., Oulo, M. A., Wanga, V. O., Ngumbau, V. M., Mwachala, G., Hu, G. W., & Wang, Q. F. (2022). How vulnerable are holoparasitic plants with obligate hosts to negative climate change impacts? Ecological Informatics, 69, 101636. https://doi.org/10.1016/j.ecoinf.2022.101636

    Article  Google Scholar 

  • Mokoka, N. N. (2007). Indigenous knowledge of fever tea (Lippia javanica) and effect of shade netting on plant growth, oil yield and compound composition (Master’s dissertation, University of Pretoria).

  • Morgenthal, T. L., Kellner, K., Van Rensburg, L., Newby, T. S., & Van der Merwe, J. P. A. (2006). Vegetation and habitat types of the Umkhanyakude Node. South African Journal of Botany, 72(1), 1–10. https://doi.org/10.1016/j.sajb.2005.03.003

    Article  Google Scholar 

  • Mpati, K. W. (2007). Response of fever tea (Lippia javanica) to fertigation frequency, growth medium and propagation method (Doctoral dissertation, University of Pretoria).

  • Narzary, H., Swargiary, A., & Basumatary, S. (2015). Proximate and vitamin C analysis of wild edible plants consumed by Bodos of Assam, India. Journal of Molecular Pathophysiology, 4(4), 128–133.

    Article  Google Scholar 

  • Ng’weno, C. C., Mwasi, S. M., & Kairu, J. K. (2010). Distribution, density and impact of invasive plants in Lake Nakuru National Park, Kenya. African Journal of Ecology, 48(4), 905–913. https://doi.org/10.1111/j.1365-2028.2009.01191.x

    Article  Google Scholar 

  • Ngarega, B. K., Nzei, J. M., Saina, J. K., Halmy, M. W. A., Chen, J. M., & Li, Z. Z. (2022). Mapping the habitat suitability of Ottelia species in Africa. Plant Diversity. https://doi.org/10.1016/j.pld.2021.12.006

    Article  Google Scholar 

  • Nzei, J. M., Ngarega, B. K., Mwanzia, V. M., Musili, P. M., Wang, Q. F., & Chen, J. M. (2021). The past, current, and future distribution modelling of four water lilies (Nymphaea) in Africa indicates varying suitable habitats and distribution in climate change. Aquatic Botany, 173, 103416. https://doi.org/10.1016/j.aquabot.2021.103416

    Article  Google Scholar 

  • Nzira, L., Per, M., Peter, F., & Claus, B. (2009). Lippia javanica (Burm.f.) Spreng: Its general constituents and bioactivity on mosquitoes. Tropical Biomedicine, 26(1), 85–91.

    CAS  Google Scholar 

  • Parveen, S., Kaur, S., Baishya, R., & Goel, S. (2022). Predicting the potential suitable habitats of genus Nymphaea in India using MaxEnt modeling. Environmental Monitoring and Assessment, 194(12), 853. https://doi.org/10.1007/s10661-022-10524-8

    Article  Google Scholar 

  • Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Pretorius, C. (2010). Antioxidant properties of Lippia javanica (Burm.f.) Spreng. MSc thesis, North West University. p153.

  • Rankoana, S. A. (2021). Exploring indigenous knowledge on medicinal plants used to treat COVID-19 related symptoms. Technium Social Sciences Journal, 25, 798–806. https://doi.org/10.47577/tssj.v25i1.4938

    Article  Google Scholar 

  • Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kex, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168.

    Article  Google Scholar 

  • Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421(6918), 57–60.

    Article  CAS  Google Scholar 

  • Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8245–8250. https://doi.org/10.1073/pnas.0409902102

    Article  CAS  Google Scholar 

  • Urban, M. C. (2015). Accelerating extinction risk from climate change. Science, 348(6234), 571–573.

    Article  CAS  Google Scholar 

  • Van Wyk, B. E., De Wet, H., & Van Heerden, F. R. (2008). An ethnobotanical survey of medicinal plants in the southeastern Karoo, South Africa. South African Journal of Botany, 74(4), 696–704. https://doi.org/10.1016/j.sajb.2008.05.001

    Article  Google Scholar 

  • Vroh, B. T. A. (2020). Diversity of plants used in traditional medicine against the main symptoms of COVID-19 in sub-Saharan Africa: Review of the literature. Ethnobotany Research and Applications, 20, 1–14.

    Article  Google Scholar 

  • Wolffe, R.D. (2008). Essential oil composition for killing or repelling ectoparasites and pests and methods for use thereof. US Patent Application No. 2008/193,387.qa

  • Zhao, Q., Li, R., Gao, Y., Yao, Q., Guo, X., & Wang, W. (2018). Modeling impacts of climate change on the geographic distribution of medicinal plant Fritillaria cirrhosa D. Don. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 152(3), 349–355. https://doi.org/10.1080/11263504.2017.1289273

    Article  Google Scholar 

  • Zhu, B., Wang, B., Zou, B., Xu, Y., Yang, B., Yang, N., & Ran, J. (2020). Assessment of habitat suitability of a high-mountain galliform species, buff-throated partridge (Tetraophasis szechenyii). Global Ecology and Conservation, 24, e01230. https://doi.org/10.1016/j.gecco.2020.e01230

    Article  Google Scholar 

Download references

Acknowledgements

We thank Elijah Mbandi Mkala for his assistance in statistical analyses. We also thank the anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

Boniface K. Ngarega conceived and designed the experiments, analyzed, and interpreted the results, and authored and reviewed drafts of the manuscript. Paul Chaibva performed statistical analysis, analyzed and interpreted the results, and authored the manuscript. Valerie F. Masocha performed statistical analysis, and analyzed and interpreted the results. Josphat K. Saina analyzed and interpreted the results and reviewed the drafts of the manuscript. Phyo K. Khine analyzed and interpreted the results and reviewed the drafts of the manuscript. Harald Schneider reviewed the drafts of the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Valerie F. Masocha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10661_2023_12232_MOESM1_ESM.pdf

Supplementary file1 (PDF 8829 KB) Describes the response curves of 6 environmental variables in L. javanica habitat distribution model.

Supplementary file2 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngarega, B.K., Chaibva, P., Masocha, V.F. et al. Application of MaxEnt modeling to evaluate the climate change effects on the geographic distribution of Lippia javanica (Burm.f.) Spreng in Africa. Environ Monit Assess 196, 62 (2024). https://doi.org/10.1007/s10661-023-12232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12232-3

Keywords

Navigation