Skip to main content

Advertisement

Log in

Identification of potential inhibitors of cholinergic and β-secretase enzymes from phytochemicals derived from Gongronema latifolium Benth leaf: an integrated computational analysis

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders (NDDs) are associated with increased activities of the brain acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and β-secretase enzyme (BACE1). Inhibition of these enzymes affords therapeutic option for managing NDDs such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Although, Gongronema latifolium Benth (GL) has been widely documented in ethnopharmacological and scientific reports for the management of NDDs, there is paucity of information on its underlying mechanism and neurotherapeutic constituents. Herein, 152 previously reported Gongronema latifolium derived-phytochemicals (GLDP) were screened against hAChE, hBChE and hBACE-1 using molecular docking, molecular dynamics (MD) simulations, free energy of binding calculations and cluster analysis. The result of the computational analysis identified silymarin, alpha-amyrin and teraxeron with the highest binding energies (-12.3, -11.2, -10.5 Kcal/mol) for hAChE, hBChE and hBACE-1 respectively as compared with those of the reference inhibitors (-12.3, -9.8 and − 9.4 for donepezil, propidium and aminoquinoline compound respectively). These best docked phytochemicals were found to be orientated in the hydrophobic gorge where they interacted with the choline-binding pocket in the A-site and P-site of the cholinesterase and subsites S1, S3, S3’ and flip (67–75) residues of the pocket of the BACE-1. The best docked phytochemicals complexed with the target proteins were stable in a 100 ns molecular dynamic simulation. The interactions with the catalytic residues were preserved during the simulation as observed from the MMGBSA decomposition and cluster analyses. The presence of these phytocompounds most notably silymarin, which demonstrated dual high binding tendencies to both cholinesterases, were identified as potential neurotherapeutics subject to further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Behl T, Makkar R, Sehgal A, Singh S, Sharma N, Zengin G et al (2021) Current Trends in Neurodegeneration: Cross Talks between oxidative stress, cell death, and inflammation. Int J Mol Sci 22:7432. https://doi.org/10.3390/ijms22147432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dugger BN, Dickson DW (2017) Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 9:a028035

    Article  PubMed  PubMed Central  Google Scholar 

  3. Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N et al (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol 18:459–480

    Article  Google Scholar 

  4. Bozoki A, Giordani B, Heidebrink JL, Berent S, Foster NL (2001) Mild cognitive impairments predict dementia in nondemented elderly patients with memory loss. Archives of neurology. ;58:411 – 6.10.1001/archneur.58.3.411

  5. Nichols E, Steinmetz JD, Vollset SE, Fukutaki K, Chalek J, Abd-Allah F et al (2022) Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. The Lancet Public Health. ;7:e105-e25.10.1016/S2468-2667(21)00249-8

  6. Hussain R, Zubair H, Pursell S, Shahab M (2018) Neurodegenerative diseases: regenerative mechanisms and novel therapeutic approaches. Brain Sci 8:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bar-Am O, Amit T, Kupershmidt L, Aluf Y, Mechlovich D, Kabha H et al (2015) Neuroprotective and neurorestorative activities of a novel iron chelator-brain selective monoamine oxidase-A/monoamine oxidase-B inhibitor in animal models of Parkinson’s disease and aging. Neurobiology of aging. ;36:1529 – 42.10.1016/j.neurobiolaging.2014.10.026

  8. Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT et al (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933

    Article  PubMed  PubMed Central  Google Scholar 

  9. Atatreh N, Al Rawashdah S, Al Neyadi SS, Abuhamdah SM, Ghattas MA (2019) Discovery of new butyrylcholinesterase inhibitors via structure-based virtual screening. J Enzyme Inhib Med Chem 34:1373–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marucci G, Buccioni M, Dal Ben D, Lambertucci C, Volpini R, Amenta F (2021) Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 190:108352

    Article  CAS  PubMed  Google Scholar 

  11. Klafki HW, Staufenbiel M, Kornhuber J, Wiltfang J (2006) Therapeutic approaches to Alzheimer’s disease. Brain: a journal of neurology. ;129:2840 – 55.10.1093/brain/awl280

  12. Ravera E, Ciambellotti S, Cerofolini L, Martelli T, Kozyreva T, Bernacchioni C et al (2016) Solid-state NMR of PEGylated proteins. Angew Chem 128:2492–2495

    Article  Google Scholar 

  13. Adewole KE, Gyebi GA, Ibrahim IM (2021) Amyloid β fibrils disruption by kolaviron: molecular docking and extended molecular dynamics simulation studies. Comput Biol Chem 94:107557

    Article  CAS  PubMed  Google Scholar 

  14. Brown MR, Radford SE, Hewitt EW (2020) Modulation of β-amyloid fibril formation in Alzheimer’s disease by microglia and infection. Front Mol Neurosci 13:609073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hampel H, Lista S, Vanmechelen E, Zetterberg H, Giorgi FS, Galgani A et al (2020) β-Secretase1 biological markers for Alzheimer’s disease: state-of-art of validation and qualification. Alzheimer’s Research & Therapy. ;12:130.10.1186/s13195-020-00686-3

  16. Ekong MB, Peter MD, Peter AI, Eluwa MA, Umoh IU, Igiri AO et al (2014) Cerebellar neurohistology and behavioural effects of Gongronema latifolium and Rauwolfia vomitoria in mice. Metab Brain Dis 29:521–527

    Article  PubMed  Google Scholar 

  17. Balogun M, Besong E, Obimma J, Mbamalu O, Djobissie S (2016) Gongronema latifolium: a phytochemical, nutritional and pharmacological review. J Physiol Pharmacol Adv 6:811–824

    Article  CAS  Google Scholar 

  18. Ugochukwu N, Babady N, Cobourne M, Gasset S (2003) The effect ofGongronema latifolium extracts on serum lipid profile and oxidative stress in hepatocytes of diabetic rats. J Biosci 28:1–5

    Article  CAS  PubMed  Google Scholar 

  19. Nwanjo H, Okafor M, Oze G (2006) Anti-lipid peroxidative activity of Gongronema latifoluim in streptozotocin-induced diadetic rat. Nigerian J Physiological Sci. ;21

  20. Adebajo A, Ayoola M, Odediran S, Aladesanmi A, Schmidt T, Verspohl E (2012) P 29: insulinotropic constituents and evaluation of ethnomedical claim of gongronema latifolium root and stem. Diabetes Metab 38:S115

    Article  Google Scholar 

  21. Ibegbulem C, Chikezie P (2013) Hypoglycemic properties of ethanolic extracts of Gongronema latifolium, Aloe perryi, Viscum album and Allium sativum administered to alloxan-induced diabetic albino rats (Rattus norvegicus). Pharmacognosy Commun 3:12

    Article  Google Scholar 

  22. Robert A, Luke U, Udosen E, Ufot S, Effiong A, Ekam V (2011) Anti-diabetic and Anti-hyperlipedemic Properties of Ethanolic Root Extract of Gongronema Latifolium (Utazi) on Streptozotocin (STZ) Induced Diabetic Rats.

  23. Ogunyemi O, Gyebi A, Adebayo J, Oguntola J, Olaiya C (2020) Marsectohexol and other pregnane phytochemicals derived from Gongronema latifolium as α-amylase and α-glucosidase inhibitors: in vitro and molecular docking studies. SN Appl Sci 2:1–11

    Article  Google Scholar 

  24. Ogunyemi O, Gyebi G, Saheed A, Paul J, Nwaneri-Chidozie V, Olorundare O et al Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Frontiers in molecular biosciences. 2022;9

  25. Akpaso M, Orie N, Ebong P (2019) Administration of combined methanolic leaf extracts of vernonia amygdalina and gongronema latifolium enhanced glut 2 expression in the pancreas and downregulates serum caspase 3 activity of streptozotocin-induced diabetic wistar rats.

  26. Ofoha PC, Nimenibo-Uadia RI Effect of Ethanolic Leaf Extract of Gongronema Latifolium on blood glucose and cholesterol levels in Alloxan-Induced Diabetic rats

  27. Chukwudozie IK, Agbo MC, Ugwu KO, Ezeonu IM (2021) Oral administration of Gongronema lafifoliumLeaf Extract modulates gut microflora and blood glucose of Induced Diabetic rats. J Pure Appl Microbiol 15:346–355

    Article  CAS  Google Scholar 

  28. Al-Hindi B, Yusoff NA, Ahmad M, Atangwho IJ, Asmawi MZ, Al-Mansoub MA et al (2019) Safety assessment of the ethanolic extract of Gongronema latifolium Benth. Leaves: a 90-day oral toxicity study in Sprague Dawley rats. BMC Complement Altern Med 19:1–10

    Article  CAS  Google Scholar 

  29. SC O, Chinaka N (2013) Carbon tetrachloride induced renaltoxicity and the effect of aqueous extract of Gongronema latifolium in Wistar albino rats. Drug discovery 4:15–16

    Google Scholar 

  30. Imo C, Uhegbu FO, Glory IN (2015) Histological and Hepatoprotective Effect of Ethanolic Leaf Extract of Gongronema latifolium Benth in Acetaminophen-Induced hepatic toxicity in male albino rats. Int J Preventive Med Res. ;1

  31. Johnkennedy N, Adamma E (2011) The protective role of Gongronema latifolium in acetaminophen induced hepatic toxicity in Wistar rats. Asian Pac J Trop Biomed 1:S151–S4

    Article  Google Scholar 

  32. Adekanle E, Omozokpia UM (2015) Antioxidant potentials of Gongronema latifolium (utazi) leaf extracts. Biokemistri 27:85–88

    CAS  Google Scholar 

  33. Usoh I, Akpan H (2015) Antioxidative efficacy of combined leaves extracts of Gongronema latifolium and Ocimum gratissimum on streptozotocin induced diabetic rats. J Med Med Sci 2:88–95

    Google Scholar 

  34. Gyebi GA, Adebayo JO, Olorundare OE, Pardede A, Ninomiya M, Saheed AO et al (2018) Iloneoside: a cytotoxic ditigloylated pregnane glycoside from the leaves of Gongronema latifolium Benth. Nat Prod Res 32:2882–2886

    Article  CAS  PubMed  Google Scholar 

  35. Iweala EEJ (2015) Anti-cancer and free radical scavenging activity of some nigerian food plants in vitro. Int J cancer Res 11:41–51

    Article  Google Scholar 

  36. Adebayo J, Ceravolo I, Gyebi G, Olorundare O, Babatunde A, Penna-Coutinho J et al (2022) Iloneoside, an antimalarial pregnane glycoside isolated from Gongronema latifolium leaf, potentiates the activity of chloroquine against multidrug resistant Plasmodium falciparum. Mol Biochem Parasitol 249:111474

    Article  CAS  PubMed  Google Scholar 

  37. Idowu ET, Ajaegbu HC, Omotayo AI, Aina OO, Otubanjo OA (2015) In vivo anti-plasmodial activities and toxic impacts of lime extract of a combination of Picralima nitida, Alstonia boonei and Gongronema latifolium in mice infected with chloroquine-sensitive Plasmodium berghei. Afr Health Sci 15:1262–1270

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ekong MB, Nwakanma AA (2017) Rauwolfia vomitoria and Gongronema latifolium extracts influences cerebellar cortex. Alzheimer’s. Dement Cogn Neurol 1:1–6

    Google Scholar 

  39. Akinnuga A, Bamidele O, Ekechi P, Adeniyi O (2011) Effects of an ethanolic leaf extract of Gongronema latifolium on haematological some parameters in rats. Afr J Biomedical Res 14:153–156

    Google Scholar 

  40. Owu D, Nwokocha C, Obembe A, Essien A, Ikpi D, Osim E (2012) Effect of Gongronema latifolium ethanol leaf extract on gastric acid secretion and cytoprotection in streptozotocin-induced diabetic rats. West Indian Med J. ;61

  41. Egba S, Omeoga H, Njoku O (2014) Oral administration of methanol extract of Gongronema latifolium (utazi) Up-Regulates cytokine expression and influences the immune system in wistar albino rats. World Appl Sci J 31:745–750

    Google Scholar 

  42. Akani N, Nwachukwu C, Hakam I (2020) Evaluation of the antibacterial activity of Gongronema latifolium and Costus afer Leaf extracts on E. coli (ATCC 29455) and S. aureus (ATCC 25923). Int J Pathogen Res. :11–6

  43. Enitan SS, Ehizibue OP, Adejumo EN, Akele YR, Owolabi TO (2017) Evaluation of the Antimicrobial potential of Gongronema latifolium extracts on some Wound-Associated Pathogens. Open Sci J Pharm Pharmacol 5:34–41

    Google Scholar 

  44. Ujong GO, Beshel JA, Nkanu E, Ubana OP, Ofem OE (2022) Ethanolic extract of Gongronema latifolium improves learning and memory in swiss albino mice. J Drug Delivery Ther 12:45–50

    Article  Google Scholar 

  45. Nwanna EE, Oyeleye SI, Ogunsuyi OB, Oboh G, Boligon AA, Athayde ML (2016) In vitro neuroprotective properties of some commonly consumed green leafy vegetables in Southern Nigeria. NFS J 2:19–24. https://doi.org/10.1016/j.nfs.2015.12.002

    Article  Google Scholar 

  46. Oyinloye BE, Iwaloye O, Ajiboye BO (2021) Polypharmacology of Gongronema latifolium leaf secondary metabolites against protein kinases implicated in Parkinson’s disease and Alzheimer’s disease. Sci Afr 12:e00826. https://doi.org/10.1016/j.sciaf.2021.e00826

    Article  CAS  Google Scholar 

  47. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Imo C, Uhegbu FO (2015) Phytochemical analysis of Gongronema latifolium Benth leaf using gas chromatographic flame ionization detector. Int J Chem Biomol Sci 1:60–68

    CAS  Google Scholar 

  49. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: An open chemical toolbox. Journal of cheminformatics. ;3:33.10.1186/1758-2946-3-33

  50. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. ;31:455 – 61.10.1002/jcc.21334

  51. O’Boyle N, Banck M, James CA, Morley C, Vandermeersch T (2011) Hutchison GR Open Babel: an open chemical toolbox. J Cheminf 3:33

    Article  Google Scholar 

  52. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25

    Article  Google Scholar 

  53. Bekker H, Berendsen H, Dijkstra E, Achterop S, Vondrumen R, Vanderspoel D et al (eds) (1993) Gromacs-a parallel computer for molecular-dynamics simulations. 4th international conference on computational physics (PC 92); : World Scientific Publishing

  54. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  PubMed  Google Scholar 

  55. Schüttelkopf AW, Van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr Sect D: Biol Crystallogr 60:1355–1363

    Article  Google Scholar 

  56. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  57. Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17:6281–6291

    Article  PubMed  Google Scholar 

  58. Miller IIIBR, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321

    Article  CAS  PubMed  Google Scholar 

  59. Xue W, Yang F, Wang P, Zheng G, Chen Y, Yao X et al (2018) What contributes to serotonin–norepinephrine reuptake inhibitors’ dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation. ACS Chem Neurosci 9:1128–1140

    Article  CAS  PubMed  Google Scholar 

  60. Tuccinardi T (2021) What is the current value of MM/PBSA and MM/GBSA methods in drug discovery? Taylor & Francis, pp 1233–1237

  61. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res 43:W443–W7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gyebi GA, Ogunyemi OM, Ibrahim IM, Afolabi SO, Adebayo JO (2021) Dual targeting of cytokine storm and viral replication in COVID-19 by plant-derived steroidal pregnanes: an in silico perspective. Comput Biol Med 134:104406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. ;7:146 – 57.10.2174/157340911795677602

  64. Pinzi L, Rastelli G (2019) Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci. ;20.10.3390/ijms20184331

  65. Stanzione F, Giangreco I, Cole JC (2021) Chapter four - use of molecular docking computational tools in drug discovery. In: Witty DR, Cox B (eds) Progress in Medicinal Chemistry, vol 60. Elsevier, pp 273–343

  66. Hines M, Blum J (1979) Bend propagation in flagella. II. Incorporation of dynein cross-bridge kinetics into the equations of motion. Biophys J 25:421–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ordentlich A, Barak D, Kronman C, Flashner Y, Leitner M, Segall Y et al (1993) Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J Biol Chem 268:17083–17095

    Article  CAS  PubMed  Google Scholar 

  68. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L et al (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253:872–879

    Article  CAS  PubMed  Google Scholar 

  69. Ashani Y, Grunwald J, Kronman C, Velan B, Shafferman A (1994) Role of tyrosine 337 in the binding of huperzine A to the active site of human acetylcholinesterase. Mol Pharmacol 45:555–560

    CAS  PubMed  Google Scholar 

  70. Harel M, Schalk I, Ehret-Sabatier L, Bouet F, Goeldner M, Hirth C et al (1993) Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proceedings of the National Academy of Sciences. ;90:9031-5

  71. Colletier JP, Fournier D, Greenblatt HM, Stojan J, Sussman JL, Zaccai G et al (2006) Structural insights into substrate traffic and inhibition in acetylcholinesterase. EMBO J 25:2746–2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nature Reviews Neuroscience. ;4:131 – 8.10.1038/nrn1035

  73. Xu Y, Li M, Greenblatt H, Chen W, Paz A, Dym O et al (2012) Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. Acta Crystallogr Sect D: Biol Crystallogr 68:13–25

    Article  CAS  Google Scholar 

  74. Mouchlis VD, Melagraki G, Zacharia LC, Afantitis A (2020) Computer-aided drug design of β-secretase, γ-secretase and anti-tau inhibitors for the discovery of novel Alzheimer’s therapeutics. Int J Mol Sci 21:703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gupta S, Parihar D, Shah M, Yadav S, Managori H, Bhowmick S et al (2020) Computational screening of promising beta-secretase 1 inhibitors through multi-step molecular docking and molecular dynamics simulations-pharmacoinformatics approach. J Mol Struct 1205:127660

    Article  CAS  Google Scholar 

  76. Kumar A, Roy S, Tripathi S, Sharma A (2016) Molecular docking based virtual screening of natural compounds as potential BACE1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis. J Biomol Struct Dynamics 34:239–249

    Article  CAS  Google Scholar 

  77. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20:13384–13421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discovery Today 20:318–331

    Article  PubMed  Google Scholar 

  79. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  CAS  PubMed  Google Scholar 

  80. Cheng X, Ivanov I (2012) Molecular dynamics. Computational toxicology. :243 – 85

  81. Dong Y-w, Liao M-l, Meng X-l, Somero GN (2018) Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proceedings of the National Academy of Sciences. ;115:1274-9

  82. Sinha S, Wang SM (2020) Classification of VUS and unclassified variants in BRCA1 BRCT repeats by molecular dynamics simulation. Comput Struct Biotechnol J 18:723–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Perez A, Morrone JA, Simmerling C, Dill KA (2016) Advances in free-energy-based simulations of protein folding and ligand binding. Curr Opin Struct Biol 36:25–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  PubMed  Google Scholar 

  85. Khare G, Andrew Symons R, Do D (2008) Common ophthalmic emergencies. Int J Clin Pract 62:1776–1784

    Article  CAS  PubMed  Google Scholar 

  86. Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C et al (1996) Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16:881–891

    Article  CAS  PubMed  Google Scholar 

  87. Guo H, Cao H, Cui X, Zheng W, Wang S, Yu J et al (2019) Silymarin’s inhibition and treatment effects for Alzheimer’s disease. Molecules 24:1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haddadi R, Shahidi Z, Eyvari-Brooshghalan S (2020) Silymarin and neurodegenerative diseases: therapeutic potential and basic molecular mechanisms. Phytomedicine 79:153320

    Article  CAS  PubMed  Google Scholar 

  89. Remya C, Dileep K, Tintu I, Variyar E, Sadasivan C (2014) Flavanone glycosides as acetylcholinesterase inhibitors: computational and experimental evidence. Indian J Pharm Sci 76:567

    CAS  PubMed  PubMed Central  Google Scholar 

  90. de Almeida P, Boleti APdA, Rüdiger AL, Lourenço GA, da Veiga Junior VF, Lima ES (2015) Anti-inflammatory activity of triterpenes isolated from Protium paniculatum oil-resins. Evidence-Based Complementary and Alternative Medicine. ;2015

  91. Gurovic MSV, Castro MJ, Richmond V, Faraoni MB, Maier MS, Murray AP (2010) Triterpenoids with acetylcholinesterase inhibition from Chuquiraga erinacea D. Don. subsp. erinacea (Asteraceae). Planta Med 76:607–610

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work received not external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Gideon A. Gyebi; Methodology: Gideon A. Gyebi, Oludare M. Ogunyemi, Ibrahim M. Ibrahim; Formal analysis and investigation: Gideon A. Gyebi; Writing - original draft preparation: Gideon (A) Gyebi; Writing - review and editing: Olalekan (B) Ogunro, Saheed O. Afolabi, Gabriel O. Anyanwu, Ibrahim M. Ibrahim, Rotimi J. Ojo; Resources: Gaber El-Saber Batiha; Supervision: Joseph O. Adebayo.

Corresponding author

Correspondence to Gideon Ampoma Gyebi.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyebi, G.A., Ogunyemi, O.M., Ibrahim, I.M. et al. Identification of potential inhibitors of cholinergic and β-secretase enzymes from phytochemicals derived from Gongronema latifolium Benth leaf: an integrated computational analysis. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10658-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10658-y

Keywords

Navigation