Skip to main content
Log in

Large distribution and high sequence identity of a Copia-type retrotransposon in angiosperm families

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Retrotransposons are the main component of plant genomes. Recent studies have revealed the complexity of their evolutionary dynamics. Here, we have identified Copia25 in Coffea canephora, a new plant retrotransposon belonging to the Ty1-Copia superfamily. In the Coffea genomes analyzed, Copia25 is present in relatively low copy numbers and transcribed. Similarity sequence searches and PCR analyses show that this retrotransposon with LTRs (Long Terminal Repeats) is widely distributed among the Rubiaceae family and that it is also present in other distantly related species belonging to Asterids, Rosids and monocots. A particular situation is the high sequence identity found between the Copia25 sequences of Musa, a monocot, and Ixora, a dicot species (Rubiaceae). Our results reveal the complexity of the evolutionary dynamics of the ancient element Copia25 in angiosperm, involving several processes including sequence conservation, rapid turnover, stochastic losses and horizontal transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anisimova M, Ziheng Y (2007) Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol Biol Evol 24:1219–1228

    Article  CAS  PubMed  Google Scholar 

  • Capy P, Anxolabehere D, Langin T (1994) The strange phylogenies of transposable elements: are horizontal transfers the only explantation? Trends Genet 10:7–12

    Article  CAS  PubMed  Google Scholar 

  • Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J (2005) ACT: the artemis comparison tool. Bioinformatics 21:3422–3423

    Article  CAS  PubMed  Google Scholar 

  • Chaw SM, Chang CC, Chen HL, Li WH (2004) Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J Mol Evol 58:424–441

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Zhang D, Cheng Z, Keller B, Ling HQ (2009) A new family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event. Genetics 181:1183–1193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chevalier A (1946) Ecologie et distribution géographique des caféiers sauvages et cultivés. Rev Bot Appl Agric Trop 26:81–94

    Google Scholar 

  • Christelova P, Valarik M, Hribova E, De Langhe E, Dolezel J (2011) A multi gene sequence-based phylogeny of the Musaceae (banana) family. BMC Evol Biol 11:103

    Article  PubMed Central  PubMed  Google Scholar 

  • Cummings MP (1994) Transmission patterns of eukaryotic transposable elements: arguments for and against horizontal transfer. Trends Ecol Evol 9:141–145

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Denoeud F, Aury J-M et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217

    Article  PubMed  Google Scholar 

  • Davis AP (2010) Six species of Psilanthus transferred to Coffea (Coffeeae, Rubiaceae). Phytotaxa 10:41–45

    Article  Google Scholar 

  • Davis AP (2011) Psilanthus mannii, the type species of Psilanthus, transferred to Coffea. Nordic Journal of Botany 29:471–472

    Article  Google Scholar 

  • de Carvalho MO, Loreto EL (2012) Methods for detection of horizontal transfer of transposable elements in complete genomes. Genetics and molecular biology 35:1078–1084

    Article  PubMed Central  PubMed  Google Scholar 

  • DeBarry JD, Liu R, Bennetzen JL (2008) Discovery and assembly of repeat family pseudomolecules from sparse genomic sequence data using the assisted automated assembler of repeat families (AAARF) algorithm. BMC Bioinformatics 9:235

    Article  PubMed Central  PubMed  Google Scholar 

  • Denoeud F, Carretero-Paulet L, Dereeper A et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184

    Article  CAS  PubMed  Google Scholar 

  • Dereeper A, Guyot R, Tranchant-Dubreuil C et al (2013) BAC-end sequences analysis provides first insights into coffee (Coffea canephora P.) genome composition and evolution. Plant Mol Biol 83:177–189

    Article  CAS  PubMed  Google Scholar 

  • Diao X, Freeling M, Lisch D (2006) Horizontal transfer of a plant transposon. PLoS Biol 4:e5

    Article  PubMed Central  PubMed  Google Scholar 

  • El Baidouri M, Carpentier M-CC, Cooke R et al (2014) Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res 24:831–838

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform 9:18

    Article  Google Scholar 

  • Fortune PM, Roulin A, Panaud O (2008) Horizontal transfer of transposable elements in plants. Commun Integr Biol 1:74–77

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamon P, Duroy P-OO, Dubreuil-Tranchant C et al (2011) Two novel Ty1-copia retrotransposons isolated from coffee trees can effectively reveal evolutionary relationships in the Coffea genus (Rubiaceae). Mol Genet Genomics 285:447–460

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Gao D, Xiao H, van der Knaap E (2009) Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider. Plant J 60:181–193

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Visa S, Wu S, van der Knaap E (2012) Rider transposon insertion and phenotypic change in tomato. Topics Curr Genet 24:297–312

    Article  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Piffanelli P, Ciampi A et al (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genom 9:58

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liu A, Kress W, Li D (2010) Phylogenetic analyses of the banana family (Musaceae) based on nuclear ribosomal (ITS) and chloroplast (trnL-F) evidence. Taxon 59:20–28

    Google Scholar 

  • Llorens C, Futami R, Covelli L et al (2010) The gypsy database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39:D70–D74

    Article  PubMed Central  PubMed  Google Scholar 

  • Lorence D, Wagner W, Mouly A, Florence J (2007) Revision of Ixora (Rubiaceae) in the Marquesas Islands (French Polynesia). Bot J Linn Soc 155:581–597

    Article  Google Scholar 

  • Ma J, Bennetzen J (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marraccini P, Freire LP, Alves GS et al (2011) RBCS1 expression in coffee: Coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress. BMC Plant Biol 11:85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maurin O, Davis AP, Chester M, Mvungi EF, Jaufeerally-Fakim Y, Fay MF (2007) Towards a phylogeny for Coffea (Rubiaceae): identifying well-supported lineages based on nuclear and plastid DNA sequences. Ann Bot (Lond) 100:1565–1583

    Article  CAS  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. The Plant Genome 6:1–7

    Article  Google Scholar 

  • Moisy C, Schulman AH, Kalendar R et al (2014) The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years. Theor Appl Genet 127:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Moschetto D, Montagnon C, Guyot B, Perriot JJ, Leroy T, Eskes A (1996) Studies on the effect of genotype on cup quality of Coffea canephora. Tropical Science 36:18–31

    Google Scholar 

  • Roulin A, Piegu B, Wing RA, Panaud O (2008) Evidence of multiple horizontal transfers of the long terminal repeat retrotransposon RIRE1 within the genus Oryza. Plant J 53:950–959

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin YK et al (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  CAS  PubMed  Google Scholar 

  • Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546

    Article  PubMed Central  PubMed  Google Scholar 

  • Sonnhammer EL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167:GC1–GC10

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tosh J, Dessein S, Buerki S et al (2013) Evolutionary history of the Afro-Madagascan Ixora species (Rubiaceae): species diversification and distribution of key morphological traits inferred from dated molecular phylogenetic trees. Ann Bot 112:1723–1742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vitte C, Panaud O, Quesneville H (2007) LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC Genom 8:218

    Article  Google Scholar 

  • Wallau GL, Hua-Van A, Capy P, Loreto EL (2011) The evolutionary history of mariner-like elements in Neotropical drosophilids. Genetica 139:327–338

    Article  PubMed  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of Copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual Copia families. Genome Res 17:1072–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  CAS  PubMed  Google Scholar 

  • Wikstrom N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci 268:2211–2220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R (1998) Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 46:409–418

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Guyot R, de Kochko A et al (2011) Micro-collinearity and genome evolution in the vicinity of an ethylene receptor gene of cultivated diploid and allotetraploid coffee species (Coffea). Plant J 67:305–317

    Article  CAS  PubMed  Google Scholar 

  • Yuyama PM, Pereira LF, dos Santos TB et al (2012) FISH using a gag-like fragment probe reveals a common Ty3-gypsy-like retrotransposon in genome of Coffea species. Genome 55:825–833

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported Agropolis Fondation through the “Investissement d’avenir” program (ANR-10-LABX-0001-01) under the reference ID 1002-009 and 1102-006, CAPES (Grants 01/2010 to CMAC and fellowship 9127-11-9 to ESD), Brazilian agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo—Grant 2013/15070-4 to CMAC and fellowship 2011/18226-0 to ESD) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—Grant 306493/2013-6 to CMAC) and French agency ANR (Agence Nationale de la Recherche; Genoplante ANR-08-GENM-022-001). Acknowledgments to Dr. A. D’Hont for providing Musa spp. DNA samples; Herman E. Taedoumg for providing Craterispermum samples; Dr. P. De Block for providing Rubiaceae samples; Dr. J-J. Rakotomalala for providing Mascarocoffea samples. Acknowledgements to Philippe Lashermes and the Coffee Genome Consortium for the availability of the C. canephora BAC-end sequences and draft genome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Guyot.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Data deposition: KM439056 to KM439101.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1931 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, E.S., Hatt, C., Hamon, S. et al. Large distribution and high sequence identity of a Copia-type retrotransposon in angiosperm families. Plant Mol Biol 89, 83–97 (2015). https://doi.org/10.1007/s11103-015-0352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0352-8

Keywords

Navigation