Skip to main content

Advertisement

Log in

Implication of plant-soil relationships for conservation and restoration of copper-cobalt ecosystems

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Chemical soil factors play an important role in generating and maintaining plant diversity. Naturally metal-enriched habitats support highly distinctive plant communities consisting of many rare and endemic species. Species of these plant communities possess remarkable physiological adaptations and are now being considered key elements in the implementation of green technologies aimed at phytoremediation of contaminated soils and post-mined soils. Several studies have emphasised that industrial mineral extraction results in serious damage to ecosystems and serious threats to human health and leads to the extinction of metallophyte species. In the southeastern Democratic Republic of the Congo (DRC), mining activities represent a threat to the long-term persistence of communities located on metalliferous copper and cobalt outcrops and their associated endemic metallophytes, which are currently considered some of the most critically endangered plants in the world.

Scope

Plant diversity conservation of metal-rich soils must assess soil-plant relationships at different scales (ecosystems, communities, and populations) to define in-situ and ex-situ conservation and restoration projects. This paper proposes a review of soil-plant relationships involved in plant diversity and endemism and their implications for biodiversity conservation and restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R, Chapin FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  Google Scholar 

  • Anacker BL (2011) Phylogenetic patterns of endemism and diversity. In: Harrison SP, Rajakaruna N (eds) Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley, pp 49–79

    Google Scholar 

  • Anacker BL, Strauss SY (2014) The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc R Soc B 281:20132980

    Article  PubMed  PubMed Central  Google Scholar 

  • Anacker BL, Klironomos JN, Maherali H, Reinhart KO, Sharon YS (2014) Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol Lett 17:1613–1621

    Article  PubMed  Google Scholar 

  • Banza CLN, Nawrot TS, Haufroid V, Decrée S, De Putter T, Smolders E, Kabyla BI, Luboya ON, Ilunga AN, Mutombo AM, Nemery B (2009) High human exposure to cobalt and other metals in South-East DRC, a mining area of the Democratic Republic of Congo. Environ Res 109:745–52

    Article  CAS  PubMed  Google Scholar 

  • Boisson S, Le Stradic S, Collignon J, Malaisse F, Shutcha MN, Faucon M-P, Mahy G (2016) Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in South D. R. Congo. Environ Sci Pollut Res. doi:10.1007/s11356-015-5442-2

    Google Scholar 

  • Borhidi A (1996) Phytogeography and vegetation ecology of Cuba. Académiai Kiadó, Budapest

  • Brady KU, Kruckeberg AR, Bradshaw JHD (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266

    Article  Google Scholar 

  • Brooks RR, Malaisse F (1985) The heavy metal tolerant flora of Southcentral Africa: a mutlidisciplinary approach. A.A. Balkema, Rotterdam

    Google Scholar 

  • Brooks RR, Malaisse F (1990) Metal-enriched sites in south central africa. In: Shaw J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Inc, New York, pp 53–71

    Google Scholar 

  • Cheyns K, Banza Lubaba Nkulu C, Ngombe LK, Asosa JN, Haufroid V, De Putter T, Nawrot T, Kimpanga CM, Numbi OL, Ilunga BK, Nemery B, Smolders E (2014) Pathways of human exposure to cobalt in South-East DRC, a mining area of the DR Congo. Sci Total Environ 490:313–321

    Article  CAS  PubMed  Google Scholar 

  • Chipeng FK, Hermans C, Colinet G, Faucon M-P, Ngongo M, Meerts P, Verbruggen N (2009) Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke. Plant Soil 328:235–244

    Article  Google Scholar 

  • Collins RN, Kinsela AS (2011) Pedogenic factors and measurements of the plant uptake of cobalt. Plant Soil 339:499–512

    Article  CAS  Google Scholar 

  • Cowling RM, Lombard AT (2002) Heterogeneity, speciation/extinction history and climate: explaining regional plant diversity patterns in the Cape Floristic Region. Divers Distrib 8:163–179

    Article  Google Scholar 

  • De Putter T, Mees F, Decrée S, Dewaele S (2010) Malachite, an indicator of major Pliocene Cu remobilization in a karstic environment (South-East DRC, Democratic Republic of Congo). Ore Geol Rev 38:90–100

    Article  Google Scholar 

  • Delhaye G, Violle C, Séleck M, Ilunga wa Ilunga E, Daubie I, Mahy G, Meerts P (2016) Community variation in plant traits along copper and cobalt gradients. J. Veg. Sci. in press

  • Duvigneaud P (1959) Plantes cobaltophytes dans le Haut South-East DRC. Bull Soc R Bot Belg 91:111–134

    Google Scholar 

  • Duvigneaud P, Denaeyer-De Smet S (1963) Cuivre et végétation au South-East DRC. Bull Soc R Bot Belg 96:93–224

    Google Scholar 

  • Erskine P, Van der Ent A, Fletcher A (2012) Sustaining metal-loving plants in mining regions. Science 337:1172–1173

    Article  CAS  PubMed  Google Scholar 

  • Escande V, Olszewski T, Grison C (2014) From biodiversity to catalytic diversity: how to control the reaction mechanism by the nature of metallophytes. Environ Sci Pollut Res :1–14

  • Escudero A, Palacio S, Maestre FT, Luzuriaga AL (2015) Plant life on gypsum: a review of its multiple facets. Biol Rev 90:1–18

    Article  PubMed  Google Scholar 

  • Faucon M-P, Meersseman A, Shutcha M, Mahy G, Luhembwe MN, Malaisse F, Meerts P (2010) Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecol Evol 143:5–18

    Article  Google Scholar 

  • Faucon M-P, Parmentier I, Colinet G, Mahy G, Ngongo Luhembwe M, Meerts P (2011) May rare metallophytes benefit from disturbed soils following mining activity? The Case of the Crepidorhopalon tenuis in South-East DRC (D. R. Congo). Restor Ecol 19:333–343

    Article  Google Scholar 

  • Faucon M-P, Tshilong BM, Van Rossum F, Meerts P, Decocq G, Mahy G (2012a) Ecology and hybridization potential of two sympatric metallophytes, the narrow endemic Crepidorhopalon perennis (Linderniaceae) and its more widespread congener. Biotropica 44:454–462

    Article  Google Scholar 

  • Faucon M-P, Chipeng F, Verbruggen N, Mahy G, Colinet G, Shutcha M, Pourret O, Meerts P (2012b) Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environ Exp Bot 84:11–16

    Article  CAS  Google Scholar 

  • François A (1973) L’extrémité occidentale de l’Arc Cuprifère Shabien. Etude géologique-Département de géologie de la Gécamines, Likasi (République du Zaire)

  • Godefroid S, Van de Vyver A, Massengo Kalenga W, Handjila Minengo G, Rose C, Ngongo Luhembwe M, Vanderborght T, Mahy G (2013) Germination capacity and seed storage behaviour of threatened metallophytes from the South-East DRC copper belt (DR Congo): implications for ex situ conservation. Plant Ecol Evol 146:183–192

    Article  Google Scholar 

  • Grison C (2014) Combining phytoextraction and ecocatalysis: a novel concept for greener chemistry, an opportunity for remediation. Environ Sci Pollut Res 1–3

  • Harrison S, Rajakaruna N (Eds.) (2011) Serpentine: the evolution and ecology of a model system. Univ of California Press

  • Harrison S, Safford H, Wakabayashi J (2004) Does the age of exposure of serpentine explain variation in endemic plant diversity in California? Int Geol Rev 46:235–242

    Article  Google Scholar 

  • Harrison S, Safford HD, Grace JB, Viers JH, Davies KF (2006) Regional and local species richness in an insular environment: serpentine plants in California. Ecol Monogr 76:41–56

    Article  Google Scholar 

  • Hopper SD, Gioia P (2004) The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annu Rev Ecol Evol Syst 35:623–650

    Article  Google Scholar 

  • Ilunga wa Ilunga E (2014) Ecologie des communautés des affleurements de cuivre et de cobalt du sud-est de l’Afrique Centrale. PhD. Thesis, Université de Lubumbashi, Faculté des Sciences agronomiques, République Démocratique du Congo

  • Ilunga wa Ilunga E, Séleck M, Colinet G, Meerts P, Mahy G (2013) Small-scale diversity of plant communities and distribution of species niches on a copper rock outcrop in Upper South-East DRC, DR Congo. Plant Ecol Evol 146:173–182

    Article  Google Scholar 

  • Ilunga wa Ilunga E, Mahy G, Piqueray J, Séleck M, Shutcha M, Meerts P, Faucon M-P (2015) Plant functional traits as a promising approach for the ecological restoration of degraded tropical metal-rich habitats and revegetation of metal-rich bare soils. Ecol Eng 82:214–221

    Article  Google Scholar 

  • Jacobi CM, Do Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biod Cons 16:2185–2200

    Article  Google Scholar 

  • Jaffré T (1992) Floristic and ecological diversity of the vegetation on ultramafic rocks in New Caledonia. In: Baker AJM, Proctor J, Reeves RD (eds) Proceedings of the First Internationa Conference on Serpentine Ecology, Intercept, Hampshire, pp 101–108

  • Kabala C, Singh BR (2001) Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J Environ Qual 30:485–492

    Article  CAS  PubMed  Google Scholar 

  • Kay KM, Ward KL, Watt LR, Schemske DW (2011) Plant speciation. In: Harrison SP, Rajakaruna N (eds) Serpentine: The evolution and ecology of a model system. Univ of California Press, Berkeley, pp 71–96

  • Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: From species to ecosystem level. Biol Rev 83:495–508

    CAS  PubMed  Google Scholar 

  • Kruckeberg AR, Kruckeberg A (1990) Endemic metallophytes: their taxonomic, genetic and evolutionary attributes. In: Shaw J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press Inc, New York, pp 301–312

    Google Scholar 

  • Kruckeberg AR, Rabinowitz D (1985) Biological aspects of endemism in higher plants. Annu Rev Ecol Syst 16:447–479

    Article  Google Scholar 

  • Küper W, Sommer JH, Lovett JC, Mutke J, Linder HP, Beentje HJ, Sylva R, Van Rompaey A-R, Chatelain C, Sosef M, Barthlott W (2004) Africa’s hotspots of biodiversity redefined. Ann Mo Bot Gard 525–535

  • Laliberté E, Grace JB, Huston MA, Lambers H, Teste FP, Turner BL, Wardle DA (2013) How does pedogenesis drive plant diversity? Trends Ecol Evol 28:331–340

    Article  PubMed  Google Scholar 

  • Lambers H (ed) (2014) Plant life on the Sandplains in Southwest Australia, a global biodiversity hotspot. University of Western Australia Publishing, Crawley

    Google Scholar 

  • Lambers H, Brundrett MC, Raven JA, Hopper SD (2010) Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil 334:11–31

    Article  CAS  Google Scholar 

  • Lange B, Faucon M-P, Meerts P, Shutcha M, Mahy G, Pourret O (2014) Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant Soil 379:275–287

    Article  CAS  Google Scholar 

  • Le Stradic S, Séleck M, Lebrun J, Boisson S, Handjila G, Faucon MP, Mahy G (2016) Comparison of translocation methods to conserve metallophyte communities in the Katangan copperbelt, DRC. Environ Sci Pollut Res In press

  • Leteinturier B (2002) Evaluation du potential phytocénotique des gisements cuprifères d’Afrique centro-australe en vue de la phytoremédiation de sites pollués par l’activité minière. PhD. Thesis, Faculté des Sciences agronomiques de Gembloux, Belgium

  • Levin GA, Morton JK, Robbrecht E (2007) Two New species of Acalypha (Euphorbiaceae) from tropical Africa, and a review of some Robyns names for cupricolous plants from the democratic republic of the Congo. Syst Bot 32:576–582

    Article  Google Scholar 

  • Losfeld G, Escande V, Jaffré T, L’Huillier L, Grison C (2012) The chemical exploitation of nickel phytoextraction: an environmental, ecologic and economic opportunity for New Caledonia. Chemosphere 89:907–10

    Article  CAS  PubMed  Google Scholar 

  • Macnair M, Gardner M (1998) The evolution of edaphic endemics. In: Howard D, Berlocher S (eds) Endless forms. Species and speciation. Oxford University Press, New York, pp 157–171

    Google Scholar 

  • Macnair MR, Tilstone GH, Smith SE (2000) The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Banuelos G, Vangronsveld J (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 235–250

    Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    Article  CAS  Google Scholar 

  • Malaisse F (1983) Phytogeography of the copper and cobalt flora of Upper Shaba (Zaïre), with emphasis on its endemism, origin and evolution mechanisms. Bothalia 14:497–504

    Article  Google Scholar 

  • Manda B, Colinet G, André L (2010) Evaluation de la contamination de la chaîne trophique par les éléments traces (Cu, Co, Zn, Pb, Cd, U, V et As) dans le bassin de la Lufira supérieure (South-East DRC). Tropicultura 246–252

  • Maxted N, Mabuza Dlamini P, Moss H, Padulosi S, Jarvis A, Guarino L (2004) An ecogeographic study: African Vigna

  • Noret N, Meerts P, Tolrà R, Poschenrieder C, Barceló J, Escarre J (2005) Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytol 165:763–71

    Article  CAS  PubMed  Google Scholar 

  • O’Dell RE, James JJ, Richards JH (2006) Congeneric serpentine and nonserpentine shrubs differ more in leaf Ca:Mg than in tolerance of low N, low P, or heavy metals. Plant Soil 280:49–64

    Article  Google Scholar 

  • Oksanen AJ, Blanchet FG, Kindt R, Minchin PR, Hara RBO, Simpson GL, Soly- P, Stevens MHH, Wagner H (2011) Package “vegan”

  • Palmer MA, Ambrose RF, Poff NLR (1997) Ecological theory and community restoration ecology. Restor Ecol 5:291–300

    Article  Google Scholar 

  • Peng H, Wang-Müller Q, Witt T, Malaisse F, Küpper H (2012) Differences in copper accumulation and copper stress between eight populations of Haumaniastrum katangense. Environ Exp Bot 79:58–65

    Article  CAS  Google Scholar 

  • Pillon Y, Munzinger J, Amir H, Lebrun M (2010) Ultramafic soils and species sorting in the flora of New Caledonia. J Ecol 98:1108–1116

    Article  Google Scholar 

  • Polhill RM (1982) Crotalaria in Africa and Madagascar. Taylor & Francis

  • Pourret O, Lange B, Houben D, Colinet G, Shutcha M, Faucon M-P (2015) Modeling of cobalt and copper speciation in metalliferous soils from South-East DRC (Democratic Republic of Congo). J Geochem Explor 149:87–96

    Article  CAS  Google Scholar 

  • Rajakaruna N (2004) The edaphic factor in the origin of plant species. Int Geol Rev 46:471–478

    Article  Google Scholar 

  • Saad L, Parmentier I, Colinet G, Malaisse F, Faucon M-P, Meerts P, Mahy G (2012) Investigating the vegetation-soil relationships on the copper-cobalt rock outcrops of South-East DRC (D. R. Congo), an essential step in a biodiversity conservation Plan. Restor Ecol 20:405–415

    Article  Google Scholar 

  • Safford H, Viers J, Harrison S (2005) Serpentine endemism in the California flora: a database of serpentine affinity. Madrono 52:222–257

    Article  Google Scholar 

  • Schenk HJ (2008) Soil depth, plant rooting strategies and species’ niches. New Phyt 178:223–225

    Article  Google Scholar 

  • Séleck M, Bizoux J-P, Colinet G, Faucon M-P, Guillaume A, Meerts P, Piqueray J, Mahy G (2013) Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration. Plant Soil 373:455–469

    Article  Google Scholar 

  • Shutcha MN, Mubemba MM, Faucon M-P, Luhembwe MN, Visser M, Colinet G, Meerts P (2010) Phytostabilisation of copper-contaminated soil in South-East DRC: an experiment with three native grasses and two amendments. Int J Phytoremediat 12:616–632

    Article  CAS  Google Scholar 

  • Shutcha M, Faucon MP, Kamengwa Kissi C, Colinet G, Mahy G, Ngongo LM, Visser M, Meerts P (2015) Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (South-East DRC, DR Congo). Ecol Eng 82:81–90

    Article  Google Scholar 

  • Silveira FA, Negreiros D, Barbosa NP, Buisson E, Carmo FF, Carstensen DW, Conceição AA, Cornelissen TG, Echternacht L, Fernandes GW, Garcia QS, Guerra TJ, Jacobi CM, Lemos-Filho JP, Le Stradic S, Morellato LPC, Neves FS, Oliveira RS, Schaefer CE, Viana PL, Lambers H (2015) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil 1–24

  • Stefanowicz AM, Niklińska M, Laskowski R (2008) Metals affect soil bacterial and fungal functional diversity differently. Environ Toxicol Chem 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Tadros TTM (1957) Evidence of the presence of an edapho-biotic factor in the problem of serpentine tolerance. Ecology 38:14–23

    Article  Google Scholar 

  • van der Ent A, Repin R, Sugau J, Wong KM (2015a) Plant diversity and ecology of ultramafic outcrops in Sabah (Malaysia). Aust J Bot. doi:10.1071/BT15060

    Google Scholar 

  • van der Ent A, Jaffré T, L’Huillier L, Gibson N, Reeves RD (2015b) The flora of ultramafic soils in the Australia–Pacific Region: state of knowledge and research priorities. Aust J Bot. doi:10.1071/BT15038

    Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015c) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    Article  PubMed  Google Scholar 

  • Van Zinderen Bakker EM, Coetzee JA (1988) A review of late quaternary pollen studies in East, Central and Southern Africa. Rev Palaeobot Palynol 55:155–174

    Article  Google Scholar 

  • Vincens A, Buchet G, Williamson D, Taieb M (2005) A 23,000 yr pollen record from Lake Rukwa (8°S, SW Tanzania): New data on vegetation dynamics and climate in Central Eastern Africa. Rev Palaeobot Palynol 137:147–162

    Article  Google Scholar 

  • Wakelin S, Gerard E, Black A, Hamonts K, Condron L, Yuan T, van Nostrand J, Zhou J, O’Callaghan M (2014) Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu. Environ Pollut 190:1–9

    Article  CAS  PubMed  Google Scholar 

  • Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Johns R, Mcintyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116

    Article  Google Scholar 

  • Whittaker RH (1954) The ecology of serpentine soils. Ecology 35:258–288

    Article  Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Hans Lambers and Etienne Laliberté (School of Plant Biology, University of Western Australia) and Antony van der Ent (Centre for Mined Land Rehabilitation, University of Queensland) for relevant comments and language revision of the manuscript. University of Lubumbashi and the NGO Biodiversité au southeast DRC (BAK) are gratefully acknowledged for the welcome given to MPF. We thank the company Tenke Fungurume Mining (TFM) for the logistic and financial support to conduct part of our study and the Fonds de la Recherche dans l’Industrie et dans l’Agriculture (FRIA) of the FNRS (Fonds National de la Recherche Scientifique), Belgium for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel-Pierre Faucon.

Additional information

Responsible Editor: Etienne Laliberté.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faucon, MP., Le Stradic, S., Boisson, S. et al. Implication of plant-soil relationships for conservation and restoration of copper-cobalt ecosystems. Plant Soil 403, 153–165 (2016). https://doi.org/10.1007/s11104-015-2745-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2745-5

Keywords

Navigation