Skip to main content
Log in

Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in South D. R. Congo

Poaceae candidates for phytostabilisation

  • How can we restore the biodiversity and ecosystem services in mining and industrial sites?
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phytostabilisation (i.e. using plants to immobilise contaminants) represents a well-known technology to hamper heavy metal spread across landscapes. Southeastern D.R. Congo, Microchloa altera, a tolerant grass from the copper hills, was recently identified as a candidate species to stabilise copper in the soil. More than 50 grasses compose this flora, which may be studied to implement phytostabilisation strategies. However, little is known about their phenology, tolerance, reproductive strategy or demography. The present study aims to characterize the Poaceae that may be used in phytostabilisation purposes based on the following criteria: their ecological distribution, seed production at two times, abundance, soil coverage and the germination percentage of their seeds. We selected seven perennial Poaceae that occur on the copper hills. Their ecological distributions (i.e. species response curves) have been modelled along copper or cobalt gradients with generalised additive models using logic link based on 172 presence-absence samples on three sites. For other variables, a total of 69 quadrats (1 m2) were randomly placed across three sites and habitats. For each species, we compared the number of inflorescence-bearing stems (IBS) by plot, the percentage of cover, the number of seeds by IBS and the estimated number of seeds by plot between sites and habitat. Three species (Andropogon schirensis, Eragrostis racemosa and Loudetia simplex) were very interesting for phytostabilisation programs. They produced a large quantity of seeds and had the highest percentage of cover. However, A. schirensis and L. simplex presented significant variations in the number of seeds and the percentage of cover according to site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aikaike H (1987) Factor analysis and AIC. Psychometrika 52:317–332

    Article  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-Concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85

    Article  Google Scholar 

  • Bamps P (1993) Flore d’Afrique centrale (Zaïre—Rwanda—Burundi)

    Google Scholar 

  • Banza CLN, Nawrot TS, Haufroid V et al (2009) High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environ Res 109:745–752. doi:10.1016/j.envres.2009.04.012

    Article  CAS  Google Scholar 

  • Bert V, Lors C, Laboudigue A, et al (2008) Use of phytostabilisation to remediate metal polluted dredged sediment. Int Symp Sediment Manag 275–279

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 71–88

    Google Scholar 

  • Board of Trustees Kew Royal Botanic Gardens (2010) Flora Zambesiaca

    Google Scholar 

  • Bradshaw A, Chadwick M (1980) The restoration of land: the ecology and reclamation of derelict and degraded land. University of California Press: Berkeley, CA (pp 317)

  • Brooker RW, Maestre FT, Callaway RM et al (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34. doi:10.1111/j.1365-2745.2007.01295.x

    Article  Google Scholar 

  • Brooks RR, Malaisse F (1985) The heavy metal tolerant flora of Southcentral Africa: a mutlidisciplinary approach. A.A. Balkema, Rotterdam

    Google Scholar 

  • Campbell B (1996) The Miombo in transition: woodlands and welfare in Africa. Center for International Forestry Research (CIFOR), Bogor, Indonesia

    Google Scholar 

  • Cheyns K, Banza Lubaba Nkulu C, Ngombe LK et al (2014) Pathways of human exposure to cobalt in Katanga, a mining area of the DR Congo. Sci Total Environ 490:313–321. doi:10.1016/j.scitotenv.2014.05.014

    Article  CAS  Google Scholar 

  • Clary J (2014) Book review: the carcinogenicity of metals: human risk through occupational and environmental exposure. Int J Toxicol 33:259–261. doi:10.1177/1091581814528157

    Article  Google Scholar 

  • Clayton WD, Vorontsova MS, Harman KT, Williamson H (2006) GrassBase—the online world grass flora. In: Bot. Gard. Kew. http://www.kew.org/data/grasses-db.html. Accessed 11 Nov 2014

  • Coiffait-Gombault C, Buisson E, Dutoit T (2011) Hay transfer promotes establishment of mediterranean steppe vegetation on soil disturbed by pipeline construction. Restor Ecol 19:214–222. doi:10.1111/j.1526-100X.2010.00706.x

    Article  Google Scholar 

  • Conesa HM, Faz A, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain). Sci Total Environ 366:1–11. doi:10.1016/j.scitotenv.2005.12.008

    Article  CAS  Google Scholar 

  • Donath TW, Bissels S, Hölzel N, Otte A (2007) Large scale application of diaspore transfer with plant material in restoration practice—impact of seed and microsite limitation. Biol Conserv 138:224–234. doi:10.1016/j.biocon.2007.04.020

    Article  Google Scholar 

  • Dubourguier H-C, Petit D, Deram A, Logeay C (2001) Le phytomanagement: eléments de synthèse. Pôle de compétence sites et sédiments pollués, Lille

    Google Scholar 

  • Duvigneaud P, Denaeyer-De Smet S (1963) Cuivre et végétation au Katanga [Copper and vegetation in Katanga]. Bull Soc Roy Bot Belgique 96:93–231

    Google Scholar 

  • Edwards AR, Mortimer SR, Lawson CS et al (2007) Hay strewing, brush harvesting of seed and soil disturbance as tools for the enhancement of botanical diversity in grasslands. Biol Conserv 134:372–382. doi:10.1016/j.biocon.2006.08.025

    Article  Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochemistry 11:163–167

    Article  CAS  Google Scholar 

  • ESRI (2010) ArcGIS Geostatistical Analyst Tutorial

    Google Scholar 

  • Faucon M-P, Colinet G, Mahy G et al (2009) Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant Soil 317:201–212. doi:10.1007/s11104-008-9801-3

    Article  CAS  Google Scholar 

  • Faucon M-P, Meersseman A, Shutcha MN et al (2010) Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecol Evol 143:5–18. doi:10.5091/plecevo.2010.411

    Article  Google Scholar 

  • Fenner M (1998) The phenology of growth and reproduction in plants. Perspect Plant Ecol Evol Syst 1:78–91. doi:10.1078/1433-8319-00053

    Article  Google Scholar 

  • Freitas H, Prasad MNV, Pratas J (2004) Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Environ Int 30:65–72. doi:10.1016/S0160-4120(03)00149-1

    Article  CAS  Google Scholar 

  • Frérot H, Lefèbvre C, Gruber W et al (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65. doi:10.1007/s11104-005-5315-4

    Article  Google Scholar 

  • Gégout J-C, Pierrat J-C (1998) L’autécologie des espèces végétales : Une approche par régression non paramétrique. Ecologie 29:473–482

    Google Scholar 

  • Goldberg DE, Barton AM (1992) Patterns and consequences of interspecific competition in natural communities: a review of field experiments with plants. Am Nat 139:771. doi:10.1086/285357

    Article  Google Scholar 

  • Gurevitch J, Morrow LL, Wallace A, Walsh JS (1992) A meta-analysis of competition in field experiments. Am Nat 140:539. doi:10.1086/285428

    Article  Google Scholar 

  • Hadjiliadis ND (1997) Cytotoxic, mutagenic and carcinogenic potential of heavy metals including metals related to human environment. Kluwer Academic Publishing, Dordrecht

    Book  Google Scholar 

  • Harmanescu M, Alda L, Bordean D et al (2011) Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat County, Romania. Chem Cent J 5:64

    Article  CAS  Google Scholar 

  • Hastie T, Tibshirani R (1986) Generalized additive models. Stat Sci 1:297–318

    Article  Google Scholar 

  • Henson TM, Cory W, Rutter MT (2013) Extensive variation in cadmium tolerance and accumulation among populations of Chamaecrista fasciculata. PLoS One 8:e63200. doi:10.1371/journal.pone.0063200

    Article  CAS  Google Scholar 

  • Hölzel N, Otte A (2003) Restoration of a species-rich flood meadow by topsoil removal and diaspore transfer with plant material. Appl Veg Sci 6:131–140. doi:10.1111/j.1654-109X.2003.tb00573.x

    Article  Google Scholar 

  • Ilunga wa Ilunga E, Séleck M, Colinet G et al (2013) Small-scale diversity of plant communities and distribution of species niches on a copper rock outcrop in Upper Katanga, DR Congo. Plant Ecol Evol 146:173–182

    Article  Google Scholar 

  • Kew Royal Botanic Gardens (2008) Flora of tropical East Africa. In: Polhill RM (ed) Flora of tropical East Africa. Royal Botanic Gardens, Kew, UK

    Google Scholar 

  • Kiehl K (2010) Plant species introduction in ecological restoration: possibilities and limitations. Basic Appl Ecol 11:281–284. doi:10.1016/j.baae.2010.02.008

    Article  Google Scholar 

  • Kiehl K, Wagner C (2006) Effect of hay transfer on long-term establishment of vegetation and grasshoppers on former arable fields. Restor Ecol 14:157–166. doi:10.1111/j.1526-100X.2006.00116.x

    Article  Google Scholar 

  • Kirmer A, Baasch A, Tischew S (2012) Sowing of low and high diversity seed mixtures in ecological restoration of surface mined-land. Appl Veg Sci 15:198–207. doi:10.1111/j.1654-109X.2011.01156.x

    Article  Google Scholar 

  • Kucak A, Blanuša M (1998) Comparison of two extraction procedures for determination of trace metals in soil by atomic absorption spectrometry. Arh Hig Rada Toksikol 49:327–334

    CAS  Google Scholar 

  • Lange B, Faucon M-P, Meerts P et al (2014) Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant Soil 379:275–287. doi:10.1007/s11104-014-2068-y

    Article  CAS  Google Scholar 

  • Le Stradic S, Buisson E, Fernandes GW (2014) Restoration of neotropical grasslands degraded by quarrying using hay transfer. Appl Veg Sci 17:482–492. doi:10.1111/avsc.12074

    Article  Google Scholar 

  • Leteinturier B (2002) Evaluation du potential phytocénotique des gisements cupriferes d’Afrique centro-australe en vue de la phytoremédiation de sites pollués par l'activité

    Google Scholar 

  • Leteinturier B, Malaisse F (1999) The copper flora of Katanga: a phytogeographical analysis. Geo Eco Trop 23:31–48

    Google Scholar 

  • Li Y, Wang Y, Gou X et al (2006) Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. J Environ Sci 18:1124–1134

    Article  CAS  Google Scholar 

  • Lorestani B, Cheraghi M, Yousefi N (2011) Phytoremediation potential of native plants growing on a heavy metals contaminated soil of copper mine in Iran. World Acad Sci Eng Techno 5:341–346

    Google Scholar 

  • Mench M, Lepp N, Bert V et al (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070. doi:10.1007/s11368-010-0190-x

    Article  CAS  Google Scholar 

  • Mench M, Vangronsveld J, Lepp N et al (2006) Phytostabilisation of metal-contaminated sites. In: Morel J-L, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. Springer, Trest, pp 109–190

    Chapter  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments--an emerging remediation technology. Environ Health Perspect 116:278–283. doi:10.1289/ehp.10608

    Article  CAS  Google Scholar 

  • Morellato LPC, Talora DC, Takahasi A et al (2000) Phenology of atlantic rain forest trees: a comparative study. Biotropica 32:811–823. doi:10.1111/j.1744-7429.2000.tb00620.x

    Article  Google Scholar 

  • O’Dell RE, Claassen VP (2006) Relative performance of native and exotic grass species in response to amendment of drastically disturbed serpentine substrates. J Appl Ecol 43:898–908. doi:10.1111/j.1365-2664.2006.01193.x

    Article  Google Scholar 

  • Olsson K, Agren J (2002) Latitudinal population differentiation in phenology, life history and ower morphology in the perennial herb Lythrum salicaria °. Science 15(80-):983–996

    Google Scholar 

  • Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4:196–202

    Article  Google Scholar 

  • Parraga-Aguado I, Querejeta J-I, González-Alcaraz M-N et al (2014) Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: grasses vs. shrubs vs. trees. J Environ Manage 133:51–58. doi:10.1016/j.jenvman.2013.12.001

    Article  CAS  Google Scholar 

  • R Development Core Team (2010) A language and environment for statistical computing. Vienna (Austria)

  • Ramírez N (2002) Reproductive phenology, life-forms, and habitats of the Venezuelan Central Plain. Am J Bot 89:836–842. doi:10.3732/ajb.89.5.836

    Article  Google Scholar 

  • Rasran L, Vogt K, Jensen K (2007) Effects of topsoil removal, seed transfer with plant material and moderate grazing on restoration of riparian fen grasslands. Appl Veg Sci 10:451–U93. doi:10.1658/1402-2001(2007)10[451:EOTRST]2.0.CO;2

    Article  Google Scholar 

  • Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Syst 16:179–214. doi:10.1146/annurev.es.16.110185.001143

    Article  Google Scholar 

  • Remon E, Bouchardon JL, Cornier B et al (2005) Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: implications in risk assessment and site restoration. Environ Pollut 137:316–323. doi:10.1016/j.envpol.2005.01.012

    Article  CAS  Google Scholar 

  • Rey F (2003) Influence of vegetation distribution on sediment yield in forest. Catena 50:549–562

    Article  Google Scholar 

  • Rizzi L, Petruzzelli G, Poggio G, Guidi GV (2004) Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere 57:1039–1046. doi:10.1016/j.chemosphere.2004.08.048

    Article  CAS  Google Scholar 

  • Saad L, Parmentier I, Colinet G et al (2012) Investigating the vegetation-soil relationships on the copper-cobalt rock outcrops of Katanga (D. R. Congo), an essential step in a biodiversity conservation plan. Restor Ecol 20:405–415. doi:10.1111/j.1526-100X.2011.00786.x

    Article  Google Scholar 

  • Séleck M, Bizoux J-P, Colinet G et al (2013) Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration. Plant Soil 373:455–469. doi:10.1007/s11104-013-1819-5

    Article  Google Scholar 

  • Shaw J (1990) Heavy metal tolerance in plants: evolutionary aspects. CRC Press Inc, New York

    Google Scholar 

  • Shutcha MN, Mubemba MM, Faucon M-P et al (2010) Phytostabilisation of copper-contaminated soil in Katanga: an experiment with three native grasses and two amendments. Int J Phytoremediation 12:616–632. doi:10.1080/15226510903390411

    Article  CAS  Google Scholar 

  • Sorensen FC, Campbell RK, Franklin JF (1990) Geographic variation in growth and phenology of seedlings of the Abies procena/A. magnifica complex. For Ecol Manage 36: 205–232. doi: http://dx.doi.org/10.1016/0378-1127(90)90026-8

  • Suchkova N, Tsiripidis I, Alifragkis D et al (2014) Assessment of phytoremediation potential of native plants during the reclamation of an area affected by sewage sludge. Ecol Eng 69:160–169. doi:10.1016/j.ecoleng.2014.03.029

    Article  Google Scholar 

  • Van Oudtshoorn F (2012) Guide to grasses of Southern Africa. Briza Publications: Pretoria, South Africa (p 288)

  • Vander Mijnsbrugge K, Bischoff A, Smith B (2010) A question of origin: where and how to collect seed for ecological restoration. Basic Appl Ecol 11:300–311. doi:10.1016/j.baae.2009.09.002

    Article  Google Scholar 

  • Vangronsveld J, Van Assche F, Clijsters H (1995) Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environ Pollut 87:51–59

    Article  CAS  Google Scholar 

  • Vitasse Y, Delzon S, Bresson CC et al (2009) Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Can J For Res 39:1259–1269. doi:10.1139/X09-054

    Article  Google Scholar 

  • Vranken I, Amisi YM, Kankumbi FM et al (2013) The spatial footprint of the non-ferrous mining industry in Lubumbashi. Tropicultura 31:22–29

    Google Scholar 

  • Whiting SN, Reeves RD, Richards D et al (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116

    Article  Google Scholar 

  • Wild H, Bradshaw AD (1977) The evolutionary effects of metalliferous and other anomalous soils in S. Central Africa. Evolution (N Y) 31:282–293

    Google Scholar 

  • Willem A (2011) Etude des systèmes souterrains des communautés végétales cuprifères: implication pour la restauration (Katanga, R.D.Congo). Master Thesis. Gembloux Agro-Bio Tech, p 88

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Wright JW, Stanton ML, Scherson R (2006) Local adaptation to serpentine and non-serpentine soils in Collinsia sparsiflora. Evol Ecol Res 8:1–21

    Google Scholar 

Download references

Acknowledgement

Tenke Fungurume Mining S.a.r.l. provided all logistic support necessary to perform this study. Both travels realized for the present work was made possible thanks to the financial intervention of the Fonds de la Recherche dans l’Industrie et dans l’Agriculture (FRIA) of the FNRS (Fonds National de la Recherche Scientifique), Belgium. Julien Collignon benefited from a fellowship of the University of Liege in a context of his Master thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Boisson.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boisson, S., Le Stradic, S., Collignon, J. et al. Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in South D. R. Congo. Environ Sci Pollut Res 23, 13693–13705 (2016). https://doi.org/10.1007/s11356-015-5442-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5442-2

Keywords

Navigation