Skip to main content
Log in

Effects of Teramnus labialis (L.f.) Spreng seed cryopreservation on subsequent seed and seedling growth and biochemistry

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Teramnus labialis (L.f.) Spreng is a legume that plays an important role in agriculture, due to its use as animal feed and its role as an enhancer of soil physicochemical conditions. However, given previous reports on the effects of seed cryopreservation on seedling vigor and biochemistry in a number of species, the present study looked at the effects of T. labialis seed cryopreservation on subsequent seed and seedling [0–28 days post seed exposure to liquid nitrogen (LN)], growth (germination, seedling length and fresh and dry mass) and biochemistry (chlorophyll, aldehyde, phenolic and protein levels). The seeds were intact in terms of macrostructure after exposure to LN, however, there was a significant (3.5-fold) increase in electrolyte leakage during imbibition. Seedling emergence was also improved by cryostorage during the 1st week of culture (4.1-fold increase) and at 28 days (2.5-fold increase). Consequently, seedling growth (in terms of plantlet length, and fresh and dry mass) was superior in seedlings arising from cryopreserved seed, but this stimulatory effect was more evident at 14 than 28 days of culture. An increase in malondialdehyde levels in cryopreserved seeds is most likely a consequence of damage to the external seed structures following cooling and rewarming, while the rise in cell wall-linked phenolics and aldehydes in roots of seedlings produced from cryopreserved seeds could be linked to water and nutrient stress brought about by greater root growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Acosta Y, Hernández L, Mazorra C, Quintana N, Zevallos BE, Cejas I, Sershen LJC, Martínez-Montero ME, Fontes D (2019) Seed cryostorage enhances subsequent plant productivity in the forage species Teramnus labialis (L.F.) Spreng. CryoLetters 40:36–44

    PubMed  Google Scholar 

  • Albro PW, Corbett JT, Schroeder JL (1986) Application of the thiobarbituric acid assay to the measurement of lipid peroxidation products in microsomes. J Biochem Biophys Meth 13:185–194

    Article  CAS  Google Scholar 

  • AOAC (2000) AOAC international, 17th edn. AOAC, Gaithersburg

    Google Scholar 

  • Arguedas M, Gómez D, Hernández L, Engelmann F, Garramone R, Cejas I, Yabor L, Martínez-Montero ME, Lorenzo JC (2018) Maize seed cryo-storage modifies chlorophyll, carotenoid, protein, aldehyde and phenolics levels during early stages of germination. Acta Physiol Plant 40:118

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination, 2nd edn. Academic Press, New York

    Google Scholar 

  • Cardoso FA, Pita JM, Palmeira J (2000) Efecto de la crioconservación sobre la germinación de semillas de leguminosas. Rev Bras Prod Agroind 2:67–71

    Google Scholar 

  • Cejas I, Vives K, Laudat T, González-Olmedo J, Engelmann F, Martínez-Montero ME, Lorenzo JC (2012) Effects of cryopreservation of Phaseolus vulgaris L. seeds on early stages of germination. Plant Cell Rep 31:2065–2073

    Article  CAS  Google Scholar 

  • Crews TE, Blesh J, Culman SW, Hayes RC, Jensen ES, Mack MC, Peoples MB, Schipanski ME (2016) Going where no grains have gone before: from early to mid-succession. Agric Ecosyst Environ 223:223–238

    Article  Google Scholar 

  • Engelmann F (2000) Importance of cryopreservation for the conservation of plant genetic resources. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, pp 8–20

    Google Scholar 

  • Engelmann F, Ramanatha R (2012) Major research challenges and directions for future research. In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer, Berlin, pp 511–526

    Google Scholar 

  • Engelmann F, Takagi H (2000) Cryopreservation of tropical plant germplasm. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm—current research progress and applications. JIRCAS, Tsukuba, p 496

    Google Scholar 

  • Fontes D, Mazorra C, Lazo M, Pulido L, Cubillas N, Rodríguez L, Hernández N, Rodríguez W (2008) Teramnus labialis: leguminosa promisoria para la producción diversificada en fincas citrícolas. Zoot Trop 26:351–354

    Google Scholar 

  • Fontes D, Mazorra C, Acosta Y, Pardo J, Martínez J, Fernandez P, Lavigne C (2018) Productive behavior´s live of herbaceous leguminous coverage in a plantation of guava (Psidium guajava L.) var.Enana Roja Cubana (eea-1840). Univ Cie 7:297–308

    Google Scholar 

  • González Y, Mendoza F (1991) Comportamiento de la germinación de Teramnus labialis cv. Semilla Clara. II. Tratamientos antes de almacenar. Pastos y Forrajes 14:27–32

    Google Scholar 

  • Gurr S, McPherson J, Bowles D (1992) Lignin and associated phenolic acids in cell walls. In: Wilkinson DL (ed) Molecular plant pathology. Oxford Press, Oxford, pp 51–56

    Google Scholar 

  • Heath R, Packer J (1968) Photoperoxidation in isolated chloroplast: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Kozlowski TT, Pallardy SG (2002) Acclimation and adaptative response of woody plants to environmental stresses. Bot Rev 8:270

    Article  Google Scholar 

  • Lorenzo JC, Yabor L, Medina N, Quintana N, Wells V (2015) Coefficient of variation can identify the most important effects of experimental treatments. Not Bot Horti Agrobo Cluj-Nap 43:287–291

    Article  Google Scholar 

  • Martínez-Montero ME, Mora N, Quiñones J, González-Arnao MT, Engelmann F, Lorenzo JC (2002) Effect of cryopreservation on the structural and functional integrity of cell membranes of sugarcane (Saccharum sp.) embryogenic calluses. Cryoletters 23:237–244

    PubMed  Google Scholar 

  • Mazorra-Calero CA, Fontes-Marrero D, Donis-García LH, Martínez-Melo J, Acosta-Fernández Y, Espinosa-Alemán I, Lavinge C, Fernandes P, González-Morales A (2016) Diagnóstico tecnológico y socioeconómico del establecimiento de Psidium guajava L. y Teramnus labialis en Ciego de Ávila, Cuba. Past For 39:259–264

    Google Scholar 

  • Mohamed HI, El-Beltagi HS, Aly AA, Latif HH (2018) The role of systemic and non-systemic fungicides on the physiological and biochemical parameters in plant: implications for defense responses. FEB Fres Environ Bull 27:8585

    CAS  Google Scholar 

  • Moreno ME (1996) Análisis Físico y Biológico de Semillas Agrícolas, 3rd edn. Universidad Nacional Autónoma de México, México

    Google Scholar 

  • Onyilagha JC, Elliott BH, Buckner E, Okiror SO, Raney PJ (2011) Seed chlorophyll influences vigor in oilseed rape (Brassica napus L. var AC Excel). J Agric Sci 3:73

    Google Scholar 

  • Pérez-Rodríguez JL, Escriba RCR, González GYL, Olmedo JLG, Martínez-Montero ME (2017) Effect of desiccation on physiological and biochemical indicators associated with the germination and vigor of cryopreserved seeds of Nicotiana tabacum L. cv. Sancti Spíritus 96. Vitro Cell Dev Biol Plant 53:1–9

    Article  Google Scholar 

  • Porra R (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  Google Scholar 

  • Pritchard H (2007) Cryopreservation of desiccation-tolerant seeds. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols methods in molecular biology. Humana Press, Totowa, New Jersey, pp 185–202

    Chapter  Google Scholar 

  • Pritchard H, Ashmore S, Berjak P, Engelmann F, González-Benito M, Li D, Nadarajan J, Panis B, Pence V, Walters C (2009) Storage stability and the biophysics of preservation. Proc Plant Conservation for the Next Decade: a celebration of Kew’s 250th anniversary, 12–16 Oct 2009. Royal Botanic Garden Kew, London

  • Pritchard H, Nadarajan J, Ballesteros D, Thammasiri K, Prasongsom S, Malik S, Chaudhury R, Kim H-H, Lin L, Li W-Q (2016) Cryobiotechnology of tropical seeds-scale, scope and hope. Int Symp Trop Subtrop Ornament 1167:37–48

    Google Scholar 

  • Rao NK, Hanson J, Dulloo ME, Ghosh K (2007) Manual para el Manejo de Semillas en Bancos de Germoplasma (Manuales para Bancos de Germoplasma No. 8). Bioversity International, Rome

  • Salisbury FB, Ross CW (1992) Plant physiology, 4th edn. Wadsworth Publishing Company, Belmont

    Google Scholar 

  • Sarmento MB, Schifino-Wittmann MT (2000) Different treatments and their effects on germination of Leucaena seeds. Rev Cient Rural 5:89

    Google Scholar 

  • Stanwood P, Bass L (1981) Seed germplasm preservation using liquid nitrogen. Seed Sci Technol 9:423

    Google Scholar 

  • Veiga-Barbosa L, Mira S, González-Benito M, Souza M, Meletti L, Pérez-García F (2013) Seed germination, desiccation tolerance and cryopreservation of Passiflora species. Seed Sci Technol 41:89–97

    Article  Google Scholar 

  • Vertucci CW, Roos EE (1993) Theoretical basis of protocols for seed storage. II. The influence of temperature on optimal moisture levels. Seed Sci Res 3:201–213

    Article  Google Scholar 

  • Viloria H, Méndez Natera JR (2011) Relationship among electrical conductivity, pH of soaked-water, seed germination and seedling growth of corn (Zea mays L.) under two experimental conditions. Sci Agrop 2:213–228

    Article  Google Scholar 

  • Volk GM, Crane J, Caspersen AM, Hill LM, Gardner C, Walters C (2006) Massive cellular disruption occurs during early imbibition of Cuphea seeds containing crystallized triacylglycerols. Planta 224:1415

    Article  CAS  Google Scholar 

  • Zevallos B, Cejas I, Rodríguez RC, Yabor L, Aragón C, González J, Engelmann F, Martínez ME, Lorenzo JC (2013) Biochemical characterization of Ecuadorian wild Solanum lycopersicum Mill. plants produced from non-cryopreserved and cryopreserved seeds. CryoLetters 34:413–421

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the University of Ciego de Avila (Cuba), the Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López (Ecuador), and the University of Kwazulu-Natal (South Africa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Lorenzo.

Additional information

Communicated by M. Horbowicz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta, Y., Pérez, L., Linares, C. et al. Effects of Teramnus labialis (L.f.) Spreng seed cryopreservation on subsequent seed and seedling growth and biochemistry. Acta Physiol Plant 42, 7 (2020). https://doi.org/10.1007/s11738-020-3012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-3012-9

Keywords

Navigation