Skip to main content
Log in

Callus and suspension cell cultures of Sutherlandia frutescens and preliminary screening of their phytochemical composition and antimicrobial activity

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Callus and suspension cell cultures were successfully developed from Sutherlandia frutescens (Fabaceae), an endemic medicinal plant of South Africa. Two callus cell lines, originating from hypocotyl and cotyledon explants of in vitro seedlings under both dark and light conditions, showed intensive fresh weight accumulation with growth index ranging from 4.6 to 5.9. Suspension cell cultures induced from two callus lines had similar growth profiles and their growth index (15–18), specific growth rate (0.15–0.16 day−1), productivity (0.83–0.96 g/(l day)) and maximum biomass accumulation (16–18 g/l) remained relatively high for Fabaceae cell cultures during 27 sub-cultivations. Callus and suspension cell cultures showed similar profiles of secondary metabolites that were, however, different from leaves of greenhouse plants. Isoflavones were predominant in both callus and suspension cell cultures while flavonoids (sutherlandins) and triterpene glycosides of the cycloartane group (sutherlandiosides) were mostly found in leaves. Nineteen fatty acids (FA), both short- and very-long-chained (up to C25:0), were found in cell cultures. Linoleic and α-linolenic FA together comprised 60–64% out of total FA content in cell cultures followed by palmitic acid (18–25%). Extracts of suspension cell biomass exhibited antimicrobial activity against Staphylococcus aureus but were not effective against Pseudomonas aeruginosa. To the best of our knowledge, this is the first report on the induction, phytochemical composition and antimicrobial activity screening of S. frutescens suspension cell cultures which opens the door for their biotechnological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data used during the study are available from the corresponding author by request.

References

  • Aboyade OM, Styger G, Gibson D, Hughes G (2014) Sutherlandia frutescens: the meeting of science and traditional knowledge. J Altern Complement Med 20:71–76. https://doi.org/10.1089/acm.2012.0343

    Article  PubMed  PubMed Central  Google Scholar 

  • Acharya D, Enslin G, Chen W, Sandasi M, Mavimbela T, Viljoen A (2014) A chemometric approach to the quality control of Sutherlandia (cancer bush). Biochem Syst Ecol 56:221–230. https://doi.org/10.1016/j.bse.2014.06.009

    Article  CAS  Google Scholar 

  • Albrecht CF, Stander MA, Grobbelaar MC, Colling J, Kossmann J, Hills PN, Makunga NP (2012) LC–MS-based metabolomics assists with quality assessment and traceability of wild and cultivated plants of Sutherlandia frutescens (Fabaceae). S Afr J Bot 82:33–45. https://doi.org/10.1016/j.sajb.2012.07.018

    Article  CAS  Google Scholar 

  • Avula B, Wang YH, Smillie TJ, Fu X, Li XC, Mabusela W, Syce J, Johnson Q, Folk W, Khan IA (2010) Quantitative determination of flavonoids and cycloartanol glycosides from aerial parts of Sutherlandia frutescens (L.) R. BR. by using LC-UV/ELSD methods and confirmation by using LC–MS method. J Pharm Biomed Anal 52:173–180. https://doi.org/10.1016/j.jpba.2010.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumert A, Kuzovkina IN, Krauss G, Hieke M, Gröger D (1982) Biosynthesis of rutacridone in tissue cultures of Ruta graveolens L. Plant Cell Rep 1:168–171. https://doi.org/10.1007/BF00269190. (PMID: 24259136)

    Article  CAS  PubMed  Google Scholar 

  • Bence AK, Worthen DR, Adams VR, Crooks PA (2002) The antiproliferative and immunotoxic effects of L-canavanine and L-canaline. Anticancer Drugs 13:313–320

    Article  CAS  PubMed  Google Scholar 

  • Brümmerhoff SWD (1969) Some constituents of Sutherlandia microphylla. Dissertation, University of the Free State, Bloemfontein.

  • Chinkwo KA (2005) Sutherlandia frutescens extracts can induce apoptosis in cultured carcinoma cells. J Ethnopharmacol 98:163–170. https://doi.org/10.1016/j.jep.2005.01.016

    Article  PubMed  Google Scholar 

  • Cook R, Lupette J, Benning C (2021) The role of chloroplast membrane lipid metabolism in plant environmental responses. Cells 10:706. https://doi.org/10.3390/cells10030706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Silva I, Podder SK (1994) Peanut agglutinin from callus and cell suspension cultures of Arachis hypogaea L. Plant Cell Rep 14:50–54. https://doi.org/10.1007/BF00233298

    Article  PubMed  Google Scholar 

  • Dewir YH, Singh N, Shaik S, Nicholas A (2010) Indirect regeneration of the cancer bush (Sutherlandia frutescens L.) and detection of L-canavanine in in vitro plantlets using NMR. In Vitro Cell Dev Biol 46:41–46. https://doi.org/10.1007/s11627-009-9260-4

    Article  Google Scholar 

  • Dixon RA (1999) Isoflavonoids: biochemistry, molecular biology, and biological functions. In: Barton D, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural product chemistry, vol 1. Elsevier, New York, pp 773–823

    Chapter  Google Scholar 

  • Efferth T (2019) Biotechnology applications of plant callus cultures. Engineering 5:50–59. https://doi.org/10.1016/j.eng.2018.11.006

    Article  CAS  Google Scholar 

  • Engelbrecht AM, Smith C, Neethling I, Thomas M, Ellis B, Mattheyse M, Myburgh KH (2010) Daily brief restraint stress alters signaling pathways and induces atrophy and apoptosis in rat skeletal muscle. Stress 13:132–141. https://doi.org/10.3109/10253890903089834

    Article  CAS  PubMed  Google Scholar 

  • Faleschini MT, Myer MS, Harding N, Fouchè G (2013) Chemical profiling with cytokine stimulating investigations of Sutherlandia frutescens L. R. (Br.) (Fabaceae). S Afr J Bot 85:48–55. https://doi.org/10.1016/j.sajb.2012.11.007

    Article  CAS  Google Scholar 

  • Farag MA, Huhman DV, Lei Z, Sumner LW (2007) Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC–UV–ESI–MS and GC–MS. Phytochem 68:342–354

    Article  CAS  Google Scholar 

  • Fedoreyev SA, Pokushalova TV, Veselova MV, Glebko LI, Kulesh NI, Muzarok TI, Seletskaya LD, Bulgakov VP, Zhuravlev YN (2000) Isoflavonoid production by callus cultures of Maackia amurensis. Fitoterapia 71:365–372

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Li XC, Wong YH, Avula B, Smillie TJ, Mabusela W, Syce J, Johnson Q, Folk W, Khan IA (2010) Flavonol glycosides from the South African medicinal plant Sutherlandia frutescens. Planta Med 76:178–181. https://doi.org/10.1055/s-0029-1186030

    Article  CAS  PubMed  Google Scholar 

  • Georgiev MI, Weber J (2014) Bioreactors for plant cells: hardware configuration and internal environment optimization as tools for wider commercialization. Biotechnol Lett 36:1359–1367

    Article  CAS  PubMed  Google Scholar 

  • Hübsch Z, Van Zyl RL, Cock IE, Van Vuuren SF (2014) Interactive antimicrobial and toxicity profiles of conventional antimicrobials with Southern African medicinal plants. South Afr J Bot 93:185–197

    Article  Google Scholar 

  • Januario AH, Lourenco MV, Domezio LA, Pietro RCLR, Castilho MS, Tomazela DM et al (2005) Isolation and structure determination of bioactive isoflavones from callus culture of Dipteryx odorata. Chem Pharm Bull 53:740–742

    Article  CAS  Google Scholar 

  • Katerere DR, Eloff JN (2005) Antibacterial and antioxidant activity of Sutherlandia frutescens (Fabaceae), a reputed anti-HIV/AIDS phytomedicine. Phytother Res 19:779–781. https://doi.org/10.1002/ptr.1719. (PMID: 16220570)

  • Kochkin DV, Globa EB, Demidova EV, Gaisinsky VV, Galishev BA, Kolotyrkina NG, Kuznetsov VV, Nosov AM (2017) Occurrence of 14-hydroxylated taxoids in the plant in vitro cell cultures of different yew species (Taxus spp.). Dokl Biochem Biophys 476:337–339

    Article  CAS  PubMed  Google Scholar 

  • Kochkin DV, Globa EB, Demidova EV, Gaisinsky VV, Kuznetsov VV, Nosov AM (2019) Detection of taxuyunnanin C in suspension cell culture of Taxus canadensis. Dokl Biochem Biophys 485:129–131

    Article  CAS  PubMed  Google Scholar 

  • Kochkin DV, Galishev BA, Titova MV, Popova EV, Nosov AM (2021) Chromato-mass-spectrometric identification of glycosides of phenylethylamides of hydroxycinnamic acids in a suspension cell culture of Mandragora turcomanica. Russ J Plant Physiol 68:973–980

    Article  CAS  Google Scholar 

  • Kokotkiewicz A, Luczkiewicz M, Hering A, Ochocka R, Gorynski K, Bucinski A, Sowinski P (2012) Micropropagation of Cyclopia genistoides, an endemic South African plant of economic importance. Z Naturforsch C 67:65–76. https://doi.org/10.1515/znc-2012-1-209

    Article  CAS  PubMed  Google Scholar 

  • Kundu JK, Mossanda KS, Na HK, Surh YJ (2005) Inhibitory effects of the extracts of Sutherlandia frutescens (L.) R. Br. and Harpagophytum procumbens DC. on phorbol ester-induced COX-2 expression in mouse skin: AP-1 and CREB as potential upstream targets. Cancer Lett 218:21–31. https://doi.org/10.1016/j.canlet.2004.07.029

    Article  CAS  PubMed  Google Scholar 

  • Leisching G, Loos B, Nell T, Engelbrecht AM (2015) Sutherlandia frutescens treatment induces apoptosis and modulates the PI3-kinase pathway in colon cancer cells. S Afr J Bot 100:20–26. https://doi.org/10.1016/j.sajb.2015.04.013

    Article  CAS  Google Scholar 

  • Lohvina HO, Emel’yanova PA, Ditchenko TI, Yurin BM (2013) Characteristic of cell growth activity and synthesis of phenolic compounds in suspension culture of Trigonella foenum-graecum L. Zhivye Biokosnye Sist. https://jbks.ru/archive/issue-5/article-12

  • Luczkiewicz M, Kokotkiewicz A, Glod D (2014) Plant growth regulators affect biosynthesis and accumulation profile of isoflavone phytoestrogens in high-productive in vitro cultures of Genista tinctoria. Plant Cell Tiss Organ Cult 118:419–429

    Article  CAS  Google Scholar 

  • MacCarthy JJ, Stumpf PK (1981) Tissue culture of plants for studies of lipid metabolism. Methods in Enzymology, vol. 72. Academic Press, pp 754–768. https://doi.org/10.1016/S0076-6879(81)72066-4

  • Mackenzie J, Koekemoer T, van de Venter M, Dealtry G, Roux S (2009) Sutherlandia frutescens limits the development of insulin resistance by decreasing plasma free fatty acid levels. Phytother Res 23:1609–1614. https://doi.org/10.1002/ptr.2830

    Article  CAS  PubMed  Google Scholar 

  • Mavimbela T, Vermaak I, Chen W, Viljoen A (2018) Rapid quality control of Sutherlandia frutescens leaf material through the quantification of SU1 using vibrational spectroscopy in conjunction with chemometric data analysis. Phytochem Lett 25:184–190. https://doi.org/10.1016/j.phytol.2018.03.003

    Article  CAS  Google Scholar 

  • Meï C, Michaud M, Cussac M, Albrieux C, Gros V, Maréchal E, Block MA, Jouhet J, Rébeillé F (2015) Levels of polyunsaturated fatty acids correlate with growth rate in plant cell cultures. Sci Rep 5:15207. https://doi.org/10.1038/srep15207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills E, Cooper C, Seely D, Kanfer I (2005) African herbal medicines in the treatment of HIV: Hypoxis and Sutherlandia. an overview of evidence and pharmacology. Nutr J 4:1–8. https://doi.org/10.1186/1475-2891-4-19

    Article  Google Scholar 

  • Moshe D, van Der Bank H, Van Der Bank M, Van Wyk B-E (1998) Lack of genetic differentiation between 19 populations from seven taxa of Sutherlandia tribe: Galegeae, Fabaceae. Biochem Syst Ecol 26:595–609

    Article  CAS  Google Scholar 

  • Moshe D (1998) A biosystematic study of the genus Sutherlandia R.Br. (Fabaceae, Galegeae). M.Sc. Thesis (Botany), University of Johannesburg.

  • Nosov AM (2012) Application of cell technologies for production of plant-derived bioactive substances of plant origin. Appl Biochem Microbiol 48:609–624

    Article  CAS  Google Scholar 

  • Nosov AM, Popova EV, Kochkin DV (2014) Isoprenoid production via plant cell cultures: biosynthesis, accumulation and scaling-up to bioreactors. In: Paek KY, Murthy HN, Zhong JJ (eds) Production of biomass and bioactive compounds using bioreactor technology. Springer, Dordrecht, pp 563–623

    Chapter  Google Scholar 

  • Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci U S A 91:5222–5226. https://doi.org/10.1073/pnas.91.12.5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poeaim AA, Poeaim S, Pongtongkam P, Arananant J (2015) Callus induction and cell suspension cultures of rhizome peanut (Arachis glabrata). J Agric Technol. https://doi.org/10.13140/RG.2.2.27061.73442

    Article  Google Scholar 

  • Popova EV, Nosov AV, Titova MV, Kochkin DV, Fomenkov AA, Kulichenko IE (2021) Nosov AM (2021) advanced biotechnologies: collections of plant cell cultures as a basis for development and production of medicinal preparations. Russ J Plant Physiol 68:385–400. https://doi.org/10.1134/S102144372103016X

    Article  CAS  Google Scholar 

  • Radwan SS, Mangold HK (1980) Biochemistry of lipids in plant cell cultures. In: Fiechter A (ed) Advances in biochemical Engineering, vol 16. Springer, Berlin, Heidelberg, pp 109–133

    Google Scholar 

  • Schenk RU, Hildebrandt A (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204. https://doi.org/10.1016/j.jep.2017.03.019

    Article  CAS  Google Scholar 

  • Sergeant CA, Africander D, Swart P, Swart AC (2017) Sutherlandia frutescens modulates adrenal hormone biosynthesis, acts as a selective glucocorticoid receptor agonist (SEGRA) and displays and mineralocorticoid properties. J Ethnopharmacol 202:290–301. https://doi.org/10.1016/j.jep.2017.03.019

    Article  CAS  PubMed  Google Scholar 

  • Shaik S, Dewir YH, Singh N, Nicholas A (2010) Micropropagation and bioreactor studies of the medicinally important plant Lessertia (Sutherlandia) frutescens L. S Afr J Bot 76:180–186. https://doi.org/10.1016/j.sajb.2009.10.005

    Article  CAS  Google Scholar 

  • Shaik S, Singh N, Nicholas A (2011a) Cytokinin-induced organogenesis in Lessertia (Sutherlandia) frutescens L. using hypocotyl and cotyledon explants affects yields of L-canavanine in shoots. Plant Cell Tiss Organ Cult 105:439–446. https://doi.org/10.1007/s11240-010-9885-3

    Article  CAS  Google Scholar 

  • Shaik S, Singh N, Nicholas A (2011b) HPLC and GC analyses of in vitro-grown leaves of the cancer bush Lessertia (Sutherlandia) frutescens L. reveal higher yields of bioactive compounds. Plant Cell Tiss Organ Cult 105:431–438. https://doi.org/10.1007/s11240-010-9884-4

    Article  CAS  Google Scholar 

  • Silva ALC, Caruso CS, Moreira RA, Horta ACG (2005) Growth characteristics and dynamics of protein synthesis in callus cultures from Glycine wightii (Wight and Arn.) Verdc Cienc Agrotec 29:1161–1166.

  • Singer SR (1986) Analyzing growth in cell cultures. I. Calculating Growth Rates Can J Bot 64:233–237

    Google Scholar 

  • Sokmen A, Jones BM, Erturk M (1999) Antimicrobial activity of extracts from the cell cultures of some Turkish medicinal plants. Phytother Res 13:355–357

    Article  CAS  PubMed  Google Scholar 

  • Sroga GE (1983) Callus and suspension culture of Lupinus angustifolius cv. Turkus Plant Sci Lett 32:183–192. https://doi.org/10.1016/0304-4211(83)90114-1

    Article  CAS  Google Scholar 

  • Tattrie NH, Veliky IA (1973) Fatty acid composition of lipids in various plant cell cultures. Can J Bot 51:513–516. https://doi.org/10.1139/b73-062

    Article  CAS  Google Scholar 

  • Titova MV, Kochkin DV, Fomenkov AA, Ivanov IM, Kotenkova EA, Kocharyan GL, Dzhivishev EG, Mekhtieva NP, Popova EV, Nosov AM (2021a) Obtaining and characterization of suspension cell culture of Alhagi persarum Boiss. et Buhse: a producer of isoflavonoids. Russ J Plant Physiol 68:652–660

    Article  CAS  Google Scholar 

  • Titova MV, Kochkin DV, Sobolkova GI, Fomenkov AA, Sidorov RA, Nosov AM (2021b) Obtainment and characterization of Alhagi persarum Boiss. et Buhse callus cell cultures that produce isoflavonoids. Applied Biochem Microbiol 57:20–30

    Article  Google Scholar 

  • Titova MV, Popova EV, Konstantinova SV, Kochkin DV, Ivanov IM, Klyushin AG et al (2021c) Suspension cell culture of Dioscorea deltoidea – a renewable source of biomass and furostanol glycosides for food and pharmaceutical industry. Agronomy 11:394. https://doi.org/10.3390/agronomy11020394

  • Tjellstroem H, Yang Z, Allen DK, Ohlrogge JB (2012) Rapid kinetic labeling of Arabidopsis cell suspension cultures: implications for models of lipid export from plastids. Plant Physiol 158:601–611

  • Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M, Georgiev MI, Omidvar V, Ebrahimi M, Tavakoli Dinanai E, Abiri R (2019) Bioreactor-based advances in plant tissue and cell culture: challenges and prospects. Crit Rev Biotechnol 39:20–34

    Article  CAS  Google Scholar 

  • van Wyk BE, Albrecht C (2008) A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J Ethnopharmacol 3:620–629. https://doi.org/10.1016/j.jep.2008.08.003

    Article  CAS  Google Scholar 

  • Viljoen PT (1969) The oxidation of pinitol and partial identification of a triterpene glycoside from Sutherlandia microphylla. Thesis, University of the Free State, Bloemfontein, M.Sc

    Google Scholar 

  • Vorster C, Stander A, Joubert A (2012) Differential signaling involved in Sutherlandia frutescens-induced cell death in MCF-7 and MCF-12A cells. J Ethnopharmacol 140:123–130. https://doi.org/10.1016/j.jep.2011.12.045

    Article  PubMed  Google Scholar 

  • Williams S, Roux S, Koekemoer T, van de Venter M, Dealtry G (2013) Sutherlandia frutescens prevents changes in diabetes-related gene expression in a fructose-induced insulin resistant cell model. J Ethnopharmacol 146:482–489. https://doi.org/10.1016/j.jep.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2013) Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot 89:164–175. https://doi.org/10.1016/j.sajb.2013.06.006

    Article  CAS  Google Scholar 

  • Zonyane S, Chen L, Xu MJ, Gong ZN, Xu S, Makunga NP (2019) Geographic-based metabolomic variation and toxicity analysis of Sutherlandia frutescens L. R.Br. – An emerging medicinal crop in South Africa. Ind Crops Prod 133:414–423. https://doi.org/10.1016/j.indcrop.2019.03.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work on investigation of cell culture growth characteristics and secondary metabolite composition was financially supported by the Ministry of Science and Higher Education of Russian Federation through Megagrant project no. 075-15-2019-1882 and performed using the equipment of the large-scale research facilities “All-Russian Collection of cell cultures of higher plants” and “Experimental biotechnological facility” of the Institute of Plant Physiology of Russian Academy of Sciences. The results of cell culture induction and maintenance were obtained within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme No. 122042700045-3). The results of analysis of FAs composition were obtained within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme No. 122042700043-9). The results of antimicrobial activity analysis were obtained within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme No. 122042600086-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria V. Titova or Dmitry V. Kochkin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Communicated by M. Lambardi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 837 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosov, A.V., Titova, M.V., Fomenkov, A.A. et al. Callus and suspension cell cultures of Sutherlandia frutescens and preliminary screening of their phytochemical composition and antimicrobial activity. Acta Physiol Plant 45, 42 (2023). https://doi.org/10.1007/s11738-023-03526-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-023-03526-7

Keywords

Navigation