Skip to main content
Log in

Chemical Profiling and In Vitro Antiurolithiatic Activity of Pleurolobus gangeticus (L.) J. St.- Hil. ex H. Ohashi & K. Ohashi Along with Its Antioxidant and Antibacterial Properties

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pleurolobus gangeticus (L.) J. St.- Hil. ex H. Ohashi & K. Ohashi (Fabaceae) is an important medicinal plant used to treat various ailments. In this study, we report the antiurolithiatic, antioxidant, and antibacterial potential of chloroform fraction (CF) from P. gangeticus roots. For the chemical profiling, HPTLC, FT-IR, and GC–MS techniques of the CF were carried out, and phytochemical investigation was revealed that stigmasterol (45.06%) is one of the major components present in the fraction. The nucleation and aggregation assays were used to evaluate the in vitro antiurolithiatic activity at various concentration (2–10 mg/mL) of the CF. The results showed that the chloroform fraction had dose-dependent effects on Calcium Oxalate (CaOx) crystal formation. In both the assays, the maximum concentration of 10 mg/mL has shown better results. This concentration resulted significant increase in CaOx crystal nucleation along with the reduction of crystal size and the inhibition of crystal aggregation. Further, the CF showed stronger antioxidant (DPPH, NO, SOD, TRC) potential with an IC50 values of 415.9327, 391.729, 275.971, and 419.14 µg/mL, respectively. The antibacterial evaluation displayed effective results in the Agar well diffusion assay against selective urinary tract infection (UTI) pathogens (Escherichia coli, Klebsiella pneumonia, and Staphylococcus aureus). A maximum zone of inhibition (ZOI) 12.33 ± 1.05 mm for K pneumonia and minimum ZOI of 8.46 ± 0.27 mm for S. aureus were obtained. Further, the ADME-PK property of the stigmasterol was investigated, and it was found to pass the Lipinski and Ghose rules, supporting the drug-likeliness. This is the first record of the antiurolithiatic potential of P. gangeticus along with antioxidant and antibacterial activities. These findings give an insight into the effective drug development and treatment for kidney stones in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Butterweck, V., & Khan, S. R. (2009). Herbal medicines in the management of urolithiasis: Alternative or complementary. Planta medica, 75(10), 1095–1103. https://doi.org/10.1055/s-0029-1185719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boim, M. A., Heilberg, I. P., & Schor, N. (2010). Phyllanthus niruri as a promising alternative treatment for nephrolithiasis. International Brazilian Journal of Urology, 36(6), 657–664. https://doi.org/10.1590/S1677-55382010000600002

    Article  PubMed  Google Scholar 

  3. Porena, M., Guiggi, P., Balestra, A., & Micheli, C. (2004). Pain killers and antibacterial therapy for kidney colic and stones. Urologia internationalis, 72(Suppl. 1), 34–39. https://doi.org/10.1159/000076589

    Article  CAS  PubMed  Google Scholar 

  4. Khan, S. R., & Thamilselvan, S. (2000). Nephrolithiasis: A consequence of renal epithelial cell exposure to oxalate and calcium oxalate crystals. Molecular urology, 4(4), 305–312.

    CAS  PubMed  Google Scholar 

  5. Zhang, D., Li, S., Zhang, Z., Li, N., Yuan, X., Jia, Z., & Yang, J. (2021). Urinary stone composition analysis and clinical characterization of 1520 patients in central China. Scientific Reports, 11, 6467. https://doi.org/10.1038/s41598-021-85723-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Finkielstein, V. A., & Goldfarb, D. S. (2006). Strategies for preventing calcium oxalate stones. Canadian Medical Association Journal, 174(10), 1407–1409. https://doi.org/10.1503/cmaj.051517

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kennedy, J. (2005). Herb and supplement use in the US adult population. Clinical therapeutics, 27(11), 1847–1858. https://doi.org/10.1016/j.clinthera.2005.11.004

    Article  PubMed  Google Scholar 

  8. Bahmani, M., Baharvand-Ahmadi, B., Tajeddini, P., Rafieian-Kopaei, M., & Naghdi, N. (2016). Identification of medicinal plants for the treatment of kidney and urinary stones. Journal of renal injury prevention, 5(3), 129. https://doi.org/10.15171/jrip.2016.27

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bawari, S., Sah, A. N., & Tewari, D. (2021). Excavating the antiurolithiatic potential of wild Himalayan cherry through in vitro and preclinical investigations. South African Journal of Botany. https://doi.org/10.1016/j.sajb.2021.01.020

    Article  Google Scholar 

  10. Mosquera, D. M. G., Ortega,Y. H., Quero,P. C., Martínez,R. S., & Pieters, L. (2020). Antiurolithiatic activity of Boldoa purpurascens aqueous extract: An in vitro and in vivo study. Journal of ethnopharmacology 253, 112691. https://doi.org/10.1016/j.jep.2020.112691

  11. Taskin, T., Dogan, M., Yilmaz, B. N., Senkardes, I. (2020). Phytochemical screening and evaluation of antioxidant, enzyme inhibition, anti-proliferative and calcium oxalate anti-crystallization activities of Micromeria fruticosa spp. brachycalyx and Rhus coriaria. Biocatalysis and Agricultural Biotechnology. 27, 101670. https://doi.org/10.1016/j.bcab.2020.101670

  12. Dias, E. R., Freire Dias, Td. L. M., Alexandre-Moreira, M. S., & Branco, A. (2020). Flavonoid-rich fraction from Pleroma pereirae (Melastomataceae): Effects on calcium oxalate crystallization, antioxidant and antinociceptive activities. European Journal of Integrative Medicine. https://doi.org/10.1016/j.eujim.2020.101095

    Article  Google Scholar 

  13. Prasobh, K. M., Anil, K. M., Senthil, T. K., & Kumari, B. D. R. (2020). A comprehensive review of the phytochemical and pharmacological properties of Desmodium gangeticum (L.) DC. Journal of Advanced Scientific Research, 11(4), 90–97.

    Google Scholar 

  14. Chopra, R. N., Nayar, S. L., Chopra, I. C.(1956). Glossary of Indian medicinal plants, CSIR, New Delhi. 94.

  15. Nadkarni, K.M. (1976). Indian materia medica, Popular Prakashan, Bombay, India.

  16. Kiritikar, K. R., Basu, B. D. (1975).Indian medicinal plants 3, Bishen Singh & Mahendra Pal Sing, Dehra Dun, India.

  17. Vaghela, B. D., Patel, B. R., & Pandya, P. N. (2012). A comparative pharmacognostical profile of Desmodium gangeticum DC. and Desmodium laxiflorum DC. Ayu, 33, 552–526. https://doi.org/10.4103/0974-8520.110522

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yasmeen, N., Ellandala, R., Sujatha, K., & Veenavamshee, R. (2011). Evaluation of renal protective effects of Desmodium Gangeticum L. in streptozotocin–induced diabetic rats. International Journal of Research in Pharmacy and Chemistry, 1(2), 121–128.

    Google Scholar 

  19. Changdar, N., Ganjhu, R. K., Rijal, S., Kumar, A., Mallik, S. B., Nampoothiri, M., Shenoy, R. R., Sonawane, K. B., Rao, M. C., & Mudgal, J. (2019). Exploring the potential of Desmodium gangeticum (L.) DC. Extract against spatial memory deficit in rats. Pharmacognosy Magazine, 15(62), S78–S83.

    Google Scholar 

  20. Karthikeyan, K., Selvam, G. S., Srinivasan, R., Chandran, C., Kulothungan, S. (2012). In vitro antibacterial activity of Desmodium gangeticum (L) DG Asian Pacific. Journal of Tropical Disease, 2(1), S421–S424. 10. 1016/ S2222- 1808(12) 60195–9

  21. Bisht, R., Bhattacharya, S., & Jaliwala, Y. A. (2014). COX and LOX inhibitory potential of Abroma augusta and Desmodium gangeticum. The Journal of Phytopharmacology, 3(3), 168–175.

    Article  Google Scholar 

  22. Jahan, F. I., Hossain, M. S., Mamun, A. A., Hossain, M. T., Seraj, S., Chowdhury, A. R., Khatun, Z., Andhi, N. Z., Chowdhury, M. H., & Rahmatullah, M. (2010). An evaluation of antinociceptive effect of methanol extracts of Desmodium gangeticum (L.) DC. stems and Benincasa hispida (Thunb.) Cogn. leaves on acetic acid induced gastric pain in mice. Advances in Natural and Applied Sciences, 4(3), 365–369.

    Google Scholar 

  23. Govindarajan, R., Vijayakumar, M., Shirwaikar, A., Rawat, A. K., Mehrotra, S., & Pushpangadan, P. (2006). Antioxidant activity of Desmodium gangeticum and its phenolics in arthritic rats. Acta pharmaceutica (Zagreb Croatia), 56(4), 489–496.

    CAS  Google Scholar 

  24. Sankar, V., Pangayarselvi, B., Prathapan, A., & Raghu, K. G. (2013). Desmodium gangeticum (Linn) DC exhibits antihypertrophic effect in isoproterenol-induced cardiomyoblasts via amelioration of oxidative stress and mitochondrial alterations. Journal of cardiovascular pharmacology, 61(1), 23–34. https://doi.org/10.1097/FJC.0b013e3182756ad3

    Article  CAS  PubMed  Google Scholar 

  25. Prasad, M. V. V., Balakrishna, K., & Carey, M. W. (2005). Hepatoprotective activity of roots of Desmodium gangeticum (Linn) DC. Asian journal of chemistry, 17(4), 2847–2849.

    CAS  Google Scholar 

  26. Singh, N., Mishra, P. K., Kapil, A., Arya, K. R., Maurya, R., & Dube, A. (2005). Efficacy of Desmodium gangeticum extract and its fractions against experimental visceral leishmaniasis. Journal of ethnopharmacology, 98(1–2), 83–88. https://doi.org/10.1016/j.jep.2004.12.032

    Article  PubMed  Google Scholar 

  27. Kim, E.-Y., Hong, S., Kim, J.-H., Kim, M., Lee, Y., Sohn, Y., & Jung, H.-S. (2021). Effects of chloroform fraction of Fritillariae thunbergii Bulbus on atopic symptoms in a DNCB-induced atopic dermatitis-like skin lesion model and in vitro models. Journal of Ethnopharmacology, 281, 114453. https://doi.org/10.1016/j.jep.2021.114453

    Article  CAS  PubMed  Google Scholar 

  28. Zoete, V., Daina, A., Bovigny, C., & Michielin, O. (2016). Swiss Similarity: A web tool for low to ultra high throughput ligand-based virtual screening. Journal of Chemical Information and Modeling, 56, 1399–1404.

    Article  CAS  Google Scholar 

  29. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 427–517.

    Article  Google Scholar 

  30. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23, 3–25.

    Article  CAS  Google Scholar 

  31. Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of combinatorial chemistry, 1, 55–68.

    Article  CAS  Google Scholar 

  32. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45, 2615–2623.

    Article  CAS  Google Scholar 

  33. Cortes, C., & Vapnik, V. (1995). Machine learning. Support vector networks, 20, 273–297.

    Google Scholar 

  34. Hennequin, C., Lalane, V., Daudon, M., Lacour, B., & Drueke, T. (1993). A new approach to studying inhibitors of calcium oxalate crystal growth. Urological Research, 21(2), 101–108. https://doi.org/10.1007/BF01788827

    Article  CAS  PubMed  Google Scholar 

  35. Patel, P. K., Patel, M. A., Vyas, B. A., Shah, D. R., & Gandhi, T. R. (2012). Antiurolithiatic activity of saponin rich fraction from the fruits of Solanum xanthocarpum Schrad. & Wendl. (Solanaceae) against ethylene glycol induced urolithiasis in rats. Journal of Ethnopharmacology., 144, 160–170. https://doi.org/10.1016/j.jep.2012.08.043

    Article  CAS  PubMed  Google Scholar 

  36. Sasikala, V., RamuRadha, S., & Vijakumari, B. (2013). In vitro evaluation of Rotula aaquatica Lour. for antiurolithiatic activity. Journal of Pharmacy Research, 6(1), 378–82. https://doi.org/10.1016/j.jopr.2013.02.026

    Article  Google Scholar 

  37. Saha, S., & Verma, R. J. (2015). Evaluation of hydro-alcoholic extract of Dolichos biflorus seeds on inhibition of calcium oxalate crystallization. Journal of Herbal Medicine, 5(21), 41–47. https://doi.org/10.1016/j.hermed.2014.11.001

    Article  Google Scholar 

  38. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200. https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

  39. Kumar, K. N. S., Saraswathy, A., Amerjothy, S., Susan, T., & Ravishankar, B. (2014). Total phenol content and in vitro antioxidant potential of Helicanthus elastica (Desr.) Danser-a less-explored Indian mango mistletoe. Journal of Traditional and Complementary Medicine, 4(4), 285–288. https://doi.org/10.4103/2225-4110.130950

    Article  Google Scholar 

  40. Kaur, P., & Arora, S. (2011). Superoxide anion radical scavenging activity of Cassia siamea and Cassia javanica. Medicinal Chemistry Research, 20(1), 9–15. https://doi.org/10.1007/s00044-009-9274-9

    Article  CAS  Google Scholar 

  41. Vinod, M., Singh, M., Pradhan, M., Iyer, S. K., & Tripathi, D. K. (2012). Phytochemical constituents and pharmacological activities of Betula alba Linn. A review. International Journal of Pharmacy Research and Technology, 4(2), 643–647.

    Google Scholar 

  42. Perez, C. (1990). Antibiotic assay by agar-well diffusion method. Acta biologiae et medicinae experimentalis, 15, 113–115.

    Google Scholar 

  43. da Silva, R. F., Carneiro, C. N., de Sousa, C. B. D. C., Gomez, F. J., Espino, M., Boiteux, J., Dias, F. D. S. (2022). Sustainable extraction bioactive compounds procedures in medicinal plants based on the principles of green analytical chemistry: A review. Microchemical Journal, 107184. https://doi.org/10.1016/j.microc.2022.107184

  44. Mohan, P. K., Adarsh Krishna, T. P., Senthil Kumar, T., & RanjithaKumari, B. D. (2021). Pharmaco-chemical profiling of Desmodium gangeticum (L.) DC. with special reference to soil chemistry. Future Journal of Pharmaceutical Sciences, 7(1), 1–11. https://doi.org/10.1186/s43094-021-00356-7

    Article  Google Scholar 

  45. Chang, C., Yang, M., Wen, H., & Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178–182. https://doi.org/10.38212/2224-6614.2748

    Article  CAS  Google Scholar 

  46. Dias, A. L. B., de Aguiar, A. C., Rostagno, M. A. (2021). Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends. Ultrasonics Sonochemistry. 105584. https://doi.org/10.1016/j.ultsonch.2021.105584

  47. Truong, D. H., Nguyen, D. H., Ta, N. T. A., Bui, A. V., Do, T. H., Nguyen, H. C.(2019). Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. Journal of Food Quality. 1–9. https://doi.org/10.1155/2019/8178294

  48. Ngo Van, T., Scarlett, C.,Bowyer, M.,Ngo, P., Vuong, Q. (2017). Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L.. Journal of Food Quality. 1-8. https://doi.org/10.1155/2017/9305047

  49. Lefebvre, T., Destandau, E., Lesellier, E. (2021). Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. Journal of Chromatography A. 1635, 461770. https://doi.org/10.1016/j.chroma.2020.461770

  50. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D., & Lightfoot, D. (2017). Phytochemicals:extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42. https://doi.org/10.3390/plants6040042

    Article  CAS  PubMed Central  Google Scholar 

  51. Kritika, M., Deepak, K., & Suresh, K. (2015). Antiamnesic activity of extracts and fraction of Desmodium gangeticum. Journal of Pharmaceutical Technology Research and Management, 3(1), 67–77. https://doi.org/10.15415/jptrm.2015.31006

    Article  Google Scholar 

  52. Kurian, G. A., Srivats, R. S. S., Gomathi, R., Shabi, M. M., & Paddikkala, J. (2010). Interpretation of inotropic effect exhibited by Desmodium gangeticum chloroform root extract through GSMS and atomic mass spectroscopy: Evaluation of its anti ischemia reperfusion property in isolated rat heart. Asian Journal of Biochemistry, 5, 23–32. https://doi.org/10.3923/ajb.2010.23.32

    Article  CAS  Google Scholar 

  53. Mishra, P. K., Singh, N., Ahmad, G., Dube, A., & Maurya, R. (2005). Glycolipids and other constituents from Desmodium gangeticum with antileishmanial and immunomodulatory activities. Bioorganic and medicinal chemistry letters, 15(20), 4543–4546. https://doi.org/10.1016/j.bmcl.2005.07.020

    Article  CAS  PubMed  Google Scholar 

  54. Yadav, K., Agrawal, A., Pal, J. A., & Gupta, M. M. (2013). Novel anti-inflammatory phyto constituents from Desmodium gangeticum. Natural product research, 27(18), 1639–1645. https://doi.org/10.1080/14786419.2012.761620

    Article  CAS  Google Scholar 

  55. Mahajan, K., Kumar, D., Kaushik, D., & Kumar, S. (2017). Psychopharmacological evaluation of alkaloidal fraction of Desmodium gangeticum. Journal of Biologically Active Products from Nature, 7(1), 34–38. https://doi.org/10.1080/22311866.2017.1278720

    Article  CAS  Google Scholar 

  56. Shradhanjali, S. S., Mishra, B., Mukerjee, A.(2019). Clerodendrum serratum (L.) Moon leaf extract and its chloroform fraction attenuates acute and chronic arthritis in albino rats. Biocatalysis and Agricultural Biotechnology.22, 101399. https://doi.org/10.1016/j.bcab.2019.101399

  57. Ikpefan, E. O., Ayinde, B. A., Omeje, E. O., Azhar, M., Ahsana, D. F., Shah, Z. A., Shaheen, F, Choudhary, M. I. (2021). Isolation and anti-cancer evaluation of two anti-proliferative constituents from the chloroform fraction of leaves of Conyza Sumatrensis (Retz.) E. H. Walker, Asteraceae, Scientific African.13, e00854. https://doi.org/10.1016/j.sciaf.2021.e00854

  58. Gabriel, O. A., Jamshed, I., Shafi, U. K., Sumera, Z., Khalid, R., Chukwu, E. O., Opeolu, O. O., & Nisar-ur-Rahman. (2019). Antidiabetic activities of chloroform fraction of Anthocleista vogelii Planch root bark in rats with diet- and alloxan-induced obesity-diabetes. Journal of Ethnopharmacology, 229, 293–302. https://doi.org/10.1016/j.jep.2018.10.021

    Article  CAS  Google Scholar 

  59. Senguttuvan, J., Subramaniam, P.(2016). HPTLC fingerprints of various secondary metabolites in the traditional medicinal herb Hypochaeris radicata L. Journal of Botany. 1–11. https://doi.org/10.1155/2016/5429625

  60. Attimarad, M., Ahmed, K. K., Aldhubaib, B. E., & Harsha, S. (2011). High-performance thin layer chromatography: A powerful analytical technique in pharmaceutical drug discovery. Pharmaceutical methods, 2(2), 71–75. https://doi.org/10.4103/2229-4708.84436

    Article  PubMed  PubMed Central  Google Scholar 

  61. Krishna, T. P. A., Ajeesh, T. P., Chithra, N., Deepa, P., Darsana, U., Sreelekha, K., Juliet, Sanis, Nair, S., Ravindran, R., Ajith, K. K. G., Ghosh, S. (2014). Acaricidal activity of petroleum ether extract of leaves of Tetrastigma leucostaphylum (Dennst.) Alston against Rhipicephalus (Boophilus) annulatus. The Scientific World Journal.715481. https://doi.org/10.1155/2014/715481

  62. Krishna, T. P. A., Palayullaparambil, T., Krishna, A., Juliet, S., Renganathan, K., Raju, R., Athalathil, S., Ravindran, R., Chandrashekar, L., Nair, S., & Ghosh, S. (2016). Pharmaco-Chemical characterization and acaricidal activity of ethanolic extract of Chassalia Curviflora (Wall ex Kurz.) Thwaites. Pharmacognosy Journal, 8, 215–219. https://doi.org/10.5530/pj.2016.3.6

    Article  CAS  Google Scholar 

  63. Schulz, H., & Baranska, M. (2007). Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vibrational Spectroscopy, 43(1), 13–25. https://doi.org/10.1016/j.vibspec.2006.06.001

    Article  CAS  Google Scholar 

  64. Younis, U., Rahi, A. A., Danish, S., Ali, M. A., Ahmed, N., Datta, R., & Glick, B. R. (2021). Fourier transform infrared spectroscopy vibrational bands study of Spinacia oleracea and Trigonella corniculata under biochar amendment in naturally contaminated soil. PLoS One, 16(6), e0253390. https://doi.org/10.1371/journal.pone.0253390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gade, S., Rajamanikyam, M., Vadlapudi, V., Nukala, K. M., Aluvala, R., Giddigari, C., & Upadhyayula, S. M. (1861). (2017) Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochimica et Biophysica Acta (BBA)-General Subjects, 1861(3), 541–550. https://doi.org/10.1016/j.bbagen.2016.11.044

    Article  CAS  Google Scholar 

  66. Alawode, T. T., Lajide, L., Olaleye, M., & Owolabi, B. (2021). Stigmasterol and β-sitosterol: Antimicrobial compounds in the leaves of Lcacina trichantha identified by GC–MS. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 1–8. https://doi.org/10.1186/s43088-021-00170-3

    Article  Google Scholar 

  67. Gabay, O., Sanchez, C., Salvat, C., Chevy, F., Breton, M., Nourissat, G., & Berenbaum, F. (2010). Stigmasterol: A phytosterol with potential anti-osteoarthritic properties. Osteoarthritis and cartilage, 18(1), 106–116. https://doi.org/10.1016/j.joca.2009.08.019

    Article  CAS  PubMed  Google Scholar 

  68. Mahfuz, A., Salam, F. B. A., Deepa, K. N., & Hasan, A. N. (2019). Characterization of in-vitro antioxidant, cytotoxic, thrombolytic and membrane stabilizing potential of different extracts of Cheilanthes tenuifolia and stigmasterol isolation from n-hexane extract. Clinical Phytoscience, 5(1), 1–10. https://doi.org/10.1186/s40816-019-0135-x

    Article  CAS  Google Scholar 

  69. Kaur, N., Chaudhary, J., Jain, A., & Kishore, L. (2011). Stigmasterol: A comprehensive review. International Journal of Pharmaceutical Sciences and Research, 2(9), 2259.

    CAS  Google Scholar 

  70. Eddershaw, P. J., Beresford, A. P., & Bayliss, M. K. (2000). ADME/PK as part of a rational approach to drug discovery. Drug Discovery Today, 5, 409–414.

    Article  CAS  Google Scholar 

  71. Adarsh Krishna, T. P., Pandaram, S., & Ilangovan, A. (2019). Iron-mediated site-selective oxidative C-H/C–H cross-coupling of aryl radicals with quinones: Synthesis of β-secretase-1 inhibitor B and related arylated quinones. Organic Chemistry Frontiers, 6(18), 3244–3251. https://doi.org/10.1039/C9QO00623K

    Article  Google Scholar 

  72. Adarsh Krishna, T. P., Pandaram, S., Chinnasamy, S., & Ilangovan, A. (2020). Oxidative radical coupling of hydroquinones and thiols using chromic acid: One-pot synthesis of quinonyl alkyl/aryl thioethers. RSC Advances, 10(33), 19454–19462. https://doi.org/10.1039/D0RA01519A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Krishna, T. A., Edachery, B., & Athalathil, S. (2022). Bakuchiol–a natural meroterpenoid: Structure, isolation, synthesis and functionalization approaches. RSC advances, 12(14), 8815–8832.

    Article  Google Scholar 

  74. Abdel-Aal, E. A., Daosukho, S., & El-Shall, H. (2009). Effect of supersaturation ratio and Khella extract on nucleation and morphology of kidney stones. Journal of crystal growth, 311(9), 2673–2681. https://doi.org/10.1016/j.jcrysgro.2009.02.027

    Article  CAS  Google Scholar 

  75. Coll, D. M., Varanelli, M. J., & Smith, R. C. (2002). Relationship of spontaneous passage of ureteral calculi to stone size and location as revealed by unenhanced helical CT. American Journal of Roentgenology, 178, 101–103. https://doi.org/10.2214/ajr.178.1.1780101

    Article  PubMed  Google Scholar 

  76. Sheng, X., Ward, M. D., & Wesson, J. A. (2005). Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. Journal of the American Society of Nephrology, 16(7), 1904–1908. https://doi.org/10.1681/ASN.2005040400

    Article  CAS  PubMed  Google Scholar 

  77. Hirayama, H., Wang, Z., Nishi, K., Ogawa, A., Ishimatu, T., Ueda, S., & Nohara, T. (1993). Effect of Desmodium styracifolium-triterpenoidon calcium oxalate renal stones. British journal of urology, 71(2), 143–147. https://doi.org/10.1111/j.1464-410X.1993.tb15906.x

    Article  CAS  PubMed  Google Scholar 

  78. Nirala, R. K., Dutta, P., Malik, M. Z., Dwivedi, L., Shrivastav, T. G., & Thakur, S. C. (2019). In vitro and in silico evaluation of betulin on calcium oxalate crystal formation. Journal of the American College of Nutrition, 38(7), 586–596. https://doi.org/10.1080/07315724.2019.1568321

    Article  CAS  PubMed  Google Scholar 

  79. Wesson, J. A., Worcester, E. M., Wiessner, J. H., Mandel, N. S., & Kleinman, J. G. (1998). Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules. Kidney International, 53(4), 952–957. https://doi.org/10.1111/j.1523-1755.1998.00839.x

    Article  CAS  PubMed  Google Scholar 

  80. Atmani, F., & Khan, S. R. (2000). Effects of an extract from Herniaria hirsuta on calcium oxalate crystallization in vitro. Bju International, 85(6), 621–625.

    Article  CAS  Google Scholar 

  81. Saha, S., & Verma, R. J. (2013). Inhibition of calcium oxalate crystallization in vitro by an extract of Bergenia ciliata. Arab Journal of Urology, 11(2), 187–192. https://doi.org/10.1016/j.aju.2013.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  82. YousefiGhale-Salimi, M., Eidi, M., Ghaemi, N., & Khavari-Nejad, R. A. (2018). Inhibitory effects of taraxasterol and aqueous extract of Taraxacum officinale on calcium oxalate crystallization: in vitro study. Renal failure, 40(1), 298–305. https://doi.org/10.1080/0886022X.2018.1455595

    Article  CAS  Google Scholar 

  83. Aggarwal, K. P., Narula, S., Kakkar, M., & Tandon, C. (2013). Nephrolithiasis: Molecular mechanism of renal stone formation and the critical role played by modulators. BioMed research international. https://doi.org/10.1155/2013/292953

    Article  PubMed  PubMed Central  Google Scholar 

  84. Barros, M. E., Schor, N., & Boim, M. A. (2003). Effects of an aqueous extract from Phyllanthus niruri on calcium oxalate crystallization in vitro. Urological research, 30, 374–379. https://doi.org/10.1007/s00240-002-0285

    Article  CAS  PubMed  Google Scholar 

  85. Perez, R. M. G., Vargas, R. S., Perez, S. G., Zavala, M. S., & Perez, C. G. (2000). Antiurolithiatic activity of 7-hydroxy-2′,4′,5′-trimethoxyisoflavone and 7-hydroxy-4′-methoxyisoflavone from Eysenhardtia polystachya. Journal of Herbs Spices and Medicinal Plants, 7(2), 27–34. https://doi.org/10.1300/J044v07n02_03

    Article  Google Scholar 

  86. Khan, S. R. (2014). Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Translational andrology and urology, 3(3), 256. https://doi.org/10.3978/j.issn.2223-4683.2014.06.04

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jyothilakshmi, V., Thellamudhu, G., Chinta, R., Alok, K., Anil, K., Debadatta, N., & Kalaiselvi, P. (2014). Beneficial antioxidative effect of the homeopathic preparation of Berberis vulgaris in alleviating oxidative stress in experimental urolithiasis. Complementary Medicine Research, 21(1), 7–12. https://doi.org/10.1159/000360240

    Article  Google Scholar 

  88. Devkar, A. R., Chaudhary, S., Adepu, S., Xavier, S. K., Chandrashekar, K. S., & Setty, M. M. (2016). Evaluation of antiurolithiatic and antioxidant potential of Lepidagathis prostrata: A Pashanbhed plant. Pharmaceutical Biology, 54(7), 1237–1245. https://doi.org/10.3109/13880209.2015.1066397

    Article  CAS  PubMed  Google Scholar 

  89. Vermeulen, C.W. (1962). Experiments on causation of urinary calculi. Essays in experimental biology. Chicago: University of Chicago Press. 253–269.

  90. Chen, D., Zhang, Y., Huang, J., Liang, X., Zeng, T., Lan, C., & Wu, W. (2018). The analysis of microbial spectrum and antibiotic resistance of uropathogens isolated from patients with urinary stones. International journal of clinical practice, 72(6), e13205. https://doi.org/10.1111/ijcp.13205

    Article  CAS  PubMed  Google Scholar 

  91. Bichler, K. H., et al. (2002). Urinary infection stones. International Journal of Antimicrobial Agents, 19, 488–498. https://doi.org/10.1016/S0924-8579(02)00088-2

    Article  CAS  PubMed  Google Scholar 

  92. Baloyi, I. T., Cosa, S., Combrinck, S., Leonard, C. M., & Viljoen, A. M. (2019). Anti-quorum sensing and antimicrobial activities of South African medicinal plants against uropathogens. South African Journal of Botany, 122, 484–491. https://doi.org/10.1016/j.sajb.2019.01.010

    Article  CAS  Google Scholar 

  93. Bhandari, S., Khadayat, K., Poudel, S., Shrestha, S., Shrestha, R., Devkota, P., & Marasini, B. P. (2021). Phytochemical analysis of medicinal plants of Nepal and their antibacterial and antibiofilm activities against uropathogenic Escherichia coli. BMC Complementary Medicine and Therapies, 21(1), 1–11. https://doi.org/10.1186/s12906-021-03293-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. B. D. Ranjitha Kumari acknowledges University Grants Commission (UGC), Government of India, New Delhi, India, for UGC-BSR Faculty Fellowship. The authors also thank DST-Purse (Phase 2), DST-FIST, UGC-SAP support to Department of Botany, Bharathidasan University, Tiruchirappalli-24, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Contributions

PKM and TPA planned and designed the experiments. PKM performed the experiments and AT helped to perform the experiments. PKM prepared the manuscript.TSK and BDRK collaborated with the critical analyses of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Prasobh K. Mohan or B. D. Ranjitha Kumari.

Ethics declarations

Ethics Approval

This is an observational study. The Research Ethics Committee has confirmed that no ethical approval is required.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, P.K., Krishna, T.P.A., Thirumurugan, A. et al. Chemical Profiling and In Vitro Antiurolithiatic Activity of Pleurolobus gangeticus (L.) J. St.- Hil. ex H. Ohashi & K. Ohashi Along with Its Antioxidant and Antibacterial Properties. Appl Biochem Biotechnol 194, 5037–5059 (2022). https://doi.org/10.1007/s12010-022-04017-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-022-04017-0

Keywords

Navigation