Skip to main content

Advertisement

Log in

Global Plant Ecology of Tropical Ultramafic Ecosystems

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Ultramafic ecosystems are renowned for high endemism and habitat specialization. However, most of our understanding of ultramafic plant ecology comes from Mediterranean and temperate climes, raising questions about the generalizability of plant responses to ultramafic soils. This is especially apparent in tropical ultramafic ecosystems which exhibit a wide range of endemism and differentiation between ultramafic and adjacent non-ultramafic soils. Our objectives were two-fold: 1) synthesize our understanding of tropical ultramafic plant ecology, paying particular attention to generalities that may explain variation in endemism and habitat specialization among tropical ultramafic ecosystems; and 2) define an interdisciplinary research agenda using tropical ultramafic ecosystems as a macroecological model. We demonstrate that tropical ultramafic floras are diverse and variable in plant form and function due to the interactive effects of biogeography, climate, and edaphic properties. The variable rates of endemism, specialization, and stress tolerance traits across tropical ultramafic ecosystems have implications for the management and conservation of these diverse systems.

Resumen.

Los ecosistemas ultramáficos son reconocidos por su endemismo y especialización del hábitat. Sin embargo, la mayor parte de nuestra comprensión de la ecología vegetal ultramáfica proviene de climas mediterráneos y templados, lo que plantea dudas sobre la generalización de las respuestas de las plantas a los suelos ultramáficos. Esto es especialmente evidente en los ecosistemas tropicales ultramáficos que exhiben una amplia gama de endemismo y diferenciación entre suelos tropicales ultramáficos y no ultramáficos adyacentes. Nosotros teníamos dos objetivos: 1) sintetizar nuestra comprensión actual de la ecología de las plantas tropicales ultramáficas, prestando especial atención a las generalidades que pueden explicar la variación en el endemismo y la especialización del hábitat entre los ecosistemas tropicales ultramáficos; y 2) definir una agenda de investigación interdisciplinaria utilizando ecosistemas ultramáficos tropicales como modelo macroecológico. Las floras tropicales ultramáficas son diversas y variables en la forma y función de las plantas debido a los efectos interactivos de la biogeografía, el clima y las propiedades edáficas. Las tasas variables de endemismo, especialización y rasgos de tolerancia al estrés en los ecosistemas tropicales ultramáficos tienen implicaciones para el manejo y conservación de estos diversos sistemas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

All data is archived in Dryad (https://doi.org/10.5061/dryad.0zpc8670p), including an updated georeferenced list of prominent ultramafic outcrops worldwide, a region-specific bibliography, and a georeferenced database of ultramafic outcrops in the Americas.

References

  • Ackerly, D. D. (2003). Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences, 164(S3), S165–S184. https://doi.org/10.1086/368401

    Article  Google Scholar 

  • Adams, D. (1972) Flowering plants of Jamaica. Mona (Jamaica): University of the West Indies.

    Google Scholar 

  • Adhikari, S., Marcelo-Silva, J., Rajakaruna, N., & Siebert, S.J. (2022). Influence of land use and topography on distribution and bioaccumulation of potentially toxic metals in soil and plant leaves: A case study from Sekhukhuneland, South Africa. Science of The Total Environment, 806, 150659.

    Article  CAS  PubMed  Google Scholar 

  • Aiba, S. I., Sawada, Y., Takyu, M., Seino, T., Kitayama, K., & Repin, R. (2015). Structure, floristics, and diversity of tropical montane rain forests over ultramafic soils on Mount Kinabalu (Borneo) compared with those on non-ultramafic soils. Australian Journal of Botany, 63, 191–203. https://doi.org/10.1071/BT14238

    Article  Google Scholar 

  • Alameda, D., Falcón, B., Rijo, G., de Vales, D., Castañeda, A., & Leva, L.M. 2020. Diurnal pollination network of “Cuabales de Cajálbana”, a serpentine shrubwood in western Cuba. Revista Jardín Botánico Nacional, Universidad de La Habana, 41, 25-30.

    Google Scholar 

  • Alexander, E.B., (2018). Serpentine Landscapes of Costa Rica The Santa Elena Peninsula. http://www.soilsandgeoecology.com/Costa%20Rica.pdf

  • Alexander, E. B., Coleman, R. G., Keeler-Wolfe, T., & Harrison, S. P. (2007). Serpentine geoecology of western North America: Geology, soils, and vegetation. OUP USA.

  • Almeda, F., & Martins, A.B. (2015). Pterolepis haplostemona (Melastomataceae): A new serpentine endemic from Goiás, Brazil. Phytotaxa, 201, 233-238. https://doi.org/10.11646/phytotaxa.201.3.8

    Article  Google Scholar 

  • Álvarez Agudelo, J., & Muñoz Arango, R. H. (1987). Distribución de cromo, níquel y cobalto en la saprolita y en los concentrados de sedimentos fluviales derivados de las dunitas de Medellín. Boletín Geológico, 28, 45–71.

    Article  Google Scholar 

  • Alvarez, H. J. (1983). Estudio del bosque de Susua. In Los bosques de Puerto Rico. Ed Lugo A E. pp 152-166. Depto. de Agricultura de los Estados Unidos, Instituto de Dasonomfa Tropical y Depto. de Recursos Naturales, Edo. Libre Asociado de Puerto Rico, San Juan de Puerto Rico.

  • Anacker, B. L. (2011). Phylogenetic patterns of endemism and diversity. In S. Harrison & N. Rajakaruna, (Eds.), Serpentine: The evolution and ecology of a model system (pp. 49–70). University of California Press.

    Google Scholar 

  • Anacker, B. L. (2014). The nature of serpentine endemism. American Journal of Botany, 101, 219–224. https://doi.org/10.3732/ajb.1300349

    Article  PubMed  Google Scholar 

  • Anacker, B. L., Rajakaruna, N., Ackerly, D. D., Harrison, S. P., Keeley, J. E., & Vasey, M. C. (2011). Ecological strategies in California chaparral: Interacting effects of soils, climate, and fire on specific leaf area. Plant Ecology and Diversity, 4, 179–188. https://doi.org/10.1080/17550874.2011.633573

    Article  Google Scholar 

  • Araujo, M.A., Pedroso, A.V., Amaral, D.C., & Zinn, Y.L. (2014). Paragênese Mineral de Solos Desenvolvidos de Diferentes Litologias na Região Sul de Minas Gerais. Revista Ciências do Solo, 38, 11–25. https://doi.org/10.1590/S0100-06832014000100002

    Article  Google Scholar 

  • Areces-Berazaín, F., González-Torres, L. R., & Berazaín, R. (2004). Diversidad de plantas (Spermatophyta) en distritos fitogeográficos de Cuba. ¿Sustentan los distritos ultramáficos la mayor diversidad? In R. S. Boyd, A. J. M. Baker, & J. Proctor (Eds.), Memorias de la Cuarta Conferencia Internacional sobre Ecología de Serpentina (pp. 1–89). Jardín Botánico Nacional, La Habana, Cuba. Abril 21–26, 2003.

  • Arguedas, A.S. (2019). The geomicrobiology of iron, cobalt, nickel and manganese in lateritic tropical soils from the Santa Elena Peninsula, Costa Rica. Doctoral dissertation, University of Manchester.

  • Austin, A. T., & Vitousek, P. M. (1998). Nutrient dynamics on a precipitation gradient in Hawai'i. Oecologia, 113, 519–529. https://doi.org/10.1007/s004420050405

    Article  PubMed  Google Scholar 

  • Balkwill, K., Campbell-Young, G.J., Fish, L., Munday, J., Frean, M.L., & Stalmans, M. (2011). A new species of Sartidia (Graminae), endemic to ultramafic soils. South African Journal of Botany, 77, 598–607. https://doi.org/10.1016/j.sajb.2010.12.003

    Article  Google Scholar 

  • Bandara, T., Herath, I., Kumarathilaka, P., Seneviratne, M., Seneviratne, G., Rajakaruna, N., & Vithanage, M. (2017). Role of woody biochar and fungal-bacterial co-inoculation on soil enzyme activity and heavy metal immobilization in serpentine soil. Journal of Soils and Sediments, 17, 665–673. https://doi.org/10.1007/s11368-015-1243-y

    Article  CAS  Google Scholar 

  • Barbosa-Camacho, G. (2003). Memoria explicativa mapa geológico del departamento del Cauca – Revisión 01. Ministerio de Minas y Energía, Instituto de Investigación e Información Geocientífica, Minero-Ambiental y Nuclear (INGEOMINAS).

  • Barrabé, L., Lavergne, S., Karnadi-Abdelkader, G., Drew, B.T., Birnbaum, P., & Gâteblé, G. (2019). Changing ecological opportunities facilitated the explosive diversification of New Caledonian Oxera (Lamiaceae). Systematic Biology, 68, 460–481.

    Article  PubMed  Google Scholar 

  • Beaman, J.H. (2005). Mount Kinabalu: Hotspot of plant diversity in Borneo. Biologiske Skrifter 55: 103–127.

    Google Scholar 

  • Benizri, E., & Kidd, P.S. (2018). The role of the rhizosphere and microbes associated with hyperaccumulator plants in metal accumulation. In Agromining: Farming for Metals (pp. 157–188). Springer, Cham.

  • Berbert, C.O., Svisero, D.P., Sial, A.N., & Meyer, H.O.A. (1981). Upper mantle material in the Brazilian shield. Earth Science Reviews, 17, 109–133. https://doi.org/10.1016/0012-8252(81)90008-8

    Article  CAS  Google Scholar 

  • Birnbaum, P., Ibanez, T., Pouteau, R., Vandrot, H., Hequet, V., Blanchard, E., & Jaffré, T. (2015). Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island. AoB Plants, 10, plv075. https://doi.org/10.1093/aobpla/plv075

    Article  CAS  Google Scholar 

  • Boneschans, R.B., Coetzee, M.S., & Siebert, S.J. (2015). A geobotanical investigation of the Koedoesfontein Complex, Vredefort Dome, South Africa. Australian Journal of Botany, 63, 324–340. https://doi.org/10.1071/BT14267

    Article  Google Scholar 

  • Bonis, S.B. (1967). Geologic Reconnaissance of the Alta Verapaz Fold Belt, Guatemala. Dissertation, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, Louisiana, US.

  • Borhidi, A., & Herrera, R. A. (1977). Génesis, clasificación y características de los ecosistemas de sabana de Cuba. Serie Ciencias Biológicas, Academia de Ciencias de Cuba, 1, 115-130.

    Google Scholar 

  • Borhidi, A. (1988a). El efecto ecológico de la roca serpentina a la flora y vegetación de Cuba. Acta Botanica Hungarica, 34, 123–174.

    Google Scholar 

  • Borhidi, A. (1988b). Vegetation dynamics and savannization processes in Cuba. Vegetatio, 75, 177-183.

    Article  Google Scholar 

  • Borhidi, A. (1989). The main vegetation units of Cuba. Acta Botanica Hungarica, 33, 151-185.

    Google Scholar 

  • Borhidi, A. (1992). The serpentine flora and vegetation of Cuba. In A. Baker, J. Proctor, and R. Reeves (Eds.), The vegetation of ultramafic (serpentine) soils: Proceedings of the first International Conference on Serpentine Ecology. (pp. 83–95). Intercept.

  • Borhidi, A. (1996). Phytogeography and vegetation Ecology of Cuba. Akadémiai Kiadó, Budapest.

  • Boyd, R.S., Davis, M.A., & Balkwill, K. (2008). Elemental patterns in Ni hyperaccumulating and non–hyperaccumulating ultramafic soil populations of Senecio coronatus. South African Journal of Botany, 74, 158–162. https://doi.org/10.1016/j.sajb.2007.08.013

    Article  CAS  Google Scholar 

  • Brady, K. U., Kruckeberg, A. R., & Bradshaw Jr., H. D. (2005). Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics, 36, 243–266. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730

    Article  Google Scholar 

  • Branco, S. (2010). Serpentine soils promote ectomycorrhizal fungal diversity. Molecular Ecology, 19, 5566–5576.

    Article  PubMed  Google Scholar 

  • Brooks, R. R. (1987). Serpentine and its vegetation: A multidisciplinary approach. Dioscorides Press.

  • Brooks, R.R., Wither, E.D., & Zepernick, B. (1977). Cobalt and nickel in Rinorea species. Plant and Soil, 47, 707–712. https://doi.org/10.1007/BF00011041

    Article  CAS  Google Scholar 

  • Brooks, R.R., & Yang, X.H. (1984). Elemental levels and relationships in the endemic serpentine flora of the Great Dyke, Zimbabwe and their significance as controlling factors for the flora. Taxon, 33, 392–399. https://doi.org/10.2307/1220976

    Article  Google Scholar 

  • Brooks, R.R., Reeves, R.D., Baker, A.J.M., Rizzo, J.A., & Ferreira, H.D. (1988). The Brazilian Serpentine Plant Expedition (BRASPEX). National Geographic Research, 6, 205–219.

    Google Scholar 

  • Brooks, R.R., Reeves, R.D., & Baker, A.J.M. (1992). The serpentine vegetation of Goiás State. Proceedings of the First International Conference on Serpentine Ecology.

  • Cámara-Leret R., Frodin, D.G., Adema, F. et al. (2020). New Guinea has the world’s richest island flora. Nature, 584, 579–583.

    Article  PubMed  Google Scholar 

  • Campbell, L.R., Stone, C.O., Shamsedin, N.M., Kolterman, D.A., & Pollard, A.J. (2013). Facultative hyperaccumulation of nickel in Psychotria grandis (Rubiaceae). Caribbean Naturalist, 1, 1–8.

    Google Scholar 

  • Cancel-Vélez, J.I. (2010). Studies of the population ecology, reproductive biology and conservation status of Crescentia portoricensis (Britton)[Bignoniaceae]. Dissertation, University of Puerto Rico – Mayaguez Campus.

  • Cannon, C.H., Summers, M., Harting, J.R., & Kessler, P.J. (2007). Developing conservation priorities based on forest type, condition, and threats in a poorly known ecoregion: Sulawesi, Indonesia. Biotropica, 39, 747–759. https://doi.org/10.1111/j.1744-7429.2007.00323.x

    Article  Google Scholar 

  • Cano, E. et al. (2014). A phytosociological survey of some serpentine plant communities in the Dominican Republic. Plant Biosystems, 148, 200–212.

    Article  Google Scholar 

  • Capote, R.P., & Berazaín, R. (1984). Clasificación de las formaciones vegetales de Cuba. Revista del Jardín Botánico Nacional, Universidad de La Habana, 5, 27- 75. https://doi.org/10.13140/RG.2.2.13894.70725

  • Cavelier, J., and Goldstein, G. (1989) Mist and fog interception in elfin cloud forests in Colombia. and Venezuela. Journal of Tropical Ecology, 5(3), 309–322. https://doi.org/10.1017/S0266467400003709

    Article  Google Scholar 

  • Cedeño-Maldonado, J.A., & Breckon, G.J. (1996). Serpentine endemism in the flora of Puerto Rico. In Caribbean Journal of Science, 32, 348-356.

    Google Scholar 

  • Chapin III, F. S., Autumn, K., & Pugnaire, F. (1993). Evolution of suites of traits in response to environmental stress. The American Naturalist, 142, 79–92.

    Article  Google Scholar 

  • Chathuranga, P.K.D., Dharmasena, S.K.A.T., Rajakaruna, N., & Iqbal, M.C.M. (2015). Growth and nickel uptake by serpentine and non-serpentine populations of Fimbristylis ovata (Cyperaceae) from Sri Lanka. Australian Journal of Botany, 63, 128–133. https://doi.org/10.1071/BT14232.

    Article  CAS  Google Scholar 

  • Chaudhury, K., Datta, S., & Mukherjee, P.K. (2015) Mapping the vegetation of the ultramafic outcrops of Saddle Hills (North Andaman Islands, India) using remote-sensing tools. Australian Journal of Botany, 63, 234–242. https://doi.org/10.1071/BT14243

    Article  Google Scholar 

  • Coleman, R. G., & Jove, C. (1992). Geological origin of serpentinites. In A. Baker, J. Proctor, and R. Reeves (Eds.), The vegetation of ultramafic (serpentine) soils: Proceedings of the first International Conference on Serpentine Ecology. (pp. 83–95). Andover: Intercept.

  • Costa, F.S., Macedo, M.W.F.S., Araújo, A.C.M., Rodrigues, C.A., Kuramae, E.E., de Barros Alcanfor, S. K., et al. (2019). Assessing nickel tolerance of bacteria isolated from serpentine soils. Brazilian Journal of Microbiology, 50, 705–713. https://doi.org/10.1007/s42770-019-00111-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crespo-Medina, M., Twing, K.I., Sánchez-Murillo, R., Brazelton, W.J., McCollom, T.M., & Schrenk, M.O. (2017) Methane dynamics in a tropical Serpentinizing environment: The Santa Elena Ophiolite, Costa Rica. Frontiers in Microbiology, 8, 916. https://doi.org/10.3389/fmicb.2017.00916

    Article  PubMed  PubMed Central  Google Scholar 

  • Dauphin, G., & Grayum, M. (2005). Bryophytes of the Santa Elena Peninsula and Islas Murciélago, Guanacaste, Costa Rica, with special attention to neotropical dry forest habitats. Lankesteriana, 5, 53–61. https://doi.org/10.15517/lank.v5i1.21158

  • Datta, S., Chaudhury, K., & Mukherjee, P.K. (2015) Hyperaccumulators from the serpentines of Andaman, India. Australian Journal of Botany, 63, 243–251. https://doi.org/10.1071/BT14244

    Article  CAS  Google Scholar 

  • de Ronde, C.E., & de Wit, M.J. (1994). Tectonic history of the Barberton greenstone belt, South Africa: 490 million years of Archean crustal evolution. Tectonics, 13, 983–1005. https://doi.org/10.1029/94TC00353

    Article  Google Scholar 

  • Degrood, S.H.; Claassen, V.P.; Scow, K.M. (2005). Microbial community composition on native and drastically disturbed serpentine soils. Soil Biology & Biochemistry, 37, 1427–1435.

    Article  CAS  Google Scholar 

  • Dey, A., Hussain, M. F., Barman, M.N. (2018). Geochemical characteristics of mafic and ultramafic rocks from the Naga Hills Ophiolite, India: Implications for petrogenesis, Geoscience Frontiers, 9, 517–529. https://doi.org/10.1016/j.gsf.2017.05.006.

    Article  CAS  Google Scholar 

  • Dissanayaka, C.B. (1982). The geology and geochemistry of the Uda Walawe serpentinite. Sri Lanka. Journal National Science Council Sri Lanka, 10, 13–34.

    Google Scholar 

  • Domenech, C., Gali, S., Soler, J.M., Ancco, M.P., Meléndez, W., Rondón, J., Villanova-de-Benavent, C., & Proenza, J.A. (2020) The Loma de Hierro Ni-laterite deposit (Venezuela): Mineralogical and chemical composition. Boletín de la Sociedad Geológica Mexicana, 72, 1–28. https://doi.org/10.18268/bsgm2020v72n3a050620.

    Article  Google Scholar 

  • Doubková, P.; Suda, J.; Sudová, R. (2011). The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biology & Biochemistry, 44, 56–64.

    Article  Google Scholar 

  • Draper, G. (1986). Blueschists and associated rocks in eastern Jamaica and their significance for Cretaceous plate-margin development in the northern Caribbean. Geological Society of America Bulletin, 97, 48–60.

    Article  Google Scholar 

  • Echevarria, G. (2018). Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In A. van der Ent et al. (Eds.) Agromining: Farming for metals. (pp. 215–238). Springer, Cham.

    Google Scholar 

  • Escuder-Viruete, J., Andjić, G., Baumgartner-Mora, C., Baumgartner, P. O., Castillo-Carrión, M., & Gabites, J. (2019). Origin and geodynamic significance of the Siuna Serpentinite Mélange, Northeast Nicaragua: Insights from the large-scale structure, petrology and geochemistry of the ultramafic blocks. Lithos, 340, 1-19. https://doi.org/10.1016/j.lithos.2019.05.002

    Article  CAS  Google Scholar 

  • Ewel, J.J., & Whitmore, J.L. (1973). The Ecological Life Zones of Puerto Rico and the U.S. Virgin Islands. USDA Forest Service, Institute of Tropical Forestry, Research Paper ITF-018

  • Fernandez-Going, B. M., Harrison, S. P., Anacker, B. L., & Safford, H. D. (2013). Climate interacts with soil to produce beta diversity in Californian plant communities. Ecology, 94, 2007–2018. https://doi.org/10.1890/12-2011.1.

    Article  CAS  PubMed  Google Scholar 

  • Fernando, G.W.A.R., Baumgartner, I.P., & Hofmeister, W. (2013). High temperature metastoatism in ultramafic granulites of highland complex, Sri Lanka. Journal of Geological Survey of Sri Lanka, 15, 163-181.

    Google Scholar 

  • Fernando, D. R., van der Ent, A., Weerasinghe, A. S., Wijesundara, D. S. A., Fernando, G. W. R., Fernando, A. E., ... & Rajakaruna, N. (2022). Assessment of plant diversity and foliar chemistry on the Sri Lankan ultramafics reveals inconsistencies in the metal hyperaccumulator trait. Ecological Research, 37, 215–227.

  • Fiallo, J.L., de Vales, D., Gómez, J.L., & Falcón, B. (2020). Estructura etaria de Phyllanthus chamaecristoides subsp. chamaecristoides (Phyllanthaceae) en Río Piedra, Sierra de Nipe, Santiago de Cuba. Revista del Jardín Botánico Nacional, Universidad de La Habana, 41, 83–85.

    Google Scholar 

  • Figueroa, J., & Schmidt, R. (1981). Structure of a subtropical, lower montane wet forest on serpentine in Maricao, Puerto Rico. In Proceedings of the 1981 Symposium of the Department of Natural Resources of Puerto Rico. San Juan.

  • Fine, P. V., Mesones, I., & Coley, P. D. (2004). Herbivores promote habitat specialization by trees in Amazonian forests. Science, 305, 663–665. https://doi.org/10.1126/science.1098982

    Article  CAS  PubMed  Google Scholar 

  • Flores, K. E., Skora, S., Martin, C., Harlow, G. E., Rodríguez, D., & Baumgartner, P. O. (2015). Metamorphic history of riebeckite-and aegirine-augite-bearing high-pressure–low-temperature blocks within the Siuna Serpentinite Mélange, northeastern Nicaragua. International Geology Review, 57, 943–977. https://doi.org/10.1080/00206814.2015.1027747

    Article  Google Scholar 

  • Fritsch, E. (2012) Les sols. In: Bonvallot J, Gay J-C, Habert E (Eds.). Atlas de la Nouvelle-Calédonie. IRD & Congrès de la Nouvelle-Calédonie, Marseille

  • Fundacao Instituto Brasileiro de Geografia e Estatistica -IBGE-. (2012). Manual Técnico da Vegetação Brasileira. 1. Serie Manuais Técnicos em Geociencias, Rio de Janeiro.

  • Galey, M.L., van-der-Ent, A., Iqbal, M.C.M., & Rajakaruna, N. (2017). Ultramafic geoecology of South and Southeast Asia. Botanical Studies, 58, 1-28. https://doi.org/10.1186/s40529-017-0167-9

    Article  Google Scholar 

  • Gall, J.E., Boyd, R.S., & Rajakaruna, N. (2015). Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment, 187, 1–21.

    Article  CAS  Google Scholar 

  • García, R. (1991). Flora de serpentina en Susua Puerto Rico y Rio Piedras Republica Dominicana. Dissertation, University of Puerto Rico Mayagüez.

  • García, R., & Mejía, R. (1991). Relaciones taxonómicas y fitogeografías entre la flora endémica de serpentina en Susúa, Puerto Rico y Río Piedras, Gaspar Hernández, República Dominicana. Thesis, University of Puerto Rico Mayagüez.

  • García, R.G., & Kolterman, D.A. (1992). Nueva especie de Calliandra (Mimosaceae: Ingeae) del suroeste de Puerto Rico. Caribbean Journal of Science, 28, 56–61.

    Google Scholar 

  • García -Lopez, B.L. (1998). Estudio del Dosel de la Selva Nublada del Biotopo Universitario para la Conservación del Quetzal “Lic. Mario Dary Rivera”. Dissertation, Universidad San Carlos de Guatemala, Ciuidad de Guatemala, Guatemala.

  • García, R., & Mejía, M. (2008). Vegetación y flora de serpentina de la Republica Dominicana. Moscosoa, 16, 217–253.

    Google Scholar 

  • Garnica-Díaz, C. J. (2020). Plant functional diversity across two elevational gradients in serpentine and volcanic soils of Puerto Rico. Master's Thesis, University of Puerto Rico-Mayaguez.

  • Gâteblé, G., Barrabé, L., McPherson, G., Munzinger, J., Snow, N., & Swenson, U. (2019). One new endemic plant species on average per month in New Caledonia, including eight more new species from Île Art (Belep Islands), a major micro-hotspot in need of protection. Australian Systematic Botany, 31, 448-480. https://doi.org/10.1071/SB18016

    Article  Google Scholar 

  • Gazel, E., Abbott Jr, R.N., & Draper, G. (2011). Garnet-bearing ultramafic rocks from the Dominican Republic: Fossil mantle plume fragments in an ultra-high pressure oceanic complex? Lithos, 125, 393-404. https://doi.org/10.1016/j.lithos.2011.02.021

    Article  CAS  Google Scholar 

  • Gei, V., Echevarria, G., Erskine, P.D., Isnard, S., Fogliani, B., Montargès-Pelletier, E., Jaffré, T., Spiers, K.M., Garrevoet, J. & van der Ent, A., (2020). Soil chemistry, elemental profiles and elemental distribution in nickel hyperaccumulator species from New Caledonia. Plant and Soil, 457(1), 293–320.

    Article  CAS  Google Scholar 

  • Ghose, N.C., Chatterjee, N., Fareeduddin (2014). Geology of the Naga Hills Ophiolite. In: A Petrographic Atlas of Ophiolite. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1569-1_3

  • Ghose, N. C., Singh, A. K., Dutt, A., & Imtisunep, S. (2021). Significance of aegirine‐bearing metabasic rocks in the metamorphic evolution of the Nagaland Accretionary Prism, northeast India. Geological Journal. Early View.

  • Giller, K.E.; Witter, E.; Mcgrath, S.P. (2009). Heavy metals and soil microbes. Soil Biology and Biochemistry, 41, 2031–2037.

    Article  CAS  Google Scholar 

  • Givnish, T.J. (2015). Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytologist, 207, 297-303.

    Article  PubMed  Google Scholar 

  • Gómez, J.L., Leyva, O., Hernández, Y., and Reynaldo, E. (2013). Spirotecoma holguinensis (Bignoniaceae), una especie importante en la conservación de los cuabales de Holguín. Bissea, 7(4), 1.

    Google Scholar 

  • Gómez Tapias, J., Montes Ramírez, N. E., Almanza Meléndez, M. F., Alcárcel Gutiérrez, F. A., Madrid Montoya, C. A., & Diederix, H. (2017). Geological Map of Colombia 2015. International Union of Geological Sciences, 40, 201-212.

    Google Scholar 

  • Gómez, J.L. (2020). Importancia de las plantas nodrizas en sitios degradados del matorral xeromorfo espinoso sobre serpentinitas de Holguín, Cuba. Tesis de Maestría en Botánica. Mención Conservación de Plantas. Jardín Botánico Nacional, Universidad de La Habana.

  • González, V. (2007) La vegetación de la Isla de Margarita y sus interrelaciones con el ambiente físico. Memoria de la Fundación La Salle de Ciencias Naturales, 167, 131-161

    Google Scholar 

  • González Torres, L.R. (2004). Patrones regionales de diversidad de la flora ultramáfica de Cuba. Tesis en opción del Grado Académico Tesis de Maestría en Botánica, Jardín Botánico Nacional, Universidad de La Habana.

  • González-Torres, L. R. (2010). Efecto del fuego en Matorrales Xeromorfos Espinosos sobre serpentinita de Sierra Alta de Agabama, Villa Clara, Cuba. Tesis de Doctorado en Ciencias Biológicas. Jardín Botánico Nacional, Universidad de La Habana.

  • González-Torres L.R. (2011). Impacto del fuego en los matorrales xeromorfos sobre serpentinitas de Cuba. Bissea, 5, 2

    Google Scholar 

  • González-Torres, L.R., Palmarola, A., González-Oliva, L., Bécquer, E.R., Testé, E., & Barrios, D. (2016). Lista Roja de la Flora de Cuba. Bissea, 10, 1-352. https://doi.org/10.13140/RG.2.2.24056.65288

    Article  Google Scholar 

  • Goolsby, E. W., & Mason, C. M. (2015). Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Frontiers in Plant Science, 6, 1–4. https://doi.org/10.3389/fpls.2015.00033

    Article  Google Scholar 

  • Grace, J. B., Safford, H. D., & Harrison, S. (2007). Large-scale causes of variation in the serpentine vegetation of California. Plant and Soil, 293, 121–132. https://doi.org/10.1007/s11104-007-9196-6

    Article  CAS  Google Scholar 

  • Grandcolas, P., Murienne, J., Robillard, T., Desutter-Grandcolas, L., Jourdan, H., Guilbert, E. & Deharveng, L., (2008). New Caledonia: a very old Darwinian island?. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1508), 3309–3317.

    Article  Google Scholar 

  • Grayum, M. (2004). Botanical Exploration of the Península de Santa Elena, Costa Rica. Final Report. St. Louis, MO: Missouri Botanical Garden. 12 pp

  • Group, B.F. 2020. Flora do Brasil. Retrieved from: http://floradobrasil.jbrj.gov.br

  • Guimaraes, A. F., Querido, L. C. de A., Coelho, P. A., Santos, P. F., Santos, & R. M. dos. (2019). Unveiling neotropical serpentine flora: A list of Brazilian tree species in an iron-saturated environment in Bom Sucesso, Minas Gerais. Acta Scientiarum, 41, e44594. https://doi.org/10.4025/actascibiolsci.v41i1.44594

    Article  Google Scholar 

  • Gutiérrez, D.M.N., Pons, M.N., Sánchez, J.A.C., & Echevarria, G. (2018). Is metal hyperaccumulation occurring in ultramafic vegetation of central and southern Mexico? Ecological Research, 33, 641-649. https://doi.org/10.1007/s11284-018-1574-4

    Article  CAS  Google Scholar 

  • Haldeman, E.G., Broker, S.B., Blowes, J.H., & Snow, W.E. (1980). Lateritic Nickel deposits at Bonao, Falconbrige Dominicana. (pp. 68–80). 9th Caribbean Geological Conference, Santo Domingo. Dominican Republic.

  • Harrison, S. (2011). Spatial ecology: The effects of habitat patch size, shape, and isolation on ecological processes. In S. Harrison & N. Rajakaruna (Eds.), Serpentine: The evolution and ecology of a model system. (pp. 297–308). University of California Press.

    Google Scholar 

  • Harrison, S., Safford, H. D., Grace, J. B., Viers, J. H., & Davies, K. F. (2006). Regional and local species richness in an insular environment: Serpentine plants in California. Ecological Monographs, 76, 41–56. https://doi.org/10.1890/05-0910

    Article  Google Scholar 

  • Heads, M. (2008). Panbiogeography of New Caledonia, south‐west Pacific: Basal angiosperms on basement terranes, ultramafic endemics inherited from volcanic island arcs and old taxa endemic to young islands. Journal of Biogeography, 35, 2153–2175. https://doi.org/10.1111/j.1365-2699.2008.01977.x

    Article  Google Scholar 

  • Helmer, E.H., Brandeis, T.J., Lugo, A.E., & Kennaway, T. (2008). Factors influencing spatial pattern in tropical forest clearance and stand age: Implications for carbon storage and species diversity. Journal of Geophysical Research: Biogeosciences, 113(2), 1–14.

    Google Scholar 

  • Herath, I., P. Kumarathilaka, A. Navaratne, N. Rajakaruna, & Vithanage, M. (2014). Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. Journal of Soils and Sediments, 15, 126–138. https://doi.org/10.1007/s11368-014-0967-4

    Article  CAS  Google Scholar 

  • Hewawasam, T., Fernando, G.W.A.R., & Priyashantha, D. (2014). Geo-vegetation mapping and soil geochemical characteristics of the Indikolapelessa Serpentinite Outcrop, Southern Sri Lanka. Journal of Earth Science, 25, 152-168. https://doi.org/10.1007/s12583-014-0409-7

    Article  Google Scholar 

  • Huenneke, L. F., Hamburg, S. P., Koide, R., Mooney, H. A., & Vitousek, P. M. (1990). Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology, 71, 478–491.

    Article  Google Scholar 

  • Hulshof, C. M., & Spasojevic, M. J. (2020). The edaphic control of plant diversity. Global Ecology and Biogeography, 29, 1634–1650. https://doi.org/10.1111/geb.13151

    Article  Google Scholar 

  • Hulshof, C. M., & Spasojevic, M. J. (2021). Data from: The edaphic control of plant diversity, Dryad, Dataset, https://doi.org/10.5061/dryad.sqv9s4n1r.

  • Hulshof, C. M., Waring, B. G., Powers, J. S., & Harrison, S. P. (2020). Trait‐based signatures of cloud base height in a tropical cloud forest. American Journal of Botany, 107, 886–894. https://doi.org/10.1002/ajb2.1483

    Article  CAS  PubMed  Google Scholar 

  • Ign, S.B., Bonis, O., Bohnenberger, G., Dengo, & Icaiti. (1977). Mapa geológico de la República de Guatemala - escala 1:500,000. Instituto Geográfico Nacional, Ciudad de Guatemala, Guatemala.

  • International Union for Conservation of Nature -IUCN-. (2015). IUCN Red List of Threatened Species. Retrieved from https://www.iucnredlist.org/

  • Isnard, S., L’huillier, L., Rigault, F., & Jaffré, T. (2016). How did the ultramafic soils shape the flora of the New Caledonian hotspot? Plant and Soil, 403, 53–76. https://doi.org/10.1007/s11104-016-2910-5

    Article  CAS  Google Scholar 

  • Iturralde-Vinent, M. A. (2004). La Paleogeografía del Caribe y sus implicaciones para la biogeografía histórica. Revista del Jardín Botánico Nacional, Universidad de La Habana, 25-26, 49-78.

    Google Scholar 

  • Jacobi, C.M., Carmo, F.F., & Campos, I.C. De. (2011). Soaring extinction threats to endemic plants in brazilian metal-rich regions. Journal of the Human Environment, 40, 540–543.

    Google Scholar 

  • Jaffré, T., & Latham, M. (1974) Contribution à l'étude des relations sol-végétation sur un massif de roches ultrabasiques de la côte Ouest de la Nouvelle Calédonie: le Boulinda. Adansonia, 14, 311–336

    Google Scholar 

  • Jaffré, T., Brooks, R.R., Lee, J., & Reeves, R.D. (1976). Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science, 193, 579-580. https://doi.org/10.1126/science.193.4253.579

    Article  PubMed  Google Scholar 

  • Jaffré, T. (1980). Étude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie. Travaux et Documents de l’ORSTOM, Paris.

    Google Scholar 

  • Jaffré, T. (1992). Floristic and ecological diversity of the vegetation on ultramafic rocks in New Caledonia. The vegetation of ultramafic (serpentine) soils Proceedings of the First International Conference on Serpentine Ecology, pp101–107.

  • Jaffré, T., Pillon, Y., Thomine, S., & Merlot, S. (2013). The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Frontiers in Plant Science, 4, 279. https://doi.org/10.3389/fpls.2013.00279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janzen, D.H. (1998). Conservation analysis of the Santa Elena property, Peninsula Santa Elena, northwestern Costa Rica. Report to the Government of Costa Rica. Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

  • Jenny, H. (1980). The soil resource, origin, and behaviour. Springer-Verlag.

    Book  Google Scholar 

  • Jestrow, B., Gutiérrez, J., & Fransisco-Ortega, F. (2012). Islands within islands: a molecular phylogenetic study of the Leucocroton alliance (Euphorbiaceae) across the Caribbean Islands and within the serpentinite archipelago of Cuba. Journal of Biogeography, 39, 452-464. https://doi.org/10.2307/41440567

    Article  Google Scholar 

  • Jiménez, Q., Carrillo, E., & Kappelle, M. (2016). Chapter 9. The northern Pacific lowland seasonal dry forests of Guanacaste and the Nicoya Peninsula. In Costa Rican Ecosystems. (pp. 247–289). University of Chicago Press.

  • Kausel, G. (1991). Study of heavy metal tolerant flora in Botswana. Botswana Notes and Records 23: 159–174.

    Google Scholar 

  • Kazakou, E., Dimitrakopoulos, P. G., Baker, A. J. M., Reeves, R. D., & Troumbis, A. Y. (2008). Hypotheses, mechanisms and trade‐offs of tolerance and adaptation to serpentine soils: From species to ecosystem level. Biological Reviews, 83, 495–508. https://doi.org/10.1111/j.1469-185X.2008.00051.x

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick, B.E. (1968). Geology and geochemistry Wanamu-Blue mountains area Waini SW, Guyana. United States. Department of the Interior Geological Survey. Retrieved from: https://pubs.usgs.gov/of/1968/0157/report.pdf

  • Konečná, V., Yant, L., & Kolář, F. (2020). The evolutionary genomics of serpentine adaptation. Frontiers in Plant Science, 11, 2004. https://doi.org/10.3389/fpls.2020.574616

    Article  Google Scholar 

  • Koosaletse-Mswela, P., Przybyłowicz, W.J., Cloete, K.J., Barnabas, A.D., Torto, N., & Mesjasz-Przybyłowicz, J. (2015). Quantitative mapping of elemental distribution in leaves of the metallophytes Helichrysum candolleanum, Blepharis aspera, and Blepharis diversispina from Selkirk Cu-Ni mine, Botswana. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 363, 188–193. https://doi.org/10.1016/j.nimb.2015.09.005

    Article  CAS  Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.

    Article  Google Scholar 

  • Kruckeberg, A. R. (1951). Intraspecific variability in the response of certain native plant species to serpentine soil. American Journal of Botany, 38, 408–419. https://doi.org/10.1002/j.1537-2197.1951.tb14842.x

    Article  CAS  Google Scholar 

  • Kruckeberg, A. R. (1984). California serpentines: Flora, vegetation, geology, soils, and management problems. University of California Press.

    Google Scholar 

  • Kruckeberg A. R. (1991). An essay: Geoedaphics and island biogeography for vascular plants. Aliso, 13, 225–238. https://doi.org/10.5642/aliso.19911301.11

    Article  Google Scholar 

  • Kumarathilaka, P., Oze, C., & Vithanage, M. (2016). Perchlorate mobilization of metals in serpentine soils. Applied Geochemistry, 74, 203-209. https://doi.org/10.1016/j.apgeochem.2016.10.009

    Article  CAS  Google Scholar 

  • Kunonga, N. I., Nhiwatiwa, T., Tembani, M., & Kativu, S. (2019). Aspects of the population biology, life history and threats to Aloe ortholopha Christian and Milne-Redh.: A serpentine endemic from the northern Great Dyke of Zimbabwe. Bothalia – African Biodiversity and Conservation, 49, a2396. https://doi.org/10.4102/abc.v49i1.2396

    Article  Google Scholar 

  • Latham, M., Quantin, P., & Aubert, G. (1978). Etude des sols de la Nouvelle-Calédonie : nouvel essai sur la classification, la caractérisation, la pédogenèse et les aptitudes des sols de Nouvelle-Calédonie : carte pédologique de la Nouvelle-Calédonie à 1/1 000 000 : carte d'aptitudes culturale et forestière des sols de Nouvelle-Calédonie à 1/1 000 000. ORSTOM, Paris.

  • Lau, J. A., McCall, A., Davies, K., McKay, J. K., Wright, J. (2008) Herbivores and edaphic factors constrain the realized niche of a native plant. Ecology 89:754–762

    Article  PubMed  Google Scholar 

  • Lazcano, J. C., López, P. I., Peña, E., & Berazaín, R. (1999). Recuperación natural de la flora serpentinícola de “Lomas de Canasí”: una alternativa para la conservación. Revista del Jardín Botánico Nacional, Universidad de La Habana, 20, 31-39.

    Google Scholar 

  • Lewis, J. F., Draper, G., Fernández, J. P., Espaillat, J., & Jiménez, J. (2006). Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean region: A review of their occurrence, composition, origin, emplacement and Ni-laterite soil formation. Geologica Acta, 4, 237–264.

    CAS  Google Scholar 

  • Losos, J.B., & Ricklefs, R.E. (2009). Adaptation and diversification on islands. Nature, 457, 830-836.

    Article  CAS  PubMed  Google Scholar 

  • López, A. (2013). Contribución al catálogo de flora cubana: endemismos de suelos derivados de ofiolitas. Botanica Complutensis, 37, 135-152. https://doi.org/10.5209/rev_BOCM.2013.v37.42276

    Article  Google Scholar 

  • López, D., Gómez, J.L., Sánchez, J.A., & González, J.L. (2016). Rasgos de semillas y germinación de Spirotecoma holguinensis (Bignoniaceae), árbol endémico de las serpentinas del este de Cuba. Revista del Jardín Botánico Nacional, Universidad de La Habana, 37, 191-201.

    Google Scholar 

  • López, S., Benizri, E., Erskine, P.D., Morel, J.L., Lee, G., Permana, E., Echevarria, G., & van der Ent, A. (2019a). Biogeochemistry of the flora of Weda Bay, Halmahera Island (Indonesia) focusing on metal hyperaccumulation. Journal of Geochemical Exploration, 202, 113–127. https://doi.org/10.1016/j.gexplo.2019.03.011

    Article  CAS  Google Scholar 

  • López, S., van der Ent, A., Erskine, P.D., Tjoa, A., Benizri, E., Lee, G., Permana, E., Lopez, S., & Echevarria, G. (2019b). Rhizosphere chemistry and above-ground elemental fractionation of nickel hyperaccumulator species from Weda Bay (Indonesia). Plant and Soil, 436, 543–563. https://doi.org/10.1007/s11104-019-03954-w

    Article  CAS  Google Scholar 

  • Losfeld, G., L’huillier, L., Fogliani, B., Jaffré, T., & Grison, C. (2015). Mining in New Caledonia: environmental stakes and restoration opportunities. Environmental Science and Pollution Research, 22, 5592-5607. https://doi.org/10.1007/s11356-014-3358-x

    Article  PubMed  Google Scholar 

  • MacArthur, R. H., & E. O. Wilson. (1967). The theory of island biogeography. Princeton University Press.

    Google Scholar 

  • Maresch, W.V. (1975) The geology of northeastern Margarita Island, Venezuela: A contribution to the study of Caribbean plate margins. Geologische Rundschau, 64, 846–883. https://doi.org/10.1007/BF01820701

    Article  Google Scholar 

  • Martens, S. N., & Boyd, R. S. (1994). The ecological significance of nickel hyperaccumulation: A plant chemical defense. Oecologia, 98, 379–384. https://doi.org/10.1007/BF00324227

    Article  PubMed  Google Scholar 

  • Martens, U., Ortega-Obregón, C., Estrada, J., & Valle, M. (2012). Metamorphism and Metamorphic Rocks. In G. E. Alvarado & J. Bundschuh (Eds.). Central America, Two Volume Set: Geology, Resources and Hazards. (pp. 485–522). CRC Press.

    Google Scholar 

  • Magaña, V., Amador, J.A., & Medina, S. (1999). The Midsummer Drought over Mexico and Central America. Journal of Climate, 12, 1577-1588.

    Article  Google Scholar 

  • Matteucci, S. (1987) The vegetation of Falcón State, Venezuela. Vegetatio, 70, 67-91.

    Article  Google Scholar 

  • Matos, A., & Bruzón, N. (2003). Flora asociada a un sitio minado recultivado con sustitución de especies. Centro Agrícola, 30, 84-89.

    Google Scholar 

  • Matos, J., & Torres, A. (2000). Primeros estadios sucesionales del cuabal de las Serpentinas de Santa Clara. Revista del Jardín Botánico Nacional, Universidad de La Habana, 21(2), 167-184.

    Google Scholar 

  • Maurizot, P., Robineau, B., Vendé-Leclerc, M., & Cluzel, D. (2020). Chapter 1 Introduction New Caledonia: geology, geodynamic evolution and mineral resources. Geological Society London, Memoirs, 51, 1–12. https://doi.org/10.6084/m9.figshare.c.4984385

    Article  Google Scholar 

  • McAlister, R.L., Kolterman, D.A. & Pollard, A.J. (2015). Nickel hyperaccumulation in populations of Psychotria grandis (Rubiaceae) from serpentine and non-serpentine soils of Puerto Rico. Australian Journal of Botany, 63, 85-91. https://doi.org/10.1071/BT14337

    Article  CAS  Google Scholar 

  • McCoy, S., Jaffré, T., Rigault, F., & Ash, J.E. (1999). Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography, 26, 579-594.

    Article  Google Scholar 

  • Medina, E., Cuevas, E., Figueroa, J., & Lugo, A. E. (1994). Mineral content of leaves from trees growing on serpentine soils under contrasting rainfall regimes in Puerto Rico. Plant and Soil, 158, 13–21. https://doi.org/10.1007/BF00007912

    Article  CAS  Google Scholar 

  • Mejia, V. M., & Durango, J. R. (1981–1982). Geología de las lateritas niquelíferas de Cerro Matoso S.A. Boletín de Geología. Bucaramanga (Colombia), 15, 99–116. https://doi.org/10.18273/revbol

  • Melluso, L., Morra, V., Brotzu, P., Tommasini, S., Renna, M.R., Duncan, R.A., & D'amelio, F. (2005). Geochronology and petrogenesis of the Cretaceous Antampombato-Ambatovy complex and associated dyke swarm, Madagascar. Journal of Petrology, 46, 1963-1996. https://doi.org/10.1093/petrology/egi044

    Article  CAS  Google Scholar 

  • Mendi, D.J., González-Jiménez, J.M., Proenza, J.A., Urbani, F., & Gervilla, F. (2020) Petrogenesis of the chromitite body from the Cerro Colorado ophiolite, Paraguaná Peninsula, Venezuela. Boletín de la Sociedad Geológica Mexicana, 72, A280719. https://doi.org/10.18268/BSGM2020v72n3a280719

    Article  Google Scholar 

  • Merlot, S., de la Torre, V. S. G., Fogliani, B., Brinon, L. C., Burtet-Sarramegna, V., Majorel-Loulergue, C., & Grison, C. (2015). Diversity and evolution of the molecular mechanisms involved in nickel hyperaccumulation in plants. In 13th SGA Biennial Meeting on Mineral Resources in a Sustainable World, Association Scientifique de Geologie & Applications (ASGA). (p. 3). Aug 2015, Nancy, France.

  • Mesjasz-Przybylowicz, J., Przybylowicz, W., Barnabas, A., & van der Ent, A. (2015). Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo. New Phytologist, 209(4), 1513–1526. https://doi.org/10.1111/nph.13712

    Article  CAS  PubMed  Google Scholar 

  • Middleton, D.J., Armstrong, K., Baba, Y., Balslev, H., Chayamarit, K., Chung, R.C.K., Conn, B., Fernando, E.S., et al. (2019). Progress on Southeast Asia’s Flora projects. Gardens' Bulletin (Singapore), 71, 267–319. https://doi.org/10.26492/gbs71(2).2019-02

    Article  Google Scholar 

  • Migula, P., Przybyłowicz, W.J., Mesjasz–Przybyłowicz, J., Augustyniak, M., Nakonieczny, M., Głowacka, E., & Tarnawska, M. (2007). Micro–PIXE studies of elemental distribution in sap–feeding insects associated with Ni hyperaccumulator, Berkheya coddii. Plant and Soil, 293, 197–207. https://doi.org/10.1007/s11104-007-9231-7

    Article  CAS  Google Scholar 

  • Ministry of Environment and Renewable Energy (2012). The National Red List 2012 of Sri Lanka; Conservation Status of the Fauna and Flora. Biodiversity Secretariat of the Ministry of Environment and National Herbarium, Department of National Botanic Gardens.

  • Mittermeier, R.A., Gil, P.R., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., et al. (2005). Hotspots revisited. Earth's biologically richest and most endangered terrestrial ecoregions. Conservaçao Internacional, 22, 16.

  • Mohanty, M., Pattnaik, M.M., Mishra, A.K., & Patra, H.K. (2012) Bio-concentration—an in-situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India. Environmental Monitoring and Assessment, 184, 1015–1024. https://doi.org/10.1007/s10661-011-2017-7

    Article  CAS  PubMed  Google Scholar 

  • Monedero, C., & González, V.C. (1994) Análisis cuantitativo de la estructura florística de una selva nublada tropical (Loma de Hierro, Venezuela). Acta Biologica Venezuelica, 16, 1–18

    Google Scholar 

  • Moores, E. M. (2011). Serpentinites and other ultramafic rocks: Why they are important for earth’s history and possibly for its future. In S. Harrison & N. Rajakaruna (Eds.), Serpentine: The evolution and ecology of a model system. (pp. 3–28). University of California Press.

    Google Scholar 

  • Morat, P. (1993). Our knowledge of the flora of New Caledonia: endemism and diversity in relation to vegetation types and substrates. Biodiversity Letters, 1, 72–81. https://doi.org/10.2307/2999750

    Article  Google Scholar 

  • Morgenthal, T., Maboeta, M., Van Rensburg, L., & Bredenkamp, G.J. (2004). Revegetation of heavy metal contaminated mine dumps using locally serpentine-adapted grassland species. South African Journal of Botany, 70(5), 784–789. https://doi.org/10.1016/S0254-6299(15)30180-0

    Article  CAS  Google Scholar 

  • Morrey, D.R., Balkwill, K., & Balkwill, M.J. (1989). Studies on serpentine flora: Preliminary analyses of soils and vegetation associated with serpentinite rock formations in the south-eastern Transvaal. South African Journal of Botany, 55, 171–177. https://doi.org/10.1016/S0254-6299(16)31203-0

    Article  Google Scholar 

  • Munasinghe, T., & Dissanayake, C. B. (1980). Is the Highland eastern Vijayan boundary in Sri Lanka a possible mineralized belt? Economic Geology, 75, 775–777. https://doi.org/10.2113/gsecongeo.74.6.1495

    Article  Google Scholar 

  • Munzinger, J., Morat, P., Jaffré, T., Gâteblé, G., Pillon, Y., Rouhan, G., Bruy, D., Veillon, J.M., & Chalopin, M. (2021). FLORICAL: Checklist of the vascular indigenous flora of New Caledonia. Retrieved From: http://publish.plantnet-project.org/project/florical, [continuously updated]

  • Murcia, L.M. (1980). Definición del denominado Complejo Igneo Básico en Colombia y petrogénesis de su parte meridional. Geología Colombiana, 11, 45–65. Retrieved from: https://revistas.unal.edu.co/index.php/geocol/article/view/30411

  • Naipal, R., Kroonenberg, S., & Mason, P. R. (2019). Ultramafic rocks of the Paleoproterozoic greenstone belt in the Guiana Shield of Suriname, and their mineral potential. Mededeling Geologisch Mijnbouwkundige Dienst Suriname, 29, 143-146.

    Google Scholar 

  • Newcomb, W.E. (1975). Geology, Structure, and Metamorphism of the Chuacus group, Rio Hondo Quadrangle and Vecinity, Guatemala. Dissertation, State University of New York at Binghamton, Binghamton, New York, US.

  • Nivia Guevara, A. (2001). Mapa Geológico Departamento del Valle del Cauca - Escala 1:250,000. Memoria Explicativa. Ingeominas, Bogota, Colombia.

  • Nkoane, B.B.M., Sawula, G.M., Wibetoe, G., & Lund, W. (2005). Identification of Cu and Ni indicator plants from mineralised locations in Botswana. Journal of Geochemical Exploration, 86, 130–142. https://doi.org/10.1016/j.gexplo.2005.03.003

    Article  CAS  Google Scholar 

  • Nkrumah, P.N., Echevarria, G., Erskine, P.D. & van der Ent, A., (2018). Nickel hyperaccumulation in Antidesma montis-silam: from herbarium discovery to collection in the native habitat. Ecological research, 33(3), 675–685.

    Article  CAS  Google Scholar 

  • O’Dell, R. E., & Rajakaruna, N. (2011). Intraspecific variation, adaptation, and evolution. In S. Harrison & N. Rajakaruna (Eds.), Serpentine: The evolution and ecology of a model system. (pp. 97–138). University of California Press.

    Google Scholar 

  • Oijagbe, I.; Abubakar, B.Y.; Edogbanya, P.R.O.; Suleiman, M.O.; Olurunmola, J.B. (2019). Effects of heavy metals on soil microbial biomass carbon. MOJ Biol Med, 4, 30–32.

    Article  Google Scholar 

  • Ortega-Montero, C.R. (1981–1982). Complejo ofiolítico en la cuenca del río Guapi. Boletín de Geología. Bucaramanga (Colombia), 15, 117–123. https://doi.org/10.18273/revbol

  • Ortiz-Hernández, L.E., Escamilla-Casas, J.C., Flores-Castro, K., Ramírez-Cardona, M., & Acevedo-Sandoval, O. (2006). Características geológicas y potencial metalogenético de los principales complejos ultramáficos-máficos de México. Boletín de la Sociedad Geológica Mexicana, 58, 161-181. https://doi.org/10.18268/bsgm2006v58n1a6

    Article  Google Scholar 

  • Oviedo, R., Faife, M., Noa-Monzón, A., Arroyo, J., Valiente-Banuet, A., & Verdú, M. (2013). Facilitation allows plant coexistence in Cuba serpentine soils. Plant Biology, 1-6. https://doi.org/10.1111/plb.12116

  • Oze, C., Skinner, C., Schroth, A. W., & Coleman, R. G. (2008). Growing up green on serpentine soils: Biogeochemistry of serpentine vegetation in the central coast range of California. Applied Geochemistry, 23, 3391–3403. https://doi.org/10.1016/j.apgeochem.2008.07.014

    Article  CAS  Google Scholar 

  • Pal, A., Choudhuri, P., Dutta, S., Mukherjee, P.K., & Paul, A.K. (2004) Isolation and characterization of nickel-resistant microflora from ultramafic soils of Andaman. World Journal of Microbiology and Biotechnology, 20, 881–886. 10.1007/ s11274-004-2776-1

    Article  CAS  Google Scholar 

  • Pal, A., Dutta, S., Mukherjee, P. K., & Paul, A. K. (2005) Occurrence of heavy metal-resistance in microflora from ultramafic soil of Andaman. Journal of Basic Microbiology, 45, 207–218. https://doi.org/10.1002/jobm.200410499

    Article  CAS  PubMed  Google Scholar 

  • Pal, A., Ghosh, S., & Paul, A.K. (2006) Biosorption of cobalt by fungi from ultramafic soil of Andaman. Bioresource Technology, 97, 1253–1258. 10.1016/j. biortech.2005.01.043

    Article  CAS  PubMed  Google Scholar 

  • Pal, A., & Paul, A.K. (2012) Accumulation of polyhydroxyalkanoates by rhizobacteria underneath nickel-hyperaccumulators from ultramafic ecosystem. Journal of Environmental Polymer Degradation, 20, 10–16. https://doi.org/10.1007/s10924-011-0355-8

    Article  CAS  Google Scholar 

  • Pal, A., Wauters, G., & Paul, A.K. (2007) Nickel tolerance and accumulation by bacteria from rhizosphere of nickel hyperaccumulators in serpentine soil ecosystem of Andaman, India. Plant and Soil, 293, 37–48. https://doi.org/10.1007/s11104-007-9195-7

    Article  CAS  Google Scholar 

  • Palm, E. R., & Van Volkenburgh, E. (2014). Physiological adaptation of plants to serpentine soil. In N. Rajakaruna, R. S. Boyd, & T. B. Harris (Eds.), Plant ecology and evolution in harsh environments. (pp. 129–148). Nova Science Publishers.

    Google Scholar 

  • Paul, A. L. D., Isnard, S., Brearley, F. Q., Echevarria, G., Baker, A. J. M., Erskine, P. D., & van der Ent, A. (2022). Stocks and biogeochemical cycling of soil-derived nutrients in an ultramafic rainforest in New Caledonia. Forest Ecology and Management, 509, 120049.

    Article  Google Scholar 

  • Paul, A. L. D, Isnard, S., Wawryk, C., Erskine, P. D., Echevarria, G., Baker, A. J. M., Kirby, J. K., & van der Ent, A. (2021). Intensive cycling of nickel in a New Caledonian Forest dominated by hyperaccumulator trees. The Plant Journal, 107, 1040–1055. https://doi.org/10.1111/tpj.15362

    Article  CAS  PubMed  Google Scholar 

  • Paun, O., Turner, B., Trucchi, E., Munzinger, J., Chase, M.W., & Samuel, R. (2016). Processes driving the adaptive radiation of a tropical tree (Diospyros, Ebenaceae) in New Caledonia, a biodiversity hotspot. Systematic Biology, 65, 212-227.

    Article  PubMed  Google Scholar 

  • Pelletier, B. (2006). Geology of the New Caledonia region and its implications for the study of the New Caledonian biodiversity. In Compendium of marines species from New Caledonia, Forum BIOdiversité des Ecosystèmes Coralliens, 30 octobre–4 novembre 2006, Nouméa, Nouvelle-Calédonie (eds C. Payri & B. Richer de Forges). Documents Scientifiques et Techniques IRD, II 7, pp. 17–30. Nouméa, France: Institut de Recherche pour le Développement.

  • Pessoa-Filho, M., Barreto, C. C., dos Reis Junior, F. B., Fragoso, R. R., Costa, F. S., de Carvalho Mendes, I., et al. (2015). Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna. Antonie van Leeuwenhoek, 107, 935–949. https://doi.org/10.1007/s10482-015-0386-6

    Article  CAS  PubMed  Google Scholar 

  • Phillipson, P.B., Lowry, P.P., Andriamahefaviro, L., Antilahimena, P., & Birkinshaw, C. (2010). Floristic inventory of the Ambatovy-Analamay mine site and comparison to other sites in Madagascar. In S. M. Goodman & V. Mass (Eds.), Biodiversity, exploration, and conservation of the natural habitats associated with the Ambatovy project. Malagasy Nature, v. 3 (pp. 44–76). Antananarivo: Association Vahatra

  • Pillon, Y., González, D. A., Randriambanona, H., Lowry, P. P., Jaffré, T., & Merlot, S. (2019). Parallel ecological filtering of ultramafic soils in three distant island floras. Journal of Biogeography, 46, 2457–2465. https://doi.org/10.1111/jbi.13677

    Article  Google Scholar 

  • Pillon, Y., Barrabe, L., & Buerki, S. (2017). How many genera of vascular plants are endemic to New Caledonia? A critical review based on phylogenetic evidence. Botanical Journal of the Linnean Society, 183, 177-198.

    Article  Google Scholar 

  • Pillon, Y., Munzinger, J., Amir, H., & Lebrun, M. (2010). Ultramafic soils and species sorting in the flora of New Caledonia. Journal of Ecology, 98, 1108–1116. https://doi.org/10.1111/j.1365-2745.2010.01689.x

    Article  Google Scholar 

  • Pollard, A. J., Reeves, R. D., & Baker, A. J. M. (2014). Facultative hyperaccumulation of heavy metals and metalloids. Plant Science, 217218, 8–17. https://doi.org/10.1016/j.plantsci.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  • Porter, S.S.; Chang, P.L.; Conow, C.A.; Duham, J.P.; Friesen, M.L. (2017). Association mapping reveals novel serpentine adaptation gene clusters in a population of symbiotic Mesorhizobium. International Society for Microbial Ecology, 11, 248–262.

    CAS  Google Scholar 

  • Prendergast, M.D. (2013). Landscape evolution, regolith formation and Nickel laterite development in the northern part of the Great Dyke, Zimbabwe. South African Journal of Geology, 116, 219–240. https://doi.org/10.2113/gssajg.116.2.219

    Article  CAS  Google Scholar 

  • Proctor, J., & Cole, M. M. (1992). The ecology of ultramafic areas in Zimbabwe. The ecology of areas with serpentinized rocks, 17, 313–331. https://doi.org/10.1007/978-94-011-3722-5_12

    Article  Google Scholar 

  • Proctor, J., Baker, A. J. M., Van Balgooy, M.M.J., Bruijnzeel, L.A., Jones, S.H., & Madulid, D.A. (2000). Mount Bloomfield, Palawan, Philippines: forests on greywacke and serpentinized peridotite. Edinburgh Journal of Botany, 57, 121-139. doi:https://doi.org/10.1017/S0960428600000081

    Article  Google Scholar 

  • Proctor, J. (2003). Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspectives in Plant Ecology, Evolution and Systematics, 6, 104–124. https://doi.org/10.1078/1433-8319-00045

    Article  Google Scholar 

  • Quimado, M.O., Fernando, E.S., Trinidad, L.C., & Doronila, A. (2015). Nickel-hyperaccumulating species of Phyllanthus (Phyllanthaceae) from the Philippines. Australian Journal of Botany, 63, 103–110. https://doi.org/10.1071/BT14284

    Article  CAS  Google Scholar 

  • Quintela-Sabarís, C., Faucon, M. P., Repin, R., Sugau, J. B., Nilus, R., Echevarria, G., & Leguédois, S. (2020). Plant functional traits on tropical ultramafic habitats affected by fire and mining: Insights for reclamation. Diversity, 12, 248. https://doi.org/10.3390/d12060248

    Article  CAS  Google Scholar 

  • Rajakaruna, N. (2018). Lessons on evolution from the study of edaphic specialization. The Botanical Review, 84, 39–78. https://doi.org/10.1007/s12229-017-9193-2.

    Article  Google Scholar 

  • Rajakaruna, N., & Bohm, B. A. (2002). Serpentine and its vegetation: a preliminary study from Sri Lanka. Journal of Applied Botany, 76(1/2), 20-28.

    Google Scholar 

  • Rajakaruna, N., & Baker, A.J.M. (2004). Serpentine: a model habitat for botanical research in Sri Lanka. Ceylon Journal of Science (Biological Sciences), 2, 1-19.

    Google Scholar 

  • Rajakaruna, N., & Boyd, R. S. (2009). Advances in serpentine geoecology: A retrospective. Northeastern Naturalist, 16, 1–7. https://doi.org/10.1656/045.016.0501

    Article  Google Scholar 

  • Rajapaksa, A.U., Vithanage, M., Oze, C., Bandara, W.M., & Weerasooriya, R. (2012). Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma, 189, 1-9. https://doi.org/10.1016/j.geoderma.2012.04.019

    Article  CAS  Google Scholar 

  • Ramotoroko, C.D., Ranganai, R.T., & Nyabeze, P. (2016). Extension of the Archaean Madibe-Kraaipan granite-greenstone terrane in southeast Botswana: Constraints from gravity and magnetic data. Journal of African Earth Sciences, 123, 39–56. https://doi.org/10.1016/j.jafrearsci.2016.06.016

    Article  CAS  Google Scholar 

  • Reddy, R.A., Balkwill, K., & McLellan, T. (2009). Plant species richness and diversity of the serpentine areas on the Witwatersrand. Plant Ecology, 201, 365–381. https://doi.org/10.1007/978-90-481-2798-6_1

    Article  Google Scholar 

  • Reeves, R. D. (2003). Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil, 249, 57–65. https://doi.org/10.1023/A:1022572517197

    Article  CAS  Google Scholar 

  • Reeves, R. D., Baker, A. J. M., Borhidi, A., & Berazaín, R. (1996). Nickel-accumulating plants from the ancient serpentine soils of Cuba. New Phytologist, 133, 217–224. https://doi.org/10.1111/j.1469-8137.1996.tb01888.x.

    Article  CAS  PubMed  Google Scholar 

  • Reeves, R. D., Baker, A. J. M., Borhidi, A., & Berazain, R. (1999). Nickel hyperaccumulation in the serpentine flora of Cuba. Annals of Botany, 83, 29–38. https://doi.org/10.1006/anbo.1998.0786

    Article  CAS  Google Scholar 

  • Reeves, R.D., Baker, A.J.M., & Romero, R. (2007a). The ultramafic flora of the Santa Elena peninsula, Costa Rica: A biogeochemical reconnaissance. Journal of Geochemical Exploration, 93, 153–159. https://doi.org/10.1016/j.gexplo.2007.04.002

    Article  CAS  Google Scholar 

  • Reeves, R.D., Baker, A.J.M., Becquer, T., Echevarria, G., & Miranda, Z.J.G. (2007b). The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Plant Soil 293: 107–119. https://doi.org/10.1007/s11104-007-9192-x

    Article  CAS  Google Scholar 

  • Reeves, R. D., Baker, A. J., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218, 407–411. https://doi.org/10.1111/nph.14907

    Article  PubMed  Google Scholar 

  • Reeves, R. D., Macfarlane, R. M., & Brooks, R. R. (1983a). Accumulation of nickel and zinc by western North American genera containing serpentine‐tolerant species. American Journal of Botany, 70, 1297–1303. https://doi.org/10.2307/2443420

    Article  CAS  Google Scholar 

  • Reeves, R.D., Brooks, R.R., & Dudley, T.R. (1983b). Uptake of nickel by species of Alyssum, Bornmuellera, and Other Genera of Old World. Tribus Alysseae. Taxon, 32 (2), 184-192. https://doi.org/10.2307/1221970

    Article  Google Scholar 

  • Reiche-García, H.E. (2015). Propuesta para la Actualización del Plan de Manejo del Biotopo Universitario del Quetzal BUCQ “Mario Dary Rivera”. Dissertation. Universidad San Carlos de Guatemala, Ciudad de Guatemala, Guatemala.

  • Rivera, Z.E., Toro, B.L., & Gomez, R. (1984). La vegetacion arborea en una ladera del bosque de Maricao. In Los Bosques de Puerto Rico. Ed. A E Lugo. (pp 78–94). Depto. de Agricultura de los Estados Unidos, Instituto de Dasonomfa Tropical y Depto. de Recursos Naturales, Edo. Libre Asociado de Puerto Rico, San Juan de Puerto Rico.

  • Rodríguez, M.E., Mercado, O., & Martínez, M.A. (1987). Actividad biológica y degradación del suelo en algunas áreas de la zona minera de Moa. Revista del Jardín Botánico Nacional, Universidad de La Habana, 8(3), 77-108.

    Google Scholar 

  • Rodríguez, M.E., Oviedo, R., Mayans, Y., Torres-Arias, Y., Palacio, G., & Durruthy, M.D. (2004). Native plant resistant or sensitive to invironmentals impacts produced by mining activity in Moa. In: Boyd, R.S., Baker, A.J.M. & Proctor, J. (Eds). (pp. 339–343). Ultramafic rocks: their soils, vegetation, and fauna. Proceedings of the Fourth International Conference on Serpentine Ecology.

  • Rosito-Monzon, J.C. (1999). Estudio Floristico de la Comunidad del Cipresillo (Taxus globosa Schlecht.), en los Cerros Pinalon, Guaxabajá y Mulujá en la Sierrade Las Minas. Dissertation, Universidad San Carlos de Guatemala, Ciudad de Guatemala, Guatemala.

  • Rue, M., Paul, A.L.D., Echevarria, G., Van Der Ent, A., Simonnot, M.O., & Morel, J.L. (2020). Uptake, translocation and accumulation of nickel and cobalt in: Berkheya coddii, a 'metal crop' from South Africa. Metallomics, 12, 1278–1289. https://doi.org/10.1039/d0mt00099j

  • Samantaray, S., Rout, G.R., & Das, P. (2001) Heavy metal and nutrient concentration in soil and plants growing on a metalliferous chromite minespoil. Environmental Technology, 22, 1147–1154. https://doi.org/10.1080/09593332208618204

    Article  CAS  PubMed  Google Scholar 

  • Samantaray, S., Rout, G.R., & Das, P. (1999). Studies on the uptake of heavy metals by various plant species on chromite minespoils in sub-tropical regions of India. Environmental Monitoring and Assessment, 55, 389–399. https://doi.org/10.1023/A:1005982915175

    Article  CAS  Google Scholar 

  • Samithri, Y.A.S. (2015). Ecology of the serpentine vegetation at Ussangoda, Sri Lanka. Masster’s Thesis, University of Peradeniya, Sri Lanka

  • Sánchez-Murillo, R., Gazel, E., Schwarzenbach, E.M., Crespo-Medina, M., Schrenk, M.O., Boll, J., & Gill, B.C. (2014). Geochemical evidence for active tropical serpentinization in the Santa Elena Ophiolite, Costa Rica: An analog of a humid early Earth? Geochemistry, Geophysics, Geosystems, 15, 1783-1800. https://doi.org/10.1002/2013GC005213

    Article  CAS  Google Scholar 

  • Sánchez, J.A., López, D., Fernández, I., Gómez, J.L., & Pernús, M. (2017). Depredación de semillas de Acacia belairioides (Fabaceae) por brúquidos (Coleoptera: Chysomelidae: Bruchinae) y sus efectos en la germinación. Acta Botánica Cubana, 216, 55-61.

    Google Scholar 

  • Sanz, V., Riveros, M., Gutiérrez, M., & Moncada, R. (2011) Vegetación y uso de la tierra en el Estado Nueva Esparta, Venezuela: un análisis desde la ecología del paisaje. Interciencia, 16, 881-887.

    Google Scholar 

  • San Emeterio, L. (2001). Estudio de la Flora y de la Vegetación de las Cuencas Juan de Paz y Las Cañas, Sierra de Las Minas, Guatemala. Dissertation, Universidad de Navarr, Navarra, Spain.

  • Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics, 40, 245–269. https://doi.org/10.1146/annurev.ecolsys.39.110707.173430

    Article  Google Scholar 

  • Scoon, R.N., & Viljoen, M.J. (2019). Geoheritage of the eastern limb of the Bushveld Igneous Complex, South Africa: a uniquely exposed layered igneous intrusion. Geoheritage, 11, 1723–1748. https://doi.org/10.1007/s12371-019-00360-7

    Article  Google Scholar 

  • Seregin, I., & Kozhevnikova, A. D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53, 257–277. https://doi.org/10.1134/S1021443706020178

    Article  CAS  Google Scholar 

  • Sianta, S. A., & Kay, K. M. (2019). Adaptation and divergence in edaphic specialists and generalists: Serpentine soil endemics in the California flora occur in barer serpentine habitats with lower soil calcium levels than serpentine tolerators. American Journal of Botany, 106, 690–703. https://doi.org/10.1002/ajb2.1285

    Article  PubMed  Google Scholar 

  • Siebert, S.J., Van Wyk, A.E., & Bredenkamp, G. J. (2001). Endemism in the flora of ultramafic areas of Sekhukhuneland, South Africa. South African Journal of Science, 97, 529–532.

    Google Scholar 

  • Siebert, S.J., Van Wyk, A.E., & Bredenkamp, G.J. (2002). The physical environment and major vegetation types of Sekhukhuneland, South Africa. South African Journal of Botany, 68, 127–142. https://doi.org/10.1016/S0254-6299(15)30412-9

    Article  Google Scholar 

  • Small, R.J.O., De Szoeke, S.P., &Xie, S.P. (2007). The Central American Midsummer Drought: Regional Aspects and Large-Scale Forcing. Journal of Climate, 20(19), 4853-4873. https://doi.org/10.1175/JCLI4261.1

    Article  Google Scholar 

  • Smith, S., Balkwill, K., & Williamson, S. (2001). Compositae on serpentine in the Barberton Greenstone Belt, South Africa. South African Journal of Science, 97, 518–520.

    Google Scholar 

  • Southworth, D., Tackaberry, L.E., & Massicotte, H.B. (2014). Mycorrhizal ecology on serpentine soils. Plant Ecology & Diversity, 7, 445–455. https://doi.org/10.1080/17550874.2013.848950

    Article  Google Scholar 

  • Stalmans, M., Robinson, E.R., & Balkwill, K. (1999). Ordination and classification of vegetation of Songimvelo Game Reserve in the Barberton Mountainland, South Africa for the assessment of wildlife habitat distribution and quality. Bothalia, 29, 305–325. https://doi.org/10.4102/abc.v29i2.603

    Article  Google Scholar 

  • Stefanowicz, A.M., Kapusta, P., Szarek-Łukaszewska, G., Grodzińska, K., Niklińska, M., & Vogt, R.D. (2012). Soil fertility and plant diversity enhance microbial performance in metal-polluted soils. Science of the Total Environment, 439, 211–219. https://doi.org/10.1016/j.scitotenv.2012.09.030

    Article  CAS  PubMed  Google Scholar 

  • Sugden, A.M. (1986). The montane vegetation and flora of Margarita islands, Venezuela. Journal of the Arnold Arboretum, 67, 233-255. https://doi.org/10.5962/p.185936

    Article  Google Scholar 

  • Taylor, G.C. (1960) Geología de la Isla de Margarita, Venezuela. Boletin de Geologia, Publ. Especial, 3, 838—893.

    Google Scholar 

  • Ter Steege, H., Jansen-Jacobs, M.J., &Datadin, V. (2000). Can botanical collections assist in a National Protected Area Stra.tegy in Guyana? Biodiversity and Conservation, 9, 215-240. https://doi.org/10.1023/A:1008990107253

    Article  Google Scholar 

  • Toledo, S., García-Beltrán, J.A., Lemus, H., & García-Beltrán, D. (2019). Estructura poblacional y autoecología de Heptanthus ranunculoides (Asteraceae) en Sierra de Cajálbana, Pinar del Río, Cuba. Revista del Jardín Botánico Nacional, Universidad de La Habana, 40, 9-18.

    Google Scholar 

  • Trethowan, L.A., Blonder, B., Kintamani, E., Girmansyah, D., Utteridge, T.M., & Brearley, F.Q. (2021). Metal‐rich soils increase tropical tree stoichiometric distinctiveness. Plant and Soil, 461, 579–589. https://doi.org/10.1007/s11104-021-04839-7

    Article  CAS  Google Scholar 

  • Upie-Maga, & Maga-Bid. (2001). Mapa Fisiografico-Geomorfologico de la Republica de Guatemala, a escala 1:250,000. Memoria Tecnica-. Ministerio de Agricultura, Ganadería y Alimentación y Programa de Emergencia por Desastres Naturales, Ciudad de Guatemala, Guatemala.

  • Urbani Patat, F. (2018) Una revisión de los terrenos geológicos del sistema montañoso del Caribe, norte de Venezuela. Boletín de Geología, 23, 118-216

    Google Scholar 

  • van der Ent, A., Baker, A.J.M., van Balgooy, M.M.J., &Tjoa, A. (2013). Ultramafic nickel laterites in Indonesia: mining, plant diversity, conservation and nickel phytomining. Journal of Geochemical Exploration, 128, 72–79. https://doi.org/10.1016/j.gexplo.2013.01.009

    Article  CAS  Google Scholar 

  • van der Ent, A., & Mulligan, D. (2015). Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. Journal of Chemical Ecology, 41, 396–408.

    Article  PubMed  Google Scholar 

  • van der Ent, A., Wong, K.M., Sugau, J., & Repin, R. (2015a). Plant diversity and ecology of ultramafic outcrops in Sabah (Malaysia). Australian Journal of Botany, 63, 204–215. https://doi.org/10.1071/BT14214

    Article  Google Scholar 

  • van der Ent, A., Erskine, P.D., & Sumail, S. (2015b) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology, 25, 243–259. https://doi.org/10.1007/s00049-015-0192-7

    Article  CAS  Google Scholar 

  • van der Ent, A., Erskine, P.D., Mulligan, D.R., Repin, R., & Karim, R. (2016). Vegetation on ultramafic edaphic islands in Kinabalu Park (Sabah, Malaysia) in relation to soil chemistry and altitude. Plant and Soil, 403, 77–101.

    Article  Google Scholar 

  • van der Ent, A., Ocenar, A., Tisserand, R., Sugau, J.B., Erskine, P.D., & Echevarria, G. (2019) Herbarium X-ray Fluorescence Screening for nickel, cobalt and manganese hyperaccumulation in the flora of Sabah (Malaysia, Borneo Island). Journal of Geochemical Exploration, 202, 49–58. https://doi.org/10.1016/j.gexplo.2019.03.013

    Article  CAS  Google Scholar 

  • van der Ent, A., Vinya, R., Erskine, P.D., Malaisse, F., Przybyłowicz, W.J., Barnabas, A.D., Harris, H.H., & Mesjasz-Przybyłowicz, J. (2020). Elemental distribution and chemical speciation of copper and cobalt in three metallophytes from the copper-cobalt belt in Northern Zambia. Metallomics, 12, 682–701. https://doi.org/10.1039/c9mt00263d

    Article  CAS  PubMed  Google Scholar 

  • Van Wyk, A.E., & Smith, G. F. (2001). Regions of floristic endemism in southern Africa: a review with emphasis on succulents. Umdaus, Pretoria.

  • Vargas Cuervo, G.N., & Rodríguez Rodríguez, C.A. (2008). Metodología para la prospección de níquel utilizando técnicas de sensores remotos. Boletín de Ciencias de la Tierra, 25,43-66.

    Google Scholar 

  • Vega-Nieva, D.J., Nava-Miranda, M.G., Calleros-Flores, E., López-Serrano, P.M., Briseño-Reyes, J., López-Sánchez, C., Corral-Rivas, J. J., Montiel-Antuna, E., Cruz-Lopez, M.I., Ressl, R., Cuahtle, M., Alvarado-Celestino, E., González-Cabán, A., Cortes-Montaño, C., Pérez-Salicrup, D., Jardel-Pelaez, E., Jiménez, E., Arellano-Pérez, S., Álvarez-González, J.G., & Ruiz-González, A.D. (2019).Temporal patterns of active fire density and its relationship with a satellite fuel greenness index by vegetation type and region in Mexico during 2003–2014. Fire Ecology, 15, 28. https://doi.org/10.1186/s42408-019-0042-z

    Article  Google Scholar 

  • Veliz, M.E. (2008). Diversidad Florística d Guatemala. In C. N. D. A. Protegidas-Conap (Eds.). Guatemala y su Biodiversidad: Un Enfoque Histórico, Cultural, Biológico y Económico. Consejo Nacional de Áreas Protegidas-CONAP, Ciudad de Guatemala, Guatemala.

  • Veloz, A., Mejia, M., Monegro, A.L., & García, R. (2011). Flora y vegetación serpentinícola de la Reserva Biológica Sierra Prieta, Santo Domingo Norte, Republica Dominicana. Moscosoa, 17, 58–89.

    Google Scholar 

  • Venter, A., Siebert, S.J., Rajakaruna, N., Barnard, S., Levanets, A., Ismail, A., Allam, M., Peterson, B., & Sanko, T. (2018). Biological crusts of serpentine and non–serpentine soils from the Barberton Greenstone Belt of South Africa. Ecological Research, 33, 629–640. https://doi.org/10.1007/s11284-017-1546-0

    Article  CAS  Google Scholar 

  • Verbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. The New Phytologist, 181, 759–776. https://doi.org/10.1111/j.1469-8137.2008.02748.x

    Article  CAS  PubMed  Google Scholar 

  • Vilela, E.F., Guilherme, L.R.G., Silva, C.A. & Zinn, Y.L., (2020). Trace elements in soils developed from metamorphic ultrabasic rocks in Minas Gerais, Brazil. Geoderma Regional, 21, p.e00279.

  • Vilela, E.F., Inda, A.V., & Zinn, Y.L. (2019). Soil genesis, mineralogy and chemical composition in a steatite outcrop under tropical humid climate in Brazil. Catena, 183, 104234. https://doi.org/10.1016/j.catena.2019.104234

    Article  CAS  Google Scholar 

  • Villegas, V.H. (2000). Anomalías geobotánicas espectrales asociadas con los cambios en litología: Su uso para la cartografía geológica de las rocas ultrabásicas en terrenos totalmente vegetados de la costa Pacífica Colombiana. Boletín de Geología. Bucaramanga (Colombia), 22, 34-53.

    Google Scholar 

  • Visioli, G., Sanangelantoni, A.M., Conti, F.D., Bonati, B., Gardi, C., Menta, C. (2018). Above and belowground biodiversity in adjacent and distinct serpentine soils. Applied Soil Ecology, 133, 98–103.

    Article  Google Scholar 

  • Vithanage, M., Rajapaksha, A.U., Oze, C., Rajakaruna, N., & Dissanayake, C.B. (2014). Metal release from serpentine soils in Sri Lanka. Environmental Monitoring and Assessment, 186, 3415–3429. https://doi.org/10.1007/s10661-014-3626-8

    Article  CAS  PubMed  Google Scholar 

  • Von Wettberg, E.J., Ray-Mukherjee, J., D’Adesky, N., Nesbeth, D., & Sistla, S. (2014). The evolutionary ecology and genetics of stress resistance syndrome (SRS) traits: Revisiting Chapin, Autumn and Pugnaire (1993). In N. Rajakaruna, R. S. Boyd, T. Harris, (Eds.), Plant ecology and evolution in harsh environments. (pp. 259–266). Nova Science Publishers.

    Google Scholar 

  • Walker, R.B. (1954). The ecology of serpentine soils: II. Factors affecting plant growth on serpentine soils. Ecology, 35, 259–266.

    Google Scholar 

  • Webb, C.O. (2005). Vegetation of the Raja Ampat Islands, Papua, Indonesia. A report to the Nature Conservancy. 33 pp.

  • Weerasinghe, H.A.S., & Iqbal, M.C.M. (2011). Plant diversity and soil characteristics of the Ussangoda serpentine site. Journal National Science Foundation Sri Lanka, 39, 355–363. https://doi.org/10.4038/jnsfsr.v39i4.3884

    Article  CAS  Google Scholar 

  • Werger, M.J.A., Wild, H., & Drummond, B.R. (1978). Vegetation structure and substrate of the northern part of the Great Dyke, Rhodesia: Environment and plant communities. Vegetatio, 37, 79–89. https://doi.org/10.1007/BF00126831

    Article  Google Scholar 

  • Whittaker, R. H. (1954). The ecology of serpentine soils. Ecology, 35, 258–288. https://doi.org/10.2307/1931126

    Article  Google Scholar 

  • White, F. (1978) The Afromontane Region.) Biogeography and ecology of Southern Africa. Monographiae Biologicae, 31, 463–513. https://doi.org/10.1007/978-94-009-9951-0_11

    Article  Google Scholar 

  • Wild, H. (1965). The flora of the Great Dyke of Southern Rhodesia with special reference to the serpentine soils. Kirkia, 5, 49–86.

    Google Scholar 

  • Wild, H. (1968). Geobotanical anomalies in Rhodesia: 1—the vegetation of copper bearing soils. Kirkia, 7, 1–71.

    Google Scholar 

  • Williamson, S.D., & Balkwill, K. (2015). Plant census and floristic analysis of selected serpentine outcrops of the Barberton Greenstone Belt, Mpumalanga, South Africa. South African Journal of Botany, 97, 133–142. https://doi.org/10.1016/j.sajb.2014.12.004

    Article  Google Scholar 

  • Witkowski, E.T.F., Dahlmann, L.A., & Boycott, R.C. (2001). Conservation biology of Kniphofia umbrina, a critically endangered Swaziland serpentine endemic. South African Journal of Science, 97, 609–616.

    CAS  Google Scholar 

Download references

Acknowledgements

A. Funding: This material is based upon work supported by the National Science Foundation under Grant No. NSF MSB-ECA #1833358 and NSF CAREER #2042453 to CMH. The authors thank two anonymous reviewers for their thoughtful comments. We also thank Jon Walters for help with the geospatial database and documentation and José Ramón Martínez Batlle for help accessing the geological map of the Dominican Republic.

Author information

Authors and Affiliations

Authors

Contributions

CMH and CGD planned the manuscript; CMH edited and organized the first draft. The following authors wrote and edited specific sections: Puerto Rico: CGD and CMH; Cuba: RBI, FLFT, JLGH; Dominican Republic BC and RC; Costa Rica: ECM and CMH; Brazil: AFG and EVDB; Venezuela: EM and GV; New Caledonia: ALDP; Sri Lanka and India: NR; Guatemala and Colombia: CR; southern Africa: SJS; Malaysia, Indonesia, Philippines: AVDE. All authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to Catherine M. Hulshof.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB). Hyperaccumulator plants in tropical ultramafic areas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garnica-Díaz, C., Berazaín Iturralde, R., Cabrera, B. et al. Global Plant Ecology of Tropical Ultramafic Ecosystems. Bot. Rev. 89, 115–157 (2023). https://doi.org/10.1007/s12229-022-09278-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-022-09278-2

Keywords

Navigation