Skip to main content
Log in

Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Echinochloa was an important prehistoric food crop of early agriculture in Asia. Macro-remains can be used to identify Echinochloa. However, when few macro-remains are available, phytolith analysis can be performed. In this study, we examined the phytolith morphology of the glumes, lemmas, and paleas from the inflorescence bracts of nine Echinochloa species from different regions of China and obtained diagnostic, morphological, and morphometric characteristics for Echinochloa. Phytoliths in Echinochloa are different from those in most known crops except those in Setaria italica and Panicum miliaceum. We found the following two diagnostic features within an epidermal silica layer that can be used to distinguish Echinochloa sp. from S. italica and P. miliaceum: (1) the β-type undulated patterns with constricted top of the undulation amplitude and (2) the discriminant functions based on the morphometric data of the β-type undulated patterns, which suggested that 94.9 % of the cross-validated data were correctly classified into Echinochloa, S. italica, and P. miliaceum. Thus, we established the phytolith identification criteria for Echinochloa; this could have important implications in plant taxonomy, archaeobotany, and plant domestication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ball TB, Brotherson JD, Gardner JS (1993) A typologic and morphometric study of variation in phytoliths from einkorn wheat (Triticum monococcum). Can J Bot 71:1182–1192

    Article  Google Scholar 

  • Ball TB, Gardner JS, Anderson N (1999) Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum) (Gramineae). Am J Bot (86):1615–1623

  • Ball TB, Gardner JS, Anderson N (2001) An approach to identifying inflorescence phytoliths from selected species of wheat and barley phytoliths: applications in earth sciences and human history:289–301

  • Bestel S, Crawford GW, Liu L, Shi J, Song Y, Chen X (2014) The evolution of millet domestication, Middle Yellow River Region, north China: evidence from charred seeds at the late Upper Paleolithic Shizitan Locality 9 site. The Holocene 24:261–265 doi:10.1177/0959683613518595

  • Chen T, Wu Y, Zhang YB, Wang B, Hu YW, Wang CS, Jiang HE (2012) Archaeobotanical study of ancient food and cereal remains at the Astana Cemeteries, Xinjiang, China. Plos One 7:e45137. doi:10.1371/journal.pone.0045137

  • Crawford GW (1983) Paleoethnobotany of the Kameda Peninsula Jomon Anthropological Papers Ann Arbor, Mich:1–200

  • Fuller DQ, Qin L, Harvey E (2007) A critical assessment of early agriculture in East Asia, with emphasis on Lower Yangzte rice domestication Pragdhara 18:17–52

  • Guntzer F, Keller C (2012) Meunier J-D. Benefits of plant silicon for crops: a review Agron Sustain Dev 32:201–213. doi:10.1007/s13593-011-0039-8

    Google Scholar 

  • Gupta A, Mahajan V, Kumar M, Gupta HS (2009) Biodiversity in the barnyard millet (Echinochloa frumentacea Link, Poaceae) germplasm in India Genet Resour Crop Evol 56:883–889 doi:10.1007/s10722-009-9462-y

  • Harlan JR (1989) Wild-grass seed harvesting in the Sahara and sub-Sahara of Africa. In: Harris DRHGC (ed) Foraging and farming: the evolution of plant exploitation. Unwin Hyman, London, pp. 79–98

    Google Scholar 

  • Hodson M, Sangster A, Parry DW (1985) An ultrastructural study on the developmental phases and silicification of the glumes of Phalaris canariensis. L Ann Bot-London 55:649–665

    Article  Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds. The University Press of Hawaii. Honolulu, USA

    Google Scholar 

  • Holst I, Moreno JE, Piperno DR (2007) Identification of teosinte, maize, and Tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths. Proc Nat Acad Sci 104:17608–17613

    Article  Google Scholar 

  • Horrocks M, Bedford S, Spriggs M (2009) A short note on banana (Musa) phytoliths in Lapita, immediately post-Lapita and modern period archaeological deposits from Vanuatu. J Archaeol Sci 36:2048–2054. doi:10.1016/j.jas.2009.05.024

    Article  Google Scholar 

  • Jin G, Wu W, Zhang K, Wang Z, Wu X (2014) 8000-year old rice remains from the north edge of the Shandong Highlands, East China. J Archaeol Sci 51:34–42. doi:10.1016/j.jas.2013.01.007

    Article  Google Scholar 

  • Lee G-A, Crawford GW, Liu L, Chen X (2007) Plants and people from the Early Neolithic to Shang periods in north China. Proc Nat Acad Sci 104:1087–1092. doi:10.1073/pnas.0609763104

    Article  Google Scholar 

  • Lu HY, Liu ZX, NQ Wu, Berne S, Saito Y, Liu BZ, Wang L (2002) Rice domestication and climatic change: phytolith evidence from East China Boreas 31:378–385

  • Lu HY et al. (2009a) Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. P Natl Acad Sci USA 106:7367–7372. doi:10.1073/pnas.0900158106

    Article  Google Scholar 

  • Lu HY, Zhang JP, Wu NQ, Liu KB, Xu D, Li Q (2009b) Phytoliths analysis for the discrimination of foxtail millet (Setaria Italica) and common millet (Panicum Miliaceum). PLoS One 4:e4448. doi:10.1371/Journal.Pone.0004448

    Article  Google Scholar 

  • Madella M, Alexandre A, Ball T (2005) International code for phytolith nomenclature 1.0. Ann Bot-London 96:253–260. doi:10.1093/Aob/Mci172

    Article  Google Scholar 

  • Madella M, García-Granero JJ, Out WA, Ryan P, Usai D (2014) Microbotanical evidence of domestic cereals in Africa 7000 years ago. PLoS One 9:e110177. doi:10.1371/journal.pone.0110177

    Article  Google Scholar 

  • Madella M, Lancelotti C, García-Granero J (2013) Millet microremains—an alternative approach to understand cultivation and use of critical crops in Prehistory Archaeol Anthrop Sci:1–12 doi:10.1007/s12520-013-0130-y

  • Madella M, Db Z (2007) Plants, people and places: recent studies in phytolith analysis. Oxbow Books, Oxford

    Google Scholar 

  • Mulholland SC, Rapp G, Ollendorf AL, Regal R (1990) Variation in phytolith assemblages within a population of corn (cv. Mandan Yellow Flour). Can J Bot 68:1638–1645

    Article  Google Scholar 

  • Mulholland SC, Rapp G Jr, Ollendorf AL (1988) Variation in phytoliths from corn leaves. Can J Botany 66:2001–2008

    Article  Google Scholar 

  • Pandey P, Tomar G, Meshram M, Kumar R, Singh A (2014) Effect of weed management practices on growth, yield and economics of scented rice (Oryza sativa L.). Environ Ecol 32:1734–1736

    Google Scholar 

  • Parry DW, Smithson F (1966) Opaline silica in the inflorescences of some British grasses and cereals. Ann Bot-London 30:525–538

    Article  Google Scholar 

  • Pearsall DM (1989) Paleoethnobotany: a handbook of procedures. Academic Press, San Diego

    Google Scholar 

  • Pearsall DM, Piperno DR, Dinan EH, Umlauf R, Zhao ZJ, Benfer RA (1995) Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis: results of preliminary research. Econ Bot 49:183–196

    Article  Google Scholar 

  • Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. AltaMira Press, Lanham

    Google Scholar 

  • Piperno DR, Holst I, Wessel-Beaver L, Andress TC (2002) Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. Proc Natl Acad Sci U S A 99:10923–10928. doi:10.1073/pnas.152275499

    Article  Google Scholar 

  • Piperno DR, Pearsall DM (1993) Phytoliths in the reproductive structures of maize and teosinte: implications for the study of maize evolution. J Archaeol Sci 20:337–362. doi:10.1006/jasc.1993.1021

    Article  Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. maize from the central Balsas River Valley. Mexico Proc Nat Acad Sci 106:5019–5024. doi:10.1073/pnas.0812525106

    Article  Google Scholar 

  • Piperno DR, Stothert KE (2003) Phytolith evidence for early Holocene Cucurbita domestication in southwest Ecuador. Sci 299:1054–1057. doi:10.1126/science.1080365

    Article  Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207

    Article  Google Scholar 

  • Roshevits RY (1980) Grasses: an introduction to the study of fodder and cereal grasses vol 72, vol 51033 Indian National Scientific Documentation Centre

    Google Scholar 

  • Sangster AG (1970) Intracellular silica deposition in mature and senescent leaves of Sieglingia decumbens (L.) Bernh. Ann Bot-London 34:557–570

    Article  Google Scholar 

  • Sato YI, Fujiwara H, Udatsu T (1990) Morphological differences in silica body derived from motor cell of indica and japonica in rice. Jpn J Breed 40:495–504

    Article  Google Scholar 

  • Soni SL, Kaufman PB, Jones RA (1972) Electron microprobe analysis of the distribution of silicon and other elements in rice leaf epidermis Botanical Gazette:66–72

  • Tsubakisaka Y (1988) Distinguishing foxtail, Japanese, and broomcorn millets using a scanning electron microscope (Sousa Denshi Kenbikyou ni yoru Awa, Hie, Kibi Shikibetsu). In: Data associated with the first stage of agriculture in Hokkaido Sapporo: Hokkaido Daigaku Bungakubu, Kiso Bunkron Kouza Jinruigaku Kenkyuushitsu. pp 2–11

  • Tsubakisaka Y (1993) Foxtail millet, barnyard millet and broomcorn millet identification. In: Senshikagu to Kanren Kagaku (Prehistory and related sciences). Sapporo, pp 261–281

  • Tubb HJ, Hodson MJ, Hodson GC (1993) The inflorescence papillae of the Triticeae: a new tool for taxonomic and archaeological research. Ann Bot-London 72:537–545

    Article  Google Scholar 

  • Wang YJ, Lu HY (1993) The study of phytolith and its application. China Ocean Press, Beijing

    Google Scholar 

  • Watanabe N (1970) A spodographic analysis of millet from prehistoric. Japan J Fac Sci Univ Tokyo Sect 5:357–379

    Google Scholar 

  • Weisskopf A, Lee G-A (2014) Phytolith identification criteria for foxtail and broomcorn millets: a new approach to calculating crop ratios Archaeol Anthrop Sci:1–14 doi:10.1007/s12520-014-0190-7

  • Whang SS, Kim K, Hess WM (1998) Variation of silica bodies in leaf epidermal long cells within and among seventeen species of Oryza (Poaceae). Am J Bot 85:461–466

    Article  Google Scholar 

  • Wu C, Liu H, Zhao Z (2010) Prehistoric agriculture in Hanjiang Plain from the floatation results of Yejiamiao site in Xiaogan cultural relics in southern China 4:64–69

  • Yabuno T (1987) Japanese barnyard millet (Echinochloa utilis, Poaceae) in Japan. Econ Bot 41:484–493. doi:10.1007/BF02908141

    Article  Google Scholar 

  • Yang C, Liang H, Sun D, Zhao Z (2010) Floatation report of the Lichunjiang site in Dehui. Jilin Province Northern Culture Relics 4:52–53

    Google Scholar 

  • Yoshida S, Ohnishi Y, Kitagishi K (1962a) Histochemistry of silicon in rice plant: II. Localization of silicon within rice tissues. Soil Sci Plant Nutr 8:36–41. doi:10.1080/00380768.1962.10430980

    Article  Google Scholar 

  • Yoshida S, Ohnishi Y, Kitagishi K (1962b) Histochemistry of silicon in rice plant: III. The presence of cuticle-silica double layer in the epidermal tissue. Soil Sci Plant Nutr 8:1–5

    Google Scholar 

  • Zhang JP, Lu HY, Wu NQ, Yang XY, Diao XM (2011) Phytolith analysis for differentiating between foxtail millet (Setaria italica) and green foxtail (Setaria viridis). PLoS One 6:e19726. doi:10.1371/journal.pone.0019726

    Article  Google Scholar 

  • Zhang X (2012) Archaeobotanical investigation of the Guanting Basin in Qinghai Province and related issues Archaeology and Culture Relics 3:003

  • Zhao ZJ, Pearsall DM, Benfer RA, Piperno DR (1998) Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis. II: Finalized method Econ Bot 52:134–145

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Guoan Wang from China Agricultural University for providing some samples for this study. This study was supported by the National Natural Science Foundation of China (Grant No. 41230104), the National Science and Technology Major Project of China (Grant No. 2015CB953801), the “Strategic Priority Research Program: Climate Change, Carbon Budget and Relevant Issues” of the Chinese Academy of Sciences (Grant No. XDA05130602), and the National Key Technology R&D Program of China (Grant No. 2013BAK08B02).

Author contributions

H.L. and Y.G. conceived the experiment. H.L., Y.G., C.W., K.H., and X.H. collected and prepared the samples. Y.G. and J.Z. performed the experiment. All authors contributed to data analysis. Y.G. and H.L. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Ge or Houyuan Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Lu, H., Zhang, J. et al. Phytolith analysis for the identification of barnyard millet (Echinochloa sp.) and its implications. Archaeol Anthropol Sci 10, 61–73 (2018). https://doi.org/10.1007/s12520-016-0341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-016-0341-0

Keywords

Navigation