Skip to main content

The Gene Pool of Saccharum Species and Their Improvement

  • Chapter
  • First Online:
Genomics of the Saccharinae

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 11))

Abstract

Current taxonomy divides sugarcane into six species, two of which are wild and always recognized (Saccharum spontaneum L. and Saccharum robustum Brandes and Jewiet ex Grassl). The other species are cultivated and classified variously. Of the four domesticated species of Saccharum, S. officinarum L. was the first named and is the primary species for production of sugar. Recent genomic data for evaluating genetic diversity within Saccharum suggests relationships among accessions that may ultimately produce a definitive classification of the species. Sugarcane breeders have long realized that germplasm diversity is essential for sustained crop improvement, with accessions from at least 31 separate expeditions deposited in the two world collections as genetic reservoirs. Cultivated sugarcanes of today are complex interspecific hybrids primarily between Saccharum officinarum, known as the noble cane, and Saccharum spontaneum, with contributions from S. robustum, S. sinense, S. barberi, and related grass genera such as Miscanthus, Narenga, and Erianthus. Sugarcane has long been recognized as one of the world’s most efficient crops in converting solar energy into chemical energy harvestable as biomass, and is of growing interest as a biofactory for production of fossil fuel alternatives and other high-value bioproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken KS, Li J, Wang L, Qing C, Fan YH, Jackson P (2006) Characterization of intergeneric hybrids of Erianthus rockii and Saccharum using molecular markers. Genet Resour Crop Evol 54:1395–1405

    Article  Google Scholar 

  • Alexander AG (1985) The energy cane alternative. Elsevier, Amsterdam

    Google Scholar 

  • Alix K, Baurens FC, Paulet JC, Glaszmann JC, D’Hont A (1998) Isolation and characterization of a satellite DNA family in the Saccharum complex. Genome 41:854–864

    PubMed  CAS  Google Scholar 

  • Alix K, Paulet JC, Glaszmann JC, D’Hont A (1999) Inter-Alu like species-specific sequences in the Saccharum complex. Theor Appl Genet 6:962–968

    Article  Google Scholar 

  • Amalraj VA, Balakrishnan R, Jebadhas AW, Balasundaram N (2006) Constituting a core collection of Saccharum spontaneum L. and comparison of three stratified random sampling procedures. Genet Resour Crop Evolut 53:1563–1572

    Article  Google Scholar 

  • Anonymous (1945) A newly released cane: some notes on NCo310. South Afr Sugar J 30:91

    Google Scholar 

  • Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218 Artschwager E, Brandes EW (1958) Sugarcane (Saccharum officinarum L.). US, Department of Agriculture

    Article  CAS  Google Scholar 

  • Balakrishnan R, Nair NV, Sreenivasan TV (2000) A method for establishing a core collection of Saccharum officinarum L. germplasm based on quantitative-morphological data. Genet Resour Crop Evolut 47:1–9

    Article  Google Scholar 

  • Barber CA (1920) The origin of the sugar cane International Sugar Journal 22:249–251

    Article  Google Scholar 

  • Bennett MD Leitch IJ (2003) Angiosperm DNA C-values Database (release 4.0, Jan 2003) http://wwwrbgkeworguk/cval/homepage.html

  • Berding N, Roach BT (1987) Germplasm collection, maintenance, and use. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 143–210

    Google Scholar 

  • Blume H (1985) Geography of sugar cane: environmental, structural and economical aspects of cane sugar production. In: Blume H (ed) Geography of sugar cane. Verlag Dr. Albert Bartens, Berlin, pp 21–36

    Google Scholar 

  • Brandes EW (1956) Origin, dispersal and use in breeding of the Melanesian garden sugarcanes and their derivatives, Saccharum officinarum L. Proc Int Soc Sugar Cane Technol 9:709–750

    Google Scholar 

  • Brandes EW (1958) Origin, classification and characteristics. In: Artschwager E, Brandes EW (eds) Sugarcane (Saccharum officinarum L.). U.S. Department of Agriculture Handbook 122, Washington, DC, pp 1–35

    Google Scholar 

  • Bremer G (1923) A cytological investigation of some species and species-hybrids of the genus Saccharum. Genetica 5:273–326

    Article  Google Scholar 

  • Bremer G (1961) Problems in breeding and cytology of sugar cane. 4. Origin of increase of chromosome number in species hybrids of Saccharum. Euphytica 10(59–78):325–342

    Article  Google Scholar 

  • Brown JS, Schnell RJ, Power EJ, Douglas SL, Kuhn DN (2007) Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter- and intra species relationships using microsatellite markers. Genet Resour Crop Evolut 54:627–648

    Article  CAS  Google Scholar 

  • Brown JS, Schnell RJ, Tai PYP, Miller JD (2002) Phenotypic evaluation of Saccharum barberi, S. robustum, and S. sinense Germplasm from the Miami, Fl, USA world collection. Sugar Cane Int Sept–Oct:3–16

    Google Scholar 

  • Bullard MJ, Heath MC, Nixon PM (1995) Shoot growth, radiation interception and dry matter production and partitioning during the establishment pase of Miscnthus sinensis “Giganteus” grown at two densities in the UK. Ann Appl Biol 126:94–102

    Article  Google Scholar 

  • Brumbley SM, Petrasovits L, Purnell M, O’Shea MG, Geijskes J, Lakshmanan P, Smith GR, Nielsen LK (2002) Application of biotechnology for future sugar industry diversification. Proc Aust Soc Sugar Cane Technol 24:40–46

    Google Scholar 

  • Burnquist WL, Sorrells ME, Tanksley S (1992) Characterization of genetic variability in Saccharum germplasm by means of restriction fragment length polymorphism (RFLP) analysis. Proc Int Soc Sugar Cane Technol 21:355–365

    Google Scholar 

  • Clayton WD (1972a) The awned genera of Andropogoneae. Studies in the Gramneae: 31. Kew Bull 27(3):457–454

    Article  Google Scholar 

  • Clayton WD (1972b) The awnless genera of Andropogoneae. Studies in the Gramneae: 33. Kew Bull 28(1):49–58

    Article  Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera Graminum—Grasses of the world. Kew Bull Additional Series 13:1–389

    Google Scholar 

  • Clifton-Brown JC, Lewandowski I (2000) Over-wintering problems of new established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148:287–294

    Article  Google Scholar 

  • Cuadrado A, Acevedo R, Dias M, de la Espina S, Jouve N, de la Torre C (2004) Genome ­remodelling in three modern S. officinarum × S. spontaneum sugarcane cultivars. J Exp Bot 55:847–854

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A (2005) Unravelling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109(1–3):27–33

    Article  PubMed  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao PS, Berding N, Glaszmann JC (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharun spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Google Scholar 

  • D’Hont A, Lu YH, Feldmann P, Glaszmann JC (1993) Cytoplasmic diversity in sugarcane revealed by heterologous probes. Sugar Cane 1:12–15

    Google Scholar 

  • D’Hont A, Paulet F, Glaszmann JC (2002) Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes. Chromosome Res 10:253–262

    Article  PubMed  Google Scholar 

  • D’Hont A, Rao PS, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC (1995) Identification and characterization of sugarcane intergeneric hybrids, Saccharum-officinarum x Erianthus-arundinaceus with molecular markers and DNA in-situ hybridization. Theor Appl Genet 91:320–326

    Google Scholar 

  • D’Hont A, Souza GM, Menossi M, Vincentz M, Van Sluys MA, Glaszmann JC, Ulian EC (2008) Sugarcane: a major source of sweetness, alcohol, and bio-energy. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 483–513

    Chapter  Google Scholar 

  • Daniels J, Daniels C (1975) Geographical, historical and cultural aspect of the origin of the Indian and Chinese sugarcanes S. barberi and S. sinense. Int Soc Sugar Cane Technol Sugarcane Breed Newsl 36:4–23

    Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution in sugarcane. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 7–84

    Google Scholar 

  • Daniels J, Roach BT, Daniels C, Paton N (1991) The taxonomic status of Saccharum barberi Jesweit and S. sinense Roxb. Sugar Cane 3:11–16

    Google Scholar 

  • Daniels J, Smith P, Paton N, Williams C (1975) The origin of the genus Saccharum. Int Soc Sugar Cane Technol Sugarcane Breed Newsl 36:24–39

    Google Scholar 

  • Deerr N (1921) Cane sugar, 2nd edn. Norma Roger, London

    Google Scholar 

  • Deerr N (1949) The history of sugar, vol I. Chapman and Hall, London

    Google Scholar 

  • Dohleman FG, Heaton EA, Leakey ADB, Long SP (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant. Cell Environ 32(11):1525–1537

    Article  CAS  Google Scholar 

  • Edgerton CW (1958) Sugarcane and its diseases. Louisiana State Univ. Press, Baton Rouge, pp 43–61

    Google Scholar 

  • Ethirajan AS (1987) Sugarcane hybridization techniques. In: Anonymous (eds) Copersucar International Sugarcane Breeding Workshop. Copersucar, Piracicaba, Brazil, pp 129–148

    Google Scholar 

  • Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons ELH, Payne J, Rhodes MJC, Walton NJ (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 273:4163–4170

    Article  PubMed  CAS  Google Scholar 

  • Glaszmann JC, Lu YH, Lanaud C (1990) Variation of nuclear ribosomal DNA in sugarcane. J Genet Breed 44:191–198

    Google Scholar 

  • Gnanasambandam A, Birch RG (2004) Efficient developmental mis-targeting by the sporamin NTPP vacuolar signal to plastids in young leaves of sugarcane and Arabidopsis. Plant Cell Rep 24:435–447

    Article  Google Scholar 

  • Goldemberg J (2008) The Brazilian biofuels industry. Biotechnol Biofuels 1:6

    Article  PubMed  Google Scholar 

  • Grivet L, Glaszmann JC, D’Hont A (2006) Molecular evidences for sugarcane evolution and domestication. In: Motley T, Zerega N, Cross H (eds) Darwin’s harvest. New approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 49–66

    Google Scholar 

  • Grivet L, D’Hont A, Roques PD, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000

    PubMed  CAS  Google Scholar 

  • Hamerli D, Birch R (2011) Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane. Plant Biotechnol J 9(1):32–37

    Article  PubMed  CAS  Google Scholar 

  • Heinz DJ, Osgood RV, Moore P (1994) Sugarcane. Encyclopedia of agricultural science, vol 4. Academic, San Diego, pp 225–238

    Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern cultivar (Saccharum spp.). I. Genome mapping with AFLP. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Hodkinson TR, Chase MC, Lledó M, Salamin N, Renvoize SA (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392

    Article  PubMed  CAS  Google Scholar 

  • Holland-Moritz P (2003) Sugar cane-derived therapeutic proteins avoid contamination issues. Drug Discov Dev 6:27

    Google Scholar 

  • Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194

    Article  Google Scholar 

  • Jannoo N, Grivet L, Dookun A, D’Hont A, Glaszmann JC (1999a) Linkage disequilibrium among modern sugarcane cultivars. Theor Appl Genet 99:1053–1060

    Article  CAS  Google Scholar 

  • Jannoo N, Grivet L, Seguin F, Paulet R, Domaingue PS, Rao A, Dookun A, D’Hont A, Glaszmann JC (1999b) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99:171–184

    Article  CAS  Google Scholar 

  • Jeswiet J (1927) World collection of Saccharum. Proc Int Soc Sugar Cane Technol 2:137–139

    Google Scholar 

  • Jeswiet J (1930) Proceedings of the International Society of sugar cane Technologists Soerabaia

    Google Scholar 

  • Kennedy AJ, Rao PS (2000) Handbook 2000. West Indies Central Sugar Cane Breeding Station, St. George, Barbados, pp 1–10

    Google Scholar 

  • Lima MLA, Garcia AAF, Oliveira KM, Matsuoka S, Arizono H, de Souza CL Jr, de Souza AP (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor Appl Genet 104:30–38

    Article  PubMed  CAS  Google Scholar 

  • Lu YH, Dhont A, Paulet F, Grivet L, Arnaud M, Glaszmann JC (1994a) Relationships among ancestral species of sugarcane revealed with RFLP using single copy maize nuclear probes. Euphytica 78:7–8

    Article  Google Scholar 

  • Lu YH, Dhont A, Paulet F, Grivet L, Arnaud M, Glaszmann JC (1994b) Molecular diversity and genome structure in modern sugarcane cultivars. Euphytica 78:217–226

    Article  Google Scholar 

  • Machado GR, Da Silva WM, Irvine J (1987) Sugarcane breeding in Brazil: the Copersucar program. In: Anonomous (eds) Copersucar International Sugarcane Breeding Workshop. Copersucar, Brazil, pp 216–247

    Google Scholar 

  • McQualter RB, Fong Chong B, O’Shea MG, Meyer K, Van Dyk DE, Viitanen PV, Brumbley SM (2005) Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnol J 3(1):29–41

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee SK (1954) Revision of the genus Saccharum Linn. Bull Bot Soc Bengal 89:143–148

    Google Scholar 

  • Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 119:55–56

    Article  Google Scholar 

  • Nair NV, Nair S, Sreenivasan TV, Mohan M (1999) Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genet Res Crop Evolut 46:73–79

    Article  Google Scholar 

  • Nuss KJ, Brett PGC (1995) The release of cultivar NCo310 in 1945 and its impact on the sugar industry. Proc South Afr Sugar Technol Assoc 69:3–8

    Google Scholar 

  • Panje RR, Babu CN (1960) Studies in Saccharum spontaneum. Distribution and geographical association of chromosome numbers. Cytologia 25:152–172

    Article  Google Scholar 

  • Parthasarathy N (1948) Origin of Noble Sugar-Canes (Saccharum officinarum). Nature 161:606–608 Paton N, Daniels J, Smith P (1978) A study of S. sinense Roxb. and S. barberi Jesw. Int Soc Sugarcane Technol Sugarcane Breed Newsl 41:33–50

    Google Scholar 

  • Peoples OP, Sinskey AJ (1989) Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophyus H16. Characterization of the genes encoding beta-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264:15293–15297

    Google Scholar 

  • Peoples OP, Sinskey AJ (1989) Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophyus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264:15298–15303

    PubMed  CAS  Google Scholar 

  • Piperidis N, Chen J-W, Deng H-H, Wang LP, Jackson P, Piperidis G (2010a) GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids. Genome 53:331–336

    Article  PubMed  CAS  Google Scholar 

  • Piperidis G, Christopher MJ, Carroll BJ, Berding N, D’Hont A (2000) Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome 43:1033–1037

    PubMed  CAS  Google Scholar 

  • Piperidis G, Piperidis N, D’Hont A (2010b) Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genomics 284:65–73

    Article  PubMed  CAS  Google Scholar 

  • Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227

    Article  PubMed  CAS  Google Scholar 

  • Price S (1957) Cytological studies in Saccharum and allied genera II. Chromosome numbers in interspecific hybrids. Bot Gaz 118:146–159

    Article  Google Scholar 

  • Price S (1963) Cytogenetics of modern sugar canes. Econ Bot 17:97–105

    Article  Google Scholar 

  • Price S (1965) Interspecific hybridization in sugarcane breeding. Proc Int Soc Sugar Cane Technol 12:1021–1026

    Google Scholar 

  • Roach BT (1989) Origin and improvement of the genetic base of sugarcane. Proc Aust Soc Sugar Cane Technol 11:34–47

    Google Scholar 

  • Roach BT, Daniels J (1987) The Saccharum complex and the genus Saccharum. In: Anomous (eds) Copersucar Int. Sugarcane Breeding Workshop. Copersucar, Brazil, pp 1–33

    Google Scholar 

  • Rossi G, da Silva W, Irvine J (1987) Sugarcane breeding in Brazil: the Copersucar program. In: Anomous (eds.) Copersucar International Sugarcane Breeding Workshop. Copersucar, Brazil, pp 217–232

    Google Scholar 

  • Schubert P, Steinbuchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847

    PubMed  CAS  Google Scholar 

  • Siebert M, Sommer S, Li S, Wang Z, Severin K, Heide L (1996) Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate glucosides as a result of the expression of the bacterial ubiC gene in tobacco. Plant Physiol 112:811–819

    Article  PubMed  CAS  Google Scholar 

  • Simmonds NW (1976) Sugarcanes. In: Simmonds NW (ed) Evolution of crop plants. Longman Group Limited, London, pp 104–108

    Google Scholar 

  • Sobral BWS, Braga DPV, Lahood ES, Keim P (1994) Phylogenetic analysis of chloroplast restriction enzyme site mutations in the Saccharinae Griseb. Subtribe of the Andropogoneae Dumort. Tribe. Theor Appl Genet 87:843–853

    Article  CAS  Google Scholar 

  • Spangler R, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281

    Article  Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–253

    Google Scholar 

  • Stevenson GC (1965) Genetics and breeding of sugar cane. Longman, London

    Google Scholar 

  • Tai PYP, Miller JD (2001) A core collection for Saccharum spontaneum L. from the World Collection of sugarcane. Crop Sci 41:879–885

    Article  Google Scholar 

  • Tai PYP, Miller JD (2002) Germplasm diversity among four sugarcane species for sugar composition. Crop Sci 42:958–964

    Article  Google Scholar 

  • Tew TL (1987) New varieties pp. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 559–594

    Google Scholar 

  • Tew TL (2003) World sugarcane variety census – Year 2000. Sugar Cane International March/April 2003:12–18

    Google Scholar 

  • Tew TL, Cobill RM (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer Science LLC, New York

    Google Scholar 

  • Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:1–14

    Article  Google Scholar 

  • Walker DIT (1987) Manipulating the genetic base of sugarcane. In: Anonymous (eds.) Copersucar International Sugarcane Breeding Workshop. Copersucar, Piracicaba, Brazil, pp 321–334

    Google Scholar 

  • Wang ML, Goldstein C, Su W, Moore PH, Albert H (2005) Production of biologically active GM-CSF in sugarcane: a secure biofactory. Transgenic Res 114:167–178

    Article  Google Scholar 

  • Whalen MD (1991) Taxanomy of Saccharum (Poaceae). Baileya 23:109–125 Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Appl Environ Microbiol 71:1581–1590

    Article  Google Scholar 

  • Xavier RM (2007) The Brazilian ethanol experience. Competetive Enterprise Institute, Washington, DC http://www.cei.org/pdf/5774.pdf

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Paterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paterson, A.H., Moore, P.H., Tew, T.L. (2013). The Gene Pool of Saccharum Species and Their Improvement. In: Paterson, A. (eds) Genomics of the Saccharinae. Plant Genetics and Genomics: Crops and Models, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5947-8_3

Download citation

Publish with us

Policies and ethics