Skip to main content

Genetic Resources and Breeding of Coffee (Coffea spp.)

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Nut and Beverage Crops

Abstract

Coffee is an important agricultural export commodity in many Asian, African and Latin American countries. It provides a livelihood for more than 125 million people worldwide. The genus Coffea comprises more than 125 species of which only 2 species Coffea arabica (arabica coffee) and C. canephora (robusta coffee) are commercially cultivated for beverage production. Climate change presents unprecedented challenges to sustainable coffee cultivation on a global scale. Besides, both arabica and robusta coffee are subjected to biotic and abiotic stress conditions that limit their production and productivity. Although conventional breeding approaches are followed to attenuate some of these problems, they were slow and time-consuming. Furthermore, arabica coffee has a narrow genetic base and needs to be addressed immediately by incorporating diverse germplasm with potential agronomic values, using focused breeding programs. In both arabica and robusta, the full potential of germplasm has not been exploited. Recent progress in the biotechnological field particularly on molecular markers and new generation sequencing platform hold great promise to discover new genes and accelerate coffee breeding programs. The progress achieved in coffee transgenic technology also has unparalleled opportunities to develop new cultivars with improved agronomic traits. Recent progress in gene editing techniques has a significant impact on the genetic improvement of coffee. This chapter provides current and innovative information about coffee’s origin and distribution, genetic resource diversity and conventional breeding strategies and application. Current advances in the field of tissue culture, genetic transformation, gene editing and molecular breeding are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe A, Kosugi S, Yoshida K et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Aga E, Bryngelsson T, Bekele E, Salomon B (2003) Genetic diversity of forest arabica coffee (Coffea arabica L.) in Ethiopia as revealed by random amplified polymorphic DNA (RAPD) analysis. Heredity 138:36–46

    Article  Google Scholar 

  • Aga E, Bekele E, Bryngelsson T (2005) Inter-simple sequence repeat variation in forest coffee trees (Coffea arabica L.) populations from Ethiopia. Genetics 124:213–221

    CAS  Google Scholar 

  • Aggarwal RK, Rajkumar R, Rajendrakumar P et al (2004) Fingerprinting of Indian coffee selections and development of reference DNA polymorphism panels for creating molecular IDs for variety identification.In: Proceedings of ASIC 20th International Conference on Coffee Sciences, Bangalore, India, pp 1–6

    Google Scholar 

  • Aggarwal RK, Hendre PS, Varshney RK et al (2007) Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor Appl Genet 114:359–372

    Article  CAS  PubMed  Google Scholar 

  • Albarran J, Bertrand B, Lartaud M, Etienne H (2005) Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tissue Organ Cult 81:27–36

    Article  CAS  Google Scholar 

  • Albuquerque EVS, Cunha WG, Barbosa EDA et al (2009) Transgenic coffee fruits from Coffea arabica genetically modified by bombardment. In Vitro Cell Dev Biol Plant 45:532–539

    Article  CAS  Google Scholar 

  • Alkimim R, Caixeta E, Sousa E et al (2018) High-throughput targeted genotyping using next-generation sequencing applied in Coffea canephora breeding. Euphytica 214(50). https://doi.org/10.1007/s10681-018-2126-2

  • Al-Murish TM, Elshafei AA, Al-Doss AA, Barakat MN (2013) Genetic diversity of coffee (Coffea arabica L.) in Yemen via SRAP, TRAP and SSR markers. J Food Agric Environ 11:411–416

    CAS  Google Scholar 

  • Ameha M (1990) Heterosis and arabica coffee breeding in Ethiopia. Plant Breed Abstr 60:594–598

    Google Scholar 

  • Anthony F, Bertrand B, Quiros O et al (2001) Genetic diversity of wild coffee (Coffea arabica L.) using molecular markers. Euphytica 118:53–65

    Article  CAS  Google Scholar 

  • Anthony F, Combes MC, Astoga C et al (2002) The origin of cultivated Coffea arabica revealed by AFLP and SSR markers. Theor Appl Genet 104:894–900

    Article  CAS  PubMed  Google Scholar 

  • Anthony F, Dussert S, Dulloo ME (2007) Coffee genetic resources. In: Engelmann F, Dulloo ME, Astorga C et al (eds) Conserving coffee genetic resources: complementary strategies for ex situ conservation of coffee (Coffea arabica L.) genetic resources. A case study in CATIE, Costa Rica. Biodiversity International, Rome, Italy, pp 12–22

    Google Scholar 

  • Barbosa A, Freire EVSA, Silva MCM et al (2010) α-Amylase inhibitor-1 gene from Phaseolus vulgaris expressed in Coffea arabica plants inhibits α-amylases from the coffee berry borer pest. BMC Biotechnol 10:1–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bardini M, Lee D, Donini P et al (2004) Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome 47:281–291

    Article  CAS  PubMed  Google Scholar 

  • Barreto HG, Lazzari F, Sagio SA et al (2012) In silico and quantitative analyses of the putative FLC-like homologue in coffee (Coffea arabica L.). Plant Mol Biol Report 30:29–35

    Article  CAS  Google Scholar 

  • Barton CR, Adams TL, Zarowitz MA (1991) Stable transformation of foreign DNA in to Coffea arabica plants. In: Proceedings of the 14th International Conference on Coffee Science, (ASIC), San Francisco, USA, pp 460–464

    Google Scholar 

  • Baruah A, Naik V, Hendre PS et al (2003) Isolation and characterization of nine microsatellite markers from Coffea arabica L. showing wide cross-species amplifications. Mol Ecol Notes 3:647–650

    Article  CAS  Google Scholar 

  • Bellachev B (1997) Arabica coffee breeding in Ethiopia: a review. In: Proceedings of the 17th ASIC Colloquium (Nairobi), pp 406–414

    Google Scholar 

  • Bertand B, Aguilar G, Santacreo R et al (1997) Comportement d’hybrides F1 de Coffea arabica pour la vigueur, la production et la fertile en Amerique central. In: 17th International Scientific Colloquium on Coffee. ASIC, Paris, pp 415–423

    Google Scholar 

  • Berthou F, Trouslot P (1977) Analysis of enzymatic polymorphism in the genus Coffea: adaptation of an electrophoresis method in series: first results. In: VIIIth Colloque Scientifique International sur le Cafe. Abidjan, pp 373–383

    Google Scholar 

  • Berthou F, Mathieu C, Vedel F (1983) Chloroplast and mitochondrial DNA variation as indicator of phylogenetic relationships in the genus Coffea L. Theor Appl Genet 65:77–84

    Article  CAS  PubMed  Google Scholar 

  • Berthouly M, Dufour, Alvard D et al (1995) Coffee micropropagation in a liquid medium using the temporary immersion technique. In: 16th International Scientific Colloquium on Coffee (ASIC), Kyoto, Japan, pp 514–519

    Google Scholar 

  • Bhat PR, Krishnakumar V, Hendre PS et al (2005) Identification and characterization of expressed sequence tags-derived simple sequence repeat markers from robusta coffee variety ‘C×R’ (an interspecific hybrid of Coffea canephora and Coffea congensis). Mol Ecol Notes 5:80–85

    Article  CAS  Google Scholar 

  • Bhat SS, Hanumantha BT, Sounnderrajan S et al (2013) Characterization of virulent rust races of H. vastatrix from traditional coffee regions of south India. J Coff Res 41:61–74

    Google Scholar 

  • Bobadilla Landey R, Cenci A, Georget F et al (2013) High genetic and epigenetic stability in Coffea arabica plants derived from embryogenic suspensions and secondary embryogenesis as revealed by AFLP, MSAP and the phenotypic variation rate. PLoS One 8(2):1–15

    Article  CAS  Google Scholar 

  • Brandalise M, Severino FE, Maluf MP, Maia IG (2009) The promoter of a gene encoding an isoflavone reductase-like protein in coffee (Coffea arabica) drives a stress-responsive expression in leaves. Plant Cell Rep 28(11):1699–1708

    Article  CAS  PubMed  Google Scholar 

  • Breitler J-C, Déchamp E, Campa C, Rodrigues LAZ (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora. Plant Cell Tissue Organ Cult 134:383–394

    Article  CAS  Google Scholar 

  • Canche-Moo RLR, Ku-Gonzalez C, Burgeff C et al (2006) Genetic transformation of Coffea canephora by vacuum infiltration. Plant Cell Tissue Organ Cult 84:373–377

    Article  Google Scholar 

  • Carneiro MF (1999) Advances in coffee biotechnology. Agric Biotechnol Net 1:1–7

    Google Scholar 

  • Carneiro MF, Ribeiro TMO (1989) In vitro micropropagation of Coffea arabica L. cv Caturra by means of axillary buds. Broteria Genet 85:139–152

    Google Scholar 

  • Carvalho A (1985) Principles and practices of coffee plant breeding for productivity and quality factors: Coffea arabica. In: Clarke RJ, Macrae R (eds) Coffee agronomy, vol 4. Elsevier, London, pp 129–166

    Google Scholar 

  • Chaparro AP, Cristancho MA, Cortina HA, Gaitán AL (2004) Genetic variability of Coffea arabica L. accessions from Ethiopia evaluated with RAPDs. Genet Resour Crop Evol 51:291–297

    Article  CAS  Google Scholar 

  • Charrier A, Berthaud J (1985) Botanical classification of coffee. In: Clifford MN, Willson KC (eds) Coffee: botany, biochemistry and production of beans and beverage. Croom Helm Ltd, London, pp 13–47

    Chapter  Google Scholar 

  • Coelho SVB, Rosa SDVF, Fernandes JS (2017) Cryopreservation of coffee seeds: a simplified method. Seed Sci Technol l45(3):1–12

    Google Scholar 

  • Combes MC, Andrzejewski S, Anthony F et al (2000) Characterization of microsatellite loci in Coffea arabica and related coffee species. Mol Ecol 9:1178–1180

    Article  CAS  PubMed  Google Scholar 

  • Cros J, Combes MC, Trouslot P et al (1998) Phylogenetic analysis of chloroplast DNA variation in Coffea L. Mol Phylogenet Evol 9:109–117

    Article  CAS  PubMed  Google Scholar 

  • Cruz ARR, Paixão ALD, Machado FR et al (2004) Obtenção de plantas transformadas de Coffea canephora por co-cultivo de calos embriogenicos com A. tumefaciens. Bol Pesq Desenvol 73, Embrapa Brasília

    Google Scholar 

  • Cubry P, de Bellis F, Pot D et al (2013) Global analysis of Coffea canephora Pierre ex Froehner (Rubiaceae) from the Guineo-Congolese region reveals impacts from climatic refuges and migration effects. Genet Resour Crop Evol 60(2):483–501

    Article  Google Scholar 

  • Cunha WG, Machado FRB, Vianna GR et al (2004) Obtenção de Coffea arabica geneticamente modificadas por bombardmento de calos embriogenecos. Bol Pesq Desenvol 73. Embrapa Brasilia

    Google Scholar 

  • Da Silva RF, Yuffa AM (2003) Transient gene expression in secondary somatic embryos from coffee tissues electroporated with the genes GUS and BAR. Electron J Biotechnol 6:29–35

    Google Scholar 

  • Davis AP (2011) Psilanthus mannii, the type species of Psilanthus, transferred to Coffea. Nord J Bot 29:471–472

    Article  Google Scholar 

  • Davis AP, Govaerts R, Bridson DM, Stoffelen P (2006) An annotated checklist of the genus Coffea L. (Rubiaceae). Bot J Linn Soc 152:465–512

    Article  Google Scholar 

  • De Freitas RT, Paiva R, Sales TS et al (2016) Cryopreservation of Coffea arabica L. zygotic embryos by vitrification. Not Bot Horti Agrobo 44(2):445–451

    Article  CAS  Google Scholar 

  • Desalegn A (2017) Review on genetic diversity of coffee (Coffea arabica. L) in Ethiopia. Int J For Hortic 3:10

    Google Scholar 

  • Dharmaraj PS, Sreenivasan MS (1992) Heterosis and combining ability in Coffea canephora. PLACROSYM IX:157–161

    Google Scholar 

  • Dinh SN, Kang H (2017) An endoplasmic reticulum-localized Coffea arabica BURP domain-containing protein affects the response of transgenic Arabidopsis plants to diverse abiotic stresses. Plant Cell Rep 36(11):1829–1839

    Article  CAS  PubMed  Google Scholar 

  • Dublin P (1984) Techniques de reproduction végétative in vitro et amélioration génétique chez les caféiers cultivés. Café Cacao Thé 28:231–244

    Google Scholar 

  • Ducos JP, Pétiard V (2003) Propagation de clones de robusta (Coffea canephora P.) par embryogenèse somatique en milieu liquide. In: El Hadrami I, Daayf F (eds) Biotechnologies végétales: de la structure des génomes à l’amélioration des plantes, vol 2003. AUF, Marrakech, pp 142–159

    Google Scholar 

  • Ducos JP, Gianforcaro M, Florin B et al (1999) A technically and economically attractive way to propagate elite Coffea canephora (robusta) clones: in vitro somatic embryogenesis. Paris; In: 18è colloque scientifique internationale sur le Café, Association Scientifique Internationale du Café, pp 295–301

    Google Scholar 

  • Dussert S, Engelmann F (2006) New determinants for tolerance of coffee (Coffea arabica L.) seeds to liquid nitrogen exposure. Cryo-Letters 27(3):169–178

    CAS  PubMed  Google Scholar 

  • Dussert S, Chabrillange N, Engelmann F et al (1997) Cryopreservation of coffee (Coffea arabica L.) Seeds: importance of the pre-cooling temperature. Cryo-Letters 18:269–276

    Google Scholar 

  • Dussert S, Chabrillange N, Engelmann F et al (1998) Cryopreservation of seeds of four coffee species (Coffea arabica, C. costatifructa, C. racemosa and C. sessiliflora): importance of water content and cooling rate. Seed Sci Res 8:9–15

    Article  Google Scholar 

  • Dussert S, Chabrillange N, Vasquer N et al (2000) Beneficial effect of post-thawing osmo conditioning on the recovery of cryopreserved coffee (Coffea arabica L.) seeds. Cryo-Letters 21(1):47–52

    CAS  PubMed  Google Scholar 

  • Dussert S, Chabrillange N, Montillet JL et al (2003) Basis of coffee seed sensitivity to liquid nitrogen exposure: oxidative stress or imbibitional damage. Physiol Plant 119:534–543

    Article  CAS  Google Scholar 

  • Dussert S, Couturon E, Engelmann F, Joet T (2012) Biologie de la conservation des semences de caféiers: aspects fondamentaux et conséquences pratiques. Une revue Cah Agric 21:106–114

    Article  Google Scholar 

  • Eira MTS, Reis RB, Ribeiro FNS, Ribeiro VS (2005) Banco de sementes de cafe em criopreservação: experiencia inédita do Brasil. Circ Technol 42

    Google Scholar 

  • Eskes AB, Leroy T (2004) Coffee selection and breeding. In: Wintgens JN (ed) Coffee: growing, processing, sustainable production. Wiley-VCH Verlag GmbH & Co. KGaA, pp 57–86

    Google Scholar 

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult 69:215–231

    Article  Google Scholar 

  • Etienne H, Anthony F, Dussert S, Bertrand B (2002) Biotechnological applications for the improvement of coffee (Coffea arabica L.). In Vitro Cell Dev Biol Plant 38(2):129–138

    Article  Google Scholar 

  • Florin B, Ducos JP, Firmin L et al (1995) Preservation of coffee somatic embryos through desiccation and cryopreservation. In: Proceedings of the 16th ASIC colloquium (Kyato), pp 542–547

    Google Scholar 

  • Gao Q, Yue G, Li W et al (2012) Recent progress using high-through put sequencing technologies in plant molecular breeding. J Integr Plant Biol 54:215–227

    Article  CAS  PubMed  Google Scholar 

  • Garavito A, Montagnon C, Guyot R (2016) Identification by the DArTseq method of the genetic origin of the Coffea canephora cultivated in Vietnam and Mexico. BMC Plant Biol 16(1):242

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaspari-Pezzopane C, Medina Filho HP, Bordignon R (2004) Genetic variability of intrinsic grain yield in Coffea germplasm. Bragantia 63:29–54

    Article  Google Scholar 

  • Gatica-Arias AM, Arrieta-Espinoza G, Espinoza Esquivel AM (2008) Plant regeneration via indirect somatic embryogenesis and optimisation of genetic transformation in Coffea arabica L. cvs. Caturra Catuai Electron J Biotechnol 11:1–11

    Google Scholar 

  • Georget F, Bertrand F, Malo B et al (2010) An example of successful technology transfer in micro propagation: multiplication of Coffea arabica by somatic embryogenesis. Proceedings of the 23rd International Conference on Coffee Science ASIC, Bali. Indonesia, pp 496–506

    Google Scholar 

  • Georget F, Courtel P, Garcia EM et al (2017) Somatic embryogenesis-derived coffee plantlets can be efficiently propagated by horticultural rooted mini-cuttings: a boost for somatic embryogenesis. Sci Hortic 216:177–185

    Article  CAS  Google Scholar 

  • Gichimu BM (2012) Field screening of selected Coffea arabica L. genotypes against coffee leaf rust. Afr J Hortic Sci 6:82–91

    Google Scholar 

  • Gichuru EK, Combes MC, Mutitu EW et al (2006) Characterization and genetic mapping of a gene conferring resistance to coffee berry disease (Colletotrichum kahawae) in arabica coffee (Coffea arabica). In: Proceedings of the 21st International Conference on Coffee Science, (ASIC), Montpellier, France, pp 786–793

    Google Scholar 

  • Giridhar P, Indu EP, Ravishankar GA, Chandrasekar A (2004a) Influence of triacontanol on somatic embryogenesis in Coffea arabica L. and Coffea canephora P. ex Fr. In Vitro Cell Dev Biol Plant 40:200–203

    Article  Google Scholar 

  • Giridhar P, Indu EP, Vinod K et al (2004b) Direct somatic embryogenesis from Coffea arabica L. and Coffea canephora P. ex. Fr. under the influence of ethylene action inhibitor-silver nitrate. Acta Physiol Plant 26:299–305

    Article  CAS  Google Scholar 

  • Giridhar P, Vinod K, Indu EP et al (2004c) Thidiazuron induced somatic embryogenesis in Coffea arabica L. and Coffea canephora P ex Fr. Acta Bot Croat 63:25–33

    CAS  Google Scholar 

  • Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 431–487

    Google Scholar 

  • Hatanaka T, Yasuda T, Yamaguchi T, Sakai A (1994) Direct regrowth of encapsulated somatic embryos of coffee (Coffea canephora) after cooling in liquid nitrogen. Cryo-Letters 15:47–52

    Google Scholar 

  • Hatanaka T, Choi YE, Kusano T, Sano H (1999) Transgenic plants of Coffea canephora from embryogenic callus via Agrobacterium tumefaciens – mediated transformation. Plant Cell Rep 19:106–110

    Article  CAS  PubMed  Google Scholar 

  • Hemavathi LK, Devasia J, Divya KD et al (2015) Molecular profiling of selected semi-dwarf genotypes of coffee (Coffea arabica L.) using sequence related amplified polymorphism (SRAP) markers. SAJB 3:746–751

    Google Scholar 

  • Hendre PS, Phanindranath R, Annapurna V et al (2008) Development of new genomic microsatellite markers from robusta coffee (Coffea canehora Pierre ex A. Froehner) showing broad cross-species transferability and utility in genetic studies. BMC Pl Biol 8:51

    Article  CAS  Google Scholar 

  • Hinniger C, Caillet V, Michoux F et al (2006) Isolation and characterization of cDNA encoding three dehydrins expressed during Coffea canephora (robusta) grain development. Ann Bot 97:755–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ICO (2018) International Coffee Organization. http://www.ico.org/Market-Report-16-17-e.asp. Available at: http://www.ico.org/documents/cy2017-18/cmr-0618-e.pdf

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166

    Article  CAS  Google Scholar 

  • Jamsheed A (1985) Station selections and their quality. Proceedings of the second workshop on coffee, C.C.R.I., Chikmagalur Dist., Karnataka. J Coff Res 15:63–64

    Google Scholar 

  • Krishnan S (2013) Current status of coffee genetic resources and implications for conservation. CAB Rev 8(16):1–9

    Article  Google Scholar 

  • Krishnan S (2018) Achieving sustainable cultivation of coffee breeding and quality traits. Philippe Lashermes, Institut de Recherche pour le Dévelopement (IRD), France, Ensuring the genetic diversity of coffee, pp 1–15

    Google Scholar 

  • Kumar V, Naidu MM, Ravishankar GA (2006) Developments in coffee biotechnology-in vitro plant propagation and crop improvement. Plant Cell Tissue Organ Cult 87:49–65

    Article  CAS  Google Scholar 

  • Landey Bobadilla R, Cenci A, Georget F et al (2013) High genetic and epigenetic stability in Coffea arabica plants derived from embryogenic suspensions and secondary embryogenesis as revealed by AFLP, MSAP and he phenotypic variation rate. PLoS One 8(2):e56372. https://doi.org/10.1371/journal.pone.0056372

    Article  CAS  Google Scholar 

  • Lashermes P, Cros J, Marmey P, Charrier A (1993) Use of random amplified DNA markers to analyse genetic variability and relationships of Coffea species. Genet Resour Crop Evol 40:91–99

    Article  Google Scholar 

  • Lashermes P, Trouslot P, Anthony F et al (1996) Genetic diversity for RAPD markers between cultivated and wild accessions of Coffea arabica. Euphytica 87:59–64

    Article  CAS  Google Scholar 

  • Lashermes P, Combes M-C, Trouslot P, Charrier A (1997) Phylogenetic relationship of coffee-tree species (Coffea L.) as inferred from ITS sequences of nuclear ribosomal DNA. Theor Appl Genet 94:947–955

    Article  CAS  Google Scholar 

  • Lashermes P, Combes M-C, Robert J et al (1999) Molecular characterization and origin of the Coffea arabica L. genome. Mol Gen Genet 261:159–266

    Article  Google Scholar 

  • Lashermes P, Andrzejewski S, al BB (2000) Molecular analysis of introgression breeding in coffee (Coffea arabica L.). Theor Appl Genet 100:139–146

    Article  CAS  Google Scholar 

  • Leroy T, Dufour M (2004) Coffea spp. Genetic transformation. In: Curtis IS (ed) Transgenic crops of the world: essential protocols. Kluwer Academic Publishers, Dordrecht, pp 159–170

    Chapter  Google Scholar 

  • Leroy T, Montagnon C, Cilas C, Charrier A et al (1994) Reciprocal recurrent selection applied to Coffea canephora Pierre in Côte d'Ivoire. II. Estimation of genetic parameters. Euphytica 74:121–128

    Article  Google Scholar 

  • Leroy T, Montagnon C, Cilas C, Yapo AB et al (1997) Reciprocal recurrent selection applied to Coffea canephora Pierre. III. Genetic gains and results of first intergroup crosses. Euphytica 95:347–354

    Article  Google Scholar 

  • Leroy T, Henry AM, Royer M et al (2000) Genetically modified coffee plants expressing the Bacillus thuringiensiscry1Ac gene for resistance to leaf minor. Plant Cell Rep 19:382–389

    Article  CAS  PubMed  Google Scholar 

  • Leroy T, Marraccini P, Dufour M et al (2005) Construction and characterization of a Coffea canephora BAC library to study the organization of sucrose biosynthesis genes. TAG 111:1032–1041

    Article  CAS  PubMed  Google Scholar 

  • Lima ALS, DaMatta FM, Pinheiro HA et al (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Exp Bot 47:239–247

    Article  CAS  Google Scholar 

  • Loyola-Vargas VM, Fuentes-Cerda CFJ, Monforte-González M et al (1999) Coffee tissue culture as a new model for the study of somaclonal variation. In: XVIII International Scientific Colloquium on Coffee, Helsinki, pp 302–307

    Google Scholar 

  • Maluf MP, Silvestrini M, Ruggiero LM de C et al (2005) Genetic diversity of cultivated Coffea arabica inbred lines assessed by RAPD, AFLP and SSR marker systems. Sci Agric 62:366–373

    Article  CAS  Google Scholar 

  • Masumbuko LI, Bryngelsson T (2006) Inter simple sequence repeat (ISSR) analysis of diploid coffee species and cultivated Coffea arabica L. from Tanzania. Genet Resour Crop Evol 53:357–366

    Article  CAS  Google Scholar 

  • Medina-Filho HP, Bordignon R, Oliveiro GF et al (2007) Breeding of arabica coffee at IAC, Brazil: objectives, problems and prospects. Acta Hortic (745):393–408

    Google Scholar 

  • Meyer FG (1965) Notes on wild Coffea arabica from southwestern Ethiopia with some historical considerations. Econ Bot 19:136–151

    Article  Google Scholar 

  • Mishra MK (1998) Coffee genetic resources mapping and management. Ind Coff 62(5):23–29

    Google Scholar 

  • Mishra MK, Slater A (2012) Recent advances in the genetic transformation of coffee. Hindawi Publishing Corporation, Biotechnology Research International, pp 1–17 https://doi.org/10.1155/2012/580857,

    Article  Google Scholar 

  • Mishra MK, Sreenath HL (2004) High efficiency Agrobacterium-mediated transformation of coffee (Coffea canephora Pierre ex Frohner) using hypocotyls explants. In: Proceedings of the 20th International Conference on Coffee Science, Bangalore, India, ASIC, pp 792–796

    Google Scholar 

  • Mishra MK, Padma Jyothi D, Prakash NS, Sreenivasan MS (1993) Leaf flavonoid profiles in different cytotypes of Coffea arabica. PLACROSYM X, pp 258–263

    Google Scholar 

  • Mishra MK, Sreenath HL, Srinivasan CS (2002) Agrobacterium-mediated transformation of coffee: An assessment of factors affecting gene transfer efficiency. In: Sreedharan K, Kumar PKV, Jayarama, Chulaki BM (eds) Proceedings of the 15th plantation crops symposium, Mysore, India, pp 251–255

    Google Scholar 

  • Mishra MK, Sreenath HL, Jayarama et al (2008) Two critical factors: Agrobacterium strain and antibiotics selection regime improve the production of transgenic coffee plants. In, Proceedings of the 22nd International Association for Coffee Science (ASIC), Campinas, Brazil, pp 843–850

    Google Scholar 

  • Mishra MK, Devi S, Mc Cormac AC et al (2010) Green fluorescence protein as a visual selection marker for coffee transformation. Biologia 65:639–646

    Article  CAS  Google Scholar 

  • Mishra MK, Nishani S, Jayarama (2011a) Molecular identification and genetic relationship among coffee species inferred from ISSR and SRAP marker analysis. Arch Biol Sci Belgrade 63(3):667–679

    Article  Google Scholar 

  • Mishra MK, Nishani S, Jayarama (2011b) Genetic relationship among indigenous coffee species from India using RAPD, ISSR and SRAP marker analysis. Biharean Biologists 5(1):17–24

    Google Scholar 

  • Mishra MK, Tornincasa P, Barbara De N et al (2011c) Genome organization in coffee as revealed by EST PCR-RFLP, SNPs and SSR analysis. J Crop Sci Biotechnol 14:25–37

    Article  Google Scholar 

  • Mishra MK, Suresh N, Bhat AM et al (2011d) Genetic molecular analysis of Coffea arabica (Rubiaceae) hybrids using SRAP markers. Rev Biol Trop 59(2):607–617

    PubMed  Google Scholar 

  • Mishra MK, Padmajyothi D, Prakash NS et al (2011e) Variability in stomatal features and leaf venation pattern in Indian coffee (Coffea arabica L.) cultivars and their functional significance. Botanica Serbica 35(2):111–119

    Google Scholar 

  • Mishra MK, Nishani S, Suresh N et al (2012) Genetic diversity among Indian coffee cultivars determined via molecular markers. J Crop Improv 26:1–24

    Article  CAS  Google Scholar 

  • Mishra MK, Nishani S, Gowda M et al (2015) Genetic diversity among Ethiopian coffee (Coffea arabica L.) collections available in Indian gene bank using sequence related amplified polymorphism markers. Plant Breed Seed Sci 70(1):29–40

    Article  Google Scholar 

  • Mittler R, Shulaev V (2013) Functional genomics, challenges and perspectives for the future. Physiol Plant 148(3):317–321

    Article  CAS  PubMed  Google Scholar 

  • Moncada P, McCouch S (2004) Simple sequence repeat diversity in diploid and tetraploid Coffea species. Genome 47:501–509

    Article  CAS  PubMed  Google Scholar 

  • Montagnon C, Leroy T, Eskes AB (1998a) Amelioration variétale de Coffea canephora I. Critereset methodes de selection. Plant Rech Dev 5:18–33

    Google Scholar 

  • Montagnon C, Leroy T, Eskes AB (1998b) Amelioration variétale de Coffeacanephora II. Les programmes de selection etleursresultats. Plant Rech Dev 5:89–98

    Google Scholar 

  • Montagnon C, Guyot B, Cilas C, Leroy T (1998c) Genetic parameters of several biochemical compounds from green coffee, Coffea canephora. Plant Breed 117:576–578

    Article  CAS  Google Scholar 

  • Muniswamy B, Sreenath HL, Samuel SD, JayaramaJ (2015) In vitro multiplication of Coffea arabica F1 hybrid (S.2800) and its performance in the field. J Plant Crop 43(3):225–230

    Google Scholar 

  • Muniswamy B, Bharathi K, Mishra MK, Yenugula R (2017) Field performance and genetic fidelity of micropropagated plants of Coffea canephora (Pierre ex A. Froehner). Open Life Sci 12:1–11

    Article  CAS  Google Scholar 

  • Musoli P, Cubry P, Aluka P et al (2009) Genetic differentiation of wild and cultivated populations: diversity of Coffea canephora Pierre in Uganda. Genome 52:634–646

    Article  CAS  PubMed  Google Scholar 

  • Neuenschwander B, Baumann TW (1992) A novel type of somatic embryogenesis in Coffea arabica. Plant Cell Rep 10:608–612

    Article  CAS  PubMed  Google Scholar 

  • Noir S, Anthony F, Bertrand B et al (2003) Identification of a major gene (Mex-1) from Coffea canephora conferring resistance to Meloidogyne exigua in Coffea arabica. Plant Pathol 52:97–103

    Article  CAS  Google Scholar 

  • Noriega C, Sondahl MR (1993) Arabica coffee micropropagation through somatic embryogenesis via bioreactors. In: Proceedings 15th International Scientific Colloquium on Coffee, ASIC, Montpellier, France, pp 73–81

    Google Scholar 

  • Ogita S, Uefuji H, Morimoto M, Sano H (2004) Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol Biol 54:931–941

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Castillo C, Chalmers KJ, Waugh R, Powell W (1994) Detection of genetic diversity and selective gene introgression in coffee using RAPD markers. Theor Appl Genet 87:934–940

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Castillo C, Chalmers KJ, Powell W, Waugh R (1996) RAPD and organellar specific PCR re-affirms taxonomic relationship within the genus Coffea. Plant Cell Rep 15(5):337–341

    Article  CAS  PubMed  Google Scholar 

  • Pearl HM, Nagai C, Moore PH et al (2004) Construction of a genetic map for arabica coffee. Theor Appl Genet 108:829–835

    Article  CAS  PubMed  Google Scholar 

  • Pinto MS, Paiva R, Silva DPC et al (2016) Cryopreservation of coffee zygotic embryos: dehydration and osmotic rehydration. Ciênc Agrotecn 40(4):380–389

    Article  Google Scholar 

  • Poncet V, Hamon P, Minier J et al (2004) SSR cross-amplification and variation within coffee trees (Coffea spp.). Genome 47:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Prakash NS, Combes MC, Somana N, Lashermes P (2002) AFLP analysis of introgression in coffee cultivars (Coffea arabica L.) derived from a natural interspecific hybrid. Euphytica 124:265–271

    Article  Google Scholar 

  • Prakash N, Combes MC, Dussert S et al (2005) Analysis of genetic diversity in Indian robusta coffee genepool (Coffea canephora) in comparison with a representative core collection using SSRs and AFLPs. Genet Resour Crop Evol 52:333–343

    Article  CAS  Google Scholar 

  • Prakash NS, Muniswamy B, Hanumantha BT et al (2011) Marker assisted selection and breeding for leaf rust resistance in coffee (Coffea arabica L.) – some recent leads. Indian J Genet Pl Br 71(2):185–189

    Google Scholar 

  • Prakash NS, Seetharam HG, Kumar TN et al (2016) Breeding for broad spectrum of host resistance in arabica: Exploitation of C. librica and C. eugenioides hybrid derivatives. In: Proceedings of ASIC 26th International Conference on Coffee Sciences, Kunming, China

    Google Scholar 

  • Quintero FO, Pinto LG, Barsalobres-Cavallari CF et al (2018) Identification of a seed maturation protein gene from Coffea arabica (CaSMP) and analysis of its promoter activity in tomato. Plant Cell Rep 37(9):1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Quiroz-Figueroa M, Mendez-Zeel A, Larque-Saavedra VM, Loyola-Vargas V (2001) Picomolar concentrations of salicylates induce cellular growth and enhance somatic embryogenesis in Coffea arabica tissue culture. Plant Cell Rep 20:679–684

    Article  CAS  Google Scholar 

  • Quiroz-Figueroa FR, Fuentes-Cerda CFJ, Rojas-Herrera R, Loyola-Vargas VM (2002) Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Rep 20:1141–1149

    Article  CAS  Google Scholar 

  • Rani V, Singh KP, Shiran B et al (2000) Evidence for new nuclear and mitochondrial genome organizations among high-frequency somatic embryogenesis-derived plants of allotetraploid Coffea arabica L. (Rubiaceae). Plant Cell Rep 19(10):1013–1020

    Article  CAS  PubMed  Google Scholar 

  • Razafinarivo NJ, Guyot R, Davis AP et al (2013) Genetic structure and diversity of coffee (Coffea) across Africa and the Indian Ocean islands revealed using microsatellites. Ann Bot 111:229–248

    Article  CAS  PubMed  Google Scholar 

  • Ribas AF, Kobayashi AK, Pereira LFP, Vieira LGE (2005) Genetic transformation of Coffea canephora by particle bombardment. Biol Plant 49:493–497

    Article  CAS  Google Scholar 

  • Ribas AF, Dechamp E, Champion A et al (2011) Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biol 11:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro TMO, Carneiro MF (1989) Micropropagation by nodal culture of cultivars Caturra, Geisha and Catimor regenerated in vitro In: Proceedings of the 13th colloquium of the international coffee science association (ASIC), Paipa, Colombia, pp 757–765

    Google Scholar 

  • Rovelli P, Mettulio R, Anthony F et al (2000) Microsatellites in Coffea arabica L. In: International seminar on biotechnology in the coffee agroindustry, 3. Londrina. Coffee biotechnology and quality; proceedings. Kluwer Academic Publishers, Dordrecht, pp 123–133

    Google Scholar 

  • Samson NP, Campa C, Noirot M, De Kochko A (2004) Potential use of D-xylose for coffee transformation In: Proceedings of the 20th International Conference on Coffee Science (ASIC), Bangalore, India, pp 707–713

    Google Scholar 

  • Sánchez-Teyer LF, Quiroz-Figueroa FR, Loyola-Vargas VM, Diogenes IH (2003) Culture-induced variation in plants of Coffea arabica cv. Caturra Rojo, regenerated by direct and indirect somatic embryogenesis. Mol Biotechnol 23:107–116

    Article  PubMed  Google Scholar 

  • Santana-Buzzy N, Rojas-Herrara R, Galaz-Avalos RM et al (2007) Advances in coffee tissue culture and its practical applications. In Vitro Cell Dev Biol Plant 43:507–520

    Article  CAS  Google Scholar 

  • Saraswathi P, Mishra MK, Prakash NS, Sreenivasan MS (1991) Flavonoid profiles in diploid and tetraploid cytotypes of Coffea canephora. J Coff Res 21(2):119–126

    CAS  Google Scholar 

  • Satyanarayana V, Kumar V, Chandrasekar A, Ravishankar GA (2005) Isolation of promoter for N-methyltransferase gene associated with caffeine biosynthesis in Coffea canephora. J Biotechnol 119:20–25

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger K, Ossowski S, Lanz C et al (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551

    Article  CAS  PubMed  Google Scholar 

  • Selva Kumar M, Sreenivasan MS (1986) Studies on morphology and quality of Ethiopian arabica coffee. PLACROSYM VII, pp 321–324

    Google Scholar 

  • Sharp WR, Caldas LS, Crocomo OJ et al (1973) Production of Coffea arabica callus of three ploidy levels and subsequent morphogenesis. Phyton 31:67–74

    CAS  Google Scholar 

  • Silvarolla MB, Mazzafera P, Lima MMA et al (1999) Ploidy level and caffeine content in leaves of Coffea. Sci Agric 56:661–663

    Article  CAS  Google Scholar 

  • Silveira SR, Ruas PM, Ruas CF et al (2003) Assessment of genetic variability within and among coffee progenies and cultivars using RAPD markers. Genet Mol Biol 26(3):329–336

    Article  CAS  Google Scholar 

  • Simkin AJ, Qian T, Caillet V et al (2006) Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain. J Plant Physiol 163:691–708

    Article  CAS  PubMed  Google Scholar 

  • Solorzano RGL, Fabien DB, Leroy T et al (2017) Revealing the diversity of introduced Coffea canephora germplasm in Ecuador: towards a national strategy to improve robusta. Sci World J 2017:1–12

    Article  CAS  Google Scholar 

  • Sondahl MR, Lauritis JA (1992) Coffee. In: Ammerschlog FA, Litz RE (eds) biotechnology of perennial fruit crops. CAB International, London, pp 401–420

    Google Scholar 

  • Sondahl MR, Sharp WR (1977) High frequency induction of somatic embryos in cultured leaf explants of Coffea arabica L. Z Pflanzenphysiol 81:395–408

    Article  Google Scholar 

  • Sousa TV, Caixeta ET, Alkimim ER et al (2017) Molecular markers useful to discriminate Coffea arabica cultivars with high genetic similarity. Euphytica 213(75). https://doi.org/10.1007/s10681-017-1865-9

  • Sreenivasan MS (1985) Varieties of coffee in relation to drought tolerance. Proceedings of the second workshop on coffee, CCRI, Chikmagalur Dist., Karnataka, J Coff Res15:58

    Google Scholar 

  • Sreenivasan MS, Santa Ram (1993) Heterosis for yield in coffee. PLACROSYM X, pp 248–252

    Google Scholar 

  • Sridevi V, Giridhar P, Simmi PS, Ravishankar GA (2010) Direct shoot organogenesis on hypocotyl explants with collar region from in vitro seedlings of Coffea canephora Pierre ex. Frohner cv. CXR and Agrobacterium tumefaciens-mediated transformation. Plant Cell Tissue Organ Cult 101:339–347

    Article  Google Scholar 

  • Srinivasan CS (1969) Correlation studies in coffee: I. Preliminary studies on correlation between stem girth and ripe cherry yield in some coffee selections. Ind Coff 33(10):318–319

    Google Scholar 

  • Srinivasan CS, Vishveshwara S (1978) Stability for yield in some coffee selection. J Coff Res 8(1):1–3

    Google Scholar 

  • Srinivasan CS, Vishveshwara S (1981) Variability and breeding value of some characters related to yield in a world collection of arabica coffee. Ind Coff 45(5):119–122

    Google Scholar 

  • Srinivasan CS, Ramachandran M, Sundar KR (1981) Evaluation of horizontal resistance to leaf rust in arabica coffee. PLACROSYM IV, pp 283–288

    Google Scholar 

  • Srinivasan CS, Prakash NS, Padmajyothi D et al (1999) Genetic improvement of coffee in India. In: Proceedings 3rd International Seminar on Biotechnology in the Coffee Agroindustry, Londrina, Brazil, pp 17–26

    Google Scholar 

  • Staritsky (1970) Embryoid formation in callus cultures of Coffea. Acta Bot Neerl 19:509–514

    Article  Google Scholar 

  • Steiger DL, Nagai C, Moore PH et al (2002) AFLP analysis of genetic diversity within and among Coffea arabica cultivars. Theor Appl Gen 185:189–215

    Google Scholar 

  • Teisson C, Alvarad D, Berthouly M et al (1995) Culture in vitro par immersion temporaire: un nouveau récipient. Plantat Rech Dévelop 2(5):29–31

    Google Scholar 

  • Teressa A, Crouzillat D, Petiard V, Brouhan P (2010) Genetic diversity of arabica coffee (Coffea arabica L.) collection. EJAST 1(1):63–79

    Google Scholar 

  • Thimma Reddy GS, Srinivasan CS (1979) Variability for flower production, fruit set and fruit drop in some varieties of Coffea arabica L. J Coff Res 9(2):27–34

    Google Scholar 

  • Thomas AS (1942) The wild arabica coffee on the Boma Plateau, Anglo-Egyptian Sudan. Emp Exp Agric 10:207–212

    Google Scholar 

  • Tornincasa P, Dreos R, De Nardi B et al (2006) Genetic diversity of commercial coffee (C. arabica L.) from America, India and Africa assessed by simple sequence repeats (SSR). 21st international conference on coffee science, Montpellier, France, pp 778–785

    Google Scholar 

  • Valdes YC (2012) Conservación de recursos fitogenéticos de cafeto (Coffea spp.) por métodos biotecnológicos: una alternativa para su preservación. Cultiv Trop 33:29–39

    Google Scholar 

  • Van Boxtel J, Berthouly M, Carasco C et al (1995) Transient expression of beta-glucuronidase following biolistic delivery of foreign DNA in to coffee. Plant Cell Rep 14:748–752

    Article  PubMed  Google Scholar 

  • Van der Vossen AM (2001) Coffee breeding practices. In: Clarke RJ, Vitzthum OG (eds) Coffee recent developments: agronomy. Blackwell, London, pp 184–200

    Google Scholar 

  • Vega F, Ebert A, Ming R (2008) Coffee germplasm resources, genomics and breeding. Plant Breed Rev 30:415–447

    Article  CAS  Google Scholar 

  • Venkatesha MG (2010) Sustainable coffee cultivation in India: challenges and management, In: Proceedings of the 16th Asian agricultural symposium and 1st International Symposium on Agricultural Technology, Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand, pp 492–495

    Google Scholar 

  • Vinod Kumar PK, Sreedharan K, Jayarama et al (2000) Field evaluation of synthetic male pheromone of coffee white stem borer Xylotrechus quadripes (Coleoptera: Cerambycidae). In:Rethinam P, Khan HH, Reddy VM et al (eds) Plantation crops research and development in the New Millennium. Plantation Crops Symposium XIV, PLACROSYM XIV, Hyderabad, India, pp 467–469

    Google Scholar 

  • Walyaro DJ (1997) Breeding for disease and pest resistance and improved quality in coffee. In: Proceedings of the 17th ASIC colloquium (Nairobi), Paris, France, pp 391–405

    Google Scholar 

  • Yasuda T, Fujii Y, Yamaguch T (1985) Embryogenic callus induction from Coffea arabica leaf explants by benzyladenine. Plant Physiol 26:595–597

    CAS  Google Scholar 

  • Zamarripa CA, Ducos JP, Tessereau H et al (1991) Devéloppement d’un procédé de multiplication en masse du caféier par embryogenèse somatique en milieu liquide, Paris; In: 14è Colloque Scientifique Internationale sur le Café, Association Scientifique Internationale du Café, pp 392–402

    Google Scholar 

  • Zok S, Dublin P (1991) Multiplication in vitro par culture d’apex chez Coffea arabica L.: action de solutions minérales et the régulateurs de croissance. Café Cacao Thé 35:245–256

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Coffee

Institution

Specialization and research activities

Contact information and website

Central Coffee Research Institute, Coffee Board, India

Agronomy, soil sciences, plant protection, plant breeding and genetics, Biotechnology and tissue culture, crop physiology, postharvest technology and coffee quality analysis

Central Coffee Research Institute, Balehonnur, Dist Chikamagalur-577,117 Karnataka, India

Phone: 08265-243029

Fax 08265-243143

https://www.indiacoffee.org/

CeniCaffe Colombia

Agronomy, soil sciences, plant protection, biotechnology

National Center for Coffee Research – Cenicafé

Planalto Head quarters,via Chinchiná-Manizales.

Manizales (Caldas) – Colombia

Tel .: PBX +57 (6) 8506550

Fax +57 (6) 8504723

AA 2427 Manizales

cenicafe@cafedecolombia.com

Kenya Agricultural & Livestock Research Organization

Agronomy, plant protection, plant breeding and coffee quality analysis

Kenya Agricultural and Livestock Research Organization,

Kattegat Rd, Loresho Nairobi Kenya

PO Box 57811, City Square, NAIROBI, 00200, Kenyahttp://www.kalro.org/crops_contacts

Coffee Institute of Costa Rica (Icafe)

Sustainable coffee production

ICAFE

400 meters north of the San Pedro de Barva Catholic Church, Heredia. 280-3011, Barva, Heredia, Costa Rica

Tel: +506 2243-7800; Fax: +506 2243-7554

http://www.icafe.cr/contactenos/

Indonesian Coffee and Cocoa Research Institute

Agronomy, soil sciences, plant protection, tissue culture, machinery, processing, and quality control

Gebang, Nogosari, Rambipuji, Jember Regency, East Java 68175, Indonesia

http://iccri.net/

Jimma Agricultural Research Center, Ethiopia

Plant protection, soil fertility, crop production and integrated watershed management

http://www.eiar.gov.et/jarc/

Jimma Agricultural Research Center

Tel: (+251) 471-128020; Fax: (+251) 471-111999

PO Box 192, Jimma Zone,Oromia Region

National Coffee Research Institute (NaCORI), Uganda

Plant breeding and evaluation, micropropagation and germplasm conservation

National Coffee Research Institute Katosi Road PO Box 185, Mukono, Uganda 256-414-697659

www.nacori.go.ug/

Embrapa Café Brazil

Agronomy, plant protection, breeding and genetics , biotechnology and tissue culture, crop physiology, postharvest and quality analysis

Park Biological Station, PqEB, Brasília, DF 70770-901, Brazil

Tel: +55 61 3448-4433; Fax: +55 61 3448-4890

https://www.embrapa.br/en/cafe

Centre de coopération internationale en recherche agronomique pour le (CIRAD) , France

Sustainable development of tropical and Mediterranean regions

Avenue Agropolis, 34398, Montpellier Cedex 5, France

Tel: +33 4 67 61 58 00

https://www.cirad.fr/en

IRD, France

Coffee biotechnology

Florence Morineau IRD 911 avenue Agropolis, BP 64501 34394 Montpellier cedex 5 Tel : +33 (0)4 67 41 61 00 Fax : +33 (0)4 67 41 63 30 Courriel : delegation.occitanie@ird.fr

http://www.ird.fr/

University of Trieste

Molecular biology, functional genomics and physiology

Department of Life Science, University of Trieste,Piazzale Europa, 1 – 34127 – Trieste, Italia

https://www.units.it

1.2 Appendix II: Genetic Resources of Coffee

Cultivar

Important traits

Cultivation location

S.795

Tall arabica variety with very high yield potential. Susceptible to leaf rust but produces excellent cup quality

India

Sln.5A

Tall arabica hybrid involving Ethiopian/Sudanese variety with good yield potential. Produces more B grade beans of high cup quality. Shows field tolerance to leaf rust

India

Sln.5B

Tall arabica variety with very good yield potential. Exhibit tolerance to leaf rust with good cup quality

India

Sln.6

A robusta arabica hybrid with vigorous growth and good yield potential. Show tolerance to leaf rust and CBD. Produces good cup quality

India

Sln.9

Tall arabica hybrid involving HDT and Tafarikela with early ripening and good yield potential. Produces very good cup quality

India

Chandragiri

Hybrid between Villasarchi and HDT this dwarf arabica hybrid with good yield potential and high tolerance to leaf rust. Produces big size beans with good cup quality

India

Kents

A natural mutant of Typica discovered in India. High productivity but susceptible to leaf rust. Very good cup quality

India, Kenya

SL28

Tall, drought tolerant and very good cup quality potential, but susceptible to major diseases

Kenya, Malawi, Uganda, Zimbabwe

SL34

Tall arabica cultivar with high yield potential and exceptionally good cup quality but susceptible to major diseases

Kenya

Ruiru11

High yielding, dwarf hybrid tolerant to coffee leaf rust and resistant to CBD. Produces good cup quality

Kenya

Batian

High yields, tolerance to coffee leaf rust, resistance to CBD, bold bean with good cup quality

Kenya

Caturra

Natural bourbon mutant, dwarf variety with good yield potential. Susceptible to leaf rust and CBD but with good cup quality

Brazil, Central America

Catuai

Dwarf compact arabica variety with good yield potential. Highly susceptible to leaf rust and CBD. Produces good cup quality

Brazil, Costa Rica. Guatemala, Honduras

Mundonovo

A natural hybrid between Bourbon and Typica the variety produces vigorous and productive plant with good quality cup but susceptible to major diseases

Brazil

Obata

Hybrid between HDT and Villasarchi this is known as Sarchimor elsewhere. Moderate to high yield with tolerance to leaf rust

Brazil, Costa Rica

IAPAR 59

Dwarf arabica hybrid with good yield potential. Show tolerance to leaf rust and nematodes but susceptible to CBD. Cup quality is low

Brazil

Catimor

A dwarf hybrid between HDT and Caturra developed in Portugal in 1959 and cultivated in many countries with very high yield potential. Show variable resistance to leaf rust in different countries. Good cup quality

India, Brazil, Colombia, Costa Rica

Tekisic

A variety selected from bourbon known for excellent cup quality in the highest altitudes

El Salvador, Guatemala

Catisic

High High yields, tolerance to coffee leaf rust, adaptable to warm and acidic soil, susceptible to CBD and poor cup quality

El Salvador

Cuscatleco

Dwarf compact arabica variety with high yield potential. Show resistance to leaf rust and nematode. Produces good cup quality

El Salvador

Centroamericano

Dwarf F1 arabica hybrid with very high yield potential Exhibit resistance to leaf rust and tolerance to CBD. Produces good cup quality

Costa Rica, El Salvador, Guatemala and Honduras

RAB C15

High yielding tall variety selected from Indian cultivar Sln.6. Show resistant to rust and coffee berry disease

Rwanda

Castillo

High yielding coffee variety resistant to coffee leaf rust

Colombia

Anacafe

Dwarf high yielding hybrid between Catimor and Pacamara with good cup quality. Plants show resistance to leaf rust but susceptible to CBD

Guatemala

Evaluna

Dwarf introgressed F1 arabica hybrid with very good yield potential. Susceptible to leaf rust but tolerant to CBD. Produces very good cup quality

Central America

Nayarita

Dwarf F1 hybrid involving Ethiopian arabica with high yield potential. Show resistance to CBD but susceptible to coffee leaf rust. Very good cup quality

Nicaragua

Starmaya

Dwarf arabica hybrid involving Marsellesa and Ethiopian arabica with very high yield potential with resistance to leaf rust. Very good cup quality

Nicaragua

Marsellesa

Introgressed dwarf Sarchimor variety with very good yield potential. Resistant to leaf rust and tolerant to CBD. Produces good cup quality with high acidity

Nicaragua

Limani

Introgressed dwarf Sarchimor variety with good yield potential. Tolerant to leaf rust and produces good cup quality

Puerto Rico

Bourbon

Genetically important arabica variety, with medium yield potential, susceptible to both leaf rust and CBD. Produces excellent cup quality

El Salvador, Guatemala, Honduras and Peru

Panamian Geisha

Tall arabica landrace with medium yield potential. Tolerant to leaf rust but susceptible to CBD. Produces exceptionally good cup quality

Panama

K7

Tall arabica variety with good yield potential. Show tolerance to leaf rust and CBD with good cup quality

Kenya, Tanzania

KP 423

Selected from Kent, this tall arabica variety has high yield potential. Show tolerance to drought and leaf rust but susceptible to CBD. The cup quality is poor

Uganda

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, M.K. (2019). Genetic Resources and Breeding of Coffee (Coffea spp.). In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Nut and Beverage Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23112-5_12

Download citation

Publish with us

Policies and ethics