Skip to main content

Zonal Vegetation of the Tropical Zone with Year-Round Rain

  • Chapter
  • First Online:
Global Vegetation

Abstract

The zonal vegetation of the tropics with year-round rain (‘wet tropics’) consists of tropical lowland rainforests. They are discussed together with the tropical heath forests on the very nutrient-poor, permeable soils of the Amazon Basin. Floristic and structural diversity is particularly high in these vegetation types in comparison to all other forest ecosystems, and varies from continent to continent: in accordance with the floristic history, the greatest species diversity is found in neotropical rainforests, and the lowest in African rainforests. Functional traits such as the close symbiotic relationship between plants and animals, forest dynamics of primeval tropical forests, carbon balance, and the ecological role of lianas and epiphytes are described. At the end of the chapter, forms of land use that benefit biodiversity and soil conservation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard, F., Eva, H., Glinni, A., Mayaux, P., Richards, T., & Stibig, H. J. (1998). Identification of deforestation hot spot areas in the humid tropics (TREES Publications Series B, No. 4, EUR 18079) (102 pp). Luxembourg: European Commission.

    Google Scholar 

  • Ashton, P. S. (1964). Ecological studies in the mixed Dipterocarp forests of Brunei state. (25 pp). Oxford: Clarendon Press.

    Google Scholar 

  • Aoki, M., Yabuki, K., & Koyama, H. (1975). Micrometeorology and assessment of primary production of a tropical rain forest in West Malaysia. Journal of Agricultural Meteorology, 31, 115–124.

    Article  Google Scholar 

  • Ahmed, S., Compton, S. G., Butlin, R. K., & Gilmartin, P. M. (2009). Wind-borne insects mediate directional pollen transfer between desert fig trees 160 km apart. Proceedings of the National Academy of Science of the United States of America, 106, 20342–20347.

    Article  CAS  Google Scholar 

  • Bagchi, R., Gallery, R. E., Gripenberg, S., Gurr, S. J., Narayan, L., Addis, C. E., Freckleton, R. P., & Lewis, O. T. (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506, 85–88.

    Article  CAS  PubMed  Google Scholar 

  • Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H., & Nielsen, I. (1998). Species count of vascular plants in one hectare of humid lowland forest in Amazonian Ecuador. In F. Dallmeier & J. A. Comiskey (Eds.), Forest biodiversity in North, Central and South America, and the Caribbean: Research and monitoring (pp. 585–594). Paris: UNESCO.

    Google Scholar 

  • Barthlott, W., Hostert, A., Kier, G., Küper, W., Kreft, H., Mutke, J., Rafiqpoor, M. D., & Sommer, J. H. (2007). Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde, 61, 305–315.

    Article  Google Scholar 

  • Benzing, D. H. (1980). The biology of the bromeliads (305 pp). Eureca: Mad River Press.

    Google Scholar 

  • Benzing, D. H. (2004). Vascular Epiphytes. In M. D. Lowman & H. B. Rinker (Eds.), Forest canopies (2nd ed., pp. 175–210). Burlington-San Diego: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Berg, C. C. (2004). Cecropiaceae (Snake Wood family). In N. Smith, S. A. Mori, A. Henderson, D. W. Stevenson, & S. V. Heald (Eds.), Flowering plants of the neotropics (pp. 92–94). Princeton/Oxford: Princeton University Press.

    Google Scholar 

  • Bhagwat, S. A., Willis, K. J., Birks, H. J. B., & Whittaker, R. J. (2008). Agroforestry: A refuge for tropical biodiversity? Trends in Ecology & Evolution, 23, 261–267.

    Article  Google Scholar 

  • Blüthgen, N., Schmit-Neuerburg, V., Engwald, S., & Barthlott, W. (2001). Ants as epiphyte gardeners: Comparing the nutrient quality of ant and termite canopy substrates in a Venezuelan lowland rain forest. Journal of Tropical Ecology, 17, 887–894.

    Article  Google Scholar 

  • Böhmer, H. J., Wagner, H. H., Jacobi, J. D., Gerrish, G. C., & Mueller-Dombois, D. (2013). Rebuilding after collapse: Evidence for long-term cohort dynamics in the native Hawaiian rain forest. Journal of Vegetation Science, 24, 639–650.

    Article  Google Scholar 

  • Breckle, S.-W. (1997). Population studies on dominant and abundant tree species in the montane tropical rainforests of the biological reserve North of San Ramón (Sierra de Tilaran, Costa Rica). Tropical Ecology, 38, 259–272.

    Google Scholar 

  • Brünig, E. F. (1968). Der Heidewald von Sarawak und Brunei. In Mitteilung der Bundesforschungsanstalt Forst- und Holzwirtschaft Reinbeck (Vol. 68). Hamburg: M. Wiedebusch. Vol. 1 und 2.

    Google Scholar 

  • Cardelus, C. L., Colwell, R. K., & Watkins, J. E., Jr. (2006). Vascular epiphyte distribution patterns: Explaining the mid-elevation richness peak. Journal of Ecology, 94, 144–156.

    Article  Google Scholar 

  • Carson, W. P., & Schnitzer, S. A. (Eds.). (2008). Tropical forest community ecology (517 pp). Chichester: Wiley-Blackwell.

    Google Scholar 

  • Carson, W. P., Anderson, J. T., Leigh, E. C., Jr., & Schnitzer, S. A. (2008). Challenges associated with testing and falsifying the Janzen-Connel hypothesis: A review and critique. In W. P. Carson & S. A. Schnitzer (Eds.), Tropical forest community ecology (pp. 210–241). Chichester: Wiley-Blackwell.

    Google Scholar 

  • Clark, D. B., Palmer, M. W., & Clark, D. A. (1999). Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology, 80, 2662–2675.

    Article  Google Scholar 

  • Connel, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In P. J. den Boer & G. R. Gradwell (Eds.), Dynamics of populations (pp. 298–312). Wageningen: Center for Agricultural Publication and Documentation.

    Google Scholar 

  • Corlett, R. T., & Primack, R. B. (2011). Tropical rainforests. An ecological and biogeographical comparison (2nd ed., 326 pp). Chichester: Wiley-Blackwell.

    Book  Google Scholar 

  • De Oliveira, A. A., & Mori, S. A. (1999). A central Amazonian terra firme forest. I. High tree species richness on poor soils. Biodiversity and Conservation, 8, 1219–1244.

    Article  Google Scholar 

  • Doppler, W. (1991). Landwirtschaftliche Betriebssysteme in den Tropen und Subtropen (216 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Ducousso, M., Béna, G., Bourgeois, C., Buyck, B., Eyssartier, G., Vincelette, M., Rabevohitra, R., Randrihasipara, L., Dreyfus, B., & Prin, Y. (2004). The last common ancestor of Sarcolaenaceae and Asian Dipterocarp trees was ectomycorrhizal before the India-Madagascar separation, about 88 million years ago. Molecular Ecology, 13, 231–236.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, P. J., & Grubb, P. J. (1982). Studies of mineral cycling in a montane rain forest in New Guinea. IV. Soil characteristics and the division of mineral elements between the vegetation and soil. Journal of Ecology, 70, 649–666.

    Article  CAS  Google Scholar 

  • Ellenberg, H. (1985). Unter welchen Bedingungen haben Blätter sogenannte Träufelspitzen? Flora, 176, 169–188.

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations). (2010). Global forest resources assessment 2010 (Main report. FAO Forestry Paper 163), 340 pp.

    Google Scholar 

  • Fichtler, E., Clark, D. A., & Worbes, M. (2003). Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C. Biotropica, 35, 306–317.

    Article  Google Scholar 

  • Fine, P. V. A., Ree, R. H., & Burnham, R. J. (2008). The disparity in tree species richness among tropical, temperate and boreal biomes: The geographic area and age hypothesis. In W. P. Carson & S. A. Schnitzer (Eds.), Tropical forest community ecology (pp. 31–45). Chichester: Wiley-Blackwell.

    Google Scholar 

  • Fittkau, E. J., & Klinge, H. (1973). On biomass and trophic structure of the Central Amazonian rain forest ecosystem. Biotropica, 5, 1–14.

    Article  Google Scholar 

  • Freiberg, M. (1999). The vascular epiphytes on a Virola michelii tree (Myristicaceae) in French Guiana. Ecotropica, 5, 75–81.

    Google Scholar 

  • Gartner, B. L., Bullock, S. H., Mooney, H. A., Brown, V. B., & Whitbeck, J. L. (1990). Water transport properties of vine and tree stems in a tropical deciduous forest. American Journal of Botany, 77, 742–749.

    Article  Google Scholar 

  • Gentry, A. H. (1991). The distribution and evolution of climbing plants. In F. E. Putz & H. A. Mooney (Eds.), Biology of vines (pp. 3–52). Cambridge: Cambridge University Press.

    Google Scholar 

  • Gentry, A. H. (1992). Tropical forest biodiversity: Distribution patterns. Oikos, 63, 19–28.

    Article  Google Scholar 

  • Gentry, A. H., & Dobson, C. H. (1987). Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden, 74, 205–233.

    Article  Google Scholar 

  • Ghazoul, J., & Sheil, D. (2010). Tropical rainforest. In Ecology, diversity, and conservation (516 pp). Oxford: Oxford University Press.

    Google Scholar 

  • Gianoli, E. (2004). Evolution of climbing habit promotes diversification in flowering plants. Proceedings of the Royal Society of London B, 271, 2011–2015.

    Article  Google Scholar 

  • Glaser, B. (2007). Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philosophical Transactions of the Royal Society, B: Biological Sciences, 362, 187–196.

    Article  CAS  Google Scholar 

  • Grant, R. F., Hutyra, L. R., De Oliveira, R. C., Munger, J. W., Saleska, S. R., & Wofsy, S. C. (2009). Modeling the carbon balance of Amazonian rain forests: resolving ecological controls on net ecosystem productivity. Ecological Monographs, 79, 445–463.

    Article  Google Scholar 

  • Grubb, P. J. (2003). Interpreting some outstanding features of the flora and vegetation of Madagascar. Perspectives in Plant Ecology, Evolution and Systematics, 6, 125–146.

    Article  Google Scholar 

  • Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigi, D., Kaylor, K. K., Sheffield, J., Wood, E. F., Malhi, Y., Liang, M., Kimball, J. S., Saleska, S. R., Berry, J., Joiner, J., & Lyapustin, A. I. (2015). Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature Geoscience, 8, 284–289.

    Google Scholar 

  • Hamann, A., Barbon, E. B., Curio, E., & Madulid, D. A. (1999). A botanical inventory of a submontane tropical rainforest on Negros Island, Philippines. Biodiversity and Conservation, 8, 1017–1031.

    Article  Google Scholar 

  • Hammond, E., Santoni, G. W., Nascimento, H. E. M., Hutyra, L. R., Vieira, S., Curran, D. J., van Haren, J., Saleska, S. R., Chow, V. Y., Carmago, P. B., Laurance, W. F., & Wofsy, S. C. (2008). Dynamics of carbon, biomass, and structure of two Amazonian forests. Journal of Geophysical Research, 113, 1–20.

    Google Scholar 

  • Hart, T. B. (1995). Seed, seedling and subcanopy survival in monodominant and mixed forests of Ituri Forest, Africa. Journal of Tropical Ecology, 11, 443–459.

    Article  Google Scholar 

  • Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L., & Barron, A. R. (2009). The nitrogen paradox in tropical forest ecosystems. Annual Review of Ecology, Evolution, and Systematics, 40, 613–635.

    Article  Google Scholar 

  • Hemp, A. (2006). The banana forests of Kilimanjaro: Biodiversity and conservation of the Chagga homegardens. Biodiversity and Conservation, 15, 1193–1217.

    Article  Google Scholar 

  • Herre, E. A., Jandér, K. C., & Machado, C. A. (2008). Evolutionary ecology of figs and their associates: Recent progress and outstanding puzzles. Annual Review of Ecology, Evolution, and Systematics, 39, 439–458.

    Article  Google Scholar 

  • Heywood, V. H., Brummit, R. K., Culham, A., & Seberg, O. (2007). Flowering plants of the world (424 pp). Ontario: Firefly Books.

    Google Scholar 

  • Holthuijzen, A. M. A., & Boerboom, J. H. A. (1982). The Cecropia seedbank in the Surinam lowland rainforest. Biotropica, 14, 62–68.

    Article  Google Scholar 

  • Houlton, B. Z., Wang, Y. P., Vitousek, P. M., & Field, C. B. (2008). An unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454, 327–330.

    Article  CAS  PubMed  Google Scholar 

  • Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Hubbell, S. P. (2008). Approaching ecological complexity from the perspective of symmetric neutral theory. In W. P. Carson & S. A. Schnitzer (Eds.), Tropical forest community ecology (pp. 143–159). Chichester: Wiley-Blackwell.

    Google Scholar 

  • Huber, W. (1996). Untersuchungen zum Baumartenreichtum im “Regenwald der Österreicher” in Costa Rica. Carinthia II, 186, 95–106.

    Google Scholar 

  • Husband, R., Herre, E. A., Turner, L., Gallery, R., & Young, P. W. (2002). Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology, 11, 2669–2678.

    Article  CAS  PubMed  Google Scholar 

  • IUSS Working Group WRB. (2007). World reference base for soil resources 2006. In First update 2007 (World Soil Resource Reports No. 103). Rome: FAO.

    Google Scholar 

  • Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. American Naturalist, 104, 501–528.

    Article  Google Scholar 

  • Jaramillo, C., Rueda, M. J., & Mora, G. (2006). Cenozoic plant diversity in the Neotropics. Science, 311, 1893–1896.

    Article  CAS  PubMed  Google Scholar 

  • Jeník, J. (1978). Roots and root systems in tropical trees: Morphologic and ecologic aspects. In P. B. Tomlinson & M. H. Zimmermann (Eds.), Tropical trees as living systems. Proceedings 4th Cabot symposium Harvard forest, Petersham 1976 (pp. 323–349). Cambridge: Cambridge University Press.

    Google Scholar 

  • Johansson, D. (1974). Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica, 59, 129 pp.

    Google Scholar 

  • Jordan, C. F. (1985). Nutrient cycling in tropical forest ecosystems (190 pp). Chichester: Wiley.

    Google Scholar 

  • Kadereit, J. W., Körner, C., Kost, B., & Sonnewald, U. (2014). Strasburger – Lehrbuch der Pflanzenwissenschaften (37th ed., 919 pp). Heidelberg/Berlin: Springer Spektrum.

    Google Scholar 

  • Kauffman, S., Sombroek, W., & Mantel, S. (1998). Soils of rainforests. Characterization and major constraints of dominant forest soils in the humid tropics. In A. Schulte & D. Ruhiyat (Eds.), Soils of tropical forest ecosystems (pp. 9–20). Berlin/Heidelberg/New York: Springer.

    Chapter  Google Scholar 

  • Kelly, D. L., Tanner, E. V., Nic Lughadha, E. M., & Kapos, V. (1994). Floristics and biogeography of a rain forest in the Venezuelan Andes. Journal of Biogeography, 21, 421–440.

    Article  Google Scholar 

  • Keppel, G., Buckley, Y. M., & Possingham, H. P. (2010). Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Journal of Ecology, 98, 87–95.

    Article  Google Scholar 

  • Kettle, C. J. (2010). Ecological considerations for using dipterocarps for restoration of lowland rainforest in Southeast Asia. Biodiversity and Conservation, 19, 1137–1151.

    Article  Google Scholar 

  • Kinnaird, M. F., & O’Brian, T. G. (2007). The ecology and conservation of Asian hornbills (352 pp). Chicago: University of Chicago Press.

    Google Scholar 

  • Klinge, H., & Medina, E. (1979). Rio Negro caatingas and campinas, Amazonas States of Venezuela and Brazil. In R. L. Specht (Ed.), Heathland and related Shrubland of the World. A. Descriptive studies (Ecosystems of the World) (Vol. 9a, pp. 483–488). Oxford: Amsterdam.

    Google Scholar 

  • Koenen, E. J. M., Clarkson, J. J., Pennington, T. D., & Chatrou, L. W. (2015). Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. New Phytologist, 207, 327–339.

    Article  Google Scholar 

  • Körner, C. (2009). Response of humid tropical trees to rising CO2. Annual Review of Ecology, Evolution, and Systematics, 40, 61–79.

    Article  Google Scholar 

  • Kress, W. J. (1989). The systematic distribution of vascular epiphytes. In U. Lüttge (Ed.), Vascular plants as epiphytes. Evolution and ecophysiology. Ecological studies (Vol. 76, pp. 234–261). Berlin: Springer-Verlag.

    Google Scholar 

  • Kricher, J. (2011). Tropical ecology (632 pp). Princeton/Oxford: Princeton University Press.

    Google Scholar 

  • Krömer, T., Kessler, M., Gradstein, S. R., & Acebey, A. (2005). Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. Journal of Biogeography, 32, 1799–1809.

    Article  Google Scholar 

  • Lauer, W., & Rafiqpoor, M. D. (2002). Die Klimate der Erde. Eine Klassifikation auf der Grundlage der ökophysiologischen Merkmale der realen Vegetation (271 pp). Stuttgart: Franz Steiner.

    Google Scholar 

  • Leigh, E. G., Jr. (2008). Tropical forest ecology: Sterile or virgin for theoreticians? In W. P. Carson & S. A. Schnitzer (Eds.), Tropical Forest Community ecology (pp. 121–142). Chichester: Wiley-Blackwell.

    Google Scholar 

  • Leigh, E. G., Jr., Davidar, P., Dick, C. W., Puyravaud, J.-P., Terborgh, J., ter Steege, H., & Wright, S. J. (2004). Why do some tropical forests have so many species of trees? Biotropica, 36, 447–473.

    Google Scholar 

  • Lieth, H., & Werger, M. J. A. (Eds.). (1989). Tropical rain Forest ecosystems. Ecosystems of the World, 14B, 713 pp.

    Google Scholar 

  • Lieth, H., & Whittaker, R. H. (Eds.). (1975). Primary productivity of the biosphere (339 pp). Heidelberg: Springer.

    Google Scholar 

  • Lieth, H., Berlekamp, J., Fuest, S., & Riediger, S. (1999). Climate Diagram World Atlas (CD-ROM). Leiden: Backhuys Publ.

    Google Scholar 

  • Longino, J., & Nadkarni, N. (1990). A comparison of ground and canopy leaf litter ants (Hymenoptera, Formicidae) in a neotropical montane forest. Psyche, 97, 81–94.

    Article  Google Scholar 

  • Losos, E., & Leigh, E. G. (Eds.). (2004). Tropical Forest diversity and dynamism: Findings from a large-scale plot network (645 pp). Chicago: University of Chicago Press.

    Google Scholar 

  • Lüttge, U. (2007). Clusia: A Woody Neotropical genus of remarkable plasticity and diversity. In Ecological studies (Vol. 194, 273 pp). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Lüttge, U. (2008). Physiological ecology of tropical plants (2nd ed., 458 pp). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichsstein, M., Papale, D., Piao, S. L., Schulze, E.-D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, M., Chambers, J., Ciais, P., Cook, B., Davis, K. J., Dolman, A. J., Gielen, B., Goulden, M., Gracea, J., Granier, A., Grelle, A., Friffis, T., Grünwald, T., Guidolotti, G., Hanson, P. J., Harding, R., Hollinger, D. Y., Hutyra, L. R., Kolaria, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B. E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J. W., Nikinmaa, E., Ollinger, S. V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M. J., Seuffert, G., Sierra, C., Smith, M. L., Tang, J., Valentini, R., Vesala, T., & Janssens, I. A. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509–2537.

    Article  Google Scholar 

  • Mabberley, D. J. (2017). Mabberley’s plant-book (4th ed., 1102 pp). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Malhi, Y., Baldochi, D. D., & Jarvis, P. G. (1999). The carbon balance of tropical, temperate and boreal forests. Plant, Cell and Environment, 22, 715–740.

    Article  CAS  Google Scholar 

  • Mayaux, P., Holmgren, P., Achard, F., Eva, H., Stibig, J.-J., & Branthomme, A. (2005). Tropical forest cover change in the 1990s and options for future monitoring. Philosophical Transactions of the Royal Society B, 360, 373–384.

    Article  Google Scholar 

  • McGuire, J. A. (2008). Ectomycorrhizal associations function to maintain tropical monodominance. In Z. A. Siddiqui, M. S. Akhtar, & K. Futai (Eds.), Mycorrhizae: Sustainable agriculture and forestry (pp. 287–302). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Mills, L. S., Soulé, M. E., & Doak, D. F. (1993). The keystone-species concept in ecology and conservation. BioScience, 43, 219–224.

    Article  Google Scholar 

  • Morley, R. J. (2000). Origin and evolution of tropical rain forests (362 pp). Chichester: Wiley.

    Google Scholar 

  • Moyersoen, B. (1993). Ectomicorrizas y micorrizas vésiculo-arbusculares en Caatinga Amazónica del Sur de Venezuela. Scientia Guaianae, 3, 80 pp.

    Google Scholar 

  • Mueller-Dombois, D., & Fosberg, F. L. (1998). Vegetation of the tropical Pacific Islands (733 pp). New York: Springer.

    Book  Google Scholar 

  • Nadkarni, N. M., Lawton, R. O., Clark, K. L., Matelson, T. J., & Schaefer, D. A. (2000). Ecosystem ecology and forest dynamics. In N. M. Nadkami & N. T. Wheelwright (Eds.), Monteverde: Ecology and conservation of a tropical cloud forest (pp. 303–350). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Nair, P. K. R. (1993). An introduction to agroforestry (520 pp). Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Napp-Zinn, K. (1974). Anatomie des Blattes. II. Blattanatomie der Angiospermen. A. Entwicklungsgeschichtliche und topographische Anatomie des Angiospermenblattes (1424 pp). Berlin-Stuttgart: Bornträger.

    Google Scholar 

  • Oldemann, R. A. A. (1989). Dynamics in tropical forests. In L. B. Holm-Nielsen, I. C. Nielsen, & H. Balslev (Eds.), Tropical forests. Botanical dynamics, speciation and diversity (pp. 3–21). London: Academic Press.

    Google Scholar 

  • Otsamo, R. (2000). Secondary forest regeneration under fast-growing forest plantations on degraded Imperata cylindrica grasslands. New Forests, 19, 69–93.

    Article  Google Scholar 

  • Paul, G. S., & Yavitt, J. B. (2011). Tropical vine growth and the effects on forest succession: A review of the ecology and management of tropical climbing plants. Botanical Review, 77, 11–30.

    Article  Google Scholar 

  • Phillips, O., Martínez, V., Arroyo, L., Baker, T. R., Killeen, T., Lewis, S. L., Malhi, Y., Mendoza, A. M., Neill, D., Vargas, P. N., Alexiades, M., Cerón, C., Di Fiore, A., Erwin, T., Jardim, A., Palacios, W., Saldias, M., & Vinceti, B. (2002). Increasing dominance of large lianas in Amazonian forests. Nature, 418, 770–774.

    Article  CAS  PubMed  Google Scholar 

  • Plana, V. (2004). Mechanisms and tempo of evolution in the African Guineo-Congolian rainforest. Philosophical Transactions of the Royal Society, B: Biological Sciences, 359, 1585–1594.

    Article  PubMed Central  Google Scholar 

  • Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., Daily, G., Castilla, J. C., Lubchenko, J., & Paine, R. T. (1996). Challenges in the quest for keystones. BioScience, 46, 609–620.

    Article  Google Scholar 

  • Proctor, J. (1983). Mineral nutrients in tropical forests. Progress in Physical Geography, 7, 422–431.

    Article  Google Scholar 

  • Rasingam, L., & Parathasarathy, N. (2009). Tree species diversity and population structure across major forest formations and disturbance categories in little Andaman Island, India. Tropical Ecology, 50, 89–102.

    Google Scholar 

  • Rice, A. H., Pyle, E. H., Saleska, S. R., Hutyra, L., Palace, M., Keller, M., De Camargo, P. B., Portilho, K., Marques, D. F., & Wofsy, S. C. (2004). Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecological Applications, 14(supplement), 555–571.

    Google Scholar 

  • Richards, P. W. (1996). The tropical rain forest (2nd ed., 575 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Richardson, B. A. (1999). The bromeliad microcosm and the assessment of faunal diversity in a neotropical forest. Biotropica, 31, 321–336.

    Article  Google Scholar 

  • Roy, J., Saugier, B., & Mooney, H. A. (2001). Terrestrial global productivity (528 pp). San Diego: Academic.

    Google Scholar 

  • Rust, J., Singh, H., Rana, R. S., McCann, T., Singh, L., Anderson, K., Sarkar, N., Nascimbene, P. C., Stebner, F., Thomas, J. C., Kraemer, M. S., Williams, C. J., Engel, M. S., Sahni, A., & Grimaldi, D. (2010). Biogeographic and evolutionary implications of a diverse paleobiota in amber from the early Eocene of India. Proceedings of the National Academy of Science of the United States of America (PNAS), 107, 18360–18365.

    Article  CAS  Google Scholar 

  • Sakai, S., Harrison, R. D., Momose, K., Kuraji, K., Nagamasu, H., Yasunari, T., Chong, L., & Nakashizuka, T. (2006). Irregular droughts trigger mass flowering in aseasonal tropical forests in Asia. American Journal of Botany, 93, 1134–1139.

    Google Scholar 

  • Schatz, G. E. (2001). Generic tree flora of Madagascar. Kew: Royal Botanic Gardens.

    Google Scholar 

  • Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics, 40, 245–269.

    Article  Google Scholar 

  • Schimper, A. W. F. (1898). Pflanzen-Geographie auf physiologischer Grundlage. Jena: G. Fischer.

    Google Scholar 

  • Schnitzer, S. A., Dalling, J. W., & Carson, W. P. (2000). The impact of lianas on tree regeneration in tropical forest canopy gaps: Evidence for an alternative pathway of gap-phase regeneration. Journal of Ecology, 88, 655–666.

    Article  Google Scholar 

  • Scholz, U. (2003). Die feuchten Tropen (173 pp). Braunschweig: Westermann.

    Google Scholar 

  • Schroeder, F.-G. (1998). Lehrbuch der Pflanzengeographie (457 pp). Wiesbaden: Quelle & Meyer.

    Google Scholar 

  • Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., & Scherer-Lorenzen, M. (2018). Plant ecology (2nd ed., 910 pp). Berlin: Springer Nature.

    Google Scholar 

  • Smith, N., Mori, S. A., Henderson, A., Stevenson, D. W., & Heald, S. V. (Eds.). (2004). Flowering plants of the neotropics (594 pp). Princeton/Oxford: Princeton University Press.

    Google Scholar 

  • Stahl, E. (1893). Regenfall und Blattgestalt. Ein Beitrag zur Pflanzenbiologie. Annales du Jardin Botanique de Buitenzorg, 11, 98–182.

    Google Scholar 

  • Stoll, P., & Newbery, D. M. (2005). Evidence of species-specific neighborhood effects in the Dipterocarpaceae of a Bornean rain forest. Ecology, 86, 3048–3062.

    Article  Google Scholar 

  • Stork, N. E., & Turton, S. M. (Eds.). (2008). Living in a dynamic tropical forest landscape (632 pp). Malden/Oxford/Carlton: Blackwell Publication.

    Google Scholar 

  • Terborgh, J. (1986). Keystone plant resources in the tropical forest. In M. E. Soulé (Ed.), Conservation biology: The science of scarcity and diversity (pp. 330–344). Sinauer, Sunderland: Massachusetts.

    Google Scholar 

  • Terborgh, J. (1992). Diversity and the tropical rainforest (242 pp). New York: Scientific American Library, W.H. Freeman.

    Google Scholar 

  • Ter Steege, H., Pitman, N., Sabatier, D., Castellanos, H., Van der Hout, P., Daly, D. C., Silveira, M., Phillips, O., Vasquez, R., Van Andel, T., Duivenvoorden, J., De Oliveira, A. A., Ek, R., Lilwah, R., Thomas, R., Van Essen, J., Baider, C., Maas, P., Mori, S., Terborgh, J., Vargas, P. N., Mogollón, H., & Morawetz, W. (2003). A spatial model of tree α-diversity and tree density for the Amazon. Biodiversity and Conservation, 12, 2255–2277.

    Article  Google Scholar 

  • Thompson, J., Brokaw, N., Zimmerman, J. K., Waide, R. B., Everham, E. M., III, Lodge, D. J., Taylor, C. M., Garcia-Montiel, D., & Fluet, M. (2002). Land use history, environment, and tree composition in a tropical forest. Ecological Applications, 12, 1344–1363.

    Article  Google Scholar 

  • Torquebiau, E. F. (1986). Mosaic patterns in dipterocarp rain forest in Indonesia, and their implications for practical forestry. Journal of Tropical Ecology, 2, 301–325.

    Article  Google Scholar 

  • Trewartha, G. T., & Horn, L. H. (1980). An introduction to climate (416 pp). New York: McGraw-Hill.

    Google Scholar 

  • Turner, I. M. (2001a). The ecology of trees in the tropical rain Forest (298 pp). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Turner, I. M. (2001b). Rainforest ecosystems, plant biodiversity. In S. A. Levin (Ed.), Encyclopedia of biodiversity (Vol. 5, pp. 13–23). San Diego: Academic.

    Chapter  Google Scholar 

  • Valencia, R., Balslev, H., Paz, Y., & Miño, G. (1994). High tree alpha-diversity in Amazonian Ecuador. Biodiversity and Conservation, 3, 21–28.

    Article  Google Scholar 

  • Vareschi, V. (1980). Vegetationsökologie der Tropen (293 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Vieira, S., De Camargo, P. B., Selhorst, D., da Silva, R., Hutyra, L., Chambers, J. Q., Brown, I. F., Higuchi, N., Santos, J., Wofsy, S. C., Trumbore, S. E., & Martinelli, L. A. (2004). Forest structure and carbon dynamics in Amazonian tropical rain forest. Oecologia, 140, 468–479.

    Article  PubMed  Google Scholar 

  • Vitousek, P. M., & Sanford, R. L. (1986). Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17, 137–167.

    Article  Google Scholar 

  • Volkov, I., Banavar, J. R., He, F., Hubbell, S. P., & Maritan, A. (2005). Density dependence explains tree species abundance and diversity in tropical forests. Nature, 438, 658–661.

    Article  CAS  PubMed  Google Scholar 

  • von Blanckenburg, P., Cremer, H.-D., & Rehm, S. (1986). Handbuch der Landwirtschaft und Ernährung in den Entwicklungsländern. Bd. 3. Grundlagen des Pflanzenbaues in den Tropen und Subtropen (2nd ed., 490 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Walter, H., & Breckle, S.-W. (2004). Ökologie der Erde, Band 2. Spezielle Ökologie der Tropischen und Subtropischen Zonen (3rd ed., 764 pp). Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Walter, H., & Lieth, H. (1960–1967). Klimadiagramm-Weltatlas. Stuttgart: G. Fischer.

    Google Scholar 

  • Wester, S., Mendieta-Leiva, G., Nauheimer, L., Wanek, W., Kreft, H., & Zotz, G. (2011). Physiological diversity and biogeography of vascular epiphytes at Rio Changuinola, Panama. Flora, 206, 66–79.

    Article  Google Scholar 

  • Warming, E., & Graebner, P. (1918). Lehrbuch der Ökologischen Pflanzengeographie. Berlin.

    Google Scholar 

  • Whitmore, T. C. (1993). Tropische Regenwälder. Eine Einführung. 275 pp. Heidelberg: Springer Spektrum.

    Google Scholar 

  • Whitmore, T. C. (1984). Tropical Rain Forests of the Far East. 2nd Edition. 352 pp. Oxford: Clarendon Press.

    Google Scholar 

  • Whitmore, T. C. (1998). An introduction to tropical rain forests (2nd ed., 282 pp). Oxford/New York/Tokyo: Oxford University Press.

    Google Scholar 

  • Willis, K. J., & McElwain, J. C. (2002). The evolution of plants (392 pp). Oxford/New York: Oxford University Press.

    Google Scholar 

  • Wilson, J. B., Peet, R. K., Dengler, J., & Pärtel, M. (2012). Plant species richness: The world records. Journal of Vegetation Science, 23, 796–802.

    Article  Google Scholar 

  • Wright, S. J. (2002). Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia, 130, 1–14.

    Article  PubMed  Google Scholar 

  • Wright, S. J., Muller-Landau, H. C., Condit, R., & Hubbell, S. P. (2003). Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology, 84, 3174–3185.

    Article  Google Scholar 

  • Zimmerman, J. K., Thompson, J., & Brokaw, N. (2008). Large tropical forest dynamic plots: Testing explanations for the maintenance of species diversity. In W. P. Carson & S. A. Schnitzer (Eds.), Tropical forest community ecology (pp. 98–117). Chichester: Wiley-Blackwell.

    Google Scholar 

  • Zotz, G. (2004). How prevalent is crassulacean acid metabolism among vascular epiphytes? Oecologia, 138, 184–192.

    Article  PubMed  Google Scholar 

  • Zotz, G. (2007). Johansson revisited: The spatial structure of epiphyte assemblages. Journal of Vegetation Science, 18, 123–130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfadenhauer, J.S., Klötzli, F.A. (2020). Zonal Vegetation of the Tropical Zone with Year-Round Rain. In: Global Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-49860-3_2

Download citation

Publish with us

Policies and ethics