Skip to main content

Zonal Vegetation of the Tropical-Subtropical Dry Zone

  • Chapter
  • First Online:
Global Vegetation

Abstract

This chapter describes the vegetation of the largest ecozone on Earth, which covers 21% of the entire land surface. It includes xerophytic dry forests and shrublands as well as succulent, dwarf shrub, halophyte and grass semi-deserts; furthermore, hot deserts with a plant cover only in ephemeral riverbeds and in areas with fog precipitation are discussed in this chapter. The diversity of the vegetation is attributable to the temporal variability of precipitation, which is characteristic of the transitional area between the tropics and subtropics. Both individually and in combination, the flora exhibits a wealth of strategies to ensure survival under hot and dry site conditions; these are reflected in the growth and life-forms of the species, i.e. stem and leaf succulents, phreatophytes, xerophytes, halophytes, ephemerals, fog-harvesting plants, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acocks, J. P. H. (1988). Veld types of South Africa (3rd ed., 146 pp). Pretoria: Botanical Research Institute.

    Google Scholar 

  • Allan, G. E., & Southgate, R. I. (2002). Fire regimes in the spinifex landscapes of Australia. In R. A. Bradstock, J. E. Williams, & A. M. Gill (Eds.), Flammable Australia. The fire regimes and biodiversity of a continent (pp. 145–176). Cambridge: Cambridge University Press.

    Google Scholar 

  • Alpers, C. N., & Brimhall, G. H. (1988). Middle Miocene climatic change in the Atacama Desert, northern Chile: Evidence from supergene mineralization at La Escondida. Geology, 100, 1640–1656.

    CAS  Google Scholar 

  • Amezketa, E. (2006). An integrated methodology for assessing soil salinisation, a precondition for land desertification. Journal of Arid Environments, 67, 594–606.

    Google Scholar 

  • Andrade Lima, D. (1981). The caatinga dominium. Revista Brasileira de Botânica, 4, 149–163.

    Google Scholar 

  • Ayyad, M. A., & Ghabbour, S. I. (1986). Hot deserts of Egypt and the Sudan. In M. Evenari, I. Noy-Meir, & D. W. Goodall (Eds.), Hot deserts and arid Shrublands (Ecosystems of the world) (Vol. 12B, pp. 149–202). New York: Elsevier.

    Google Scholar 

  • Bartels, B., & Hussain, S. S. (2011). Resurrection plants: Physiology and molecular biology. In U. Lüttge, E. Beck, & D. Bartels (Eds.), Plant desiccation tolerance (Ecological Studies) (Vol. 215, pp. 339–364). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Beadle, N. C. W. (1981). The vegetation of Australia. Stuttgart/New York: G. Fischer, 690 pp.

    Google Scholar 

  • Belnap, J., & Lange, O. L. (2001). Biological soil crusts: Structure, function, and management (Ecological studies150). Berlin: Springer, 503 pp.

    Google Scholar 

  • Besler, H. (1992). Geomorphologie der ariden Gebiete. Darmstadt: Wissenschaftliche Buchgesellschaft, 189 pp.

    Google Scholar 

  • Blomstedt, C. K., Griffiths, C. A., Fredericks, D. P., Hamill, J. D., Gaff, D. F., & Neale, A. D. (2010). The resurrection plant Sporobolus stapfianus: An unlikely model for engineering enhanced plant biomass? Plant Growth Regulation, 62, 217–232.

    CAS  Google Scholar 

  • Boland, D. J., Brooker, M. I. H., Chippendale, G. M., Hall, N., Hyland, B. P. M., Johnston, R. D., Kleinig, D. A., McDonald, M. W., & Turner, J. D. (2006). Forest trees of Australia (5th ed.). Collingwood: CSIRO Publishing.

    Google Scholar 

  • Bradstock, R. A., & Cohn, J. S. (2002). Fire regimes and biodiversity in semi-arid mallee ecosystem. In R. A. Bradstock, J. E. Williams, & M. A. Gill (Eds.), Flammable Australia. The fire regimes and biodiversity of a continent (pp. 238–258). Cambridge: Cambridge University Press.

    Google Scholar 

  • Brooker, R. W., & Callaghan, T. V. (1998). The balance between positive and negative plant interactions and its relationship to environmental gradients: A model. Oikos, 81, 196–207.

    Google Scholar 

  • Brown, G., & Mies, B. A. (2012). Vegetation ecology of Socotra. Dordrecht: Springer, 379 pp.

    Google Scholar 

  • Cabrera, A. L. (1971). Fitogeografía de la República Argentina. Boletín de la Sociedad Argentina de Botánica, 14, 1–42.

    Google Scholar 

  • Carrick, P. J. (2003). Competitive and facilitative relationships among three shrub species, and the role of browsing intensity and rooting depth in the Succulent Karoo, South Africa. Journal of Vegetation Science, 14, 761–772.

    Google Scholar 

  • Cole, D. T. (1979). Mimicry in Lithops. Aloe, 17, 103–109.

    Google Scholar 

  • Cortina, J., Maestre, F. T., & Ramírez, D. (2009). Innovations in semiarid restoration. The case of Stipa tenacissima L. steppes. In S. Bautista, J. Aronson, & V. R. Vallejo (Eds.), Land restoration to combat desertification. Innovative approaches, quality control and project evaluation (pp. 121–144). Valencia: Fundación CEAM.

    Google Scholar 

  • Cowling, R. M., Esler, K. J., & Rundel, P. W. (1999). Namaqualand, South Africa – An overview of a unique winter-rainfall desert ecosystem. Plant Ecology, 142, 3–21.

    Google Scholar 

  • D’Herbès, J.-M., Valentin, C., Tongway, D. J., & Leprun, J.-C. (2001). Banded vegetation patterns and related structures. In D. J. Tongway, C. Valentin, & J. Seghieri (Eds.), Bandes vegetation patterning in arid and semiarid environments (Ecological studies) (Vol. 149, pp. 1–19).

    Google Scholar 

  • Dorn, R. I., & Krinsley, D. (2011). Spatial, temporal and geographic considerations of the problem of rock varnish diagenesis. Geomorphology, 130, 91–99.

    Google Scholar 

  • Drezner, T. D. (2008). Variation in age and height of onset of reproduction in the saguaro cactus (Carnegiea gigantea) in the Sonoran Desert. Plant Ecology, 194, 223–229.

    Google Scholar 

  • Eccles, N. S., Esler, K. J., & Cowling, R. M. (1999). Spatial pattern analysis in Namaqualand desert plant communities: Evidence for general positive interactions. Plant Ecology, 142, 71–85.

    Google Scholar 

  • Ehleringer, J. R. (1985). Annuals and perennials of warm deserts. In B. F. Chabot & H. A. Mooney (Eds.), Physiological ecology of North American plant communities (pp. 162–180). New York: Capman and Hall.

    Google Scholar 

  • Ehleringer, J. R., Mooney, H. A., Gulmon, S. L., & Rundel, P. W. (1980). Orientation and its consequences for Copiapoa (Cactaceae) in the Atacama Desert. Oecologia, 46, 63–67.

    CAS  PubMed  Google Scholar 

  • Ellenberg, H. (1959). Über den Wasserhaushalt tropischer Nebeloasen in der Küstenwüste Perus. Berichte des Geobotanischen Instituts, Stiftung Rübel, der ETH Zürich, 1958, 47–74.

    Google Scholar 

  • Ellenberg, H. (1981). Ursachen des Vorkommens und Fehlens von Sukkulenten in den Trockengebieten der Erde. Flora, 171, 114–169.

    Google Scholar 

  • Evenari, M. (1985). Adaptions of plant and animals to the desert environment. In M. Evenari, I. Noy-Meir, & D. W. Goodall (Eds.), Hot deserts and arid Shrubland (Ecosystems of the world) (Vol. 12A, pp. 79–92).

    Google Scholar 

  • Frankenberg, P. (1978). Lebensformen und Florenelemente im nordafrikanischen Trockenraum. Vegetatio, 37, 91–100.

    Google Scholar 

  • Frey, W., & Lösch, R. (2010). Lehrbuch der Geobotanik (3rd ed.). Heidelberg: Spektrum Akademischer Verlag, 600 pp.

    Google Scholar 

  • Gaff, D. F. (1997). Mechanisms of desiccation tolerance in resurrection vascular plants. In A. S. Basra & R. K. Basra (Eds.), Mechanisms of environmental stress resistance in plants (pp. 43–58). Amsterdam: Harwood Academic Publishers.

    Google Scholar 

  • Gasparri, N. I., & Grau, H. R. (2009). Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). Forest Ecology and Management, 258, 913–921.

    Google Scholar 

  • Geist, H. (2005). The causes and progression of desertification. London: Routledge, 272 pp.

    Google Scholar 

  • Genaust, H. (1996). Etymologisches Wörterbuch der botanischen Pflanzennamen (3rd ed.). Hamburg: Nikol Verlagsgesellschaft, 701 pp.

    Google Scholar 

  • Getzin, S., Wiegand, K., Wiegand, T., Yizhaq, H., von Hardenberg, J., & Meron, E. (2015). Adopting a spatially explicit perspective to study the mysterious fairy circles of Namibia. Ecography, 38, 1–11.

    Google Scholar 

  • Ghazanfar, S.A. & Fisher, M. (eds.), 1998: Vegetation of the Arabian peninsula. Geobotany 25. , 362 pp.

    Google Scholar 

  • Gibson, A. C. (1996). Structure-function relations of warm desert plants. Berlin/Heidelberg/New York: Springer, 215 pp.

    Google Scholar 

  • Green, T. G. A., Nash, T. H. I. I. I., & Lange, O. L. (2008). Physiological ecology of carbon dioxid exchange. In T. H. I. I. I. Nash (Ed.), Lichen Biology (2nd ed., pp. 152–181). Cambridge: Cambridge University Press.

    Google Scholar 

  • Green, T. G. A., Sancho, L. G., & Pintado, A. (2011). Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In U. Lüttge, E. Beck, & D. Bartels (Eds.), Plant desiccation tolerance (Ecological studies) (Vol. 215, pp. 89–120). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Grice, A. C. (2004). Weeds and the monitoring of biodiversity in Australian rangelands. Austral Ecology, 29, 51–58.

    Google Scholar 

  • Grubb, P. J. (2003). Interpreting some outstanding features of the flora and vegetation of Madagascar. Perspectives in Plant Ecology, Evolution and Systematics, 6, 125–146.

    Google Scholar 

  • Gupta, R. K. (1986). The Thar desert. In M. Evenari, I. Noy-Meir, & D. W. Goodall (Eds.), Hot deserts and arid shrubland (Ecosystems of the world) (Vol. 12A, pp. 55–99). New York: Elsevier.

    Google Scholar 

  • Gutterman, Y. (2002). Survival strategies of annual desert plants (348 pp). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Hachfeld, B., & Jürgens, N. (2000). Climate patterns and their impact on the vegetation in a fog driven desert: The Central Namib Desert in Namibia. Phytocoenologia, 30, 567–589.

    Google Scholar 

  • Henschel, J. R., & Seely, M. K. (2000). Long-term growth patterns of Welwitschia mirabilis, a long-lived plant of the Namib Desert (including a bibliography). Plant Ecology, 150, 7–26.

    Google Scholar 

  • Herppich, W. B., Flach, B. M. T., von Willert, D. J., & Herppich, M. (1996). Field investigations of photosynthetic activity, gas exchange and water potential at different leaf ages of Welwitschia mirabilis during a severe drought. Flora, 191, 59–66.

    Google Scholar 

  • Heywood, V. H., Brummit, R. K., Culham, A., & Seberg, O. (2007). Flowering plants of the world. Ontario: Firefly Books, 424 pp.

    Google Scholar 

  • Hodgkinson, K. C. (2002). Fire regimes in Acacia wooded landscapes: Effects on functional processes and biological diversity. In R. A. Bradstock, J. E. Williams, & M. A. Gill (Eds.), Flammable Australia. The fire regimes and biodiversity of a continent (pp. 259–277). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hornetz, B., & Jätzold, R. (2003). Savannen-, Steppen- und Wüstenzonen. Natur und Mensch in Trockenregionen. Braunschweig: Westermann, 305 pp.

    Google Scholar 

  • Hueck, K. (1966). Die Wälder Südamerikas. Stuttgart: G. Fischer, 422 pp.

    Google Scholar 

  • Ihlenfeldt, H.-D. (1994). Diversification in an arid world: The Mesembryanthemaceae. Annual Review of Ecology and Systematics, 25, 521–546.

    Google Scholar 

  • Johnson, R. W., & Burrows, W. H. (1994). Acacia open forests, woodlands and shrublands. In R. H. Groves (Ed.), Australian vegetation (2nd ed., pp. 257–290). Cambridge: Cambridge University Press.

    Google Scholar 

  • Juergens, N. (2015). Exploring common ground for different hypotheses on Namib fairy circles. Ecography, 38, 12–14.

    Google Scholar 

  • Jürgens, N. (1986). Untersuchungen zur Ökologie sukkulenter Pflanzen des südlichen Afrikas. Mitteilungen aus dem Institut für Allgemeine Botanik Hamburg, 21, 139–365.

    Google Scholar 

  • Jürgens, N. (2013). The biological underpinnings of Namibian desert fairy circles. Science, 339, 1618–1621.

    Google Scholar 

  • Jürgens, N., Burke, A., Seely, M. K., & Jacobson, K. M. (1997). Desert. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds.), Vegetation of Southern Africa (pp. 189–214). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jürgens, N., Gotzmann, I. H., & Cowling, R. M. (1999). Remarkable medium-term dynamics of leaf succulent Mesembryanthemaceae shrubs in the winter-rainfall desert of northwestern Namaqualand, South Africa. Plant Ecology, 142, 87–96.

    Google Scholar 

  • Kadereit, J. W., Körner, C., Kost, B., & Sonnewald, U. (2014). Strasburger – Lehrbuch der Pflanzenwissenschaften (37th ed., 919 pp). Heidelberg/Berlin: Springer Spektrum.

    Google Scholar 

  • Kellner, A., Ritz, C. M., Schlittenhardt, P., & Hellwig, F. H. (2011). Genetic differentiation in the genus Lithops L. (Ruschioideae, Aizoaceae) reveals a high level of convergent evolution and reflects geographic distribution. Plant Biology, 13, 368–380.

    CAS  PubMed  Google Scholar 

  • Klak, C., Reeves, G., & Hedderson, T. (2004). Unmatched tempo of evolution in Southern African semi-desert ice plants. Nature, 427, 63–65.

    CAS  PubMed  Google Scholar 

  • Knapp, R. (1965). Die Vegetation von Nord- und Mittelamerika und der Hawaii-Inseln. Stuttgart: G. Fischer, 373 pp.

    Google Scholar 

  • Knapp, R. (1973). Die Vegetation von Afrika. Stuttgart: G. Fischer, 626 pp.

    Google Scholar 

  • Kürschner, H. (1998). Biogeography and introduction to vegetation. In S. A. Ghazanfar & M. Fisher (Eds.), Vegetation of the Arabian Peninsula (Geobotany) (Vol. 25, pp. 63–98). Holanda: Kluwer Academic Publishers.

    Google Scholar 

  • Kutschera, L., Lichtenegger, E., Sobotik, M., & Haas, D. (1997). Die Wurzel, das neue Organ. Ihre Bedeutung für das Leben von Welwitschia mirabilis und anderen Arten der Namib sowie von Arten angrenzender Gebiete mit Erklärung des geotropen Wachstums der Pflanzen. Klagenfurt: Pflanzensoziologisches Institut, 94 S.

    Google Scholar 

  • Lange, O. L. (1959). Untersuchungen über Wärmehaushalt und Hitzeresistenz mauretanischer Wüsten- und Savannenpflanzen. Flora, 147, 595–651.

    Google Scholar 

  • Lange, O. L. (2001). Photosynthesis of soil-crust biota as dependent on environmental factors. In J. Belnap & O. L. Lange (Eds.), Biological soil crusts: Structure, function, and management (Ecological studies) (Vol. 150, pp. 217–240). Berlin: Springer.

    Google Scholar 

  • Lange, O. L., Green, T. G. A., Melzer, B., Meyer, A., & Zellner, H. (2006). Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: Measurements during two seasons in the field and under controlled conditions. Flora, 201, 268–280.

    Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology (4th ed.). Berlin/Heidelberg/New York: Springer, 513 pp.

    Google Scholar 

  • Latz, P. K. (1995). Bushfires and bush Tucker: Aboriginal plant use in Central Australia. Alice Springs: IAD Press, 400 pp.

    Google Scholar 

  • Le Houérou, H. N. (1986). The desert and arid zones of northern Africa. In M. Evenari, I. Noy-Meir, & D. W. Goodall (Eds.), Hot deserts and arid Shrublands (Ecosystems of the world) (Vol. 12B, pp. 101–147). New York: Elsevier.

    Google Scholar 

  • Le Houérou, H. N. (1997). Climate, flora and fauna changes in the Sahara over the past 500 million years. Journal of Arid Environments, 37, 619–647.

    Google Scholar 

  • Leigh, J. H. (1994). Chenopod shrublands. In R. H. Groves (Ed.), Australian vegetation (2nd ed., pp. 345–367). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lieberei, R., & Reisdorff, C. (2007). Nutzpflanzenkunde (7th ed.). Stuttgart/New York: Georg Thieme, 476 pp.

    Google Scholar 

  • Lieth, H., Berlekamp, J., Fuest, S., & Riediger, S. (1999). Climate diagram world atlas (CD-ROM). Leiden: Backhuys Publishers.

    Google Scholar 

  • Loris, K., Jürgens, N., & Veste, M. (2004). Zonobiom III: Die Namib-Wüste im südwestlichen Afrika (Namibia, Südafrika, Angola). In H. Walter & S.-W. Breckle (Eds.), Ökologie der Erde, Vol. 2. Spezielle Ökologie der Tropischen und Subtropischen Zonen (3rd ed., pp. 441–513). Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Lösch, R. (2003). Wasserhaushalt der Pflanzen (2nd ed.). Wiebelsheim: Quelle & Meyer, 595 pp.

    Google Scholar 

  • Ludwig, J. A., Tongway, D. J., Freudenberger, D., Noble, J., & Hodgkinson, K. (Eds.). (1997). Landscape ecology, function and management: Principles from Australia’s rangelands. Melbourne: CSIRO Publishing, 162 pp.

    Google Scholar 

  • Lüttge, U. (2008). Stem CAM in arborescent succulents. Trends in Ecology and Evolution, 22, 139–148.

    Google Scholar 

  • Mabberley, D. J. (2017). Mabberley’s plant-book (4th ed.). Cambridge: Cambridge University Press, 1102 pp.

    Google Scholar 

  • MacMahon, J. A. (2000). Warm deserts. In M. G. Barbour & W. D. Billings (Eds.), North American terrestrial vegetation (2nd ed., pp. 285–322). Cambridge: Cambridge University Press.

    Google Scholar 

  • Mares, M. A., Morello, J., & Goldstein, G. (1985). The Monte desert and other subtropical semi-arid biomes of Argentina, with comments on their relation to North American arid areas. In M. Evenari, I. Noy-Meir, & D. W. Goodall (Eds.), Hot deserts and arid shrublands (Ecosystems of the world) (Vol. 12A, pp. 203–237). New York: Elsevier.

    Google Scholar 

  • Martin, C. E., & von Willert, D. J. (2000). Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biology, 2, 229–242.

    Google Scholar 

  • McCleary, J. A. (1968). The biology of desert plants. In G. W. Brown Jr. (Ed.), Desert biology (Vol. 1, pp. 141–195). New York/London: Academic.

    Google Scholar 

  • Miller, J. T., Andrew, R. A., & Maslin, B. R. (2002). Towards an understanding of variation in the Mulga complex (Acacia aneura and relatives). Conservation Science Western Australia, 4, 19–35.

    Google Scholar 

  • Milton, S. J., Yeaton, R. I., Dean, W. R. J., & Vlok, J. H. J. (1997). Succulent karoo. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds.), Vegetation of Southern Africa (pp. 131–166). Cambridge: Cambridge University Press.

    Google Scholar 

  • Miriti, M. N. (2006). Ontogenetic shift from facilitation to competition in a desert shrub. Journal of Ecology, 94, 973–979.

    Google Scholar 

  • Monson, R. K., & Smith, S. D. (1982). Seasonal water potential components of Sonoran desert plants. Ecology, 63, 113–123.

    Google Scholar 

  • Moore, M. R., & Perry, R. A. (1970). Vegetation of Australia. In M. R. Moore (Ed.), Australian grasslands (pp. 59–73). Canberra: Australian National University Press.

    Google Scholar 

  • Morello, J. (1958). La Provincia fitogeográfica del Monte. Opera Lilloana, 2, 1–155.

    Google Scholar 

  • Morton, S. R., Stafford Smith, D. M., Dickman, C. R., Dunkerley, D. L., Friedel, M. H., McAllister, R. R. J., Reid, J. R. W., Roshier, D. A., Smith, M. A., Walsh, F. J., Wardle, G. M., Watson, I. W., & Westoby, M. (2011). A fresh framework of the ecology of arid Australia. Journal of Arid Environments, 75, 313–329.

    Google Scholar 

  • Mott, J. J., & Groves, R. H. (1994). Natural and derived grasslands. In R. H. Groves (Ed.), Australian vegetation (pp. 369–392). Cambridge: Cambridge University Press.

    Google Scholar 

  • Mucina, L., & Rutherford, M. C. (Eds.). (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19 (807 pp). Pretoria: South African National Bodiversity Institute.

    Google Scholar 

  • Mucina, L., Hoare, D. B., Lötter, M. C., du Preez, P. J., et al. (2006). Grassland biome. In L. Mucina & M. C. Rutherford (Eds.), The vegetation of South Africa, Lesotho and Swaziland (Strelitzia) (Vol. 19, pp. 349–436).

    Google Scholar 

  • Nano, C. E. M., & Clarke, P. J. (2008). Variegated desert vegetation: Covariation of edaphic and fire variables provides a framework for understanding Mulga-spinifex coexistence. Austral Ecology, 33, 848–862.

    Google Scholar 

  • Nobel, P. S. (1977a). Water relations and photosynthesis of a barrel cactus, Ferocactus acanthodes, in the Colorado desert. Oecologia, 27, 117–133.

    PubMed  Google Scholar 

  • Nobel, P. S. (1977b). Water relations of flowering of Agave deserti. Botanical Gazette, 138, 1–6.

    Google Scholar 

  • Nobel, P. S. (1980). Morphology, nurse plants, and minimum apical temperatures for young Carnegiea gigantea. Botanical Gazette, 141, 188–191.

    Google Scholar 

  • Nobel, P.S. (1988). Environmental biology of agaves and cacti. Cambridge University Press, Cambridge, 270 pp.

    Google Scholar 

  • North, G. B., Brinton, E. K., & Garrett, T. Y. (2008). Contractile roots in succulent monocots: Convergence, divergence and adaption to limited rainfall. Plant, Cell and Environment, 31, 1179–1189.

    PubMed  Google Scholar 

  • Noy-Meir, I. (1973). Desert ecosystems: Environment and producers. Annual Review of Ecology and Systematics, 4, 25–51.

    Google Scholar 

  • Oechel, W. C., Strain, B. R., & Odening, W. R. (1972). Tissue water potential, photosynthesis, 14C-labelled photosynthate utilization, and growth in the desert shrub Larrea divaricate Cav. Ecological Monographs, 42, 127–141.

    Google Scholar 

  • Ortega-Baes, P., & Godínes-Alvarez, H. (2006). Global diversity and conservation priorities in the Cactaceae. Biodiversity and Conservation, 15, 817–827.

    Google Scholar 

  • Ozenda, P. (2004). Flore et Végétation du Sahara (3rd ed.). Paris: CNRS Éditions, 662 pp.

    Google Scholar 

  • Palmer, A. R., & Hoffman, M. T. (1997). Nama-karoo. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds.), Vegetation of Southern Africa (pp. 167–188). Cambridge: Cambridge University Press.

    Google Scholar 

  • Parolin, P. (2001). Seed expulsion in fruits if Mesembryanthema (Aizoaceae): A mechanistic approach to study the effect of fruit morphological structures on seed dispersal. Flora, 196, 313–322.

    Google Scholar 

  • Parsons, R. F. (1994). Eucalypt scrubs and shrublands. In R. H. Groves (Ed.), Australian vegetation (pp. 291–319). Cambridge: Cambridge University Press.

    Google Scholar 

  • Parsons, W. T., & Cuthbertson, E. G. (2001). Noxious weeds of Australia (2nd ed.). Collingwood: CSIRO Publishing, 705 pp.

    Google Scholar 

  • Porembski, S. (2007). Tropical inselbergs: Habitat types, adaptive strategies and diversity patterns. Revista Brasileira de Botanica, 30, 579–586.

    Google Scholar 

  • Pott, R., Hüppe, J., & Wildbret de la Torre, W. (2003). Die kanarischen Inseln: Natur- und Kulturlandschaften. Stuttgart: E. Ulmer, 320 pp.

    Google Scholar 

  • Proctor, M. C. F., & Tuba, Z. (2002). Poikilohydry and homoiohydry: Antithesis or spectrum of possibility? New Phytologist, 156, 327–349.

    Google Scholar 

  • Pütz, N. (2002). Contractile roots. In Y. Waisel, A. Eshel, & Kafkafi (Eds.), Plant roots. The hidden half (3rd ed., pp. 975–987). New York: Marcel Dekker.

    Google Scholar 

  • Quézel, P. (1965). Le végétation du Sahara du Tschad à la Mauritanie. Stuttgart: G. Fischer, 333 pp.

    Google Scholar 

  • Rauh, W. (1985). The Peruvian-Chilean deserts. In M. Evenari, I. Noy-Meir, & D. W. Goodall (Eds.), Hot deserts and arid shrublands (Ecosystems of the world) (Vol. 12A, pp. 239–267). New York: Elsevier.

    Google Scholar 

  • Rauh, W. (1986). The arid region of Madagascar. In M. Evenari, I. Noy-Meir, & D. W. Goodall (Eds.), Hot deserts and arid shrublands (Ecosystems of the world) (Vol. 12B, pp. 361–377). New York: Elsevier.

    Google Scholar 

  • Rice, B., & Westoby, M. (1999). Regeneration after fire in Triodia R. Br. Australian Journal of Ecology, 24, 563–572.

    Google Scholar 

  • Rundel, P. W., & Gibson, A. C. (1996). Ecological communities and processes in a Mojave Desert ecosystem Rock Valley, Nevada. Cambridge: Cambridge University Press, 369 pp.

    Google Scholar 

  • Rundel, P. W., Dillon, M. O., & Palma, B. (1996). The vegetation and flora of Pan de Azúcar National Park in the Atacama Desert of Northern Chile. Gayana Botánica, 53, 295–315.

    Google Scholar 

  • Rundel, P. W., Villagra, P. E., Dillon, M. O., Roig-Juñent, S., & Debandi, G. (2007). Arid and semi-arid ecosystems. In T. T. Veblen, K. R. Young, & A. R. Orme (Eds.), The physical geography of South America (pp. 158–183). New York: Oxford University Press.

    Google Scholar 

  • Russow, R., Veste, M., Breckle, S.-W., Littmann, T., & Böhme, F. (2008). Nitrogen input pathways into sand dunes: Biological fixation and atmospheric nitrogen deposition. In S.-W. Breckle, A. Yair, & M. Veste (Eds.), Arid dune ecosystems. The Nizzana sands in the Negev desert (Ecological studies) (Vol. 200, pp. 319–336).

    Google Scholar 

  • Rutherford, M. C., Mucina, L., & Powrie, L. W. (2006). Biomes and bioregions of Southern Africa. In L. Mucina & M. C. Rutherford (Eds.), The vegetation of South Africa, Lesotho and Swaziland (Vol. 19, pp. 31–51). Strelitzia.

    Google Scholar 

  • Sampaio, E. V. S. B. (1995). Overview of the Brazilian caatinga. In S. H. Bullock, H. A. Mooney, & E. Medina (Eds.), Seasonal dry tropical forests (pp. 35–63). Cambridge: Cambridge University Press.

    Google Scholar 

  • Schieferstein, B., & Loris, K. (1992). Ecological investigations on lichen fields of the central Namib. I. Distribution patterns and habitat conditions. Vegetatio, 98, 113–128.

    Google Scholar 

  • Schirmer, U., & Breckle, S.-W. (1982). The role of bladders for salt removal in some Chenopodiaceae (mainly Atriplex species). In D. N. Sen & K. S. Rajpurohit (Eds.), Contributions to the ecology of halophytes (Tasks for vegetation science) (Vol. 2, pp. 215–231). Dordrecht: Springer.

    Google Scholar 

  • Schlesinger, W. H., Raikes, J., Hartley, A. E., & Cross, A. F. (1996). On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77, 364–374.

    Google Scholar 

  • Schmiedel, U., & Jürgens, N. (1999). Community structure on unusual habitat islands: Quartz-fields in the Succulent Karoo, South Africa. Plant Ecology, 142, 57–69.

    Google Scholar 

  • Schmithüsen, J., Hanle, A., & Hegner, R. (1976). Atlas zur Biogeographie. Wien/Zürich: Bibliographisches Institut Mannheim.

    Google Scholar 

  • Scholes, R. J. (1997). Savanna. In R. M. Cowling, D. M. Richardson, & S. M. Pierce (Eds.), Vegetation of Southern Africa (pp. 258–277). Cambridge: Cambridge University Press.

    Google Scholar 

  • Schultz, J. (2000). Handbuch der Ökozonen. Stuttgart: E. Ulmer, 577 pp.

    Google Scholar 

  • Schultz, J. (2005). The Ecozones of the world (2nd ed.). Berlin/Heidelberg: Springer, 252 pp.

    Google Scholar 

  • Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., & Scherer-Lorenzen, M. (2019). Plant ecology (2nd ed.). Berlin: Springer, 910 pp.

    Google Scholar 

  • Schuster, M., Duringer, P., Ghienne, J. F-, Vigneaud, P., Mackaye, H.T., Likius, A. & Brunet, M., 2006: The age of the Sahara desert. Science 311, 821.

    CAS  PubMed  Google Scholar 

  • Seibert, P. (1996). Farbatlas Südamerika. Stuttgart: Landschaften und Vegetation. E. Ulmer, 288 pp.

    Google Scholar 

  • Shmida, A. (1985). Biogeography of the desert flora. In M. Evenari, I. Noy-Meir, & D. W. Goodall (Eds.), Hot deserts and arid shrublands (Ecosystems of the world) (Vol. 12A, pp. 23–77). New York: Elsevier.

    Google Scholar 

  • Shmida, A., Evenari, M., & Noy-Meir, I. (1986). Hot Desert ecosystems: An integrated view. In M. Evenari, I. Noy-Meir, & D. W. Goodall (Eds.), Hot deserts and arid shrublands (Ecosystems of the world) (Vol. 12B, pp. 379–387). New York: Elsevier.

    Google Scholar 

  • Shreve, F. (1951). Vegetation of the Sonoran desert I (Vol. 591, pp. 1–192). Carnegie Institute of Washington Publications.

    Google Scholar 

  • Shreve, F., & Wiggins, I. L. (1964). Vegetation and flora of the Sonoran Desert (Vol. 1). Stanford: Stanford University Press, 840 pp.

    Google Scholar 

  • Siebert, B. D., Newman, D. M. R., & Nelson, D. J. (1968). The chemical composition of some arid zone pasture species. Tropical Grassland, 2, 31–40.

    Google Scholar 

  • Silvertown, J. W. (2005). Demons in Eden: The paradox of plant diversity. Chicago: University of Chicago Press.

    Google Scholar 

  • Sinclair, A. R. E., & Fryxell, J. M. (1985). The Sahel of Africa: Ecology of a disaster. Canadian Journal of Zoology, 63, 987–994.

    Google Scholar 

  • Slatyer, R. O. (1965). Measurements of precipitation interception by an arid plant community (Acacia aneura F.Muell.). Arid Zone Research, 25, 181–192.

    Google Scholar 

  • Smith, S. D., Monson, R. K., & Anderson, J. E. (1997). Physiological ecology of North American Desert plants. Berlin/Heidelberg: Springer, 286 pp.

    Google Scholar 

  • Specht, R. L. (1981). Major vegetation formations in Australia. In A. Keast (Ed.), Ecological biogeography of Australia (pp. 163–298). Den Haag: Dr. W. Junk.

    Google Scholar 

  • Stocker, O. (1972). Der Wasser- und Photosynthese-Haushalt von Wüstenpflanzen der mauretanischen Sahara. III. Kleinsträucher, Stauden und Gräser. Flora, 161, 46–110.

    Google Scholar 

  • Sundberg, M. D. (1986). A comparison of stomatal distribution and length in succulent and non-succulent desert plants. Phytomorphology, 36, 53–66.

    Google Scholar 

  • Theron, G. K., Schweickerdt, H. G. & Van der Schijff, H. P. (1968). x‘ Anatomiese studie vam Plinthus karooicus Verdoorn. Tydsk. Natuurvetensk, 1968, 69–104.

    Google Scholar 

  • Thiéry, J.-M., d’Herbès, J.-M., & Valentin, C. (1995). A model simulating the genesis of banded vegetation patterns in Niger. Journal of Ecology, 83, 497–507.

    Google Scholar 

  • Thomas, H. (1997). Drought resistance in plants. In A. S. Basra & R. K. Basra (Eds.), Mechanisms of environmental stress resistance in plants (pp. 1–42). Amsterdam: Harwood Academic Publishers.

    Google Scholar 

  • Tielbörger, K., & Kadmon, R. (2000). Temporal environmental variation tips the balance between facilitation and interference in desert plants. Ecology, 81, 1544–1553.

    Google Scholar 

  • Tielbörger, K., & Kadmon, R. (2008). Effects of shrubs on annual plant populations. In D.-W. Breckle, A. Yair, & M. Veste (Eds.), Arid dune ecosystems. The Nizzana sands in the Negev Desert (Ecological studies) (Vol. 200, pp. 385–400).

    Google Scholar 

  • Toldi, O., Tuba, Z., & Scott, P. (2009). Vegetative desiccation tolerance: Is it a goldmine for bioengineering crops? Plant Science, 176, 187–199.

    CAS  Google Scholar 

  • Tongway, D. J., Valentin, C., & Seghieri, J. (Eds.). (2001). Banded vegetation patterning in arid and semiarid environments. Ecological Studies, 149, 251 pp.

    Google Scholar 

  • Trollope, W. S. W. (1990). Veld management with specific reference to game ranching in the grassland and savanna areas of South Africa. Koedoe, 33, 77–87.

    Google Scholar 

  • Turner, J. S., & Picker, M. D. (1993). Thermal ecology of an embedded dwarf succulent from southern Africa (Lithops spp: Mesembryanthemaceae). Journal of Arid Environments, 24, 361–385.

    Google Scholar 

  • UNEP (United Nations Environmental Programme). (1992). World atlas of desertification. London: Edward Arnold.

    Google Scholar 

  • UNEP (United Nations Environmental Programme). (1994). Draft report of the expert panel meeting on development of guidelines for assessment and mapping of desertification/land degradation in Asia/Pacific. United Nations Environment Programme: Nairobi.

    Google Scholar 

  • Van Rheede van Oudtshoorn, K., & Van Rooyen, M. W. (1999). Dispersal biology of desert plants. Berlin/Heidelberg: Springer, 242 pp.

    Google Scholar 

  • Veste, M., & Littmann, T. (2006). Dewfall and its geo-ecological implication for biological surface crusts in desert sand dunes (North-Western Negev, Israel). Journal of Arid Land Studies, 16, 139–147.

    Google Scholar 

  • Vlieghe, K., Picker, M., Ross-Gillespie, V., & Erni, B. (2015). Herbivory by subterranean termite colonies and the development of fairy circles in SW Namibia. Ecological Entomology, 40, 42–49.

    Google Scholar 

  • Von Willert, D. J. (1994). Welwitschia mirabilis Hook. fil. – das Überlebenswunder der Namibwüste. Naturwissenschaften, 81, 430–442.

    Google Scholar 

  • Von Willert, D. J., Eller, B. M., Werger, M. J. A., & Brinckmann, E. (1990). Desert succulents and their life strategies. Vegetatio, 90, 133–143.

    Google Scholar 

  • Von Willert, D.J., Eller, B.M., Werger, M.J.A., Brinckmann, E. & Ihlenfeldt, H.-D. (1992). Life strategies of succulents in deserts with special reference to the Namib desert. Cambridge University Press, Cambridge, 340 pp.

    Google Scholar 

  • Von Willert, D. J., Armbrüster, N., Drees, T., & Zaborowski, M. (2005). Welwitschia mirabilis: CAM or not CAM – What is the answer? Functional Plant Biology, 32, 389–395.

    Google Scholar 

  • Walter, H. (1960). Grundlagen der Pflanzenverbreitung. I. Standortlehre (2nd ed.). Stuttgart: E. Ulmer, 566 pp.

    Google Scholar 

  • Walter, H. (1973) Vegetation der Erde in öko-physiologischer Betrachtung. Band I. Die tropischen und subtropischen Zonen. 3rd. Edition. VEB G. Fischer, Jena, 743 pp.

    Google Scholar 

  • Walter, H., & Breckle, S.-W. (2004). Ökologie der Erde, Vol. 2. Spezielle Ökologie der Tropischen und Subtropischen Zonen (3rd ed.). Heidelberg: Spektrum Akademischer Verlag, 764 pp.

    Google Scholar 

  • Walter, H., & Lieth, H. (1960–1967). Klimadiagramm-Weltatlas. Stuttgart: G. Fischer.

    Google Scholar 

  • Ward, J. D. (2009). The biology of deserts. Oxford: Oxford University Press, 339 pp.

    Google Scholar 

  • Ward, J. D., & Corbett, I. (1990). Towards an age of the Namib. In M. K. Seely (Ed.), Namib ecology. 25 years of Namib research (Transvaal Museum monograph) (Vol. 7, pp. 17–26). Pretoria: Transvaal Museum.

    Google Scholar 

  • Ward, J.D., Seely, M.K. & Lancaster, N., (1983). On the antiquity of the Namib. South African Journal of Science 79, 175–183.

    Google Scholar 

  • Ward, D., Ngairorue, B. T., Kathena, J., Samuels, R., & Ofran, Y. (1998). Land degradation is not a necessary outcome of communal pastoralism in arid Namibia. Journal of Arid Environments, 40, 357–371.

    Google Scholar 

  • Webb, S. (2008). Megafauna demography and late quaternary climatic change in Australia: A predisposition to extinction. Boreas, 37, 329–345.

    Google Scholar 

  • Went, F. W. (1948). Ecology of desert plants I. Ecology, 29, 242–353.

    Google Scholar 

  • Went, F. W. (1949). Ecology of desert plants II. Ecology, 30(1–13), 26–38.

    Google Scholar 

  • Werger, M. J. A. (1986). The Karoo and Southern Kalahari. In M. Evenari, I. Noy-Meir, & D. W. Goodall (Eds.), Hot deserts and arid shrublands (Ecosystems of the world) (Vol. 12B, pp. 283–359). New York: Elsevier.

    Google Scholar 

  • Whitford, W. G. (2002). Ecology of desert systems. London: Academic, 343 pp.

    Google Scholar 

  • Whittaker, C., Pammenter, N. W., & Berjak, P. (2008). Infection of the cones and seeds of Welwitschia mirabilis by Aspergillus niger var. phoenicis in the Namib-Naukluft Park. South African Journal of Botany, 74, 41–50.

    Google Scholar 

  • Wright, B. R., & Clarke, P. J. (2009). Fire, aridity and seed banks. What does seed bank composition reveal about community processes in fire-prone desert? Journal of Vegetation Science, 20, 663–674.

    Google Scholar 

  • Zahran, M. A., & Willis, A. J. (2009). The vegetation of Egypt (2nd ed.). Dordrecht: Springer, 437 pp.

    Google Scholar 

  • Zech, W., Schad, P., & Hintermaier-Erhard, G. (2014). Böden der Welt: Ein Bildatlas (2nd ed., 152 pp). Berlin/Heidelberg: Springer Spektrum.

    Google Scholar 

  • Zepp, H. (2003). Geomorphologie. Eine Einführung (2nd ed.). Paderborn/München/Wien/Zürich: Ferdinand Schöningh, 354 pp.

    Google Scholar 

  • Zohary, M. (1937). Die verbreitungsökologischen Verhältnisse der Pflanzen. I. Die antitelechorischen Erscheinungen. Beihefte zum Botanischen Zentralblatt, A56, 1–155.

    Google Scholar 

  • Zohary, M. (1973a). Geobotanical foundations of the Middle East (Vol. 1, 340 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Zohary, M. (1973b). Geobotanical foundations of the Middle East (Vol. 2). Stuttgart: G. Fischer, 739 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfadenhauer, J.S., Klötzli, F.A. (2020). Zonal Vegetation of the Tropical-Subtropical Dry Zone. In: Global Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-49860-3_6

Download citation

Publish with us

Policies and ethics