Skip to main content

Biology, Phytochemistry, Pharmacology, and Biotechnology of European Ferns, Club Mosses, and Horsetails: A Review

  • Chapter
  • First Online:
Medicinal Plants

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 28))

Abstract

Pteridophytes found in Europe have been used for centuries for a variety of ailments but compared to angiosperms they constitute a relatively small group of medicinal plants. The term pteridophytes refer to a polyphyletic group of taxa that consists of club mosses, horsetails, psylophytes and ferns. Now, according to the Peridophyte Phylogeny Group they are members of the monophyletic class of Lycopodiopsida comprising some 1388 species and of the Polypodiopsida class which includes most of all pteridophytes (some 10,597 species). This review presents historical and updated information on pteridophyte taxonomy, secondary metabolites isolated from species screened for medicinal properties, their pharmacological activities, and the use of in vitro plant tissue culture techniques for the conservation of pteridophyte biodiversity and for the biosynthesis of their secondary metabolites. The analysis is based on a comprehensive review of the literature with the relevant papers retrieved from online databases (PubMed, Web of Science, Wiley, Science Direct, Elsevier’s Scopus, Google Scholar) and print sources (ACS Publications, SpringerLink and Elsevier journals). The analysis demonstrates that numerous pteridophyte species are a source of popular and valued herbal medicines used for the treatment of a variety of health problems and diseases. The major secondary metabolites isolated from pteridophytes and reported for their medicinal properties include alkaloids, polyphenols and flavonoids, although secondary metabolites belonging to other compound classes also may have a therapeutic value or they may modify the pharmacological activity of the major secondary metabolites. Numerous studies have demonstrated that pteridophyte extracts and their isolated secondary metabolites have a broad spectrum of pharmacological activity including anti-inflammatory, anticancer, cytotoxic, antibacterial, antiparasitic, antifungal, antiviral, and acetyl- and butyrylcholinesterase inhibitory effects. Importantly, of the 205 European pteridophyte species, only some 40 species have been investigated phytochemically and/or biologically. For some, protocols for in vitro micropropagation have been developed to aid ex-situ species conservation. Further studies are necessary to determine the composition of secondary metabolites and investigate biologically and pharmacologically the remaining 80% of the European pteridophyte flora.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam KP (1995) Caffeic acid-derivatives in fronds of the Lady Fern (Athyrium-Filix-Femina). Phytochemistry 40(5):1577–1578

    Article  CAS  Google Scholar 

  • Ahmed A, Jahan N, Wadud A, Imam H, Hajera S, Bilal A (2012) Physicochemical and biological properties of Adiantum capillus-veneris Linn: an important drug of unani system of medicine. Int J Curr Res Rev 4(21):70–75

    Google Scholar 

  • Ahmed D, Khan M, Saeed R (2015) Comparative analysis of phenolics, flavonoids and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves Antioxidants 4(2):394–409

    Google Scholar 

  • Aibuldinov Ye, Ozek G, Rakhmadiyeva S, Basher KHC (2012) Gas-chromatographic and mass spectrometric evaluation of essential oils of four ferns from Kazakhstan. Newsletter of L.N.Gumilyov Eurasian National University 6: 265–70

    Google Scholar 

  • Akeroyd J, Synge H (1992) Higher plant diversity. In: Groombridge B (ed) Global biodiversity status of the earth’s living resources, 1st edn. Springer, Dordrecht, pp 64–87

    Google Scholar 

  • Al-Maliki GM, Al-Khafaji KK, Karim RM (2017) Antibacterial activity of two water plants Nymphaea alba and Salvinia natans leaves against pathogenic bacteria. Int J Fish Aquat Stud 5(5):353–355

    Google Scholar 

  • Al-Snafi AE (2017) The pharmacology of Equisetum arvense—a review. IOSR J Pharm. 7(2):31–42

    Google Scholar 

  • Alonso-Amelot ME, Avendaño M (2002) Human carcinogenesis and bracken fern: a review of the evidence. Curr Med Chem 9:675–686

    Article  CAS  PubMed  Google Scholar 

  • Asgarpanah J, Roohi E (2012) Phytochemistry and pharmacological properties of Equisetum arvense L. J Med Plants Res 6:3689–3693

    CAS  Google Scholar 

  • Atmane N, Blervacq AS, Michaux-Ferriere N, Vasseur J (2000) Histological analysis of indirect somatic embryogenesis in the Marsh clubmoss Lycopodiella inundata (L.) Holub (Pteridophytes). Plant Sci 156:159–167. https://doi.org/10.1016/S0168-9452(00)00244-2

    Article  CAS  PubMed  Google Scholar 

  • Asgarpanah J, Roohi E (2012) Phytochemistry and pharmacological properties of Equisetum arvense L. J. Med Plants Res 6:3689–3693

    CAS  Google Scholar 

  • Aulakh MK, Kaur N, Saggoo MIS (2019) Bioactive phytoconstituents of pteridophytes—a review. Indian Fern J 36:37–79

    Google Scholar 

  • Ayer WA, Trifonov LS (1994) Lycopodium alkaloids. The alkaloids, vol 45. Academic, San Diego, pp 233–266

    Google Scholar 

  • Bagniewska-Zadworna A, Zenkteler E, Karolewski P, Zadworny M (2008) Phenolic compound localisation in Polypodium vulgare L. rhizomes after mannitol-induced dehydration and controlled desiccation. Plant Cell Rep 7:1251–1259. https://doi.org/10.1007/s00299-008-0548-3

    Article  CAS  Google Scholar 

  • Bahadori M, Mahmoodi Kordi F, Ali Ahmadi A, Bahadori S, Valizadeh H (2015) Antibacterial evaluation and preliminary phytochemical screening of selected ferns from Iran. Res J Pharmacog 2(2):53–59

    Google Scholar 

  • Bahadori MB, Sonboli A, Kordi FM, Dehghan H, Valizadeh H (2015) Cytotoxicity, antioxidant activity and phenolic content of eight fern species from North of Iran. Pharm Sci 21(1):18–24. https://doi.org/10.15171/PS.2015.12bmc.2010.12.025

  • Ballesteros D, Estrelles E, Walters C, Ibars AM (2011) Effect of storage temperature on green spore longevity for the ferns Equisetum ramosissimum and Osmunda regalis. CryoLetters 32:89–98

    CAS  PubMed  Google Scholar 

  • Bateman RM (1996) An overview of Lycophyte phylogeny. In: Camus JM, Gibby M, Johns RJ (eds) Pteridology in perpective. Royal Bot Gardens Kew, pp 405–417

    Google Scholar 

  • Bateman RM, Di Michelle WA, Willard DA (1992) Experimental clafdistican analyses of anatomically preserved arborescent Lycopsids from the Carboniferous of Euramerica: an essey in paleobotanical phylogenetics. Ann Mo Bot Gard 79:500–550

    Article  Google Scholar 

  • Ben Cao ZB (1999) Editorial committee of the administration bureau of traditional Chinese medicine. Shangai Science & Technology Press, Shangai, pp 122–124

    Google Scholar 

  • Bennert HW, Horn K, Kauth M, Fuchs J et al (2011) Flow cytometry confirms reticulate evolution and reveals triploidy in Central European Diphasiastrum taxa (Lycopodiaceae, Lycophyta). Ann Bot 108:867–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienaime C, Melin A, Bensaddek L, Attoumbré J, Nava-Saucedo E (2015) Effects of plant growth regulators on cell growth and alkaloids production by cell cultures of Lycopodiella inundata. Plant Cell Tissue Organ Cult 123(3):523–533. https://doi.org/10.1007/s11240-015-0856-6

  • Bouazzi S, Jmii H, ElR M, Faidi K, Falconieri D et al (2018) Cytotoxic and antiviral activities of the essential oils from Tunisian Fern, Osmunda regalis. S Afr J Bot 118:52–57. https://doi.org/10.1016/j.sajb.2018.06.015

    Article  CAS  Google Scholar 

  • Bresciani LF, Priebe JP, Yunes RA, Dal Magro J et al (2003) Pharmacological and phytochemical evaluation of Adiantum ceneatum growing in Brazil. Zeitschrift Für Naturforschung [c] 58:191–194

    Article  CAS  Google Scholar 

  • Caldeira CF, Abranches CB, Gastauer M, Ramos SJ, Guimarães JTF, Pereira JBS, Siqueira JO (2019) Sporeling regeneration and ex situ growth of Isoëtes cangae (Isoetaceae): initial steps towards the conservation of a rare Amazonian quillwort. Aquat Bot 152:51–58

    Article  Google Scholar 

  • Cheng JT, Liu F, Li XN, Wu XD, Dong LB, Peng LY, Huang SX, He J, Zhao QS (2013) Lycospidine A, a new type of Lycopodium alkaloid from Lycopodium complanatum. Org Lett 15:2438–2441. https://doi.org/10.1021/ol400907v

    Article  CAS  PubMed  Google Scholar 

  • Clericuzio M, Tinello S, Burlando B, Ranzato E, Martinotti S, Cornara L, La Rocca A (2012) Flavonoid oligoglycosides from Ophioglossum vulgatum L. having wound healing properties. Planta Med 78(15)1639–1644

    Google Scholar 

  • Czapski GA, Szypuła W, Kudlik M, Wilenska B, Kania M, Danikiewicz W, Adamczyk A (2014) Assessment of antioxidative activity of alkaloids from Huperzia selago and Diphasiastrum complanatum using in vitro systems. Folia Neuropathol 4:394–406

    Google Scholar 

  • Dall'Acqua S, Tomè F, Vitalini S, Agradi E, Innocenti G (2009) In vitro estrogenic activity of Asplenium trichomanes L. extracts and isolated compounds. J Ethnopharmacol 122(3):424–429

    Google Scholar 

  • Dar PA, Sofi G, Jafri MA (2012) Polypodium vulgare Linn. A versatile herbal medicine: a review. Int J Pharm Sci Res 3:1616–1620

    Google Scholar 

  • De Maggio AE (1964) Organization in gametophyte callus of Lycopodium and its morphogenetic implications. Proc Natl Acad Sci U S A 52:854–859

    Article  PubMed  PubMed Central  Google Scholar 

  • De Monte FHM, JrJg DS, Russi M et al (2004) Antinociceptive and anti-inflammatory properties of the hydroalcoholic extract of stems from Equisetum arvense L. in mice. Pharmacol Res 49(3):239–243

    Article  PubMed  Google Scholar 

  • De Souza NJ, Ghisalberti EL, Rees HH, Goodwin TW (1970) Studies on insect moulting hormones: Biosynthesis of ecdysone, ecdysterone and 5β-hydroxyecdysterone in Polypodium vulgare. Phytochemistry 9(6):1247–1252

    Article  Google Scholar 

  • De Souza MM, PereiraMA AJV, Mora TC, Bresciani LF, Yunes RA, Delle Monache F, Cechinel-Filho V (2009) Filicene obtained from Adiantum cuneatum interacts with the cholinergic, dopaminergic, glutamatergic, GABAergic, and tachykinergic systems to exert antinociceptive effect in mice. Pharmacol Biochem Behav 93:40–46

    Article  PubMed  CAS  Google Scholar 

  • Dinan L (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57(3):325–339. https://doi.org/10.1016/S0031-9422(01)00078-4

  • Durdević L, Mitrović M, Pavlović P, Bojović S, Jarić S, Oberan L, Gajić G, Kostić O (2007) Total phenolics and phenolic acids content in leaves, rhizomes and rhizosphere soil under Ceterach officinarum D.C., Asplenium trichomanes L. and A. adiantum nigrum L. in the Gorge of Sićevo (Serbia). Ekol Bratislava 26:164–173

    Google Scholar 

  • Euw JV, Lounasmaa M, Reichstein T, Widén CJ (1980) Chemotaxonomy in Dryopteris and related fern genera. Review and evaluation of analytical methods. Studia Geobot 1(1):275–311

    Google Scholar 

  • Euw JV, Reichstein T, Widén CJ (1985) The Phloroglucinols of Dryopteris aitoniana PICHI SERM. (Dryopteridaceae, Pteridophyta). Helv Chim Acta 68:1251–1275

    Article  Google Scholar 

  • Farràs A, Cásedas G, Les F, Terrado EM, Mitjans M, López V (2019) Evaluation of anti-tyrosinase and antioxidant properties of four fern species for potential cosmetic applications. Forests 10:179

    Article  Google Scholar 

  • Freeberg JA, Wetmore RH (1957) Gametophytes of Lycopodium as grown in vitro. Phytomorphology 7:204–217

    Google Scholar 

  • Freeberg JA (1957) The apogamous development of sporelings of Lycopodium cernuum L., L. complanatum var. Flabelliforme Fernald and L. selago L. in vitro. Phytomorphology 7:217–229

    Google Scholar 

  • Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G (2016) Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem Rev 15(1):51–85. https://doi.org/10.1007/s11101-014-9384-y

    Article  CAS  Google Scholar 

  • Fons F, Froissard D, Morel S, Bessiere JM, Buatois B, Sol V, Fruchier A, Rapior S (2018). Pteridaceae fragrant resource and bioactive potential: a Mini-review of aroma compounds. Nat Prod Commun 13(5):651–655

    Google Scholar 

  • Francisco MS, Driver GC (1984) Anti-microbial activity of phenolic acids in Pteridium aquilinum. Am Fern J 743:87–96

    Article  Google Scholar 

  • Fraser-Jenkins CR, Widén CJ (1993) Phloroglucinol derivatives in Dryopteris-Ardechensis and D-Corleyi (Pteridophyta, Dryopteridaceae) and their putative ancestors. Ann Bot Fenn 30(1):43–51

    CAS  Google Scholar 

  • Froissard D, Fons F, Bessière JM, Buatois B, Rapior S (2011) Volatiles of French ferns and “fougère” scent in perfumery. Nat Prod Commun 6: 1723–1726

    Google Scholar 

  • Froissard D, Rapior S, Bessiere JM, Fruchier A, Buatois B, Fons F (2014) Volatile organic compounds of six French dryopteris species: natural odorous and bioactive resources. Nat Prod Commun 9(1):137–140

    CAS  PubMed  Google Scholar 

  • Froissard D, Rapiorb S, Bessièrec JM, Buatoisc B, Fruchierd A, Sola V, Fonsb F (2015) Asplenioideae species as a reservoir of volatile organic compounds with potential therapeutic properties. Nat Prod Com 10(6):1079–1083

    Google Scholar 

  • Furmanowa M, Michalska Z, Parczewski A, Zarębska I (1959) Lecznictwo renesansowe w Polsce na podstawie Herbarza Marcina z Urzędowa. Studia i Materiały z Dziejów Nauki Polskiej, Seria B Historia Nauk Biologicznych i Medycznych 2:233–313

    Google Scholar 

  • García CM, Väre H, Nieto A, Bento ER, Dyer R, et al (2017) European red list of lycopods and ferns. Brussels: IUCN. https://doi.org/10.2305/IUCN.CH.2017.ERL.1.en

  • Garrat MJ (1984) The appearance of Baragwanathia (Lycophytine) in the Silurian. Bot J Linn Soc 89:355–358

    Article  Google Scholar 

  • Ge X, Ye G, Li P, Tang W-J, Gao J-L, Zhao W-M (2008) Cytotoxic diterpenoids and sesquiterpenoids from Pteris multifida. J Nat Prod 71:227–231

    Article  CAS  PubMed  Google Scholar 

  • Gibby M, Rasbach H, Reichstein T, Widen CJ, Viane RLL (1992) Micromorphology, chromosome-numbers and phloroglucinols of arachniodes-foliosa and a-webbiana (Dryopteridaceae, Pteridophyta). Bot Helv 102(2):229–245

    Google Scholar 

  • Gleńsk M, Dudek MK, Ciach M, Włodarczyk M (2019) Isolation and structural determination of flavan-3-ol derivatives from the Polypodium vulgare L. rhizomes water extract. Nat Prodt Res. https://doi.org/10.1080/14786419.2019.1655302

  • González-Platas J, Ruiz-Pérez C, González AG, et al (1999) Filic-3-ene, a pentacyclic triterpene from Davallia canariensis. Acta Cryst C55:1835–1837. https://doi.org/10.1107/S0108270199009762

  • Gonzalez S, Gilaberte Y, Philips N (2010) Mechanistic insights in the use of a Polypodium leucotomos extract as an oral and tropical photoprotective agent. Photoch Photobiol Sci 9:559–563

    Article  CAS  Google Scholar 

  • Guo W, Shi K, Xiang G, Lu D, Dou H (2019) Effects of rhizoma drynariae cataplasm on fracture healing in a rat model of osteoporosis. Med Sci Mon Int Med J Exp Clin Res 25:3133–3133

    CAS  Google Scholar 

  • Grzybek J (1983) Phytochemical and biological investigations on Polypodium vulgare L. Acta Pol Pharm 40:259–263

    Google Scholar 

  • Haider S, Kharbanda C, Alam MS, Hamid H, Ali M, Alam M, Nazreen S, Ali Y (2013) Anti-inflammatory and anti-nociceptive activities of two new tri t e rpenoids from Adiantum capillus-vener is Linn. Nat Prod Res 27(24):2304–2310

    Article  CAS  PubMed  Google Scholar 

  • Halldorsdottir ES, Olafsdottir ES, Jaroszewski JW (2008) Alkaloid content of the Icelandic club moss Lycopodium annotinum—acetylcholinesterase inhibitory activity in vitro. Planta Med. 74:1043–1043. https://doi.org/10.1055/s-0028-1084398

  • Halldorsdottir ES, Jaroszewski JW, Olafsdottir ES (2010) Acetylcholinesterase inhibitory activity of lycopodane-type alkaloids from the Icelandic Lycopodium annotinum ssp alpestre. Phytochemistry 71:149–157. https://doi.org/10.1016/j.phytochem.2009.10.018

    Article  CAS  PubMed  Google Scholar 

  • Halldorsdottir ES, Palmadottir RH, Nyberg NT, Olafsdottir ES (2013) Phytochemical analysis of alkaloids from the Icelandic club moss Diphasiastrum alpinum. Phytochem Lett 6:355–359

    Article  CAS  Google Scholar 

  • Halldorsdottir ES, Kowal NM, Olafsdottir ES (2015) The genus Diphasiastrum and its Lycopodium alkaloids. Planta Med 81:995–1002. https://doi.org/10.1055/s-0035-1546182

    Article  CAS  PubMed  Google Scholar 

  • Hegnauer R (1962) Chemotaxonomie der Pflanzen, Band 1. Birkhäuser Verlag Basel und Stuttgart. 520 p

    Google Scholar 

  • Hirono I (1986) Carcinogenic principles isolated from bracken fern. Crit Rev Toxicol 17(1):1–22. https://doi.org/10.3109/10408448609037069

    Article  CAS  PubMed  Google Scholar 

  • Ho R, Teai T, Loquet D, Bianchini J-P, Girault J-P, Lafont R, Raharivelomanana P (2007) Phytoecdysterios in the genus Microsorum (Polypodiaceae) from French Polynesia. Nat Prod Com 2:803–806

    CAS  Google Scholar 

  • Ho R, Teai T, Bianchini J-P, Lafont R, Raharivelomanana P (2011) Ferns: from traditional uses to pharmaceutical development, chemical identification of active principles. In: Fernández H, Kumar A, Revilla MA (eds) Working with ferns. Springer, New York

    Google Scholar 

  • Hou M, Hu W, Wang A, Xiu Z, Shi Y, et al (2019) Ultrasound-assisted extraction of total flavonoids from Pteris cretica L.: process optimization, HPLC analysis, and evaluation of antioxidant activity. Antioxidants (Basel) 8(10):425. https://doi.org/10.3390/antiox8100425

  • House RP, Lagos S, Ochoa L, Torres C, Mejia T, Rivas M (1994) Plantas medicinales communes de Honduras. Honduras: UNAH-CIMN-HCID/CIIR.GTZ. https://doi.org/10.1248/cpb.57.877

  • Hu H, Zheng X (2005) Studied on the chemical compositions from the roots of Pteris multifida Poir. Tianran Chanwu Yanjiu Kaifa 17:169–171

    CAS  Google Scholar 

  • Hu H, Jian Y, Zheng X, Liu J, Cao H (2006) A new sesquiterpene glycoside from the roots of Pteris multifida Poir. Indian J Chem 45B:1274–1277

    CAS  Google Scholar 

  • Hua X, Yang Q, Zhang WJ, Dong ZM, Yu SY, Schwarz S, Liu SG et al (2018) Antibacterial activity and mechanism of action of aspidinol against multi-drug-resistant methicillin-resistant Staphylococcus aureus. Front Pharmaco 9:619

    Article  CAS  Google Scholar 

  • Huang Y-H, Zeng W-M, Li G-Y, Liu G-Q, Zhao D-D, Wang J, Zhang Y-L (2014) Characterization of a new sesquiterpene and antifungal activities of chemical constituents from Dryopteris fragrans (L.) Schott. Molecules 19(1):507–513

    Google Scholar 

  • Ibraheim ZZ, Ahmed AS, Gouda YG (2011) Phytochemical and biological studies of Adiantum capillus-veneris L. Saudi Pharm J 19(2):65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imperato F (1990) Kaempferol 3-Sophoroside-4’-Glucoside from Asplenium-septentrionale. Phytochemistry 29(10):3374–3375

    Article  CAS  Google Scholar 

  • Imperato F (1991) A new xanthone from the Fern Cystopterys-fragilis. J Nat Prod 54(2):603–605

    Article  CAS  Google Scholar 

  • Imperato F (1991) Polyphenolics of phylogenetic and biosynthetic interest from the fern Cystopteris-fragilis. Can J Bot 69(1):218–221

    Article  CAS  Google Scholar 

  • Imperato F (1991) Xanthone 2,4-di-C-glycosides from asplenium adiantum-nigrum. Phytochemistry 30(11):3839–3840

    Article  CAS  Google Scholar 

  • Imperato F (1994) Luteolin 8-C-rhamnoside-7-O-rhamnoside from Pteris cretica. Phytochemistry 37(2):589–590

    Article  CAS  PubMed  Google Scholar 

  • Imperato F (1994) A new flavone glycoside from the fern Pteris cretica. Experientia 50(11–12):1115–1116

    Article  CAS  PubMed  Google Scholar 

  • Imperato FA (2008) New flavonoid glycoside from the fern Dryopteris villarii. Nat Prod Commun 3:1709–1712. https://doi.org/10.1177/1934578X0800301026

    Article  CAS  Google Scholar 

  • Inubushi Y, Sano T, Tsuda Y (1964) Serratenediol: a new skeletal triterpenoid containing a seven member ring. Tetrahedron Let 21:1303–1310

    Article  Google Scholar 

  • Ishiuchi K, Kodama S, Kubota T, Hayashi S, Shibata T, Kobayashi J (2009a) Lannotinidines HJ, new Lycopodium alkaloids from Lycopodium annotinum. Chem Pharm Bull 57:877–881

    Article  CAS  Google Scholar 

  • Ishiuchi K, Kubota T, Hayashi S, Shibata T, Kobayashi J (2009b) Lycopladine H, a novel alkaloid with fused-tetracyclic skeleton from Lycopodium complanatum. Tetrahedron Lett 50:6534–6536. https://doi.org/10.1016/j.tetlet.2009.09.035

    Article  CAS  Google Scholar 

  • Ishiuchi K, Kubota T, Hayashi S, Shibata T, Kobayashi J (2009c) Lycopladines F and G, new C16N2-type alkaloids with an additional C4N unit from Lycopodium complanatum. Tetrahedron Lett 50:4221–4224. https://doi.org/10.1016/j.tetlet.2009.04.139

    Article  CAS  Google Scholar 

  • Ishiuchi K, Kubota T, Ishiyama H, Hayashi S, Shibata T, Kobayashi J (2011) Lyconadins C and F, new Lycopodium alkaloids from Lycopodium complanatum. Tetrahedron Lett 52:289–292. https://doi.org/10.1016/j.tetlet.2010.11.024

    Article  CAS  Google Scholar 

  • Ishiuchi K, Kubota T, Ishiyama H, Hayashi S et al (2011) Lyconadins D and E, and complanadine E, new Lycopodium alkaloids from Lycopodium complanatum. Bioorg Med Chem 19:749–753. https://doi.org/10.1016/j

    Google Scholar 

  • Ivanenko YuA, Tzvelev NN (2004) O rode Diphasiastrum (Lycopodiaceae) w Wostocznoj Evrope. Bot Zhur. 85(1):100–111

    Google Scholar 

  • Iwashina T, Lopez-Saez JA, Herrero A, Kitajima J, Matsumoto S (2000) Flavonol glycosides from Asplenium foreziense and its five related taxa and A-incisum. Biochem Syst Ecol 28(7):665–671

    Article  CAS  PubMed  Google Scholar 

  • Jędrzejko K, Klama H, Żarnowiec J (1997) Zarys wiedzy o roślinach leczniczych. Śląska Akademia Medyczna w Katowicach, Katowice – Sosnowiec, pp 1–695

    Google Scholar 

  • Jiang MZ, Yan H, Wen Y, Li XM (2011) vitro and in vivo studies of antioxidant activities of flavonoids from Adiantum capillus-veneris L Afr. J Pharm Pharmacol 5(18):2079–2085

    CAS  Google Scholar 

  • Jiang Y, Li D, Ma X, Jiang F, He Q, Qiu S, Li Y, Wang G (2018) Ionic liquid ultrasound-based extraction of biflavonoids from Selaginella helvetica and investigation of their antioxidant activity. Molecules 23(12):3284

    Article  PubMed Central  CAS  Google Scholar 

  • Jizba J, Herout V (1974) Plant Substances .38. Ponasterone-a and 22-hopanol, characteristic components of fern Blechnum-Spicant L. Collection of Czechoslovak. Chem Commun 39(12):3756–3759

    Google Scholar 

  • Johnson MA, Gowtham J, Janakiraman N, et al (2020) Phytochemical profile of Asplenium aethiopicum (Burm. f.) Becherer Using HPTLC. Separations 7,8

    Google Scholar 

  • Katakawa K, Mito H, Kogure N, Kitajima M et al (2011) Ten new fawcettimine-related alkaloids from three species of Lycopodium. Tetrahedron 67:6561–6567. https://doi.org/10.1016/j.tet.2011.05.107

    Article  CAS  Google Scholar 

  • Kennrick P, Crane P (1997) The origin and early diversification of land plants: Achladistic study. Washington: Smithsonian 389:33–39

    Google Scholar 

  • Kenrick P, Davis P (2004) Fossil plants. Natural History Museum, London, p 216

    Google Scholar 

  • Kim HJ, Lim HW, Choi SW, Yoon CS (2006) Antimicrobial effect of ethanol extract of Dryopteris crassirhizoma Nakai on Propionibacterium acnes. J Soc Cosm Chem 32:201–208

    Google Scholar 

  • Kim MM, Kim SK (2010) Effect of phloroglucinol on oxidative stress and inflammation. Food Chem Toxicol 48(10):2925–2933

    Article  CAS  PubMed  Google Scholar 

  • Kim Jung W, Seo Ji Y, Oh Won K, Sung Sang H (2017) Anti-neuroinflammatory ent-kaurane diterpenoids from Pteris multifida Roots. Molecules 22(1):27

    Google Scholar 

  • Klama H (1992) Paprotniki i ich zastosowanie w lecznictwie. Wiadomości Zielarskie 2:18–22

    Google Scholar 

  • Kohlmünzer S (2007) Farmakognozja. Podręcznik dla studentów farmacji. Wyd. 5. Unowocześnione. Wydawnictwo Lekarskie PZWL. Warszawa, pp 220–225

    Google Scholar 

  • Kovganko NV, Kashkan ZN, Krivenok SN (2004) Bioactive compounds of the flora of Belarus 4 Pterosins A and B from Pteridium aquilinum. Chem Nat Compd 40(3):227–229

    Article  CAS  Google Scholar 

  • Kuang H, Zhang Y, Li L, GuoYu Z, WeiMin W et al (2008) A new phenolic glycoside from the aerial parts of Dryopteris fragrans. Fitoterapia 79(4):319–320

    Article  CAS  PubMed  Google Scholar 

  • Kuriyama A, Sugawara Y, Matsushima H, Takeuchi M (1990) Production of sporophyte structures from gametophytes by cytokinin in Equisetum arvense. Naturwissenschaften 77:31–32

    Article  CAS  Google Scholar 

  • Kuriyama A, Maeda M (1999) Direct production of sporophytic plants from spores of Equisetum arvense. Plant Cell Tiss Org Cult 58:77–79

    Article  Google Scholar 

  • Kumar A, Kaushik P (1999) Antibacterial effect of Adiantum capillus-veneris Linn. Indian Fern Journal 16:72–74

    Google Scholar 

  • Kuang H, Sun Chao Z, Yanli Z, Yanlong Ch, Dong Y et al (2009) Three drimane sesquiterpene glucoside from the aerial parts of Dryopteris fragrans (L.) Schot. Fitoterapia 80(2):134–137

    Google Scholar 

  • Lafont R, Dinan L (2003) Practical uses for ecdysteroids in mammals and human: an update. J Insect Sci 3:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafony R, Ho R, Raharivelomanana P, Dinan L (2011) Ecdysteroids in fern: distribution, diversity, biosynthesis and function- In: Fernández H, Kumar A, Revilla MA (eds) Working with ferns. Springer, New York

    Google Scholar 

  • Lai HY, Lim YY, Tan SP (2009) Antioxidative, tyrosinase inhibiting and antibacterial activities of leaf extracts from medicinal ferns. Biosci Biotechnol Biochem 73(6):1362–1366

    Article  CAS  PubMed  Google Scholar 

  • Lamer-Zarawska E, Kowal-Gierczak B, Niedworok J (eds) (2010) Fitoterapia i leki roślinne. 2010. Wydawnictwo Lekarskie PZWL, pp 5–30

    Google Scholar 

  • Lee HB, Kim JC, Lee SM (2009) Antibacterial activity of two phloroglucinols, flavaspidic acids AB and PB, from Dryopteris crassirhizoma. Arch Pharm Res 32:655–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenkiewicz A, Czapski GA, Jęśko H, Wilkaniec A, Szypuła W et al (2016) Potent effects of alkaloid-rich extract from Huperzia selago against sodium nitroprusside-evoked PC12 cells damage via attenuation of oxidative stress and apoptosis. Folia Neuropathol 2:156–166

    Article  Google Scholar 

  • Li B, NY, Zhu LJ, Wu FB, Yan F, Zhang X, Yao XS (2015) Flavonoids from Matteuccia struthiopteris and their anti-influenza virus (H1N1) activity. J Nat Prod 78: 987–995

    Google Scholar 

  • Lin LC, Chou CJ (2000) Three new biflavonoids from Selaginella delicatula. Chinese Pharm J 52(4):211–218

    CAS  Google Scholar 

  • Lin LC, Kuo YC, Chou CJ (2000) Cytotoxic biflavonoids from Selaginella delicatula. J Nat Prod 63(5):627–630

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wujisguleng W, Long C (2012) Food uses of ferns in China: a review. Acta Soc Bot Pol 81(4):263–270. https://doi.org/10.5586/asbp.2012.046

    Article  Google Scholar 

  • Liu Z-D, Zhao D-D, Jiang S, Xue B, Zhang Y-L, Yan X-F (2018) Anticancer phenolics from Dryopteris fragrans (L.) Schott. Molecules 23,680

    Google Scholar 

  • Lombardi VRM, Eetcheverria I, Fernandez-Novoa L, Diaz J, Seoane S, Cacabelos R (2005) In vitro response of rat microglia and human polymorphonuclear cells (PMN) to immunoactive compounds. Orient Pharm Exp Med 5(3):216–230. https://doi.org/10.3742/opem.2005.5.3.216

    Article  Google Scholar 

  • López-Sáez JA, Pérez-Alonso MJ, Negueruela AV (1994a) Biflavonoids of Selaginella denticulata growing in Spain. Z Naturforsch C 49(3/4):267–270

    Article  Google Scholar 

  • López-Sáez JA, Pérez-Alonso MJ, Velasco Negueruela A (1994b) The biflavonoid pattern of Selaginella selaginoides. Zeitschrift Für Naturforschung, C: J Biosci 49:265–355

    Article  Google Scholar 

  • Lopez-Saez JA, Perez-Alonso MJ, Velasco-Negueruela A (1995) Flavonoids of Selaginella denticulata and S. selaginoides. Fitoterapia 66(2):188–189

    Google Scholar 

  • Lu J, Peng C, Cheng S, Liu J, Ma Q, Shu J (2019) Four new pterosins from Pteris cretica and their cytotoxic activities. Molecules 24(15):2767. https://doi.org/10.3390/molecules24152767

    Article  PubMed Central  Google Scholar 

  • Lucca DM (1992) Flora medicinal Boliviana: Diccionario Enciclopedico. Editorial Los Amigos del Libro, Bolivia

    Google Scholar 

  • Ma X, Gang DR (2004) The Lycopodium alkaloids. Nat Prod Rep 21:752–772. https://doi.org/10.1039/b409720n

    Article  CAS  PubMed  Google Scholar 

  • Magalhăes LG, Kapadia GJ, Da Silva Tonuci LR, Caixeta SC, Parreira NA, Rodrigues V, Da Silva Filho AA (2009) In vitro schistosomicidal effects of some phloroglucinol derivatives from Dryopteris species against Schistosoma mansoni adult worms. Parasito Res 106:395–401

    Article  Google Scholar 

  • Magrini S, Azzella MM, Bolpagni R, Zucconi L (2020) In Vitro propagation of Isoëtes sabatina (Isoetaceae): a key conservation challenge for a critically endangered quillwort. Plants 9(7):887. https://doi.org/10.3390/plants9070887

    Article  CAS  PubMed Central  Google Scholar 

  • Makowski D, Mikuła A, Rybczyński JJ (2011) Cryopreservation of Asplenium cuneifolium gametophyte and regeneration of plant material in post-rewarming culture. Cryopreservation of Crop Species in Europe. Eur Coop Sci Technol, Angers, pp 151–153

    Google Scholar 

  • Manhas S, Attri Ch, Seth MK, Seth A (2018) Determination of phytochemical constituents and evaluation of antimicrobial activity of medicinal fern Christella dentata. Indian Fern J 35:169–178

    Google Scholar 

  • Manske RHF, Marion L (1942) The alkaloids of Lycopodium species. L. complanatum. Canad J Res 20b (5):87–92

    Google Scholar 

  • Martin KP, Sini S, Zhang C-L, Slater A, Madhusoodanan PV (2006) Efficient induction of apospory and apogamy in vitro in silver fern (Pityrogramma calomelanos L.). Plant Cell Rep 25:1300–1307

    Article  CAS  PubMed  Google Scholar 

  • Marszał-Jagacka J, Kromer K (2010) In vitro propagation of rare and endangered serpentine fern species. In: Kumar A, Fernández H, Revilla MA (eds) Working with ferns: issues and applications. Springer, New York, NY, pp 149–164

    Google Scholar 

  • Matsuoka A, Hirosawa A, Natori S, Iwasaki S, Toshio S, Motoi I Jr (1989) Mutagenicity of ptaquiloside, the carcinogen in bracken, and its related illudane-type sesquiterpenes. Mut Res 215(2):179–185

    Article  CAS  Google Scholar 

  • Mehra PN, Tc M (1961) Significance of internal secretory glands in relation to filicin. Planta Med 9:189–199

    Article  CAS  Google Scholar 

  • Mehltreter K, Walker LR, Sharpe JM (eds) (2010) Fern ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Messeguer J, Melé E, Reixach N, Irurre-Santilari J, Casas J (1998) Polypodium vulgare L. (Wood Fern): In vitro cultures and the production of phytoecdysteroids. In: Bajaj YPS (eds) Medicinal and aromatic plants X. Biotechnology in agriculture and forestry, tom 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58833-4_17

  • Meybeck A, Ho R, Teai T, Raharivelomanana P (2010) Use of aqueous of organic or aqueous organic extract of Microsorum. PCT In. Appl, coden:pixxd2 wo 2010007247(a2)

    Google Scholar 

  • Milovanovic V, Radulovic N, Todorovic Z et al (2007) Antioxidant, antimicrobial and genotoxicity screening of hydro-alcoholic extracts of five serbian Equisetum Species. Plant Food Hum Nutr 62(3):113–119

    Article  Google Scholar 

  • Minarchenko V, Tymchenko I, Dvirna T, Makhynia L (2017) A review of the medicinal ferns of ukraine Scripta. Sci Pharm 4(1):7–23

    Google Scholar 

  • Mir SA, Mishra AK, Reshi ZA, Sharma MP (2013) Preliminary phytochemical screening of some Pteridophytes from district Shopian (J&K) Int J Pharm Pharm Sci 5(4):632–637

    Google Scholar 

  • Miyazawa M, Horiuchi E, Kawata J (2007) Components of the essential oil from Matteuccia struthiopteris. J Oleo Sci 56:457–461

    Article  CAS  PubMed  Google Scholar 

  • Moerman DE (1998) Native American ethnobotany. Timber Press, Oregon

    Google Scholar 

  • Moran RC (2004) A natural history of ferns Portland. Timber Press, Portland

    Google Scholar 

  • Moran RC (2008) Diversity, biogeography, and floristics. In: Ranker TA, Haufler CH (eds) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, pp 367– 394

    Google Scholar 

  • Mukhopadhyay R, Gupta K (2005) Antifungal activity of the crude extracts and extracted phenols from gametophytes and sporophytes of two species of Adiantum. Taiwania 50(4):272–283

    Google Scholar 

  • Murakami T, Wada H, Tanaka N, Kido T, Iida H, Saiki Y, Chen CM (1986) Chemical and chemotaxonomical studies of Filices. LXV. A few new flavonoid glycosides (2). Yakugaku Zasshi 106:982–988

    Article  CAS  Google Scholar 

  • Muszyński J (1946) Widłaki i ich zastosowanie w lecznictwie. Far Pol 10:309–315

    Google Scholar 

  • Nakane T, Maeda Y, Ebihara H, Arai Y, Masuda K, Takano A et al (2002) Fern constituents: triterpenoids from Adiantum capillus-veneris. Chem Pharm Bull 50:1273–1275

    Article  CAS  Google Scholar 

  • Negri G (1979) Descrizione e proprieta delle plante medicinali e velenose. In Nuovo erbario figurato, Hoepli, Milano: Vitalita, pp 19–20

    Google Scholar 

  • Nguyen KH (2005) Assessment of anti-diabetic effect of Vietnamese herbal drugs. Endrocrine and Diabetes Unit, Department of Moelcular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden, 53 p

    Google Scholar 

  • Nwiloh BI, Monago CC, Uwakwe AA (2014) Chemical composition of essential oil from the fiddleheads of Pteridium aquilinum L. Kuhn found in Ogoni. J Med Plants Res 8(1):77–80

    Google Scholar 

  • Oh H, Kim DH, Cho JH, Kim YC (2004) Hepatoprotective and free radical scavenging activities of phenolic petrosins and flavonoids isolated from Equisetum arvense. J Ethnopharmacol 95:421–424

    Article  CAS  PubMed  Google Scholar 

  • Oh M, Kim C, Na H, Shin H, Liu J, Choi H, Kim S (2013) High frequency sporophytes regeneration from the spore culture of the endangered aquatic fern Isoetes coreana . Am J Plant Sci 4(6A):14–20. https://doi.org/10.4236/ajps.2013.46A003

    Article  Google Scholar 

  • Oniga I, Toiu A, Mogosan C, Bodoki E (2004) Preliminary investigations of Phyllitis scolopendr ia (L) Newman (Polypodiaceae) Farmacia 52:48–54

    Google Scholar 

  • Orellana C (2001) Ferns and gastric cancer in Venezuelan Andes. Lancet Oncol 2(3):P125. https://doi.org/10.1016/s1470-2045(00)00240-0

    Article  Google Scholar 

  • Ouyang D, Yang P, Kong D (2008) Chemical constituens from Pteris multifida Poir. Zhongguo Yiyao Gongye Zazhi 39:898–900

    CAS  Google Scholar 

  • Pacyna A (972) Biometrics and taxonomy of the polish species of the genus Diphasium Presl. Fragm Flor Geobot 18(3–4):255–277

    Google Scholar 

  • Pan C, Chen YG, Ma XY, Jiang JH, He F, Zhang Y (2011) Phytochemical constituents and pharmacological activities of plants from the genus Adiantum: a review. Trop J Pharm Res 10(5):681–692

    CAS  Google Scholar 

  • Pangua E, Lindsay S, Dyer A (1994) Spore germination and gametophyte development in three species of Asplenium. Ann Bot 73:587–593

    Article  Google Scholar 

  • Parihar P, Parihar L, Bohra A (2010) In vitro antibacterial activity of fronds (leaves) of some important pteridophytes. J Microbiol Antimicrobials 2:19–22

    Google Scholar 

  • Park K, Jang BK, Lee HM, Cho JS, Lee CH (2020) An efficient method for in vitro shoot-tip culture and sporophyte production using Selaginella martensii spring sporophyte. Plants 9:235. https://doi.org/10.3390/plants9020235

    Article  CAS  PubMed Central  Google Scholar 

  • Pekgoz AK, Cinbilgel I (2019) Phytochemical contents and antioxidant activities of fern, Asplenium ceterach L. Different Altitudes. Bangladesh J Bot 48(2):315–320

    Article  Google Scholar 

  • Peng B, Bai Rui-Feng L, Ping H, Xu-Yang W et al (2016) Two new glycosides from Dryopteris fragrans with anti-inflammatory activities. J Asian Nat Prod Res 18(1):59–64

    Article  CAS  PubMed  Google Scholar 

  • Phillipson JD, Melville C (1960) An investigation of the alkaloids of some British species of Equisetum. J Pharm Pharmacol 12:506–508. https://doi.org/10.1111/j.2042-7158.1960.tb12699.x

    Article  CAS  PubMed  Google Scholar 

  • Pomini L (1990) Erborista Italiana. Italy, Ed. Vitalità, 1140 p

    Google Scholar 

  • Pongpamorn P, Wanerlor S, Ruchirawat S, Thasana N (2016) Lycoclavatumide and 8 β,11 α-dihydroxylycopodine, a new fawcettimine and lycopodine-type alkaloid from Lycopodium clavatum. Tetrahedron 72:7065–7069. https://doi.org/10.1016/j.tet.2016.09.046

    Article  CAS  Google Scholar 

  • Pouny I, Etievant C, Marcourt L, Huc-Dumas I et al (2011) Protoflavonoids from Ferns Impair Centrosomal Integrity of Tumor Cells. Planta Med 77(5):461–466

    Article  CAS  PubMed  Google Scholar 

  • Potter DM, Baird MS (2000) Carcinogenic effects of ptaquiloside in bracken fern and related compounds. Br J Cancer 83(7):914–920. https://doi.org/10.1054/bjoc.2000.1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–621

    Article  CAS  PubMed  Google Scholar 

  • Qasim MA, Roy SK, Kamil M, Ilyas M (1985) Phenolic constituents of Selaginellaceae. Indian J Chem 24B(2):220

    CAS  Google Scholar 

  • Radulović N, Stojanović G, Palić R (2006) Composition and antimicrobial activity of Equisetum arvense L. essential oil. Phytother Res 20:85–88

    Article  PubMed  CAS  Google Scholar 

  • Radulovic N, Stojanovic G, Milovanovic V, Dokovic D, Randelovic V (2008) Volatile constituents of Equisetum fluviatile L. J Essent Oil Res 20:437–441

    Google Scholar 

  • Rai HS, Graham SW (2010) Utility of a large, multigene plastid data set in inferning higher-order relatiomships in ferns and relatives (monilophytes). Am J Bot 96:1444–1456

    Article  CAS  Google Scholar 

  • Rajurkar NS, Gaikwad K (2012) Evaluation of phytochemicals, antioxidant activity and elemental content of Adiantum capillus-veneris leaves. J Chem Pharm Res 4(1):365–374

    Google Scholar 

  • Reddy VL, Ravikanth V, Rao TP, Diwan PV, Venkateswarlu Y (2001) A new triterpenoid from the fern Adiantum lunulatum and evaluation of antibacterial activity. Phytochemistry 56:173–175

    Article  CAS  PubMed  Google Scholar 

  • Ranker TA, Haufler CH (eds) (2008) Biology and evolution of ferns and lycophytes. Cambridge University Press, Cambridge, 480 p

    Google Scholar 

  • Roos M (1996) Mapping the world’s pteridophyte diversity - systematics and floras. In: Camus JM, Gibby M, Johns RJ (eds) Pteridology in perspective. Royal Botanic Gardens, Kew, pp 29–42

    Google Scholar 

  • Ruggiero MA, Gordon DP, Ornell TM, Bailly N, et al (2015) A hogher level classification of all living prganisms. PloS ONE 10: eo119248.

    Google Scholar 

  • Salatino MLF, Prado J (1998) Flavonoid glycosides of Pteridaceae from Brazil. Biochem Syst Ecol 26(7):761–769

    Article  CAS  Google Scholar 

  • Saleem F, Khan MTJ, Saleem H, Azeem M, Ahmed S, Shahid N, Altaf H (2016) Phytochemical, antimicrobial and antioxidant activities of Pteris cretica L. (Pteridaceae) extracts. Acta Pol Pharm 73:1397–1403

    CAS  PubMed  Google Scholar 

  • Saleem A, Saleem M, Akhtar MF, Rasul A, Baig MMFA (2020) Chemical characterisation, in vitro antioxidant, cytotoxicity and safety evaluation of Polystichum braunii (Spenn.) Fee roots. Nat Prod Res Aug 3:1–6. https://doi.org/10.1080/14786419.2020.1797727

  • Šamec D, Pierz V, Srividya N, Wüst M, Lange BM (2019) Assessing chemical diversity in Psilotum nudum (L.) Beauv., a pantropical whisk fern that has lost many of its fern-like characters. Front Plant SciJul 10:868. https://doi.org/10.3389/fpls.2019.00868.

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428(6982):553–557. https://doi.org/10.1038/nature02361

    Article  CAS  PubMed  Google Scholar 

  • Schuettpelz E et al (2016) A community – derived classification for extant lycophytes and ferns. J Syst Evol 54(6):563–603

    Article  Google Scholar 

  • Schulz C, Little DP, Stevenson DW, Bauer D, Moloney C, Stützel T (2010) An overview of the morphology, anatomy, and life cycle of a new model species: the lycophyte Selaginella apoda (L.) Spring. Int J Plant Sci 171:693–712

    Article  Google Scholar 

  • Signe JK, Aponglen GA, Ajeck JM, Taiwe GS (2020) Anticonvulsant activities of friedelan-3-one and n-dotriacontane both isolated from Harungana madagascariensis Lam (Hypericaceae) seeds extracts. J Med Plant Res 14(10):509–517

    Article  Google Scholar 

  • Singh M, Singh N, Khare PB, Rawat AKS (2008) Antimicrobial activity of some important Adiantum species used traditionally in indigenous system of medicine. J Ethnopharmacol 115:327–329

    Article  CAS  PubMed  Google Scholar 

  • Soare LC, Ferdes M, Stefanov S, Denkova Z, Nicolova R, Denev P, Bejan C, Paunescu A (2012) Antioxidant activity, polyphenols content and antimicrobial activity of several native pteridophytes of Romania. Not Bot Horti Agrobot Cluj Napoca 40(1):53–57

    Article  CAS  Google Scholar 

  • Soare LC, Şuţan NA (2018) Current trends in pteridophyte extracts: from plant to nanoparticles. In: Fernández H (ed) Current advances in fern research. Springer, Cham, pp 329–357

    Chapter  Google Scholar 

  • Somer M, Arbesú R, Menéndez V, Revilla MA, Fernández H (2010) Sporophyte induction studies in ferns in vitro. Euphytica 171(2):203–210

    Article  Google Scholar 

  • Srilaxmi P, Sareddy GR, Kavi Kishor PB, Setty OH, Babu PP (2010) Protective efficacy of natansnin, a dibenzoyl glycoside from Salvinia natans against CCl4 induced oxidative stress and cellular degeneration in rat liver. BMC Pharmacol 10:13. https://doi.org/10.1186/1471-2210-10-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoor AM, Boudrie M, Jérôme C, Horn K, Bennert HW (1996) Diphasiastrum oellgaardii (Lycopodiaceae, Pteridophyta), a new Lycopod species from Central Europe and France. Feddes Repert 107(3–4):149–157

    Article  Google Scholar 

  • Szypuła W, Pietrosiuk A, Suchocki P, Olszowska O, Furmanowa M, Kazimierska O (2005) Somatic embryogenesis and in vitro culture of Huperzia selago shoots as a potential source of Huperzine A. Plant Sci 168:1443–1452. https://doi.org/10.1016/j.plantsci.2004.12.021

    Article  CAS  Google Scholar 

  • Szypuła WJ, Mistrzak P, Olszowska O (2013) A new and fast method to obtain in vitro cultures of Huperzia selago (Huperziaceae) sporophytes, a club moss which is a source of Huperzine A. Acta Soc Bot Pol 82:313–320. https://doi.org/10.5586/asbp.2013.034

    Article  CAS  Google Scholar 

  • Szypuła WJ, Wileńska B, Misicka A, Pietrosiuk A (2020) Huperzine A and Huperzine B Production by Prothallus Cultures of Huperzia selago (L.) Bernh. ex Schrank et Mart. Molecules 25(14):3262. https://doi.org/10.3390/molecules25143262u

  • Szypuła WJ, Pietrosiuk A (2021) Production of cholinesterase-inhibiting compounds in in vitro cultures of club mosses. In: Ramawat KG, Ekiert HM, Goyal S (eds) Plant cell and tissue differentiation and secondary metabolites. Reference series in phytochemistry. Springer, Cham, pp 921–960. https://doi.org/10.1007/978-3-030-30185-9_30

  • Takemoto T, Hikino Y, Arai T, Kawahara M, Konno C, Arihara S, Hikino H (1967) Isolation of insect moulting substances from Matteuccia struthiopteris, Lastrea thelypteris, and Onoclea sensibilis. Chem Pharm Bull 15:1816

    CAS  Google Scholar 

  • Tang Y, Xiong J, Zou YK, Wang W, Huang C, Zhang HY, Hu JF (2017) Annotinolide F and lycoannotines A-I, further Lycopodium alkaloids from Lycopodium annotinum Phytochemistry 143:1–11

    Article  CAS  PubMed  Google Scholar 

  • Troi, A, Pereira JB, Kim C, Taylor WC (2016) The genus Isoetes (Isoetaceae): a provisional checklist of the accepted and unresolved taxa. Phytotaxa 277:101–145. https://doi.org/10.11646/phytotaxa.277.2.1

  • Uddin MG, Mirza MM, Pasha MK (1998) The medicinal uses of pteridophytes of Bangladesh. Bangladesh J Plant Taxon. 5(2):29–41

    Google Scholar 

  • UmiKalsom Y, Grayerbarkmeijer RJ, Harborne JB (1994) A Comparison of the Flavonoids in Athyriaceae and Aspleniaceae. Biochem Syst Ecol 22(6):587–594

    Article  CAS  Google Scholar 

  • Valentine DH (1964) Lycopodiaceae L. In: Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, WEBB DA (eds) Flora Europea, vol I. Cambridge University Press, Cambridge, pp 3–4

    Google Scholar 

  • Valizadeh H, Sonboli A, Kordi FM, Dehghan H, Bahadori MB (2015) Cytotoxicity, antioxidant activity and phenolic content of eight fern species from North of Iran. Pharm Sci 21(1):18

    Article  Google Scholar 

  • Veit M, Bilger T, Muhlbauer T, Brummet W, Winter K (1996) Diurnal changes in flavonoids. J Plant Physiol 148(3–4):478–482

    Article  CAS  Google Scholar 

  • Vetter J (2010) Toxicological medicinal aspects of the most frequent fern species, Pteridium aquilinum (L.) Kuhn. In: Kumar A, Fernandez H, Revilla MA (eds) Working with ferns: issues and applications. Springer, New York, pp 361–375

    Google Scholar 

  • Vetter J (2018) Secondary metabolites of ferns. In: Fernandez H (eds) Current advances in fern research. Springer, Berlin,pp 307–327

    Google Scholar 

  • Villalobos VM, Engelmann F (1995) Ex situ conservation of plant germplasm using biotechnology. World J Microbiol Biotechnol 11(375):382

    Google Scholar 

  • Vogler G, Donath O, Saukel J, Rauch AW, Kählig H, Krenn L. (2012) Polar phenolic compounds in Dryopteris filix-mas and Dryopteris dilatata. Verh Zool-Bot Ges Österreich. 148/149:279–289

    Google Scholar 

  • Voirin B, Jay M (1974) Presence of 3-Methylquercetin in Asplenium-Viride. Phytochemistry 13(1):275–276

    Article  CAS  Google Scholar 

  • Voirin B, Jay M (1978) Contribution of flavone biochemistry to systematics of the Lycopodiales order Lycopodium genus. Bioch Sys Ecol 6:95–97

    Article  CAS  Google Scholar 

  • Voirin B, Lebreton P (1967) Recherches chimiotaxinomiques sur les plantles vascularies. Sur la presence de métyl-6 chrysine chez la fougére Lonchitis tisserantii Alston et Tardieu.Buletin de la Société de Chimie Biologique 49(10):1402–1405

    Google Scholar 

  • Wagner WH Jr, Wagner F (1980) Polyploidy in pteridophytes. Basic Life Sci 13:199–214. https://doi.org/10.1007/978-1-4613-3069-1_11

    Article  Google Scholar 

  • Wang G, Zhang L-M (2008) Study of the extract from Pteris multifida Poir. on antitumor activity. Hebeisheng Kexueyuan Xuebao 25:52–54

    CAS  Google Scholar 

  • Webster TR (1979) An artificial crossing technique for Selaginella. Am Fern 69:913

    Google Scholar 

  • Wei H-A, Lian T-W, Tu Y-C, Hong J-T, Kou M-C, Wu M-J (2007) Inhibition of low-density lipoprotein oxidation and oxidative burst in polymorphonuclear neutrophils by caffeic acid and hispidin derivates isolated from sword brake ferns (Pteris ensiformis Burm.). J Agri Food Chem 55:10579–10584

    Article  CAS  Google Scholar 

  • Wickett NJ., Mirarab S, Nguyen N, Warnow Ts et al (2014) Phylotranscriptsomia analysis of the orogon and early diversification of land plants. Procaed Nat Acad Sc USA 11:E 4859–4868

    Google Scholar 

  • Widén CJ, Faden RB, Lounasmaa M, Vida G, Euw JV, Reichstein T (1973) Phloroglucides of Nine Dryopteris Species from Kenya and Dryopteris-Oligodonta (Desv) Pinc-Scerm and Dryopteris-Dilatata from Canary Islands. Helv Chim Acta 56(7):2125–2151

    Article  Google Scholar 

  • Widén CJ, Fraser-Jenkins CR, Lounasma M, Euw JV, Reichste T (1973b) Phloroglucides of Dryopteris-Caucasica (A.Br.) Fraser-Jenkins and Corley. Helv Chim Acta 56(3):831–838

    Google Scholar 

  • Widén CJ, Lounasmaa M, Jermy AC, Euw JV, Reichstein T (1976) Phloroglucinols of 2 Fern Hybrids from England and Scotland, of Authentic Aspidium-Remotum Braun, a and of Dryopteris-Aemula (Aiton) Kuntze from Ireland. Helv Chim Acta 59(5):1725–1744

    Article  Google Scholar 

  • Widén C-J, Huurre S, Iwatsuki K (1978) Chemotaxonomic studies on Aranchniodes (Dryopteridaceae) II. Phloroglucinol Derivatives and Taxonomic Evaluation. Bot Mag Tokyo 91:247–254

    Article  Google Scholar 

  • Widén C-J, Fraser-Jenkins CR, Reichstein T, Gibby M, Sarvela J (1996) Phloroglucinol derivatives in Dryopteris sect. Fibrillosae and related taxa (Pteridophyta, Dryopteridaceae). Ann Bot Fenn 33:69–100

    Google Scholar 

  • Widén C-J, Cr F-J, Reichstein T, Sarvela J (1999) A survey of phenolic compounds in Dryopteris and related fern genera. Part II. Phloroglucinol derivatives in subgenus Dryopteris (Pteridophyta, Dryopteridaceae). Acta Bot Fenn 164:16–54

    Google Scholar 

  • Widén CJ, Fraser-Jenkins CR, Roux JP (2015) A survey of phenolic compounds in Dryopteris and related fern genera. Part IV. Phloroglucinol derivatives and morphology in the section Marginatae (Pteridophyta, Dryopteridaceae) Ann. Bot Fen. 52(1–2):53–83

    Google Scholar 

  • Whittier DP, Storchova H (2007) The gametophyte of Huperzia selago in culture. Am Fern J 97(3):149–154

    Article  Google Scholar 

  • Wollenweber E, Stevens JF, Ivanic M, Ml D (1998) Acylphloroglucinols and flavonoid aglycones produced by external glands on the leaves of two Dryopteris ferns and Currania robertiana. Phytochemistry 48(6):931–939. https://doi.org/10.1016/S0031-9422(97)01003-0

    Article  CAS  Google Scholar 

  • Wong KC, Pang WY, Wang XL, Mok SK et al (2013) Drynaria fortunei-derived total flavonoid fraction and isolated compounds exert oestrogen-like protective effects in bone. Br J Nutr 110:475–485

    Article  CAS  PubMed  Google Scholar 

  • Wright CI, Van-Buren L, Kroner CI, Koning MMG (2007) Herbal medicines as diuretics: A review of the scientific evidence. J Ethnopharmacol 114(1):1–31

    Article  CAS  PubMed  Google Scholar 

  • Wróbel D (2020) Proposition of a key to Equisetum genus. Herbalism 1(6):95–99

    Google Scholar 

  • Wróbel D, Różański H (2020) Equisetum fluviatile L. water horsetail (Equisetaceae Michx. ex DC.). Herbalism 1(6)100–112

    Google Scholar 

  • Wyk B-E, Wink M (2004) Medicinal Plants of the World. CABI, Nosworthy Way Wallingford Oxfordshire OX10 8DE UK, 520 pp

    Google Scholar 

  • Xue JS, Zhang B, Zhan HD, et al (2020) Phenylpropanoid derivatives are essential components of sporopollenin in vascular plants. Mol. Plant S1674–2052–2056

    Google Scholar 

  • Xueping L, Jiayuan L, Tao J, Lili Z, Yixi H et al (2018) Analysis of chemical composition and in vitro antidermatophyte activity of ethanol extracts of Dryopteris fragrans (L.) Schott. J Ethnopharmacol 226:36–43

    Article  CAS  Google Scholar 

  • Yamada K, Ojika M, Kigoshi H (2007) Ptaquiloside, the major toxin of bracken, and related terpene glycosides: chemistry, biology and ecology. Nat Prod Rep 24:798–813

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Duan J, Ai F, Li Y (2012) Chemical constituents from a Chinese fern Polypodium hastatum Thunb. Bioch Syst Ecole 44:275–278. https://doi.org/10.1016/j.bse.2012.06.013

    Article  CAS  Google Scholar 

  • Yao CP, Zou ZX, Zhang Y, Li J, Cheng F et al (2018) New adenine analogues and a pyrrole alkaloid from Selaginella delicatula. Nat Prod Res 4:1–7

    Google Scholar 

  • Yu S, Yan H, Zhang L, Shan M, Chen P, Ding A, Li SFY (2017) A Review on the Phytochemistry, Pharmacology, and Pharmacokinetics of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules 22(2):299

    Article  PubMed Central  CAS  Google Scholar 

  • Yuan Q, Wang J (2012) Ruan J (2012) Screening for bioactive compounds from Adiantum capillus-veneris L. J Chem Soc Pak 34:207–216

    CAS  Google Scholar 

  • Yuan Q, Zhang X, Liu Z, Song S, Xue P, Wang J, Ruan J (2013) Ethanol extract of Adiantum capillus-veneris L suppresses the production of inflammatory mediators by inhibi t ing NF-ĸB act ivat ion. J Ethnopharmacol 147(3):603–611

    Article  CAS  PubMed  Google Scholar 

  • Zarzycki K, Kaźmierczakowa R (eds) (1993) Polska czerwona księga roślin. Paprotniki i rośliny kwiatowe. Inst. Botaniki im. W. Szafera PAN, Instytut Ochrony Przyrody PAN. Kraków pp 305

    Google Scholar 

  • Zenkteler E (2000) Systemy wegetatywnego rozmnażania paproci in vivo oraz in vitro. Wydawnictwo Naukowe Uniwersytetu im. A. Mickiewicza w Poznaniu, pp 88–109

    Google Scholar 

  • Zhang T, Wang L, Duan D-H, Zhang Y-H, Huang S-X, Chang Y (2018) Cytotoxicity-Guided Isolation of Two New Phenolic Derivatives from Dryopteris fragrans (L.) Schott. Molecules 23,1652

    Google Scholar 

  • Zheng X-D, Hu H-B, Hu H-S (2008) A new Neolignan Glycoside from Pteris multifida Poir. Bull Korean Chem Soc 29(6)

    Google Scholar 

  • Zhong Z-C, Zhao D-D, Liu Z-D, Jiang S, Zhang Y-L (2017) A New Human Cancer Cell Proliferation Inhibition Sesquiterpene, Dryofraterpene A, from Medicinal Plant Dryopteris fragrans (L.) Schott. Molecules 22,180

    Google Scholar 

  • Zhou X-Ch, Abulimit M, Ababakril S, He Ch-X (2007) Study on Extraction and Anti-microbial Activities of Total Alkaloids from Dryopteris filix-mas (L.) Schott. Bull Disease Control & Prevention, 22 (5):14

    Google Scholar 

  • Zivkovic S, Milutinovic M, Maksimov V, Ciric A, Ivanov M, Bozunovic J, Banjanac T, Misic D (2020) Antioxidant and antimicrobial activity of two Asplenium species. S Afr J Bot 132:180–187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech J. Szypuła .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Szypuła, W.J., Pietrosiuk, A. (2021). Biology, Phytochemistry, Pharmacology, and Biotechnology of European Ferns, Club Mosses, and Horsetails: A Review. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Medicinal Plants. Sustainable Development and Biodiversity, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-74779-4_19

Download citation

Publish with us

Policies and ethics