Skip to main content

The Chemistry and Chemical Ecology of Lepidopterans as Investigated in Brazil

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 116

Abstract

The interdisciplinary field of Chemical Ecology in Brazil is currently composed of groups that emerged through the pioneering studies of Keith Spalding Brown Jr. and José Tércio Barbosa Ferreira. Following Keith Brown ‘s steps, José Roberto Trigo continued investigating the role of plant natural products in mediating the association among insects and their host plants, mainly in the Order Lepidoptera. The role of pyrrolizidine alkaloids in those associations was investigated extensively by Brown and Trigo, and most of what is currently known on this subject is based on their studies. The present work acknowledges their contribution to the Brazilian chemical ecology field and on insect–plant communication studies mediated by different chemical compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feeny P (1992) The evolution of chemical ecology: contributions from the study of herbivorous insects. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites, vol 2, 2nd edn. Academic Press, San Diego, p 1

    Google Scholar 

  2. Trigo JR, Bittrich V, Amaral Md C, Marsaioli AJ (2000) Ecologia química. Revista Chemkeys:1

    Google Scholar 

  3. Pilli RA, Zarbin PHG (2000) Editorial. J Brazil Chem Soc 11(6):0

    Google Scholar 

  4. Pinto AC, Rezende CM, Garcez FR, Epifanio RdA (2003) Um olhar holístico sobre a química de produtos naturais brasileira. Quim Nova 26:966

    Article  CAS  Google Scholar 

  5. Brown Jr KS (1965) A new l-α-amino acid from Lepidoptera. J Am Chem Soc 87:4202

    Article  CAS  PubMed  Google Scholar 

  6. Brown Jr KS (1967) Chemotaxonomy and chemomimicry: the case of 3-hydroxykynurenine. Syst Biol 16:213

    CAS  Google Scholar 

  7. Brown Jr KS (1980) A review of the genus Hypothyris Hübner (Nymphalidae), with descriptions of three new subspecies and early stages of H. daphisi. J Lepid Soci 34:152

    Google Scholar 

  8. Pareja M (2018) Alkaloids, plants and butterflies: a farewell to José Roberto Trigo (1956–2017). Neotrop Entomol 47:4

    Article  CAS  PubMed  Google Scholar 

  9. Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct Ecol 2:131

    Article  Google Scholar 

  10. Althaus JB, Jerz G, Winterhalter P, Kaiser M, Brun R, Schmidt TJ (2014) Antiprotozoal activity of Buxus sempervirens and activity-guided isolation of O-tigloylcyclovirobuxeine-B as the main constituent active against Plasmodium falciparum. Molecules 19:6184

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brown Jr KS, Kupchan SM (1962) A convenient separation of alkaloid mixtures by partition chromatography, using an indicator in the stationary phase. J Chromatogr 9:71

    Article  CAS  PubMed  Google Scholar 

  12. Brown Jr KS, Kupchan SM (1962) The structure of cyclobuxine. J Am Chem Soc 84:4590

    Article  CAS  Google Scholar 

  13. Brown Jr KS, Kupchan SM (1962) The configuration of cyclobuxine and its interrelation with cycloeucalenol. J Am Chem Soc 84:4592

    Article  CAS  Google Scholar 

  14. Brown Jr KS, Budzikiewicz H, Djerassi C (1963) Alkaloid studies XLII. The structures of dichotamine, 1-acetyl-aspidoalbidine and 1-acetyl-17-hydroxyaspidoalbidine: three new alkaloids from Vallesia dichotoma Ruiz et Pav. Tetrahedron Lett 4:1731

    Google Scholar 

  15. Brown Jr KS, Djerassi C (1964) Alkaloid studies. XLVI.1 The alkaloids of Aspidosperma obscurinervium Azembuja. A new class of heptacyclic indole alkaloids. J Am Chem Soc 86:2451

    Google Scholar 

  16. Brown Jr KS, Kupchan SM (1964) Buxus alkaloids. IV.1 The configuration of cyclobuxine and its interrelation with cycloeucalenol. J Am Chem Soc 86:4424

    Google Scholar 

  17. Gilbert B, Duarte AP, Nakagawa Y, Joule JA, Flores SE, Aguayo Brissolese J, Campello J, Carrazzoni EP, Owellen RJ, Blossey EC, Brown Jr KS, Djerassi C (1965) Alkaloid studies. L. The alkaloids of twelve Aspidosperma species. Tetrahedron 21:1141

    Google Scholar 

  18. Brown Jr KS, Sanchez LWE, Figueiredo AdA, Filho JMF (1966) Unusual mass spectral fragmentation of 21-oxoaspidoalbidine-type alkaloids. J Am Chem Soc 88:4984

    Article  CAS  Google Scholar 

  19. Garcia RMF, Brown Jr KS (1976) Alkaloids of three Aspidosperma species. Phytochemistry 15:1093

    Article  Google Scholar 

  20. Aniszewski T (2007) Biological significance of alkaloids. In: Aniszewski T (ed) Alkaloids–secrets of life. Elsevier Science, Amsterdam, p 141

    Google Scholar 

  21. Aniszewski T (2007) Biological significance of alkaloids. In: Aniszewski T (ed) Alkaloids–secrets of life. Elsevier Science, Amsterdam, p 61

    Google Scholar 

  22. Kurek J (2019) Alkaloids—their importance in nature and for human life. IntechOpen, London

    Book  Google Scholar 

  23. Kukula-Koch WA, Widelski J (2017) Alkaloids. In: Delgoda R (ed) Pharmacognosy. Academic Press, Boston, MA, p 163

    Chapter  Google Scholar 

  24. Waller GR, Nowacki EK (1978) The role of alkaloids in plants. In: Waller GR, Nowacki EK (eds) Alkaloid biology and metabolism in plants. Springer, Boston, MA, p 143

    Chapter  Google Scholar 

  25. O’Connor SE (2010) Alkaloids. In: Liu H-W, Mander L (eds) Comprehensive natural products II, vol 1. Elsevier, Oxford, UK, p 977

    Google Scholar 

  26. Aniszewski T (2007) The ecological role of alkaloids. In: Aniszewski T (ed) Alkaloids—secrets of life. Elsevier Science, Amsterdam, p 205

    Google Scholar 

  27. Brown Jr KS, Trigo JR (1995) The ecological activity of alkaloids. In: Cordell GA (ed) The alkaloids: chemistry and pharmacology, vol 47. Academic Press, San Diego, p 227

    Google Scholar 

  28. Robins DJ (1982) The pyrrolizidine alkaloids. Progr Chem Org Nat Prod 26:327

    Google Scholar 

  29. Hartmann T, Witte L (1995) Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 9. John Wiley & Sons, New York, p 155

    Google Scholar 

  30. Culvenor CCJ (1978) Pyrrolizidine alkaloids: occurrence and systematic importance in angiosperms. Bot Notiser 131:473

    CAS  Google Scholar 

  31. Ratmanova NK, Andreev IA, Leontiev AV, Momotova D, Novoselov AM, Ivanova OA, Trushkov IV (2020) Strategic approaches to the synthesis of pyrrolizidine and indolizidine alkaloids. Tetrahedron 76:131031

    Google Scholar 

  32. Schulz S, Beccaloni G, Brown Jr KS, Boppré M, Freitas AVL, Ockenfels P, Trigo JR (2004) Semiochemicals derived from pyrrolizidine alkaloids in male ithomiine butterflies (Lepidoptera: Nymphalidae: Ithomiinae). Biochem Syst Ecol 32:699

    Article  CAS  Google Scholar 

  33. Cardoso MZ (1997) Testing chemical defence based on pyrrolizidine alkaloids. Anim Behav 54:985

    Article  CAS  PubMed  Google Scholar 

  34. Brown Jr KS (1984) Chemical ecology of dehydropyrrolizidine alkaloids in adult Ithomiinae Lepidoptera Nymphalidae. Rev Brasil Biol 44:435

    CAS  Google Scholar 

  35. Brown Jr KS (1984) Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 309:707

    Article  CAS  Google Scholar 

  36. Brown Jr KS (1987) Chemistry at the Solanaceae/Ithomiinae interface. Ann Missouri Bot Gard 74:359

    Article  Google Scholar 

  37. Trigo JR, Witte L, Brown Jr KS, Hartmann T, Barata LES (1993) Pyrrolizidine alkaloids in the arctiid moth Hyalurga syma. J Chem Ecol 19:669

    Article  CAS  PubMed  Google Scholar 

  38. Trigo JR, Brown Jr KS, Witte L, Hartmann T, Ernst L, Barata LES (1996) Pyrrolizidine alkaloids: different acquisition and use patterns in Apocynaceae and Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Biol J Linn Soc 58:99

    Article  Google Scholar 

  39. Silva KL, Trigo JR (2002) Structure-activity relationships of pyrrolizidine, alkaloids in insect chemical defense against the orb-weaving spider Nephila clavipes. J Chem Ecol 28:657

    Article  CAS  PubMed  Google Scholar 

  40. Ferro VG, Guimarães Jr PR, Trigo JR (2006) Why do larvae of Utetheisa ornatrix penetrate and feed in pods of Crotalaria species? Larval performance vs. chemical and physical constraints. Entomol Exp Appl 121:23

    Google Scholar 

  41. Robinson MH, Mirick H (1971) The predatory behavior of the golden-web spider Nephila clavipes (Araneae: Araneidae). Psyche 78:057182

    Google Scholar 

  42. Vasconcellos-Neto J, Lewinsohn TM (1984) Discrimination and release of unpalatable butterflies by Nephila clavipes, a neotropical orb-weaving spider. Ecol Entomol 9:337

    Article  Google Scholar 

  43. Freitas AVL, Trigo JR, Brown Jr KS, Witte L, Hartmann T, Barata LES (1996) Tropane and pyrrolizidine alkaloids in the ithomiines Placidula euryanassa and Miraleria cymothoe (Lepidoptera: Nymphalidae). Chemoecology 7:61

    Article  CAS  Google Scholar 

  44. Trigo JR, Brown Jr KS (1990) Variation of pyrrolizidine alkaloids in Ithomiinae: a comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology 1:22

    Article  CAS  Google Scholar 

  45. Trigo JR, Motta PC (1990) Evolutionary implications of pyrrolizidine alkaloid assimilation by danaine and ithomiine larvae (Lepidoptera: Nymphalidae). Experientia 46:332

    Article  CAS  Google Scholar 

  46. Trigo JR, Barata LES, Brown Jr KS (1994) Stereochemical inversion of pyrrolizidine alkaloids by Mechanitis polymnia (Lepidoptera: Nymphalidae: Ithomiinae): specificity and evolutionary significance. J Chem Ecol 20:2883

    Article  CAS  PubMed  Google Scholar 

  47. Trigo J, Brown Jr KS, Henriques SA, Barata LES (1996) Qualitative patterns of pyrrolizidine alkaloids in Ithomiinae butterflies. Biochem Syst Ecol 24:181

    Article  CAS  Google Scholar 

  48. Orr AG, Trigo JR, Witte L, Hartmann T (1996) Sequestration of pyrrolizidine alkaloids by larvae of Tellervo zoilus (Lepidoptera: Ithomiinae) and their role in the chemical protection of adults against the spider Nephila maculata (Araneidae). Chemoecology 7:68

    Article  CAS  Google Scholar 

  49. Brückmann M, Trigo JR, Foglio MA, Hartmann T (2000) Storage and metabolism of radioactively labeled pyrrolizidine alkaloids by butterflies and larvae of Mechanitis polymnia (Lepidoptera: Nymphalidae, Ithomiinae). Chemoecology 10:25

    Article  Google Scholar 

  50. Eisner T (1982) For love of Nature: exploration and discovery at biological field stations. Bioscience 32:321

    Article  CAS  Google Scholar 

  51. Martins CHZ, Cunha BP, Solferini VN, Trigo JR (2015) Feeding on host plants with different concentrations and structures of pyrrolizidine alkaloids impacts the chemical-defense effectiveness of a specialist herbivore. PLoS One 10:e0141480

    Google Scholar 

  52. Cogni R, Futuyma DJ (2009) Local adaptation in a plant herbivore interaction depends on the spatial scale. Biol J Linn Soc 97:494

    Article  Google Scholar 

  53. Cogni R, Trigo JR, Futuyma DJ (2011) Varying herbivore population structure correlates with lack of local adaptation in a geographic variable plant-herbivore interaction. PLos One 6:e29220

    Google Scholar 

  54. Verçosa D, Cogni R, Alves MN, Trigo JR (2019) The geographical and seasonal mosaic in a plant-herbivore interaction: patterns of defences and herbivory by a specialist and a non-specialist. Sci Rep 9:15206

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hoina A, Martins CHZ, Trigo JR, Cogni R (2013) Preference for high concentrations of plant pyrrolizidine alkaloids in the specialist arctiid moth Utetheisa ornatrix depends on previous experience. Arthropod-Plant Interact 7:169

    Article  Google Scholar 

  56. Cogni R, Trigo JR, Futuyma DJ (2012) A free lunch? No cost for acquiring defensive plant pyrrolizidine alkaloids in a specialist arctiid moth (Utetheisa ornatrix). Mol Ecol 21:6152

    Article  CAS  PubMed  Google Scholar 

  57. Guimarães JRPR, Raimundo RLG, Bottcher C, Silva RR, Trigo JR (2006) Extrafloral nectaries as a deterrent mechanism against seed predators in the chemically protected weed Crotalaria pallida (Leguminosae). Aust Ecol 31:776

    Article  Google Scholar 

  58. Magalhães AE, Martins CHZ, Verçosa D, Massuda KF, Trigo JR (2017) Ants visiting extrafloral nectaries and pyrrolizidine alkaloids may shape how a specialist herbivore feeds on its host plants. Arthropod-Plant Interact 11:629

    Article  Google Scholar 

  59. Cogni R, Trigo JR (2016) Pyrrolizidine alkaloids negatively affect a generalist herbivore feeding on the chemically protected legume Crotalaria pallida. Neotrop Entomol 45:252

    Article  CAS  PubMed  Google Scholar 

  60. Cogni R (2010) Resistance to plant invasion? A native specialist herbivore shows preference for and higher fitness on an introduced host. Biotropica 42:188

    Article  Google Scholar 

  61. Trigo JR, Martins CHZ, Cunha BP, Solferini VN (2018) Native or nonnative host plants: what is better for a specialist moth? Biol Invasions 20:849

    Article  Google Scholar 

  62. Martins CHZ, Trigo JR (2016) Pyrrolizidine alkaloids in the Pericopine moth Scearctia figulina (Erebidae: Arctiinae): metabolism and chemical defense. J Brazil Chem Soc 27:1437

    CAS  Google Scholar 

  63. Giordan M, Custodio R, Trigo JR (1996) Pyrrolizidine alkaloids necine bases: ab initio, semiempirical, and molecular mechanics approaches to molecular properties. J Comput Chem 17:156

    Article  CAS  Google Scholar 

  64. Klitzke CF, Trigo JR (2000) New records of pyrrolizidine alkaloid-feeding insects. Hemiptera and Coleoptera on Senecio brasiliensis. Biochem Syst Ecol 28:313

    Google Scholar 

  65. Trigo JR (2011) Effects of pyrrolizidine alkaloids through different trophic levels. Phytochem Rev 10:83

    Article  CAS  Google Scholar 

  66. Han J, Xian Z, Zhang Y, Liu J, Liang A (2019) Systematic overview of aristolochic acids: nephrotoxicity, carcinogenicity, and underlying mechanisms. Front Pharmacol 10:648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Trigo JR (2000) The chemistry of antipredator defense by secondary compounds in Neotropical Lepidoptera: facts, perspectives and caveats. J Braz Chem Soc 11:551

    Article  CAS  Google Scholar 

  68. Michl J, Ingrouille MJ, Simmonds MS, Heinrich M (2014) Naturally occurring aristolochic acid analogues and their toxicities. Nat Prod Rep 31:676

    Article  CAS  PubMed  Google Scholar 

  69. Comer F, Tiwari HP, Spenser ID (1969) Biosynthesis of aristolochic acid. Can J Chem 47:481

    Article  CAS  Google Scholar 

  70. Attaluri S, Iden CR, Bonala RR, Johnson F (2014) Total synthesis of the aristolochic acids, their major metabolites, and related compounds. Chem Res Toxicol 27:1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jordan SA, Perwaiz S (2014) Aristolochic acids. In: Wexler P (ed) Encyclopedia of toxicology (3rd edn). Academic Press, Oxford, UK, p 298

    Chapter  Google Scholar 

  72. Mix DB, Guinaudeau H, Shamma M (1982) The aristolochic acids and aristolactams. J Nat Prod 45:657

    Article  CAS  Google Scholar 

  73. Chen Z-L, Zhu D-Y (1987) Aristolochia alkaloids. In: Brossi A (ed) The alkaloids: chemistry and pharmacology, vol 31. Academic Press, San Diego, p 29

    Google Scholar 

  74. Scriber JM (1995) Overview of swallowtail butterflies: taxonomic and distributional latitude. In: Scriber JM, Tsubaki Y, Lederhouse RC (eds) Swallowtail butterflies: their ecology and evolutionary biology. Scientific Publishers, Gainesville, FL, p 27

    Google Scholar 

  75. Tyler H, Brown Jr KS, Wilson K (1994) Swallowtail butterflies of the Americas—a study in biological dynamics, ecological diversity, biosystematics, and conservation. Scientific Publishers Inc., Gainesville, FL

    Google Scholar 

  76. Brower LP (1984) Chemical defence in butterflies. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic Press, New York, p 109

    Google Scholar 

  77. Brower LP, Brower JVZ (1964) Birds, butterflies, and plant poisons: a study in ecological chemistry. Zoologica 49:137

    CAS  Google Scholar 

  78. Chai P (1986) Field observations and feeding experiments on the responses of rufous-tailed jacamars (Galbula rufficaouda) to fee-flying butterflies in tropical rainforest. Biol J Linn Soc 29:161

    Article  Google Scholar 

  79. Brown Jr KS, Damman AJ, Feeny P (1981) Troidine swallowtails (Lepidoptera: Papilionidae) in southeastern Brazil: natural history and foodplant relationships. J Res Lepidoptera 19:199

    Google Scholar 

  80. Klitzke CF (1992) Ecologia química e coevolução na interface Troidini (Papilionidae)/Aristolochia (Aristolochiaceae). Universidade Estadual de Campinas, Campinas, Biology

    Google Scholar 

  81. Morais ABB, Brown Jr KS (1991) Larval foodplant and other effects on Troidine guild composition (Papilionidae) in southeastern Brazil. J Res Lepidoptera 30:19

    Google Scholar 

  82. Klitzke CF, Brown Jr KS (2000) The occurrence of aristolochic acids in neotropical troidine swallowtails (Lepidoptera: Papilionidae). Chemoecology 10:99

    Article  CAS  Google Scholar 

  83. Morais ABB (1997) Interações tróficas no sistema Aristolochia arcuata (Aristolochiaceae), Battus polydamas (Lepidoptera: Papilionidae:Troidini), e alguns de seus inimigos naturais. Universidade Estadual de Campinas, Campinas, SP, Zoology

    Google Scholar 

  84. Morais ABB, Brown Jr KS, Stanton MA, Massuda KF, Trigo JR (2013) Are aristolochic acids responsible for the chemical defense of aposematic larvae of Battus polydamas (L.) (Lepidoptera: Papilionidae)? Neotrop Entomol 42:558

    Google Scholar 

  85. Brown Jr KS, Trigo JR, Francini RB, Morais ABB, Motta PC (1991) Aposematic insects on toxic host plants: coevolution, colonization, and chemical emancipation. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant-animal interactions — evolutionary ecology in tropical and temperate regions. John Wiley & Sons Inc., New York, p 375

    Google Scholar 

  86. Silva-Brandão KL, Freitas AVL, Brower AVZ, Solferini VN (2005) Phylogenetic relationships of the New World Troidini swallowtails (Lepidoptera: Papilionidae) based on COI, COII, and EF-1α genes. Mol Phylogen Evol 36:468

    Article  Google Scholar 

  87. Silva-Brandão KL, Solferini VN (2007) Use of host plants by Troidini butterflies (Papilionidae, Papilioninae): constraints on host shift. Biol J Linn Soc 90:247

    Article  Google Scholar 

  88. Zagrobelny M, Bak S, Møller BL (2008) Cyanogenesis in plants and arthropods. Phytochemistry 69:1457

    Article  CAS  PubMed  Google Scholar 

  89. Gleadow RM, Møller BL (2014) Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Ann Rev Plant Biol 65:155

    Article  CAS  Google Scholar 

  90. Castro ECP, Zagrobelny M, Cardoso MZ, Bak S (2018) The arms race between heliconiine butterflies and Passiflora plants—new insights on an ancient subject. Biol Rev Cambridge Philos Soc 93:555

    Article  PubMed  Google Scholar 

  91. Brückner A, Raspotnig G, Wehner K, Meusinger R, Norton RA, Heethoff M (2017) Storage and release of hydrogen cyanide in a chelicerate (Oribatula tibialis). Proc Nat Acad Sci USA 114:3469

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zagrobelny M, Castro ÉCP, Møller BL, Bak S (2018) Cyanogenesis in arthropods: from chemical warfare to nuptial gifts. Insects 9:51

    Article  PubMed Central  Google Scholar 

  93. Castro ECP, Zagrobelny M, Zurano JP, Cardoso MZ, Feyereisen R, Bak S (2019) Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants. Ecol Evol 9:5079

    Article  Google Scholar 

  94. Brown Jr KS, Francini RB (1990) Evolutionary strategies of chemical defense in aposematic butterflies: cyanogenesis in Asteraceae-feeding American Acraeinae. Chemoecology 1:52

    Google Scholar 

  95. van Someren VGL (1974) List of foodplants of some East African Rhopalocera, with notes on the early stages of some Lycaenidae. J Lepid Soc 28:315

    Google Scholar 

  96. Nahrstedt A, Davis RH (1981) The occurrence of the cyanoglucosides, linamarin and lotaustralin, in Acraea and Heliconius butterflies. Comp Biochem Physiol B-Biochem Mol Biol 68:575

    Article  Google Scholar 

  97. Zagrobelny M, Bak S, Ekstrøm CT, Olsen CE, Møller BL (2007) The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Insect Biochem Mol Biol 37:10

    Article  CAS  PubMed  Google Scholar 

  98. Raubenheimer D (1989) Cyanoglycoside gynocardin from Acraea horta (L.) (Lepidoptera: Acraeinae). J Chem Ecol 15:2177

    Google Scholar 

  99. Cardoso MZ (2020) The effect of cyanogenic glucosides and their breakdown products on predation by domestic chicks. Chemoecology 30:131

    Article  CAS  Google Scholar 

  100. Brown Jr KS (1979) Ecologia geográfica e evolução nas florestas neotropicais. Universidade Estadual de Campinas, Campinas, Zoology

    Google Scholar 

Download references

Acknowledgments

We thank the following colleagues: Roberto G. S. Berlinck, for inviting us to write the present chapter; George G. Brown, Keith Brown’s son, for providing valuable information and helping with text revision and organization in the introductory section, Ricardo Costa, for kindly providing us with a photo of Tithorea harmonia pseudethra, and Clécio Klitzke for insights on Keith Brown’s early work in Brazil. We also acknowledge all colleagues and co-workers of the “Laboratório de Ecologia Química” in UNICAMP. Karina L. Silva-Brandão thanks FAPESP (grant 1998/0764-9) for a graduate fellowship during her Master’s degree dissertation. André V. L. Freitas acknowledges support from FAPESP (Biota-Fapesp - grants 2011/50225-3, 2014/50316-7) and from the Brazilian Research Council – CNPq (303834/2015-3). Márcio Zikán Cardoso thanks FAPESP for graduate and postdoctoral fellowships that allowed his research work with K. Brown and J.R. Trigo, and CNPq for support (Proc 400242/2014-1, 306985/2013-6). This publication is part of the RedeLep “Rede Nacional de Pesquisa e Conservação de Lepidópteros“ SISBIOTA-Brasil/CNPq (563332/2010-7). The butterfly species are registered in the SISGEN (# ADF1F75; A0E7804; A3F4F61).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina L. Silva-Brandão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva-Brandão, K.L., Freitas, A.V.L., Cardoso, M.Z., Cogni, R., de Morais, A.B.B. (2021). The Chemistry and Chemical Ecology of Lepidopterans as Investigated in Brazil. In: Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, JK., Dirsch, V.M. (eds) Progress in the Chemistry of Organic Natural Products 116. Progress in the Chemistry of Organic Natural Products, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-030-80560-9_2

Download citation

Publish with us

Policies and ethics