Skip to main content

Forest Types and Their Associated Soils

  • Chapter
  • First Online:
Forest Soils
  • 2557 Accesses

Abstract

For variations in climatic, topographic, and edaphic conditions, we find the evolution of different types of forests in different geographic regions of the world. These forests have diverse structures, compositions, and functions. They can be classified on the basis of their regions of occurrence, species composition, habitat type, leaf type, persistence, etc. There are natural and artificial forests, broadleaf and coniferous forests, evergreen and deciduous forests, primary and secondary forests, etc. World forests are classified into three broad types—tropical forests, temperate forests, and boreal forests—mainly on the basis of geographical positions. Besides these types, there are montane forests, mangrove forests, and swamp forests. Likewise, there are many different types of soils in the world. These soils are classified into 12 orders in USDA Soil Taxonomy and 32 Reference Soil Groups (RSGs) by World Reference Base (WRB) for Soil Resources. As vegetation is an active factor of soil formation, and as soil and vegetation evolve together as coupled systems through natural succession, and as particular vegetation is commonly associated with a definite climate, we see widely different types of soils in different forest types. For example, typical soils of tropical forests are the Oxisols (Ferralsols, Plinthosols, and Nitisols), Ultisols (Plinthols, Planosols, and Alisols), and some Alfisols (Albelluvisols, Luvisols, and Planosols); typical soils of temperate forests are Alfisols and Spodosols (Podzols) along with some Histosols; and typical soils of the boreal forests are the Gelisols (Cryosols and Histosols) and Spodosols. There are some Entisols (Regosols, Leptosols, Fluvisols, and Arenosols) and Inceptisols (Cambisols, Gleysols, Umbrisols, and Nitisols) in all of these forests. In the following sections, a brief description of world forest types, world soil classification, and associations of different soils with different forests is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksenov D, et al. (2002) Atlas of Russia’s intact forest landscapes. Global Forest Watch Russia, Moscow

    Google Scholar 

  • Alaback PB (2010) Ecological characteristics of temperate rain forests: some implications for management of bald eagle habitat. In: Wright BA, Schempf P (eds) Bald eagles in Alaska. Hancock House, New York

    Google Scholar 

  • Alaback PB, Juday GP (1989) Structure and composition of low elevation old-growth forests in research natural areas of Southeast Alaska. Nat Areas J 9:27–39

    Google Scholar 

  • Alexander EB (1988) Rates of soil formation: implications for soil-loss tolerance. Soil Sci 145:37–45

    Google Scholar 

  • Allaby M (2008) Temperate forests. Chelsea House, New York

    Google Scholar 

  • Alongi DM (2005) Mangrove-microbe-soil relations. In: Kristensen E, Haese RR, Kostka JE (eds) Interactions between macro- and microorganisms in marine sediments. American Geophysical Union, Washington, DC

    Google Scholar 

  • Alongi DM (2009) The dynamics of tropical mangrove forests. Springer, New York

    Google Scholar 

  • Angelstam P, Kuuluvainen T (2004) Boreal forest disturbance regimes, successional dynamics and landscape structures—a European perspective. Ecol Bull 51:117–136

    Google Scholar 

  • Antonovsky MY, Glebov FZ, Korzuhin MD (1987) A regional mod-el of long-term wetland-forest dynamics. Work. Pap. WP-87–63. International Institute of Applied Systems Analysis, Laxenburg

    Google Scholar 

  • Archibold OW (1995) Ecology of world vegetation. Chapman and Hall, London

    Google Scholar 

  • Ash J (1982) The Nothofagus Blume Fagaceae of New Guinea. In: Gressitt JL(ed) Monogr Biol vol 42, W Junk, The Hague, p 355–380

    Google Scholar 

  • Aubert G, Tavernier R (1972) Soil survey. In: Soils of the humid tropics. US National Research Council. Natl Acad Sci USA

    Google Scholar 

  • Axelrod DI, Kalin-Arroyo MT, Raven PH (1991) History of temperate vegetation in the Americas. Rev Chil Hist Nat 64:413–446

    Google Scholar 

  • Banner A, Green RN, Inselberg A, Klinka K, McLennan DS, Meidinger DV, Nuszdorfer FC, Pojar J (1990) Site classification for coastal British Columbia. Ministry of Forests, Victoria BC

    Google Scholar 

  • Beinroth FH (1982) Some highly weathered soils of Puerto Rico 1: Morphology, formation and classification. Geoderma 27:1–73

    CAS  Google Scholar 

  • Binkley D, Fisher RF (2012) Ecology and management of forest soils, 4th edn. Wiley, New York

    Google Scholar 

  • Bockheim JG (1995) Permafrost distribution in the Southern Circumpolar region and its relation to the environment: a review and recommendations for further research. Permafrot Periglac 6:27–45

    Google Scholar 

  • Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Ann Rev Ecol Syst 20:1–28

    Google Scholar 

  • Borchers SL, Wattenbarger J, Ament R (1989) Forest plant associations of Montague Island, Chugach National Forest: preliminary results. In: Alexander Eb (ed) Watershed 89. March 21–23,1989, Juneau, Alaska, US Geological Agric For Serv Reg 10, Juneau, Alas

    Google Scholar 

  • Bormann BT, Sidle RC (1990) Changes in productivity and distribution of nutrients in a chronosequence at Glacier Bay National Park, Alaska. J Ecol 78:561–578

    Google Scholar 

  • Bowers F (1987) Effects of windthrow on soil properties and spatial variability in Southeast Alaska. PhD Thesis, University of Washington, Seattle

    Google Scholar 

  • Brewer SW, Rejmanek M, Webb MAH, Fine PVA (2003) Relationship of phytogeography and diversity of tropical tree species with limestone topography in southern Belize. J Biogeogr 30:1669–1688

    Google Scholar 

  • Buol SW (2002) Oxisols. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker, New York

    Google Scholar 

  • Buol SW, Eswaran H (2000) Oxisols. Adv Agron 68:152–195

    Google Scholar 

  • Buol SW, Southard R, Graham RC, McDaniel PA (2011) Spodosols: soils with subsoil accumulations of humus and sesquioxides. In: Soil genesis and classification, 6th edn. Wiley-Blackwell, Oxford

    Google Scholar 

  • Buol SW, Southard RJ, Graham RC, McDaniel PA (2003) Soil genesis and classification, 5th edn. Iowa State Press, Blackwell

    Google Scholar 

  • Buol SW, Southard RJ, McCracken RJ, McDaniel PA (2003) Soil Genesis and Classification 5th edn. The Iowa State University Press, Ames

    Google Scholar 

  • Burton PJ, et al. (2003) Towards sustainable management of the boreal forest. NRC Research, Ottawa

    Google Scholar 

  • Buurman P, Soepraptohardjo M (1980) Oxisols and associated soils on ultramafic and felsic volcanic rocks in Indonesia. In: Buurman P (ed) Red soils in Indonesia. Agricultural Research Reports 889, PUDOC, Wageningen

    Google Scholar 

  • Carleton TJ, Maycock PF (1978) Dynamics of the boreal forest south of James Bay. Can J Bot 56:1157–1173

    Google Scholar 

  • CEC (1997) Ecological regions of North America: toward a common perspective. Commission for Environmental Cooperation, Montreal

    Google Scholar 

  • Chen ZS, Lin KC, Chang JM (1989) Soil characteristics, pedogenesis, and classification of Beichateinshan podzolic soils, Taiwan. J Chin Agric Chem Soc 27:145–155

    Google Scholar 

  • Chen ZS, Liu JC, Chiang HC (1995) Soil properties, clay mineralogy, and genesis of some alpine forest soils in Ho-Huan Mountain area of Taiwan. J Chin Agric Chem Soc 33:1–17

    CAS  Google Scholar 

  • Cockayne L (1971) The subtropic and subantarctic rainforests of New Zealand. In: Eyre ER (ed) World vegetation types. Columbia University Press, New York

    Google Scholar 

  • Cooper WS (1942) Vegetation of the Prince William Sound region, Alaska; with a brief excursion into post-Pleistocene climatic history. Ecol Monogr 12:1–22

    Google Scholar 

  • Cordova J, Valverde F, Espinosa J (1996) Phosphorus residual effect in Andisols cultivated with potatoes. Better Crops International 10(2)

    Google Scholar 

  • Cuttelod A, Garcia N, Abdul Malak D, Temple HJ, Katariya V (2009) The Mediterranean: a biodiversity hotspot under threat. In: Vie J-C, Hilton-Taylor C, Stuart SN (eds) Wildlife in a changing world: an analysis of the 2008 IUCN Red List of Threatened Species. Gland, Switzerland, IUCN

    Google Scholar 

  • De Laubenfels DJ (1975) Mapping the world’s vegetation. Syracuse Geogr Ser 4, Syracuse Press, Syracuse, NY

    Google Scholar 

  • Dick DP, Goncalves CN, Dalmolin RSD, Knicker H, Klamt E, Kfgel-Knabner I, Simoes ML, Martin-Neto L (2005) Characteristics of soil organic matter of different Brazilian Ferralsols under native vegetation as a function of soil depth. Geoderma 124:319–333

    CAS  Google Scholar 

  • Dimo VN (1969) Physical properties and elements of the heat regime in permafrost meadow-forest soils. In Permafrost Soils and Their Regime. Indian Natl Sci Doc Center, New Dehli

    Google Scholar 

  • Dittus WPJ (1977) The ecology of a esmi-evergreen forest community in Sri Lanka. Biotropica 9(4):268–286

    Google Scholar 

  • Doumenge C, Gilmour D, Ruiz Perez M, Blockhus J (1995) Tropical montane cloud forests. Conservation status and management issues. In Hamilton LS, Juvik JO, Scatena FN (eds): Tropical montane cloud forests. Ecological Studies 110:24–37

    Google Scholar 

  • Driessen P, Deckers J, Spaargaren O, Nachtergaele F (2001) Lecture notes on the major soils of the world, FAO, Rome

    Google Scholar 

  • Duivenvoorden JF (1995) Tree species composition and rain forest-environment relationships in the middle Caquetá Area, Colombia, NW Amazonia. Vegetatio 120(2):91–113

    Google Scholar 

  • Eck KC (1984) Forest characteristics and associated deer habitat values, Prince William Sound islands. In: Meehan WR, Merrell TR, Hanley TA (eds) Fish and wildlife relationships in old-growth forests. Proc Symp, Juneau, Alaska, 12–15 April 1982. Am Inst Fish Res Biol and USDA For Serv, Pacific Northwest Res Stn, Portland, Oregon

    Google Scholar 

  • Enright NJ (1982) The Araucaria forests of New Guinea. In: Gressitt JL (ed) Monogr.Biol, vol 42, W Junk, The Hague, p 381–399

    Google Scholar 

  • FAO (2013) State of Mediterranean forests. FAO, Rome

    Google Scholar 

  • FAO (1988) Soil map of the world. Revised legend, FAO–UNESCO–ISRIC. World Soil Resources Report No. 60. Rome

    Google Scholar 

  • FAO (1992) Amenagement et conservation des forets denses en Amerique tropicale. FAO, Etude Forets 101, Rome

    Google Scholar 

  • FAO (1994) The state of food and agriculture, 1994. http://www.fao.org/docrep/t4450e/T4450E0k.htm. FAO corporate Document Repository

  • FAO (1994) World reference base for soil resources. ISSS–ISRIC–FAO. Draft. Rome/Wageningen, Netherlands

    Google Scholar 

  • FAO (1998) World Reference Base for Soil Resources, ISSS–ISRIC–FAO. World Soil Resources Report No. 84. Rome

    Google Scholar 

  • FAO (2001) Global forest resources assessment 2000. www.fao.org. FAO forestry paper 140, FAO, Rome, Italy

  • FAO (2006) World reference base for soil resources 2006, a framework for international classification, correlation and communication. FAO–UNESCO–ISRIC. FAO, Rome

    Google Scholar 

  • FAO (2007) The World’s mangroves 1980–2005, FAO Forestry Paper 153. Forest Resources Division, FAO, Rome

    Google Scholar 

  • FAO (2010) Global forest resources assessment 2000, FAO forestry paper 140. FAO, Rome

    Google Scholar 

  • FAO (2011) State of Mediterranean Forests (SoFMF), concept paper. Arid Zone Forests and Forestry Working Paper No. 2. FAO, Rome

    Google Scholar 

  • FAO AGL (2003) http://www.fao.org/ag/agll/default.stm. Accessed 8 July 2011

  • Fashing PJ, Gathua JM (2004) Spatial variability in the vegetation structure and composition of an East African rain forest. Afr J Ecol 42:189–197

    Google Scholar 

  • Ferreira TO, Otero XL, Vidal-Torrado P, Macias F (2007) Redox processes in mangrove soils under Rhizophora mangle in relation to different environmental conditions. Soil Sci Soc Am J 71(2):484–491

    CAS  Google Scholar 

  • Floyd AG (1990) Australian Rainforests in New South Wales. Surrey Beatty and Sons, Chipping Norton, NSW

    Google Scholar 

  • Ford J, Bedford BL (1987) The hydrology of Alaskan wetlands, USA: a review. Arct Alp Res 19:209–229

    Google Scholar 

  • Franklin JF, Dyrness CT (1973) The natural vegetation of Washington and Oregon. USDA For Serv, Pac Northwest For Range Exp Stn, Gen Tech Rep PNW-8, Portland, Oregon

    Google Scholar 

  • Frelich LE (2002) Forest dynamics and disturbance regimes. Studies from the temperate evergreen-deciduous forest. Cambridge University Press

    Google Scholar 

  • Galloway RW (l982) In: Clough BF (ed) Distribution and physiographic communities of Australian mangroves. Mangrove ecosystems in Australia. Australian National University Press, Canberra

    Google Scholar 

  • Geiser LH, Nadelhoffer K (2011) Taiga. In: Pardo LH, Robin-Abbott MJ, Driscoll CT (eds) Assessment of Nitrogen deposition effects and empirical critical loads of Nitrogen for ecoregions of the United States. Gen Tech Rep NRS-80. US Department of Agriculture, Forest Service, Northern Research Station

    Google Scholar 

  • Gentry AH (1995) Patterns of diversity and floristic composition in neotropical montane forests. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds): Biodiversity and conservation of neotropical montane forests. New York Botanical Garden, Bronx, New York

    Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159

    Google Scholar 

  • Graham RT, Jain TB (1998) Silviculture’s role in managing boreal forests. USDA Forest Service, Rocky Mountain Research Station

    Google Scholar 

  • Guan DX, Wu JB, Zhao XS, Han SJ, Yu GR, Sun XM, Jin CJ (2006) CO2 fluxes over an old, temperate mixed forest in northeastern China. Agricultural and Forest Meteorology 137:138–149

    Google Scholar 

  • Hadi S, Ziegler T, Waltert M, Hodges JK (2009) Tree diversity and forest structure in northern Siberut, Mentawai islands, Indonesia. Trop Ecol 50(2):315–327

    Google Scholar 

  • Hamilton L, Juvik JO, Scatena F (1993) Tropical montane cloud forests. Proceedings of an international symposium at San Juan, Puerto Rico, 31 May-5 June 1994. East-West Center, Honolulu

    Google Scholar 

  • Hamilton LS (1995) Mountain cloud forest conservation and research. A synopsis. Mount Res Dev 15:259–266

    Google Scholar 

  • Harden G, McDonald B, Williams J (2006) Rainforest trees and shrubs. Gwen Harden, Nambucca Heads, NSW

    Google Scholar 

  • Hennon PE (1986) Pathological and ecological aspects of decline and mortality of Chamaecyparis nootkatensis in Southeast Alaska. PhD Thesis, Oregon State University, Corvallis

    Google Scholar 

  • Hogarth PJ (1999) The biology of mangroves. Oxford University Press, Oxford, New York

    Google Scholar 

  • Holdgate MW (1961) Vegetation and soils in the south Chilean islands. J Ecol 49:559–580

    Google Scholar 

  • Hseu ZY, Chen ZS, Wu ZD (1999) Characterization of placic horizons in two subalpine Inceptisols. Soil Sci Soc Am J 63:941–947

    CAS  Google Scholar 

  • Hseu ZY, Tsai CC, Lin CW, Chen ZS (2004) Transitional soil characteristics of Ultisols and Spodosols in the subalpine forest of Taiwan. Soil Sci 169:457–467

    CAS  Google Scholar 

  • http://soils.usda.gov/use/worldsoils/oxisols/117.pdf retrieved on 24.12.12

  • Jacobs M (1988) The tropical rain forest: A first encounter. Springer, Berlin

    Google Scholar 

  • Jaroensutasinee M, Sangarun P, Pheera W, Jaroensutasinee K (2010) Tropical Montane cloud forest characteristics in Southern Thailand. Walailak J Sci Tech 7(2):103–113

    Google Scholar 

  • Jien SH, Wu SP, Chen ZS, Chen TH, Chiu CY (2010) Characteristics and pedogenesis of podzolic forest soils along a toposequence near a subalpine lake in northern Taiwan. Botanical Studies 51:223–236

    Google Scholar 

  • Joshi H, Ghose M (2003) Forest structure and species distribution along soil salinity and pH gradient in mangrove swamps of the Sundarbans. Trop Ecol 44(2):197–206

    Google Scholar 

  • Kampen J, Burford J (1980) Production systems, soil related constraints and potentials in the semi-arid tropics with special reference to India. In: International Rice Research Institute (IRRI) (ed) Priorities for alleviating soil-related constraints to food crop production in the tropics. Los Banos, Philippines

    Google Scholar 

  • Kauffman S, Sombroek W, Mantel S (1998) Soils of rainforest: characterization and major constraints of dominant forest soils in the humid tropics. In: Schulte A, Ruhiyat D (eds) Soils of tropical forest ecosystems. Springer, Berlin

    Google Scholar 

  • Klinka K, Wang Q, Carter RE (1990) Relationships among humus forms, forest floor nutrient properties and understory vegetation. For Sci 36:564–581

    Google Scholar 

  • Kolesnikov BP (1956) Kedroviye lesa Dalnego Vostoka [Korean pine forests of the [Russian] Far East]. Tr DVF AN SSSR Ser Bot Izd AN SSSR. Moscow 2:1–264 (in Russian)

    Google Scholar 

  • Koponen P, Nygren P, Sabatier D, Rousteau A, Saur E (2004) Tree species diversity and forest structure in relation to microtopography in a tropical freshwater swamp forest in French Guiana. Plant Ecol 173(1):17–32

    Google Scholar 

  • Krestov PV (1997) Osobennosti fitotsenoticheskogo raznoobraziya shirokolistvenno-kedrovyh lesov rossiyskogo Dalnego Vostoka [The main features of phytocenotic diversity of the broad-leaved Korean pine forests of the Russian Far East]. Komarovskiye Chteniya 46:15–42 (in Russian)

    Google Scholar 

  • Kuchler AW (1949) A geographical system of vegetation. Geogr Rev 37:233–240

    Google Scholar 

  • Kunnecke BH (2008) Temperate forest biomes. In Woodward SL (ed) Greenwood guides to biomes of the world. Greenwood, London

    Google Scholar 

  • Kuppen W (1918) Klassifickation der klimate nach temperature niederschlag and jahreslauf. Petermann’s Mitteilungen 64:193–203

    Google Scholar 

  • Kuusela K (1990) The dynamics of the boreal coniferous forests. Sitra, Helsinki

    Google Scholar 

  • La Roi GH (2011) Boreal Forests. The Canadian Encyclopedia. Historica-Dominion

    Google Scholar 

  • LaBastille A, Pool DJ (1978) On the need for a system of cloud-forest parks in Middle America and the Caribbean. Environmental Canservation 5(3):183–190

    Google Scholar 

  • Lal R, Lorenz K, HĂĽttl RF (2012) Biosphere: ecosystems and the global carbon cycle. Springer, Dordrecht

    Google Scholar 

  • Landsberg JJ, Gower ST (1997) Applications of physiological ecology to forest management. Academic Press, San Diego

    Google Scholar 

  • Larsen JA (1980) The Boreal ecosystem. Academic Press, New York, p 500

    Google Scholar 

  • Letouzey R (1985) Notice de la carte phytogiogruphique du Cameroun au 1:500 000 M-SM: Region afromontagnarde et etage submontagnard. Institut de Ia Carte Internationale de la VĂ©gĂ©tation, Toulouse, France

    Google Scholar 

  • Li SY, Chen ZS, Liu JC (1998) Subalpine loamy Spodosols in Taiwan: characteristics, micromorphology, and genesis. Soil Sci Soc Am J 62:710–716

    CAS  Google Scholar 

  • Lima HN, Mello JWV, Schaefer CEGR, Ker JC, Lima AMN (2006) Mineralogia e quimica de tres solos de uma topossequencia da bacia sedimentar do Alto Solimoes, Amazonia Ocidental. Rev Bras Cienc Solo 30:59–68

    CAS  Google Scholar 

  • Lloyd S (2000) Towards responsible Swedish timber trade? A survey of actors and origin of timber from Russia and the Baltic states. Taiga Rescue Network, Jokkmokk

    Google Scholar 

  • Lopina O, Ptichnikov A, Voropayev A (2003) Illegal logging in northwestern Russia and export of Russian forest products to Sweden. WWF Russian Programme Office, Moscow

    Google Scholar 

  • Lutz HF (1956) Ecological effects of forest fires in the interior of Alaska. USDA Tech Bull No 1133

    Google Scholar 

  • Marques JJ, Schulze DG, Curi N, Mertzman SA (2004) Trace element geochemistry in Brazilian Cerrado soils. Geoderma 121:31–43

    CAS  Google Scholar 

  • Martin JR (1989) Vegetation and environment in old growth forests of northern southeast, Alaska: a plant association classification. MS Thesis, Arizona State University, Tempe

    Google Scholar 

  • Martin P, Nabuurs GJ, Aubinet M, et al (2001) Carbon sinks in temperate forests. Ann Rev Energy Env 26:435–465

    Google Scholar 

  • Maycock PF, Curtis JT (1960) The phytosociology of boreal conifer-hardwood forests of the Great Lakes region. Ecol Monogr 30:1–35

    Google Scholar 

  • Mayer H (1984) Die Wälder Europas. Gustav Fischer, in German

    Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore IIIB, Vorsmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    CAS  Google Scholar 

  • Moorman FR, Lal R, Juo AS (1975) The soils of IITA. IITA Tech Book No. 3. Int Inst Trop Agric, Ibadan

    Google Scholar 

  • Mumby PJ, Edwards AJ, Arias-Gonzalez JE, Lindeman KC, Blackwell PG, et al (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    PubMed  CAS  Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Ann Rev Ecol Syst 17:67–88

    Google Scholar 

  • Myers N, Mittlemeier RA, Mittlemeier CG, Da Fonseca GAB., Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    PubMed  CAS  Google Scholar 

  • NAP (1982) Ecological aspects of development in the humid tropics. National Academy Press, Washington DC

    Google Scholar 

  • National Technical Committee for Hydric Soils (1985) USDA Soil conservation service. Washington, DC

    Google Scholar 

  • Nikolov N, Helmisaari H (1992) Silvics of the circumpolar boreal forest tree species. In: Shugart HH, Leemans R, Bonan GBA (eds) Systems analysis of the global boreal forest. Cambridge University Press

    Google Scholar 

  • Nortcliff S (2002) Soils of cold and temperate regions. Land use, land cover and soil sciences. Encyclopedia of life support systems. UNESCO, www.eolss.net/Sample-Chapters/C19/E1–05-07–15.pd

  • Oldfield S, Eastwood A (2007) The Red List of oaks. Cambridge, UK, Fauna & Flora International

    Google Scholar 

  • Ovaskainen O, Pappila M, Pötry J (1999) The Finnish forest industry in Russia. On the thorny path towards ecological and social responsibility. The Finnish Nature League Publications, Helsinki

    Google Scholar 

  • Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Change Biol 17:798–818

    Google Scholar 

  • Pastor J, Mladenoff DJ (1992) The southern boreal-northern hardwood forest border. In: Shugart HH, Leemans R, Bonan GB (eds) A system analysis of the global boreal forests. Cambridge University Press

    Google Scholar 

  • Ping CL (2013) Gelisols: part I. Cryogenesis and state factors of formation. Soil Horizons. doi:10.2136/sh2013–54-3-gc

    Google Scholar 

  • Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the rainfor sites. Biogeosciences 8:1415–1440

    CAS  Google Scholar 

  • Ram J, Kumar A, Bhatt JP (2004) Plant diversity in six forest types of Uttaranchal, Central Himalaya, India. Curr Sci 86:638–647

    Google Scholar 

  • Reich PB, Frelich L (2002) Temperate deciduous forests. The Earth system: biological and ecological dimensions of global environmental change. In: Munn T (ed) Encyclopedia of global environmental change, vol 2. Wiley, Chichester

    Google Scholar 

  • Richter DD, Babbar LI (1991) Soil diversity in the tropics. Adv Ecol Res 21:315–389

    Google Scholar 

  • Rieger S, Dement JA, Sanders D (1963) Soil survey of fairbanks area, Alaska. Series 1959, No. 25. USDA, Washington, DC

    Google Scholar 

  • Robertson AI, Alongi DM, Boto KG (1992) Food chains and carbon fluxes. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. Coastal and estuarine studies series. American Geophysical Union, Washington, DC

    Google Scholar 

  • Ruckstuhl KE, Johnson EA, Miyanishi K (2008) Introduction. The boreal forest and global change.Phil Trans R Soc 363(1501):2243–2247

    Google Scholar 

  • Rumney GR (1968) Climatology and the world’s climates. Mac-Millan, New York:

    Google Scholar 

  • Runyon J, Waring RH, Goward SN, Welles JM (1994) Environmental limits on net primary production and light use efficiency across the Oregon Transect Ecol Appl 4:226–237

    Google Scholar 

  • Rydin H, Jeglum JKMurphy (2006) The biology of peatlands. Oxford University Press, New York

    Google Scholar 

  • Saenger P (2002) Mangrove ecology, silviculture and conservation. Kluwer, Dordrecht

    Google Scholar 

  • Sahu SC, Dhal NK, Reddy CS, Pattanaik C, Brahmam M (2007) Phytosociological study of tropical dry deciduous forest of Boudh District, Orissa, India. Res J For 1:66–72

    Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York

    Google Scholar 

  • Sanchez PA, Buol SW (1975) Soils of the tropics and the world food crisis. Science 188:598–603

    PubMed  CAS  Google Scholar 

  • Sauer D, Sponagel H, Sommer M, Giani L, Jahn R, Stahr K (2007) Podzol: a review on its genesis, occurrence, and functions. J Plant Nutr Soil Sci 170:581–597

    CAS  Google Scholar 

  • Sayre AP (1994) Taiga. Twenty-first century books, New York

    Google Scholar 

  • Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109

    Google Scholar 

  • Schaetzl R, Anderson S (2005) Soils: genesis and geomorphology. Cambridge University Press, New York

    Google Scholar 

  • Schawe M, Glatzel S, Gerold G (2007) Soil development along an altitudinal transect in a Bolivian tropical montane rainforest: Podzolization vs. hydromorphy. Catena 69:83–90

    Google Scholar 

  • Scheffer F, Schachtschabel P (1998) Lehrbuch der Bodenkunde. Enke, Stuttgart

    Google Scholar 

  • Schneider RR (2002) Alternative futures. Alberta’s boreal forest at the crossroads. The Federation of Alberta Naturalists, Edmonton, Canada

    Google Scholar 

  • Semwal DP, Saradhi PP, Nautiyal BP, Bhatt AB (2007) Current status, distribution and conservation of rare and endangered medicinal plants of Kedarnath wildlife sanctuary, Central Himalaya, India. Curr Sci 92:1733–1738

    Google Scholar 

  • Semwal DP, Uniyal PL, Bhatt AB (2010) Structure, composition and dominance—diversity relations in three forest types of a part of Kedarnath wildlife sanctuary, central Himalaya, India. Not Sci Biol 2(3):128–132

    Google Scholar 

  • Shaw JN (2005) Ultisols. In: Lal R (ed) Encyclopedia of soil science. CRC, Boca Raton

    Google Scholar 

  • Shugart HH, Leemans R, Bonan (eds) 1992. A system analysis of the global boreal forests. Cambridge University Press

    Google Scholar 

  • Smeck NE (1985) Phosphorus dynamics in soils and landscapes. Geoderma 36:185–199

    CAS  Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys, 2nd edn. Agricultural Handbook 436, USDA, Washington, DC

    Google Scholar 

  • Soil Survey Staff (2003)Keys to soil taxonomy, 9th edn. United States Department of Agriculture. Natural Resources Conservation Service. Washington, DC

    Google Scholar 

  • Sombroek WG (1966) A reconnaissance of the soils of the Brazilian Amazon region. Centre for Agricultural Publications and Documentation, Wageningen

    Google Scholar 

  • Sombroek WG (1984) Soils of the Amazon region. In: Sioli H, Junk W (eds) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Dordrecht

    Google Scholar 

  • Spalding MD, Blasco F, Field CD (1997) World Mangrove Atlas. International Society for Mangrove Ecosystems, Okinawa

    Google Scholar 

  • Stadtmullcr T (1987) Cloud forests in the humid tropics. A bibliographic review. United Nations University, Tokyo and CATIE, Turrialba. Costa Rica

    Google Scholar 

  • Sukardjo S (1994) Soils of the mangrove forests of the Apar Nature Reserve, Tanah Grogot, East Kalimantan, Indonesia. Southeast Asian Studies 32(3):385–398

    Google Scholar 

  • Suresh HS, Sukumar R (2011) Vegetative phenology of tropical montane forests in the Nilgiris, South India. J Natn Sci Foundation Sri Lanka 39(4):333–343

    Google Scholar 

  • Sverdrup H, Stjernquist I (eds) (2002) Developing principles and models for sustainable forestry in Sweden. Kluwer

    Google Scholar 

  • Theilade I, Schmidt L, Chhang P, McDonald JA (2011) Evergreen swamp forest in Cambodia: floristic composition, ecological characteristics, and conservation status. Nordic Journal of Botany 29:71–80

    Google Scholar 

  • Thom BG (1982) Mangrove ecology—a geomorphological perspective. Mangrove ecosystem in Australian National Mangrove workshop. Australian National University Press, Canberra

    Google Scholar 

  • Thomas DW, Achoundong G (I991) Montane forests of Western Africa. Proceedings of the XIII AETFAT Congress, 2–11 avril 1991, Zomba, Malawi

    Google Scholar 

  • Thomas PA, Packham J (2007)Ecology of woodlands and forests: description, dynamics, and diversity. Cambridge University Press, New York

    Google Scholar 

  • Thompson JD, Lavergne S, Affre L, Gaudeul M, Debussche M (2005) Ecological differentiation of Mediterranean endemic plants. Taxon 54:967–976

    Google Scholar 

  • Tuhkanen S (1984) A circumpolar sys-tem of climatic-phytogeographical re-gions. Acta Bot Fenn 127:1–50

    Google Scholar 

  • Ugolini FC, Mann DH (1979) Biopedological origin of peatlands in Southeast Alaska. Nature 281:366–368

    Google Scholar 

  • USDA (1960) Soil classification, a comprehensive system. United States Department of Agriculture. Govt Printing Office, Washington DC

    Google Scholar 

  • USDA (1975) Soil taxonomy: a basic system of soil classification for making and interpreting soil survey. United States Department of Agriculture. Govt Printing Office, Washington DC

    Google Scholar 

  • USDA NRCS (1998) Keys to soil Taxonomy, 8th edn. United States Department of Agriculture. Govt Printing Office, Washington DC

    Google Scholar 

  • USDA/NRCS (2006) Field indicators of hydric soils in the United States, version 6.0. In: Hurt GW, Vasilas LM (eds) USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils

    Google Scholar 

  • Van Cleve K, Dyrness CT, Viereck LA, Fox J, Chapin FS, Oechel W (1983) Taiga ecosystems in interior Alaska. BioScience 33:39–44

    Google Scholar 

  • Ver Hoer JM, Neiland BJ, Glenn-Lewin DC (1988) Vegetation gradient analysis of two sites in Southeast Alaska. Northwest Sci 62:171–180

    Google Scholar 

  • Viereck LA (1975) Forest ecology of the Alaskan taiga. In: Proc Circumpolar Conf Northern Ecology, Ottawa: Natl Res Coun, Canada

    Google Scholar 

  • Viereck LA, Dyrness CT, Van Cleve K, Foote MJ (1983) Vegetation, soils, and forest productivity in selected forest types in interior Alaska. Can J For Res 13:703–720

    Google Scholar 

  • Viereck LA, Van Cleve K, Dyrness CT (1986) Forest ecosystem distribution in the taiga environment. In: Van Cleve K, Chapin FS, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the Alaskan taiga. Springer, New York

    Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Google Scholar 

  • Wakushima S, Kuraishi S, Sakurai N (1994) Soil salinity and pH in Japanese mangrove forests and growth of cultivated mangrove plants in different soil conditions. J Plant Res 107:39–46

    Google Scholar 

  • Walter H (1979) Vegetation of the Earth. Springer-Verlag, New York

    Google Scholar 

  • Wardie P, Buffin MJA, Dugdale J (1983) Temperate broad-leaved evergreen forests of New Zealand. In: Ovington JD (ed) Temperate broad-leaved evergreen forests. Ecosystems of the World. Elsevier, New York

    Google Scholar 

  • Waring RH (2002) Temperate coniferous forests. The Earth system: biological and ecological dimensions of global environmental In: Munn T, Moony HA, Canadell JG(eds) Encyclopedia of global environmental change, vol 2. Wiley, Chichester

    Google Scholar 

  • Waring RH, Franklin JF (1979) Evergreen coniferous forests of the Pacific Northwest. Science 204:1380–1386

    PubMed  CAS  Google Scholar 

  • Waring RH, Running SW (1998) Forest ecosystems: analysis at multiple scales, 2nd edn. Academic Press, SanDiego

    Google Scholar 

  • Watson RT, et al. (2000) Land use, land-use change and forestry. Intergovernmental Panel on Climate Change, Cambridge University Press

    Google Scholar 

  • Webb LJ (1968) Environmental relationships of the structural types of Australian rain forest vegetation. Ecol 49:296–311

    Google Scholar 

  • Webb LJ (1978) A general classification of Australian rainforests. Aust Plants 76:349–363

    Google Scholar 

  • Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu Rev Ecol Syst 30:421–455

    Google Scholar 

  • White F (1983) The vegetation of Africa. UNESCO, Paris

    Google Scholar 

  • Whitmore TC (1975) Tropical rain forests of the Far East. Oxford University Press, London

    Google Scholar 

  • Wilcke W, Oelmann Y, Schmitt A, Valarezo C, Zech W, Homeier J (2008) Soil properties and tree growth along an altitudinal transect in Ecuadorian tropical montane forest. J Plant Nutr Soil Sc 171:220–230

    CAS  Google Scholar 

  • Wolf EC, Mitchell AP, Schoonmaker PK (1995) The rain forests of home: an atlas of people and place. Ecotrust, Portland

    Google Scholar 

  • Wolff JO, West SD, Viereck LA (1977) Xylem pressure potential in black spruce in interior Alaska. Can J For Res 7:422–428

    Google Scholar 

  • Wu SP, Chen ZS (2005) Characteristics and genesis of Inceptisols with placic horizons in the subalpine forest soils of Taiwan. Geoderma 125:331–341

    CAS  Google Scholar 

  • Young A (1980) Tropical soils and soil survey (Cambridge Geographical Studies). Cambridge University Press

    Google Scholar 

  • Zech W, Hintermaier-Erhard G (1997) Wörterbuch der Bodenkunde. Enke, Stuttgart

    Google Scholar 

  • Zech W, Hintermaier-Erhard G (2002) Böden der Welt: Ein Bildatlas. Spektrum, Heidelberg

    Google Scholar 

  • Zinn YL, Lal R, Bigham JM, Resck DVS (2007) Edaphic controls on soil organic carbon retention in the Brazilian Cerrado: Texture and mineralogy. Soil Sci Soc Am J 71:1204–1214

    CAS  Google Scholar 

  • Zoltai SC (1975a) Tree ring record of soil movements on permafrost. Arct Alp Res 7:331–340

    Google Scholar 

  • Zoltai SC (1975b) Structure of subarctic forests on hummocky permafrost terrain in northwestern Canada. Can J. For Res 5:1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khan Towhid Osman .

Study Questions

Study Questions

  1. 1.

    Define forest soil. How does it differ from agricultural soil? Discuss general characteristics of forest soils.

  2. 2.

    Give an account of tropical forests and soils associated with them.

  3. 3.

    What is a mangrove forest? How does it differ from freshwater swamp forest? Discuss characteristics of mangrove soils.

  4. 4.

    Distinguish between tropical and temperate climate. Describe soils of temperate forests.

  5. 5.

    Narrate the ecological conditions and geographical occurrence of boreal forests. Explain boreal forest soils with emphasis on cryoturbation and permafrost.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Osman, K. (2013). Forest Types and Their Associated Soils. In: Forest Soils. Springer, Cham. https://doi.org/10.1007/978-3-319-02541-4_7

Download citation

Publish with us

Policies and ethics