Skip to main content

Green Synthesized Silver Nanoparticles: A Potential New Insecticide for Mosquito Control

  • Chapter
  • First Online:
Nanoparticles in the Fight Against Parasites

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 8))

Abstract

Mosquitoes are blood-feeding insects and serve as the most important vectors for spreading human diseases such as malaria, yellow fever, dengue fever, and filariasis. The continued use of synthetic insecticides has resulted in resistance in mosquitoes. Synthetic insecticides are toxic and affect the environment by contaminating soil, water, and air, and then natural products may be an alternative to synthetic insecticides because they are effective, biodegradable, eco-friendly, and safe to environment. Botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, this study was undertaken to assess the larvicidal activity of the synthesized silver nanoparticles (Ag NPs) and aqueous leaf extracts from the medicinal plant Feronia elephantum, Heliotropium indicum and Sida acuta against the medically important mosquito vectors, Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus (Diptera: Culicidae). Synthesized Ag NPs were characterized by UV-vis spectroscopy, fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with EDX, transmission electron microscopy (TEM) and XRD analysis. Range of concentrations of synthesized Ag NPs (8–60 μg/mL) and aqueous leaf extract (30–300 μg/mL) were tested against the larvae of A. subpictus, A. albopictus and C. tritaeniorhynchus. Among the Ag NPs tested, the Ag NPs of F. elephantum were highly effective against third instar larvae of A. subpictus, A. albopictus and C. tritaeniorhynchus with LC50 and LC90 values were 20.01, 21.59, 24.04 μg/mL and 34.76, 37.06, 40.86 μg/mL, respectively. The control showed nil mortality in the concurrent assay. x2 values were significant at p ≤ 0.05 level. From the three plant aqueous leaf extract and Ag NPs tested against late third instar A. subpictus, A. albopictus and C. tritaeniorhynchus, the highest larvicidal activity was observed in F. elephantum, moderate larvicidal activity was observed in H. Indicum and lowest larvicidal activity was observed in S. acuta. Results obtained from this study biosynthesized silver nanoparticles as novel biolarvicidal agent and can be used along with traditional insecticides as approach of Integrated Pest Management (IPM). This is the first report on the mosquito larvicidal activity of the plant aqueous extract and synthesized silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Elnaga ZS, Alarif WM, Al-lihaibi SS (2011) New larvicidal acetogenin from the red alga Laurencia papillosa. Clean Soil Air Water 39:787–794

    Article  CAS  Google Scholar 

  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242(3):263–269

    Article  CAS  PubMed  Google Scholar 

  • Amusan AA, Idowu AB, Arowolo FS (2005) Comparative toxicity effect of bush tea leaves (Hyptis suaveolens) and orange peel (Citrus sinensis) oil extract on larvae of the yellow fever mosquito Aedes aegypti. Tanzan Health Res Bull 7(3):174–178

    CAS  PubMed  Google Scholar 

  • Anjali CH, SudheerKhan S, Goshen KM, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936

    Article  CAS  PubMed  Google Scholar 

  • Ankamwar B, Damle C, Absar A, Mural S (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 10:1665–1671

    Article  CAS  Google Scholar 

  • Arivoli S, Samuel T (2011) Studies on the mosquitocidal activity of Murraya koenigii (L.) Spreng (Rutaceae) leaf extracts against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Asian J Exp Biol Sci 2(4):721–730

    Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector Borne Zoonotic Dis 12(3):262–268

    Article  PubMed  Google Scholar 

  • Ashraful Alam M, Rowshanul Habib M, Nikkon F, Khalequzzaman M, Rezaul Karim M (2009) Insecticidal activity of root bark of Calotropis gigantea L. against Tribolium castaneum (Herbst). World J Zool 4(2):90–95

    Google Scholar 

  • Bagavan A, Rahuman AA, Kamaraj C, Elango G, Zahir AA, Jayaseelan C, Santhoshkumar T, Marimuthu S (2011) Contact and fumigant toxicity of hexane flower bud extract of Syzygium aromaticum and its compounds against Pediculus humanus capitis (Phthiraptera: Pediculidae). Parasitol Res 109(5):1329–1340

    Article  PubMed  Google Scholar 

  • Barik TK, Kamaraju R, Gowswami A (2012) Silica nanoparticles a potential new insecticide for mosquito vector control. Parasitol Res 111:1075–1083

    Article  PubMed  Google Scholar 

  • Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B Biointerfaces 71(1):113–118

    Article  CAS  PubMed  Google Scholar 

  • Benn T, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  PubMed  Google Scholar 

  • Bigi A, Morosi L, Pozzi C, Forcella M, Tettamanti G, Venerando B, Monti E, Fusi P (2010) Human sialidase NEU4 long and short are extrinsic proteins bound to outer mitochondrial membrane and the endoplasmic reticulum. Glycobiology 20:148–157

    Article  CAS  PubMed  Google Scholar 

  • Borase HP, Patil CD, Salunkh RB, Narkhede CP, Salunke BK (2013) Phyto-synthesized silver nanoparticles: a potent mosquito biolarvicidal agent. J Nanomedine Biotherapeutic Discov 3(1):1–7

    Article  CAS  Google Scholar 

  • Brichkin SB, Spirin MG, Nikolenko LM, Nikolenko DY, Gak VY, Ivanchikhina AV, Razumov VF (2008) The use of reversed micelles for the synthesis of nanoparticles. High Energy Chem 42(7):516–521

    Article  CAS  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  PubMed  Google Scholar 

  • Chansang U, Zahiri NS, Bansiddhi J, Boonruad T, Thongsrirak P, Mingmuang J, Benjapong N, Mulla MS (2005) Mosquito larvicidal activity of aqueous extracts of long pepper (Piper retrofractum Vahl) from Thailand. J Vector Ecol 30(2):195–200

    PubMed  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Lett Appl Microbiol 37:105–108

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23(10):5296–5304

    Article  CAS  PubMed  Google Scholar 

  • Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST (2004) Chemical composition and mosquito larvicidal activity of essential oil from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 52:4395–4400

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury N, Chatterjee SK, Laskar S, Chandra G (2009) Larvicidal activity of Solanum villosum Mill (Solanaceae: Solanales) leaves to Anopheles subpictus Grassi (Diptera: Culicidae) with effect on non-target Chironomus circumdatus Kieffer (Diptera: Chironomidae). J Pest Sci 82:13–18

    Article  Google Scholar 

  • Chung IM, Kim SJ, Yeo MA, Park SW, Moon HI (2011) Immunotoxicity activity of natural furocoumarins from milky sap of Ficus carica L. against Aedes aegypti L. Immunopharmacol Immunotoxicol 33(3):515–518

    Article  CAS  PubMed  Google Scholar 

  • Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L (2010) Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 107:1455–1461

    Article  PubMed  Google Scholar 

  • Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci 166(1–2):119–135

    Article  CAS  PubMed  Google Scholar 

  • Dasari TP, Hwang HM (2010) The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage. Sci Total Environ 408:5817–5823

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Marcato PD, Alves OL, Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 13:3–8

    Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman JM (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 29:3–6

    Google Scholar 

  • Elimam AM, Elmalik KH, Ali FS (2009) Efficacy of leaves extract of Calotropis procera Ait. (Asclepiadaceae) in controlling Anopheles arabiensis and Culex quinquefasciatus mosquitoes. Saudi J Biol Sci 16:95–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Elumalai EK, Prasad TN, Hemachandran J, Therasa VS, Thirumalai T, David E (2010) Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci Res 2:549–554

    CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    Article  CAS  PubMed  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6(1):103–109

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, vol 551. Cambridge University Press, London, pp 68–72

    Google Scholar 

  • Ghosh A, Chandra G (2006) Biocontrol efficacy of Cestrum diurnum L. (Solanaceae: Solanales) against the larval forms of Anopheles stephensi. Nat Prod Res 20(4):371–379

    Article  CAS  PubMed  Google Scholar 

  • Gianotti RL, Bomblies A, Dafalla M, Issa-Arzika I, Duchemin JB, Eltahir EAB (2008) Efficacy of local neem extracts for sustainable malaria vector in an African village. Malar J 7:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Gleiser RM, Zygadlo JA (2007) Insecticidal properties of essential oils from Lippia turbinata and Lippia polystachya (Verbenaceae) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 101:1349–1354

    Article  PubMed  Google Scholar 

  • Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V, Selvam S, Dhineshkumar M, Kumaraguru AK (2011) Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac J Trop Med 4:799–803

    Article  CAS  PubMed  Google Scholar 

  • Govindachari TR, Suresh G, Krishna Kumari GN, Rajamannar T, Partho PD (1999) Nymania-3. A bioactive triterpenoid from Dysoxylum malabaricum. Fitoterapia 70:83–86

    Article  CAS  Google Scholar 

  • Govindarajan M (2009) Bioefficacy of Cassia fistula Linn. (Leguminosae) leaf extract against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 13(2):99–103

    CAS  PubMed  Google Scholar 

  • Govindarajan M (2010a) Larvicidal efficacy of Ficus benghalensis L. plant leaf extracts against Culex quinquefasciatus Say, Aedes aegypti L. and Anopheles stephensi L. (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 14(2):107–111

    CAS  PubMed  Google Scholar 

  • Govindarajan M (2010b) Larvicidal and repellent activities of Sida acuta Burm. F. (Family: Malvaceae) against three important vector mosquitoes. Asian Pac J Trop Med 3:691–695

    Article  Google Scholar 

  • Govindarajan M (2010c) Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pac J Trop Med 3:874–877

    Article  CAS  Google Scholar 

  • Govindarajan M (2011a) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med 4(2):106–111

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M (2011b) Mosquito larvicidal and ovicidal activity of Cardiospermum halicacabum Linn. (Family: Sapindaceae) leaf extract against Culex quinquefasciatus (say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 15(7):787–794

    CAS  PubMed  Google Scholar 

  • Govindarajan M (2011c) Evaluation of indigenous plant extracts against the malarial vector, Anopheles stephensi (Liston) (Diptera: Culicidae). Parasitol Res 109:93–103

    Article  PubMed  Google Scholar 

  • Govindarajan M (2011d) Evaluation of Andrographis paniculata Burm.f. (Family: Acanthaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Asian Pac J Trop Med 4:176–181

    Article  PubMed  Google Scholar 

  • Govindarajan M, Karuppannan P (2011) Mosquito larvicidal and ovicidal properties of Eclipta alba (L.) Hassk (Asteraceae) against chikungunya vector, Aedes aegypti (Linn.) (Diptera: Culicidae). Asian Pac J Trop Med 4:24–28

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Sivakumar R (2011) Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res 110(5):1607–1620

    Article  PubMed  Google Scholar 

  • Govindarajan M, Jebanesan A, Reetha D (2005) Larvicidal effect of extracellular secondary metabolites of different fungi against the mosquito, Culex quinquefasciatus Say. Trop Biomed 22(1):1–3

    CAS  PubMed  Google Scholar 

  • Govindarajan M, Jebanesan A, Reetha D (2006a) Larvicidal efficacy of secondary metabolites of fungi against the mosquito Aedes aegypti (Linn.) (Diptera: Culicidae). J Exp Zool India 9(1):73–76

    Google Scholar 

  • Govindarajan M, Jebanesan A, Reetha D (2006b) Oviposition attractancy of Streptomyces aureofaciens culture filtrate for Culex quinquefasciatus. Environ Ecol 24(1):92–94

    Google Scholar 

  • Govindarajan M, Jebanesan A, Reetha D (2007) Larvicidal efficacy of extracellular metabolites of actinomycetes against dengue vector mosquito Aedes aegypti Linn. (Diptera: Culicidae). Res Rev BioSci 1(3):161–162

    Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008a) Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102:289–292

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T, Samidurai K (2008b) Studies on effect of Acalypha indica L. (Euphorbiaceae) leaf extracts on the malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 103(3):691–695

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Jebanesan A, Reetha D, Amsath R, Pushpanathan T, Samidurai K (2008c) Antibacterial activity of Acalypha indica L. Eur Rev Med Pharmacol Sci 12(5):299–302

    CAS  PubMed  Google Scholar 

  • Govindarajan M, Jebanesan A, Reetha D, Pushpanathan T (2008d) Mosquito larvicidal efficacy of extracellular secondary metabolites of soil actinomycetes against malaria vector, Anopheles stephensi Liston (Diptera: Culicidae). J Sci Trans Environ Technov 1(3):152–153

    Google Scholar 

  • Govindarajan M, Jebanesan A, Reetha D, Pushpanathan T (2008e) Mosquito larvicidal effect of extracellular metabolites of fungi against malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Plant Arch 8(1):295–296

    Google Scholar 

  • Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011a) Mosquito larvicidal, ovicidal and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109:353–367

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011b) Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Asian Pac J Trop Biomed 1:43–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindarajan M, Sivakumar R, Amsath A, Niraimathi S (2011c) Mosquito larvicidal properties of Ficus benghalensis L. (Family: Moraceae) against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med 4:505–509

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K (2011d) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res 110:2023–2032

    Article  PubMed  Google Scholar 

  • Gubler DJ (1998) Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis 4(3):442–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay SI, Gething PW, Snow RW (2010) India’s invisible malaria burden. Lancet 376(9754):1716–1717

    Article  PubMed  PubMed Central  Google Scholar 

  • Hidayatulfathi O, Sallehuddin S, Shafariatul AI, Zaridah MZ (2005) Studies on the larvicidal, adulticidal and repellent activities of Acorus calamus Linn. against Aedes aegypti Linn. (Diptera: Culicidae). Anns Med Entomol 14(1):6–13

    Google Scholar 

  • Ho SH, Wang J, Sim KY, Ee GC, Imiyabir Z, Yap KF, Shaari K, Hock Goh S (2003) Meliternatin: a feeding deterrent and larvicidal polyoxygenated flavone from Melicope subunifoliolata. Phytochemistry 62:1121–1124

    Article  CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Article  CAS  Google Scholar 

  • Jang YS, Jeon JH, Lee HS (2005) Mosquito larvicidal activity of active constituent derived from Chamaecyparis obtusa leaves against 3 mosquito species. J Am Mosq Control Assoc 21:400–403

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi P, Lalitha P, Aarthi N (2012) Larvicidal and pupicidal activity of extracts and fractionates of Eichhornia crassipes (Mart.) Solms against the filarial vector Culex quinquefasciatus Say. Parasitol Res 111:2129–2135

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman A, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Sampath M, Bagavan A, Kamaraj C, Abduz Zahir A, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194

    Article  PubMed  Google Scholar 

  • Joseph CC, Ndoile MM, Malima RC, Nkunya MH (2004) Larvicidal and mosquitocidal extracts, a coumarin, isoflavonoids and pterocarpans from Neorautanenia mitis. Trans R Soc Trop Med Hyg 98:451–455

    Article  CAS  PubMed  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry interactions and potential environmental implications. Sci Total Environ 400(1):396–414

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Cheol Oh H, Soo Noh H, Ji JH, Soo Kim S (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aerosol Sci 37(12):1662–1670

    Article  CAS  Google Scholar 

  • Kalimuthu K, Panneerselvam C, Murugan K, Hwang JS (2013) Green synthesis of silver nanoparticles using Cadaba indica lam leaf extract and its larvicidal and pupicidal activity against Anopheles stephensi and Culex quinquefasciatus. J Entomol Acarol Res 45(2):57–64

    Article  Google Scholar 

  • Kamalakannan S, Murugan K, Barnard DR (2011) Toxicity of Acalypha indica (Euphorbiaceae) and Achyranthes aspera (Amaranthaceae) leaf extracts to Aedes aegypti (Diptera: Culicidae). J Asia Pac Entomol 14:41–45

    Article  Google Scholar 

  • Kamaraj C, Rahuman AA (2010) Larvicidal and adulticidal potential of medicinal plant extracts from south India against vectors. Asian Pac J Trop Med 3:948–953

    Article  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A (2008) Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res 03:325–331

    Article  Google Scholar 

  • Kelm MA, Nair MG, Schutzki RA (1997) Mosquitocidal compounds from Magnolia salicifolia. Int J Pharmacogn 35:84–90

    Article  CAS  Google Scholar 

  • Khandagle AJ, Tare VS, Raut KD, Morey RA (2011) Bioactivity of essential oils of Zingiber officinalis and Achyranthes aspera against mosquitoes. Parasitol Res 109:339–343

    Article  PubMed  Google Scholar 

  • Khanna S, Srivastava CN, Srivastava MM, Srivastava S (2003) Insecticidal activity of the plant Phyllanthus amarus against Tribolium castaneum. J Environ Biol 24(4):391–394

    PubMed  Google Scholar 

  • Khanna VG, Kannabiran K, Rajakumar G, Rahuman AA, Santhoshkumar T (2011) Biolarvicidal compound gymnemagenol isolated from leaf extract of miracle fruit plant, Gymnema sylvestre (Retz) Schult against malaria and filariasis vectors. Parasitol Res 109(5):1373–1386

    Article  PubMed  Google Scholar 

  • Kim MK, Jang YS, Ahn YJ, Lee DK, Lee HS (2002) Larvicidal activity of Australian and Mexican plant extracts against Aedes aegypti and Culex pipiens pallens (Diptera: Culicidae). J Asia Pac Entomol 5(2):227–231

    Article  Google Scholar 

  • Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17(16):4019–4024

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, Lee DG (2009) Anti-fungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals 22(2):235–242

    Article  CAS  PubMed  Google Scholar 

  • Kimbaris AC, Koliopoulos G, Michaelakis A, Konstantopoulou MA (2012) Bioactivity of Dianthus caryophyllus, Lepidium sativum, Pimpinella anisum, and Illicium verum essential oils and their major components against the West Nile vector Culex pipiens. Parasitol Res 111(6):2403–2410

    Article  PubMed  Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res 109(2):461–472

    Article  PubMed  Google Scholar 

  • Komalamisra N, Trongtokit Y, Rongsriyam Y, Apiwathnasorn C (2005) Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J Trop Med Public Health 36(6):1412–1422

    PubMed  Google Scholar 

  • Koodalingam A, Mullainadhan P, Arumugam M (2009) Antimosquito activity of aqueous kernel extract of soapnut Sapindus emarginatus: impact on various developmental stages of three vector mosquito species and nontarget aquatic insects. Parasitol Res 105(5):1425–1434

    Article  PubMed  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76:50–56

    Article  CAS  PubMed  Google Scholar 

  • Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV (2008) Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev 77(3):242–269

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SC, Yadav SK (2010) Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol Biotechnol 85(10):1301–1309

    Article  CAS  Google Scholar 

  • Kundu S, Mandal M, Ghosh SK, Pal T (2004) Photochemical deposition of SERS active silver nanoparticles on silica gel. J Photochem Photobiol A Chem 162:625–663

    Article  CAS  Google Scholar 

  • Lee DK, Kang YS (2004) Synthesis of silver nanocrystallites by a new thermal decomposition method and their characterization. ETRI J 26(3):252–256

    Article  Google Scholar 

  • Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858

    Article  CAS  Google Scholar 

  • Liu ZL, Liu QZ, Du SS, Deng ZW (2012) Mosquito larvicidal activity of alkaloids and limonoids derived from Evodia rutaecarpa unripe fruits against Aedes albopictus (Diptera: Culicidae). Parasitol Res 111(3):991–996

    Article  PubMed  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46(8):1222–1244

    Article  CAS  PubMed  Google Scholar 

  • Macedo ME, Consoli RA, Grandi TS, dos Anjos AM, De Oliveira AB, Mendes NM, Queiróz RO, Zani CL (1997) Screening of Asteraceae (Compositae) plant extracts for larvicidal activity against Aedes fluviatilis (Diptera: Culicidae). Mem Inst Oswaldo Cruz 92:565–570

    Article  CAS  PubMed  Google Scholar 

  • Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2001) Dissociation and aggregation of gold nanoparticles under laser irradiation. J Phys Chem B 38(105):9050–9056

    Article  CAS  Google Scholar 

  • Mahesh Kumar P, Murugan K, Kovendan K, Subramaniam J, Amaresan D (2012) Mosquito larvicidal and pupicidal efficacy of Solanum xanthocarpum (Family: Solanaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 110(6):2541–2550

    Article  PubMed  Google Scholar 

  • Manonmani A, Balaraman K (2001) A highly mosquitocidal Bacillus thuringiensis var. thompsoni. Curr Sci 80(6):779–781

    CAS  Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2010) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549

    Article  PubMed  Google Scholar 

  • Marimuthu S, Rahuman A, Rajakumar G, Santhoshkumar T, Vishnu Kirthi A, Jayaseelan C, Bagavan A, Abduz Zahir A, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108:1541–1549

    Article  PubMed  Google Scholar 

  • Mathew N, Anitha MG, Bala TSL, Sivakumar SM, Narmadha R, Kalyanasundaram M (2009) Larvicidal activity of Saraca indica, Nyctanthes arbortristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitol Res 104:1017–1025

    Article  PubMed  Google Scholar 

  • Mathivanan T, Govindarajan M, Elumalai K, Krishnappa K, Ananthan A (2010) Mosquito larvicidal and phytochemical properties of Ervatamia coronaria Stapf. (Family: Apocynaceae). J Vector Borne Dis 47:178–180

    Google Scholar 

  • Mendonca FAC, Da Silva KFS, Dos Santos KK, Ribeiro Júnior KAL, Sant’Ana AEG (2005) Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti. Fitoterapia 76:629–636

    Article  PubMed  Google Scholar 

  • Mohan L, Sharma P, Srivastava CN (2005) Evaluation of Solanum xanthocarpum extracts as mosquito larvicides. J Environ Biol 26(2):399–401

    PubMed  Google Scholar 

  • Mohan L, Sharma P, Shrivastava CN (2006) Evaluation of Solanum xanthocarpum extract as a synergist for cypermethrin against larvae of filarial vector Culex quinquefasciatus (Say). Entomol Res 36:220–225

    Article  Google Scholar 

  • Mohana K (2010) Comparative efficacy of Bacillus thuringiensis israelensis crystal proteins in free and montmorillonite bound state as a larvicide in the ovitraps for Culex quinquefasciatus Say. J Biopest 3(1):408–412

    CAS  Google Scholar 

  • Mondal NK, Chowdhury A, Dey U, Mukhopadhya P, Chatterjee S, Das K, Jayanta Kumar D (2014) Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pac J Trop Dis 4(1):S204–S210

    Article  CAS  Google Scholar 

  • Moon HI, Cho SB, Lee JH, Paik HD, Kim SK (2011) Immunotoxicity activity of sesquiterpenoids from black galingale (Kaempferia parviflora Wall. Ex. Baker) against Aedes aegypti L. Immunopharmacol Immunotoxicol 33(2):380–383

    Article  CAS  PubMed  Google Scholar 

  • Murugan K, Vahitha R, Baruah I, Das SC (2003) Integration of botanicals and microbial pesticides for the control of filarial vector, Culex quinquefasciatus. Ann Med Entomol 12:11–23

    Google Scholar 

  • Murugan K, Murugan P, Noortheen A (2007) Larvicidal and repellent potential of Albizzia amara Boivin and Ocimum basilicum Linn against dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae). Bioresour Technol 98:198–201

    Article  CAS  PubMed  Google Scholar 

  • Muthu C, Reegan AD, Kingsley S, Ignacimuthu S (2012) Larvicidal activity of pectolinaringenin from Clerodendrum phlomidis L. against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 111(3):1059–1065

    Article  PubMed  Google Scholar 

  • Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B 79(2):488–493

    Article  CAS  Google Scholar 

  • Nadworny PL, Wang J, Tredget EE, Burrell RE (2008) Antiinflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine 4(3):241–251

    Article  CAS  PubMed  Google Scholar 

  • Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1(3):169–172

    Article  CAS  PubMed  Google Scholar 

  • Naresh kumar A, Jeyalalitha T, Murugan K, Madhiyazhagan P (2013) Bioefficacy of plant-mediated gold nanoparticles and Anthocepholus cadamba on filarial vector, Culex quinquefasciatus (Insecta: Diptera: Culicidae). Parasitol Res 112:1053–1063

    Article  PubMed  Google Scholar 

  • Niu HM, Zeng DQ, Long CL, Peng YH, Wang YH, Luo JF, Wang HS, Shi YN, Tang GH, Zhao FW (2010) Clerodane diterpenoids and prenylated flavonoids from Dodonaea viscosa. J Asian Nat Prod Res 12:7–14

    Article  CAS  PubMed  Google Scholar 

  • Oberdorster G, Oberdorsters E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira PV, Ferreira JC, Moura FS, Lima GS, Oliveira FM, Oliveira PES, Conserva LM (2010) Larvicidal activity of 94 extracts from ten plant species of northeastern of Brazil against Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 107:403–407

    Article  PubMed  Google Scholar 

  • Panneerselvam C, Ponarulselvam S, Murugan K (2011) Potential antiplasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Arch Appl Sci Res 3(6):208–217

    CAS  Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2011) Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and Poecilia reticulata. Parasitol Res 108(5):1253–1263

    Article  PubMed  Google Scholar 

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012a) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822

    Google Scholar 

  • Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunkhe BK (2012b) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non target fish Poicillia reticulata. Parasitol Res 111(2):555–562

    Article  PubMed  Google Scholar 

  • Pereira J, Gurudutt KN (1990) Growth inhibition of Musca domestica L. and Culex quinquefasciatus (Say) by (−)-3-epicaryoptin isolated from leaves of Clerodendron inerme (Gaertn) (Verbenaeae). J Chem Ecol 16:2297–2306

    Article  CAS  PubMed  Google Scholar 

  • Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn G. Don and their antiplasmodial activities. Asian Pac J Trop Biomed 2(7):574–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabakar K, Jebanesan A (2004) Larvicidal efficacy of some Cucurbitacious plant leaf extracts against Culex quinquefasciatus (Say). Bioresour Technol 95(1):113–114

    Article  CAS  PubMed  Google Scholar 

  • Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of Ag NPs by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B 82(1):152–159

    Article  CAS  Google Scholar 

  • Priyadarshini KA, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hitra against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006

    Article  PubMed  Google Scholar 

  • Promisiri S, Naksathit A, Kruatrachue M, Thavara U (2006) Evaluations of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non target fish. Insect Sci 13:179–188

    Article  Google Scholar 

  • Prophiro JS, da Silva NMA, Kanis LA, Rocha BP, Jonny E, Luna D, Silva OS (2012) First report on susceptibility of wild Aedes aegypti (Diptera: Culicidae) using Carapa guianensis (Meliaceae) and Copaifera sp. (Leguminosae). Parasitol Res 110:699–705

    Article  PubMed  Google Scholar 

  • Pugazhenthiran N, Anandan S, Kathiravan G, Udaya Prakash NK, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Rahman MA, Miah MAM (2007) Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 69:942–948

    Article  CAS  PubMed  Google Scholar 

  • Rahuman AA, Bagavan A, Kamaraj C, Saravanan E, Zahir AA, Elango G (2009) Efficacy of larvicidal botanical extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104(6):1365–1372

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar G, Abdul Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118(3):196–203

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104:337–340

    Article  CAS  PubMed  Google Scholar 

  • Raman N, Sudharsan S, Veerakumar V, Pravin N, Vithiya K (2012) Pithecellobium dulce mediated extra-cellular green synthesis of larvicidal silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 96:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Rawania A, Ghoshb A, Chandraa G (2013) Mosquito larvicidal and antimicrobial activity of synthesizednano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128:613–622

    Article  CAS  Google Scholar 

  • Redwane A, Lazrek HB, Bouallam S, Markouk M, Amarouch H, Jana M (2002) Larvicidal activity of extracts from Quercus lusitania var. infectoria galls (Oliv.). J Ethnopharmacol 79:261–263

    Article  CAS  PubMed  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J (2013) Hwang JS (2013) Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:981–990

    Article  PubMed  Google Scholar 

  • Roth GN, Chandra A, Nair MG (1998) Novel bioactivities of Curcuma longa constituents. J Nat Prod 61:542–545

    Article  CAS  PubMed  Google Scholar 

  • Ruiz C, Cachay M, Domínguez M, Velásquez C, Espinoza G, Ventosilla P, Rojas R (2011) Chemical composition, antioxidant and mosquito larvicidal activities of essential oils from Tagetes filifolia, Tagetes minuta and Tagetes elliptica from Perú. Planta Med 1:77–30

    Google Scholar 

  • Sagnou M, Mitsopoulou KP, Koliopoulos G, Pelecanou M, Couladouros EA, Michaelakis A (2012) Evaluation of naturally occurring curcuminoids and related compounds against mosquito larvae. Acta Trop 123:190–195

    Article  CAS  PubMed  Google Scholar 

  • Sakthivadivel M, Daniel T (2008) Evaluation of certain insecticidal plants for the control of vector mosquitoes viz., Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Appl Entomol Zool 43(1):57–63

    Article  Google Scholar 

  • Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of Citronella oil nanoemulsion. Int J Pharm 372:105–111

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109(3):823–831

    Article  PubMed  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702

    Article  PubMed  Google Scholar 

  • Sap-Iam N, Homklinchan C, Larpudomlert R, Warisnoicharoen W, Sereemaspun A, Dubas ST (2010) UV irradiation induced silver nanoparticles as mosquito larvicides. J Appl Sci 10(23):3132–3136

    Article  CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Won SW, Cho CWS, Kim Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B 73:332–338

    Article  CAS  Google Scholar 

  • Scanlon JE, Esah S (1965) Distribution in altitude of mosquitoes in northern Thailand. Mosq News 25:137–144

    Google Scholar 

  • Service MW (1992) Importance of ecology in Aedes aegypti control. Southeast Asian J Trop Med Pub Health 23:681–688

    CAS  Google Scholar 

  • Shahi M, Hanafi-Bojd AA, Iranshahi M, Vatandoost H, Hanafi-Bojd MY (2010) Larvicidal efficacy of latex and extract of Calotropis procera (Gentianales: Asclepiadaceae) against Culex quinquefasciatus and Anopheles stephensi (Diptera: Culicidae). J Vector Borne Dis 47:185–188

    CAS  PubMed  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry MJ (2004) Rapid synthesis of Au, Ag and bimetallic Au shell nanoparticles using Neem. J Colloid Interface Sci 275:496–502

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Kumari P, Srivastava MM, Srivastava S (2006) Removal of cadmium from aqueous system by shelled Moringa oleifera Lam. seed powder. Bioresour Technol 97:299–305

    Article  CAS  PubMed  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  PubMed  Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2010) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5(3):432–444

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui BS, Gulzar T, Mahmood A, Begum S, Khan B, Afshan F (2004) New insecticidal amides from petroleum ether extract of dried Piper nigrum L. whole fruits. Chem Pharm Bull 52:1349–1352

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Dhania G, Sharma A, Jaiwal PK (2007) Biotechnological approach to improve phytoremediation efficiency for environmental contaminants. In: Singh SN, Tripathi RD (eds). Environmental bioremediation technologies. Springer, Berlin/New York, pp 223–258

    Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84(4):741–749

    Article  CAS  PubMed  Google Scholar 

  • Sintubin L, Verstraete W, Boon N (2012) Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109(10):2422–2436

    Article  CAS  PubMed  Google Scholar 

  • Sivagnaname N, Kalyanasundaram M (2004) Laboratory Evaluation of methanolic extract of Atlantia monophylla (Family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Mem Inst Oswaldo Cruz Rio Janeiro 99(1):115–118

    Article  CAS  Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    Article  PubMed  CAS  Google Scholar 

  • Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    Article  PubMed  Google Scholar 

  • Srivastava A, Bartarya R, Tonk S, Srivastava SS, Kumari KM (2008) Larvicidal activity of an indigenous plant, Centratherum anthelminticum. J Environ Biol 29(5):669–672

    PubMed  Google Scholar 

  • Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499

    Article  PubMed  Google Scholar 

  • Subramaniam J, Kovendan K, Mahesh Kumar P, Murugan K, Walton W (2012) Mosquito larvicidal activity of Aloe vera (Family: Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti. Saudi J Biol Sci 19:503–509

    Article  PubMed  PubMed Central  Google Scholar 

  • Sucharit S, Leemingsawat S, Nadchatram M (1980) The presence of oviposition attractants of Aedes albopictus larval holding water on Aedes aegypti. Southeast Asian J Trop Med Pub Health 11:417–418

    CAS  Google Scholar 

  • Suganya A, Murugan K, Kovendan K, Mahesh Kumar P, Hwang JS (2013) Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol Res 112:1385–1397

    Article  PubMed  Google Scholar 

  • Suganya G, Karthi S, Shivakumar MS (2014) Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti. Parasitol Res 113(5):1673–1679

    Article  PubMed  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 13:2176–2179

    Article  CAS  Google Scholar 

  • Sundaravadivelan C, Nalini Padmanabhan M (2014) Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ Sci Pollut Res 21:4624–4633

    Article  CAS  Google Scholar 

  • Sundaravadivelan C, Nalini Padmanabhan M, Sivaprasath P, Kishmu L (2013) Biosynthesized silver nanoparticles from Pedilanthus tithymaloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera; Culicidae). Parasitol Res 112:303–311

    Article  PubMed  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Thavara U, Takagi M, Tsuda Y, Wada Y (1989) Preliminary field experiments on the oviposition of Aedes albopictus in water with different qualities. Trop Med 31:167–169

    Google Scholar 

  • Thavara U, Tawatsin A, Phan-Urai P, Kong-ngamsuk W, Chansang C, Liu M, Li Z (1996) Dengue vector mosquitos at a tourist attraction. Southeast Asian J Trop Med Pub Health 27:160–163

    CAS  Google Scholar 

  • Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131

    Article  CAS  PubMed  Google Scholar 

  • Thirunavukkarasu P, Ramkumar L, Ramanathan T, Silambarasan G (2010) Anti oxidant activity of selected coastal medicinal plants. World J Fish Mar Sci 2:134–137

    CAS  Google Scholar 

  • Tian N, Liu Z, Huang J, Luo G, Liu S, Liu X (2007) Isolation and preparation of flavonoids from the leaves of Nelumbo nucifera Gaertn by preparative reversed-phase high-performance liquid chromatography. Se Pu 25:88–92

    CAS  PubMed  Google Scholar 

  • Tien DC, Tseng KH, Liao CY, Huang JC, Tsung TT (2008) Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J Alloys Compd 463:408–411

    Article  CAS  Google Scholar 

  • Tiwari DK, Behari J (2009) Biocidal nature of treatment of Ag-nanoparticle and ultrasonic irradiation in Escherichia coli dh5. Adv Biol Res 3(4):89–95

    CAS  Google Scholar 

  • Tripathi A, Chandrasekaran N, Raichur AM, Mukherjee A (2009) Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J Biomed Nanotechnol 5(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Turney K, Drake TJ, Smith JE, Tan W, Harriso WW (2004) Functionalized nanoparticles for liquid atmospheric pressure matrix-assisted laser desorption/ionization peptide analysis. Rapid Commun Mass Spectrom 18:2367–2374

    Article  CAS  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M (2014) Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res 113:4085–4096

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 112:4073–4085

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014a) Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785

    Article  PubMed  Google Scholar 

  • Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014b) Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 113:2363–2373

    Article  PubMed  Google Scholar 

  • Velayutham K, Rahuman A, Rajakumar G, Roopan SM, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M, Siva C (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6:95–101

    Article  CAS  PubMed  Google Scholar 

  • Vinayachandra, Shwetha R, Chandrashekar KR (2011) Larvicidal activities of Knema attenuata (Hook. f. & Thomson) Warb. (Myristicaceae) extracts against Aedes albopictus Skuse and Anopheles stephensi Liston. Parasitol Res 109(6):1671–1676

    Article  CAS  PubMed  Google Scholar 

  • Vivekanandhan S, Misra M, Mohanty AK (2009) Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: an investigation on different soybean varieties. J Nanosci Nanotechnol 9(12):6828–6833

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Kim JR, Wang M, Shu SH, Ahn YJ (2012) Larvicidal activity of Cnidium monnieri fruit coumarins and structurally related compounds against insecticide-susceptible and insecticide-resistant Culex pipiens pallens and Aedes aegypti. Pest Manag Sci 68:1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Wei H, Chen C, Han B, Wang E (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80:7051–7055

    Article  CAS  PubMed  Google Scholar 

  • WHO (2007) Anopheline species complexes in South and South-East Asia. Regional office for South East Asia, New Delhi

    Google Scholar 

  • WHO (2008) World malaria report. Disease burden in SEA region. Regional office for South East Asia, New Delhi

    Google Scholar 

  • Willem, van den Wildenberg (2005) Roadmap report on nanoparticles. W&W, Barcelona silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194

    Google Scholar 

  • Wise JP Sr, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(1):34–41

    Article  CAS  PubMed  Google Scholar 

  • Wondji CS, Irving H, Morgan J, Lobo NF, Collins FH, Hunt RH (2009) Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res 19:452–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva, WHO/CDS/WHOPES/GCDPP/1.3

    Google Scholar 

  • Xiao XM, Hu ZN, Shi BJ, Wei SP, Wu WJ (2012) Larvicidal activity of lignans from Phryma leptostachya L. against Culex pipiens pallens. Parasitol Res 110:1079–1084

    Article  PubMed  Google Scholar 

  • Xu H, Käll M (2002) Morphology effects on the optical properties of silver nanoparticles. J Nanosci Nanotechnol 4:254–259

    Google Scholar 

  • Yang YC, Lee SG, Lee HK, Kim MK, Lee HS (2002) A piperidine amide extracted from Piper longam L. fruit shows activity against Aedes aegypti mosquito larva. J Agric Food Chem 50:3765–3767

    Article  CAS  PubMed  Google Scholar 

  • Yang YC, Lim MY, Lee HS (2003) Emodin isolated from Cassia obtusifolia (Leguminosae) seed shows larvicidal activity against three mosquito species. J Agric Food Chem 51:7629–7631

    Article  CAS  PubMed  Google Scholar 

  • Yap HH, Lee CY, Chong NL, Foo AES, Lim MP (1995) Oviposition site preference of Aedes albopictus in the laboratory. J Am Mosq Control Assoc 11:128–132

    CAS  PubMed  Google Scholar 

  • Zaim M, Guillet P (2002) Alternative insecticides: an urgent need. Trends Parasitol 18:161–163

    Article  PubMed  Google Scholar 

  • Zebit CPW (1984) Effect of some crude and Azadirachta-enriched neem (Azadirachta indica) seed kernel extracts of larvae of Aedes aegypti. Entomol Exp Appl 35:11–16

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to Department of Science & Technology, University Grants Commission and Indian Council of Medical Research, New Delhi, India, for providing financial assistance and would like to thank Professor and Head of the Department of Zoology, Annamalai University, for the laboratory facilities provided. The author would also like to acknowledge the cooperation of staff members of the VCRC (ICMR), Pondicherry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marimuthu Govindarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Govindarajan, M. (2016). Green Synthesized Silver Nanoparticles: A Potential New Insecticide for Mosquito Control. In: Mehlhorn, H. (eds) Nanoparticles in the Fight Against Parasites. Parasitology Research Monographs, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-25292-6_7

Download citation

Publish with us

Policies and ethics