Skip to main content

Remediation of Mine Tailings and Fly Ash Dumpsites: Role of Poaceae Family Members and Aromatic Grasses

  • Chapter
  • First Online:
Enhancing Cleanup of Environmental Pollutants

Abstract

Phytoremediation is an established technique for amelioration of soil contaminated with complex mixtures of heavy metals of anthropogenic origin. Coal fly ash and mine tailings include a conglomerate of heavy metals such as Cr, Pb, Hg, As, Ni, Cd, Cu, Mn, and Fe depending on the source of coal/ore and cause large-scale ecotoxicity. Unreclaimed mine tailing sites and coal fly ash dumpsites are a worldwide problem, presenting a source of contamination for nearby communities. The disposal sites are subject to erosion and are major causes of air pollution. Phytoremediation using plants for in situ stabilization and immobilization of these heavy metal-contaminated sites has gained momentum in the past few decades due to its cost-effectiveness and environmental sustainability. In this regard, the use of grasses is of prime importance due to their rapid growth, large biomass, resistance to phytotoxicity, and genotoxicity by heavy metals as compared to herbs, shrubs, and trees. Phytostabilization by the compact root system of grasses retards the formation, mobility, and bioavailability of hazardous leachates by high uptake and accumulation of the complex mixtures of heavy metals within them. Such grasses prevent natural succession by weeds and other plants leading to safe grazing by animals. Among the members of Poaceae, aromatic grasses are economically important plants due to their essential oil production. They rank higher than edible grasses, which are susceptible to heavy metal contamination in their edible parts. Various biochemical and molecular mechanisms govern the ADME (absorption, distribution, metabolism, excretion) of heavy metal contaminants in grasses growing in mine tailings and fly ash dumpsites. Metal-binding phytochelatins, metallothioneins, and antioxidant enzymes have key functions in these mechanisms. This chapter encompasses the role of members of Poaceae and aromatic grasses in phytoremediation of mine soil and coal fly ash with emphasis on their biochemical and molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad AKJ, Khara J (2007) Effect of cadmium toxicity on the level of lipid peroxidation and antioxidative enzymes activity in wheat plants colonized by arbuscular mycorrhizal fungi. Pak J Biol Sci 10:2413–2417

    Article  CAS  Google Scholar 

  • Adams RP (2000) DNA Analysis of the genetic diversity of vetiver and future selections for use in erosion control. Proceedings of the 2nd International Conference on Vetiver-ICV2, Thailand. http://www.vetiver.org/TVN_IVC2/PL-4.PDF

  • Adams RP, Dafforn MR (1997) DNA fingertyping (RAPDS) of the pantropical grass vetiver (Vetiveria zizanioides L.) reveals a single clone “sunshine” is widely utilised for erosion control. The Vetiver Network Newsletter, no. 18. Leesburg

    Google Scholar 

  • Adhikary SP (2015) Sustainable management of mining area through phytoremediation: an overview. Int J Curr Microbiol App Sci 4:745–751

    Google Scholar 

  • Adholeya A, Sharma MP, Bhatia NP, Tyagi C (1997) Mycorrhizal biofertilizer: a tool for reclamation of wasteland and bioremediation. In: National symposium on microbial technologies for environmental management and resource recovery. The Energy and Resources Institute, New Delhi, pp 58–63

    Google Scholar 

  • Agrawal J, Sherameti I, Varma A (2011) Detoxification of heavy metals: state of art. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Springer, Berlin-Heidelberg, pp 1–34

    Chapter  Google Scholar 

  • Aibibu N, Liu Y, Zeng G, Wang X, Chen B, Song H, Xu L (2010) Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresour Technol 101:6297–6303

    Article  CAS  Google Scholar 

  • Ali M, Parvez S, Pandey S, Atif F, Kaur M, Rehman H, Raisuddin S (2004) Fly ash leachate induces oxidative stress in freshwater fish Channa punctata (Bloch). Environ Int 30:933–938

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals- concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  Google Scholar 

  • Andra SS, Datta R, Sarkar D, Makris KC, Mullens CP, Sahi SV, Bach SBH (2009a) Induction of lead-binding phytochelatins in vetiver grass [Vetiveria zizanioides (L.)]. J Environ Qual 38:868–877

    Article  CAS  Google Scholar 

  • Andra SS, Datta R, Sarkar D, Saminathan SKM, Mullens CP, Bach SBH (2009b) Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Environ Pollut 157:2173–2183

    Article  CAS  Google Scholar 

  • Andra SS, Datta R, Sarkar D, Makris KC, Mullens CP, Sahi SV, Bach SBH (2010) Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant Soil 326:171–185

    Article  CAS  Google Scholar 

  • Andra SS, Datta R, Reddy R, Saminathan SKM, Sarkar D (2011) Antioxidant enzymes response in vetiver grass: a greenhouse study for chelant-assisted phytoremediation of lead-contaminated residential soils. Clean: Soil Air Water 39:428–436

    CAS  Google Scholar 

  • Angelova VR, Grekov DF, Kisyov VK, Ivanov KI (2015) Potential of lavender (Lavandula vera L.) for phytoremediation of soils contaminated with heavy metals. Int J Biol Biomol Agric Food Biotechnol Eng 9:465–472

    Google Scholar 

  • Antunes SC, Castro BB, Nunes B, Pereira R, Gonçalves F (2008) In situ bioassay with Eisenia andrei to assess soil toxicity in an abandoned uranium mine. Ecotoxicol Environ Saf 71:620–631

    Article  CAS  Google Scholar 

  • Arias MSB, Peña-Cabriales JJ, Alarcó NA, Vega MM (2015) Enhanced Pb absorption by Hordeum vulgare L. and Helianthus annuus L. plants inoculated with an arbuscular mycorrhizal fungi consortium. Int J Phytoremediation 17:405–413

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT (2002) Ethylene: agricultural sources and applications. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • Baba A, Türkman A (2001) Investigation of geochemical and leaching characteristics of solid wastes from Yenikoy (Mugla-Turkey) power plant. Turk J Eng Environ Sci 25:315–319

    Google Scholar 

  • Baba A, Gurdal G, Sengunalp F, Ozay O (2008) Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: can thermal power plant, province of Canakkale, Turkey. Environ Monit Assess 139:287–298

    Article  CAS  Google Scholar 

  • Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213

    Article  CAS  Google Scholar 

  • Bálint AF, Röder MS, Hell R, Galiba G, Börner A (2007) Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn contents in the shoots of wheat seedlings. Biol Plant 51:129–134

    Article  Google Scholar 

  • Bano SA, Ashfaq D (2013) Role of mycorrhiza to reduce heavy metal stress. Nat Sci 5:16–20

    CAS  Google Scholar 

  • Bataynen N, Kopacz SI, Lee CP (1986) The modes of action of long chain alkali compounds on the respiratory chain-linked energy transducing system in submitochondrial particles. Arch Biochem Biophys 250:476–487

    Article  Google Scholar 

  • Baxter I, Dilkes BP (2012) Elemental profiles reflect plant adaptations to the environment. Science 336:1661–1663

    Article  CAS  Google Scholar 

  • Baxter IR, Gustin JL, Settles AM, Hoekenga OA (2013) Ionomic characterization of maize kernels in the intermated B73 ×MO17 population. Crop Sci 53:208–220

    Article  CAS  Google Scholar 

  • Bellaire BA, Carmody J, Braud J, Gossett DR, Banks SW, Lucas MC, Fowler M (2000) Involvement of abscisic acid- dependent and – independent pathways in the up-regulation of antioxidant enzyme activity during NaCl stress in cotton callus tissue. Free Radic Res 33:531–545

    Article  CAS  Google Scholar 

  • Belouchi A, Kwan T, Gros P (1997) Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Biol 33:1085–1092

    Article  CAS  Google Scholar 

  • Bhardwaj R, Mascare’Nas C (1989) Cadmium-induced inhibition of photosynthesis in vivo during development of chloroplast in Triticum aestivum L. Plant Physiol Biochem 16:40–48

    Google Scholar 

  • Bi YL, Li XL, Christie P, Hu ZQ, Wong MH (2003) Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash. Chemosphere 50:863–869

    Article  CAS  Google Scholar 

  • Bidar G, Garçon G, Pruvot C, Dewaele D, Cazier F, Douay F, Shirali P (2007) Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: plant metal concentration and phytotoxicity. Environ Pollut 147:546–553

    Article  CAS  Google Scholar 

  • Bilski J, McLean K, McLean E, Soumaila F, Lander M (2011) Environmental health aspects of coal ash phytoremediation by selected crops. Int J Environ Sci 1:2022–2030

    Google Scholar 

  • Bodénan F, Baranger P, Piantone P, Lassin A, Azaroual M, Gaucher E et al (2004) Arsenic behaviour in gold-ore mill tailings, massif central, France: hydrogeochemical study and investigation of in situ redox signatures. Appl Geochem 19:1785–1800

    Article  CAS  Google Scholar 

  • Boisson S, Stradic SL, Collignon J, Séleck M, Malaisse F, Shutcha MN, Faucon M-P, Mahy G (2015) Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in south D. R. Congo poaceae candidates for phytostabilisation. Environ Sci Pollut Res 23(14):13693–13705

    Article  CAS  Google Scholar 

  • Borm PJA (1997) Toxicity and occupational health hazards of coal fly ash (CFA) a review of data and comparison to coal mine dust. Ann Occup Hyg 41:659–676

    Article  CAS  Google Scholar 

  • Boroş MN, Micle V, Avram SE (2014) Study on the mechanisms of phytoremediation. ECOTERRA-J Environ Res Prot 11:67–73

    Google Scholar 

  • Boruah HPD, Handique AK, Berah GC (2000) Response of java citronella (Cymbopogon winterianus Jowitt) to toxic heavy metal cadmium. Indian J Exp Biol 38:1267–1269

    CAS  Google Scholar 

  • Bosiacki M, Zieleziński Ł (2011) Phytoextraction of nickel by selected species of lawn grasses from substrates contaminated with heavy metals. Acta Sci Pol Hortorum Cultus 10:155–173

    Google Scholar 

  • Bradshaw AD (1952) Populations of Agrostis tenuis resistant to lead and zinc poisoning. Nature 169:1098

    Article  CAS  Google Scholar 

  • Briat JF (2010) Arsenic tolerance in plants: “Pas de deux” between phytochelatin synthesis and ABCC vacuolar transporters. Proc Natl Acad Sci U S A 107:20853–20854

    Article  CAS  Google Scholar 

  • Brune A, Urbach W, Dietz KJ (1994) Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Environ 17:1581–1585

    Article  Google Scholar 

  • Bücking H, Heyser W (1999) Elemental composition and function of polyphosphates in Ectomycorrhizal fungi—an X-ray microanalytical study. Mycol Res 103:31–39

    Article  Google Scholar 

  • Cai BD, Yin J, Hao YH, Li YN, Yuan BF, Feng YQ (2015) Profiling of phytohormones in rice under elevated cadmium concentration levels by magnetic solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. J Chromatogr A 1406:78–86

    Article  CAS  Google Scholar 

  • Cappa JJ, Pilon-Smits EA (2014) Evolutionary aspects of elemental hyperaccumulation. Planta 239:267–275

    Article  CAS  Google Scholar 

  • Carlson CL, Adriano DC (1993) Environmental impact of coal combustion residues. J Environ Qual 22:227–234

    Article  CAS  Google Scholar 

  • Carrillo-Chavez A, Morton Bermea O, Gonzalez Partida E, Rivas Solorzano H, Oesler G, Garcia Meza V, Hernandez E, Morales P, Cienfuegos E (2003) Environmental geochemistry of the Guanajuato mining district, Mexico. Ore Geol Rev 23:277–297

    Article  Google Scholar 

  • Chakraborty R, Mukherjee A (2009) Mutagenicity and genotoxicity of coal fly ash water leachate. Ecotoxicol Environ Saf 72:838–842

    Article  CAS  Google Scholar 

  • Chakraborty R, Mukherjee A (2011) Technical note: vetiver can grow on coal fly ash without DNA damage. Int J Phytoremediation 13:206–214

    Article  CAS  Google Scholar 

  • Chakraborty R, Mukherjee AK, Mukherjee A (2009) Evaluation of genotoxicity of coal fly ash in Allium cepa root cells by combining comet assay with the Allium test. Environ Monit Assess 153:351–357

    Article  CAS  Google Scholar 

  • Chantachon S, Kruatrachue M, Pokethitiyook P, Upatham S, Tantanasarit S, Soonthornsarathool V (2004) Phytoextraction and accumulation of lead from contaminated soil by vetiver grass: laboratory and simulated field study. Water Air Soil Pollut 154:37–55

    Article  CAS  Google Scholar 

  • Chen J, Wu FH, Wang WH, Zheng CJ, Lin GH, Dong XJ, He JX, Pei ZM, Zheng HL (2011) Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. J Exp Bot:4481–4493

    Google Scholar 

  • Chen KF, Yeh TY, Hsu YH, Chen CW (2012a) The phytoattenuation of the soil metal contamination: the effects of plant growth relgualtors (GA3 and IAA) by employing wetland macrophyte vetiver and energy plant sunflower. Desalin Water Treat 45:144–152

    Article  CAS  Google Scholar 

  • Chen KF, Yeh TY, Lin CF (2012b) Phytoextraction of Cu, Zn, and Pb enhanced by chelators with vetiver (Vetiveria zizanioides ): hydroponic and pot experiments. ISRN Ecol. doi:10.5402/2012/729693

    Google Scholar 

  • Chiu KK, Ye ZH, Wong MH (2006) Growth of Vetiveria zizanioides and Phragmites australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresour Technol 97:158–170

    Article  CAS  Google Scholar 

  • Chu LM (2008) Natural revegetation of coal fly ash in a highly saline disposal lagoon in Hong Kong. Appl Veg Sci 11:297–306

    Article  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal homeostasis and tolerance. Planta 212:475–486

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  CAS  Google Scholar 

  • Cobbett CS (1999) A family of phytochelatin synthase genes from plant, fungal and animal species. Trends Plant Sci 4:335–337

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    Article  CAS  Google Scholar 

  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Colín-Torres CG, Murillo-Jiménez JM, Del Razo LM, Sánchez-Peña LC, Becerra-Rueda OF, Marmolejo-Rodríguez AJ (2014) Urinary arsenic levels influenced by abandoned mine tailings in the southernmost Baja California Peninsula, Mexico. Environ Geochem Health 36:845–854

    Article  CAS  Google Scholar 

  • Conesa HM, Faz A, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union Mining District (Se Spain). Sci Total Environ 366:1–11

    Article  CAS  Google Scholar 

  • Conesa HM, Robinson BH, Schullin R, Nowack B (2007) Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes, and at field conditions. Environ Pollut 145:700–707

    Article  CAS  Google Scholar 

  • Ctvrtnickova T, Mateo M-P, Yañez A, Nicolas G (2009) Characterization of coal fly ash components by laser-induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc 64:1093–1097

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Dalcorso G, Farinati S, Maistri S, Furini A (2008) How plants pope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280

    Article  CAS  Google Scholar 

  • Dalcorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:1–5

    Article  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2:362–368

    Google Scholar 

  • Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation 11:664–691

    Article  CAS  Google Scholar 

  • Danh LT, Truong P, Mammucari R, Fostert N (2011) Economic incentive for applying vetiver grass to remediate lead, copper and zinc contaminated soils. Int J Phytoremediation 13:47–60

    Article  CAS  Google Scholar 

  • Darko E, Ambrus H, Stefanovits-Bányai E, Fodor J, Bakos F, Barnab´as B (2004) Aluminum toxicity, aluminum tolerance and oxidative stress in an Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci 166:583–591

    Article  CAS  Google Scholar 

  • Das M, Maiti SK (2009) Growth of Cymbopogon citratus and Vetiveria zizanioides on Cu mine tailings amended with chicken manure and manure-soil mixtures: a pot scale study. Int J Phytoremediation 11:651–663

    Article  Google Scholar 

  • Dasgupta T, Hossain SA, Meharg AA, Price AH (2004) An arsenate tolerance gene on chromosome 6 of rice. New Phytol 163:45–49

    Article  CAS  Google Scholar 

  • Dave R, Singh PK, Tripathi P, Shri M, Dixit G, Dwivedi S, Chakrabarty D, Trivedi PK, Sharma YK, Dhankher OP, Corpas FJ, Barroso JB, Tripathi RD (2013) Arsenite tolerance is related to proportional thiolic metabolite synthesis in rice (Oryza sativa L.) Arch Environ Contam Toxicol 64:235–242

    Article  CAS  Google Scholar 

  • Davies KL, Davies MS, Francis D (1991) Zinc-induced vacuolation in root meristematic cells of Festuca rubra L. Plant Cell Environ 14:399–406

    Article  CAS  Google Scholar 

  • de Andrade SAL, da Silveira APD (2008) Mycorrhiza influence on maize development under Cd stress and P supply. Braz J Plant Physiol 20:39–50

    Article  Google Scholar 

  • Del Rio-Celestino M, Font R, Moreno-Rojas R, De Haro-Bailon A (2006) Uptake of lead and zinc by wild plants growing on contaminated soils. Ind Crop Prod 24:230–237

    Article  CAS  Google Scholar 

  • Delhaize E, Ryan R (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    Article  CAS  Google Scholar 

  • Dickinson NM, Turner AP, Lepp NW (1991) How do trees and other long-lived plants survive in polluted environments? Funct Ecol 5:5–11

    Article  Google Scholar 

  • Dold B (2014) Submarine tailings disposal (STD) – a review. Minerals 4:642–666

    Article  CAS  Google Scholar 

  • Dold B, Diaby N, Spangenberg JE (2011) Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer. Environ Sci Technol 45:4876–4883

    Article  CAS  Google Scholar 

  • Du RJ, He EK, Tang YT, Hu PJ, Ying RR, Morel JL, Qiu RL (2011) Phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris Divaricata. Int J Phytoremediation 13:1024–1036

    Article  CAS  Google Scholar 

  • Du J, Yang JL, Li CH (2012) Advances in metallotionein studies in forest trees. Plant Omics 5:46–51

    CAS  Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  Google Scholar 

  • Dwivedi S, Saquib Q, Al-Khedhairy AA, Ali AYS, Musarrat J (2012) Characterization of coal fly ash nanoparticles and induced oxidative DNA damage in human peripheral blood mononuclear cells. Sci Total Environ 437:331–338

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1998) Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environ Sci Technol 32:802–806

    Article  CAS  Google Scholar 

  • Ekmekci Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611

    Article  CAS  Google Scholar 

  • Elekes CC (2014) Eco-technological solutions for the remediation of polluted soil and heavy metal recovery. In: Hernández-Soriano MC (ed) Environmental risk assessment of soil contamination. InTech, Rijeka, pp 309–335

    Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120

    Article  CAS  Google Scholar 

  • EPA (1997) Cleaning up the nation’s waste sites: markets and technology trends. United States Environmental Protection Agency, EPA 542/R-96/005. Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • EPA (2000) United States Environmental Protection Agency Reports, Introduction to phytoremediation. EPA 600/R-99/107. National Risk Management Research Laboratory, Office of Research and Development, Cincinnati

    Google Scholar 

  • EPA (2015) Abandoned mine lands. Mine Lands Portal. United States Environmental Protection Agency, Bureau of Land Management. http://www.abandonedmines.gov/ep.html

  • Evangelou MWH, Deram A (2014) Phytomanagement: a realistic approach to soil remediating phytotechnologies with new challenges for plant science. Int J Plant Biol Res 2:1023

    Google Scholar 

  • Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of photosystem II by competitive binding to the essential Ca2+ site. BBA-Bioenergetics 1706:158–164

    Article  CAS  Google Scholar 

  • Farooqi AHA, Sangwan NS, Sangwan RS (1999) Effect of different photoperiodic regimes on growth: flowering and essential oil in Mentha species. Plant Growth Regul 29:181–187

    Article  CAS  Google Scholar 

  • Figueroa JAL, Afton S, Wrobel K, Wrobel K, Caruso JA (2007) Analysis of phytochelatins in nopal (Opuntia ficus): a metallomics approach in the soil-plant system. J Anal At Spectrom 22:897–904

    Article  Google Scholar 

  • Fischer S, Kühnlenz T, Thieme M, Schmidt H, Clemens S (2014) Analysis of plant Pb tolerance at realistic submicromolar concentrations demonstrates the role of phytochelatin synthesis for Pb detoxification. Environ Sci Technol 48:7552–7559

    Article  CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Vitoria AP, Molina SMG, Lea PJ, Azevedo RA (2002a) Effects of cadmium on antioxidant enzyme activities in sugarcane. Biol Plant 45:91–97

    Article  CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Pereira GJG, Molina SMG, Smith RJ, Lea PJ, Azevedo RA (2002b) Cadmium stress in sugar cane callus cultures: effect on antioxidant enzymes. Plant Cell Tissue Organ Cult 71:125–131

    Article  CAS  Google Scholar 

  • Frankenberger JWT, Arshad M (1995) Microbial synthesis of auxins. In: Frankenberger WT, Arshad M (eds) Phytohormones in soils. Marcel Dekker, New York, pp 35–71

    Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    Article  CAS  Google Scholar 

  • Garba ST, Kolo BG, Samali A, Nkafaminya II (2013) Phytoremediation: enhanced phytoextraction ability of E. indica at different level of applied EDTA. IJSN 4:72–78

    CAS  Google Scholar 

  • García G, Faz A, Cunha M (2004) Performance of Piptatherum miliaceum (Smilo grass) in edaphic Pb and Zn phytoremediation over a short growth period. Int Biodeter Biodegr 54:245–250

    Article  CAS  Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sustain Dev 30:581–599

    Article  CAS  Google Scholar 

  • Garrett NE, Campbell JA, Stack HF (1981) The utilization of the rabbit alveolar macrophage and Chinese hamster ovary cell for evaluation of the toxicity of particulate materials. Environ Res 24:345–365

    Article  CAS  Google Scholar 

  • Geras’kin S, Oudalova A, Michalik B, Dikareva N, Dikarev V (2011) Genotoxicity assay of sediment and water samples from the upper Silesia post-mining areas, Poland by means of Allium-test. Chemosphere 83:1133–1146

    Article  CAS  Google Scholar 

  • Geremias R, Fattorini D, Fávere VTD, Pedrosa RC (2010) Bioaccumulation and toxic effects of copper in common onion Allium cepa L. Chem Ecol 26:19–26

    Article  CAS  Google Scholar 

  • Ghosh S, Chatterjee T, Saha T, Mukherjee A (2012) Genotoxicity assessment of soil contamination: a case study from Farakka coal-fired power plant in eastern India. Nucleus 55:45–50

    Article  Google Scholar 

  • Ghosh M, Paul J, Jana A, De A, Mukherjee A (2015) Use of the grass, Vetiveria zizanioides (L.) Nash for detoxification and phytoremediation of soils contaminated with fly ash from thermal power plants. Ecol Eng 74:258–265

    Article  Google Scholar 

  • Gilbert M (2000) Minesite rehabilitation. Trop Grassl 34:147–154

    Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    Article  CAS  Google Scholar 

  • Glick BR, Holguin G (1998) The use of plant growth promoting rhizobacteria to improve productivity. In: Connor TH, Weiner HU, Fox F (eds) Biotechnology international II. University Medical Press, San Francisco, pp 246–249

    Google Scholar 

  • Glick BR, Stearns JC (2011) Making phytoremediation work better: maximizing a plant’s growth potential in the midst of adversity. Int J Phytoremediation 13:4–16

    Article  Google Scholar 

  • Gordeziani M, Khatisashvili G, Ananiashvili T, Varazashvili T, Kurashvili M, Kvesitadze G, Tkhelidze P (1999) Energetic significance of plant monooxygenase individual components participating in xenobiotic degradation. Int Biodeter Biodegr 44:49–54

    Article  CAS  Google Scholar 

  • Gormley IP, Collings P, Davis JMG, Ottery J (1979) An investigation into the cytotoxicity of respirable dusts from British collieries. Br J Exp Pathol 60:526–536

    CAS  Google Scholar 

  • Gregory RPG, Bradshaw AD (1965) Heavy metal tolerance in populations of Agrostis tenuis Sibth. And other grasses. New Phytol 64:131–143

    Article  CAS  Google Scholar 

  • Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155:1750–1751

    Article  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1986) Synthesis of seven different homologous phytochelatins in metal-exposed Schizosaccharomyces pombe cells. FEBS Lett 197:115–120

    Article  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal binding peptides of plants, are synthesized from glutathione by a specific 'γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86:6838–6842

    Article  CAS  Google Scholar 

  • Grimalt JO, Ferrer M, Macpherson E (1999) The mine tailing accident in Aznalcollar. Sci Total Environ 242:2–11

    Article  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 82:1020–1026

    Article  CAS  Google Scholar 

  • Guo JL, Xu LP, Su Y, Wang H, Gao S, Xu J, Que Y (2013) ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. Biomed Res Int 2013:904769

    Google Scholar 

  • Gupta DK, Rai UN, Tripathi RD, Inouhe M (2002) Impacts of fly-ash on soil and plant responses. J Plant Res 115:401–409

    Article  CAS  Google Scholar 

  • Gupta AK, Verma SK, Khan K, Verma RK (2013) Phytoremediation using aromatic plants: a sustainable approach for remediation of heavy metals polluted sites. Environ Sci Technol 47:10115–10116

    CAS  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  Google Scholar 

  • Halusková L, Valentovicová K, Huttová K, Mistrík I, Tamás L (2009) Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiol Biochem 47:1069–1074

    Article  CAS  Google Scholar 

  • Handique GK, Handique AK (2009) Proline accumulation in lemongrass (Cymbopogon flexuosus Stapf.) J Environ Biol 30:299–302

    CAS  Google Scholar 

  • Harborne JB (1989) General procedures and measurement of total phenolics. In: Harborne JB (ed) Methods in plant biochemistry (Vol. 1: plant phenolics). Academic Press, London, pp 1–28

    Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Ahmad A (2013) Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Bot Croat 72:323–335

    CAS  Google Scholar 

  • Haynes RJ (2009) Reclamation and revegetation of FA disposal sites-challenges and research needs. J Environ Manag 90:43–53

    Article  CAS  Google Scholar 

  • Hegelund JN, Schiller M, Kichey T, Hansen TH, Pedas P, Husted S, Schjoerring JK (2012) Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding. Plant Physiol 159:1125–1137

    Article  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  Google Scholar 

  • Hinchman RR, Negri MC, Gatliff EG (1995) Phytoremediation: using green plants to clean up contaminated soil, groundwater, and wastewater. Argonne National Laboratory Applied Natural Sciences, Inc., pp 1–10, http://www.treemediation.com/Technical/Phytoremediation1998.pdf

  • Hossain AKMZ, Koyama H, Hara T (2006) Growth and cell wall properties of two wheat cultivars differing in their sensitivity to aluminium stress. J Plant Physiol 163:39–47

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:Article ID 872875, 37 pages. doi:10.1155/2012/872875

  • Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 25:867–874

    Article  Google Scholar 

  • Huang Y, Tao S, Chen Y-J (2005) The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. J Environ Sci 17:276–280

    CAS  Google Scholar 

  • Iannelli MA, Pietrini F, Fiore L, Petrilli L, Massacci A (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol Biochem 40:977–982

    Article  CAS  Google Scholar 

  • Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M (2010) A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot 61:923–934

    Article  CAS  Google Scholar 

  • Israila YZ, Bola AE, Emmanuel GC, Ola IS (2015) Phytoextraction of heavy metals by Vetiveria zizanioides, Cymbopogon citratus and Helianthus annuus. Am J Appl Chem 3:1–5

    Article  CAS  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Article  Google Scholar 

  • Jadia CD, Fulekar MH (2008) Phytotoxicity and remediation of heavy metals by fibrous root grass (Sorghum). J Appl BioSci 10:491–499

    Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8:921–928

    CAS  Google Scholar 

  • Jala S, Goyal D (2006) FA as a soil ameliorant for improving crop production – a review. Bioresour Technol 97:1136–1147

    Article  CAS  Google Scholar 

  • Ji P, Jiang Y, Tang X, Nguyen TH, Tong Y, Gao P, Han W (2015) Enhancing of phytoremediation efficiency using indole-3-acetic acid (IAA). Soil Sed Contam 24:909–916

    CAS  Google Scholar 

  • Jowett D (1958) Populations of Agrostis spp. tolerant of heavy metals. Nature 182:816

    Article  Google Scholar 

  • Jowett D (1964) Population studies on lead tolerant Agrostis tenuis. Evolution 18:70

    Article  Google Scholar 

  • Joy RJ (2009) ‘Sunshine’ vetiver grass Chrysopogon zizanioides (L.) Roberty. United States Department of Agriculture (USDA), National Resources Conservation Service (NRCS). Plant Materials Center, Hoolehua

    Google Scholar 

  • Kalra N, Joshi HC, Chaudhary A, Chaudhary R, Sharma SK (1997) Impact of flyash incorporation in soil on germination of crops. Bioresour Technol 61:39–41

    Article  CAS  Google Scholar 

  • Kamiya T, Fujiwara T (2011) A novel allele of the Arabidopsis phytochelatin synthase 1 gene conferring high sensitivity to arsenic and antimony. Soil Sci Plant Nutr 57:272–278

    Article  CAS  Google Scholar 

  • Kashiwagi T, Shindo K, Hirotsu N, Ishimaru K (2009) Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biol 9:8

    Article  CAS  Google Scholar 

  • Khatun S, Ali MB, Hahn EJ, Paek KY (2008) Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot 64:279–285

    Article  CAS  Google Scholar 

  • Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt stress responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt stress. J Exp Bot 54:2553–2562

    Article  CAS  Google Scholar 

  • Kilic NK, Donmez G (2007) Hexavalent chromium bioaccumulation by Micrococcus sp isolated from tannery wastewaters. Fresenius Environ Bull 16:1571–1577

    CAS  Google Scholar 

  • Kirchner FR, Reilly CA Jr, Buchholz DM, Pahnke VA Jr (1983) Toxicological effects on mice following inhalation exposures to fluidized-bed coal combustor fly ash. Environ Res 32:314–328

    Article  CAS  Google Scholar 

  • Kleinjans JCS, Janssen YMW, van Agen B, Hageman GJ, Schreurs JGM (1989) Genotoxicity of coal fly ash, assessed in vitro in Salmonella typhimurium and human lymphocytes, and in vivo in an occupationally exposed population. Mutat Res 224:127–134

    Article  CAS  Google Scholar 

  • Knoll C (1997) Rehabilitation with vetiver. Afr Mining 2:43–48

    Google Scholar 

  • Kozka M, Baralkiewicz D, Piechalak A, Tomaszewska B (2006) Determination of thiol compounds in Pisum sativum exposed to lead and cadmium ions by HPLC with post column derivatization. Chem Anal (Pol) 51:427–437

    CAS  Google Scholar 

  • Krajickova A, Majstrick V (1984) The effect of fly-ash particles on the plugging of stomata. Environ Pollut Ser A Ecol Biol 36:83–93

    Article  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speculation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  CAS  Google Scholar 

  • Krysiak A, Karczewska A (2007) Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Sci Total Environ 379:190–200

    Article  CAS  Google Scholar 

  • Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51

    Article  CAS  Google Scholar 

  • Kumar A, Maiti SK (2015) Effect of organic manures on the growth of Cymbopogon citratus and Chrysopogon zizanioides for the phytoremediation of chromite-asbestos mine waste: a pot scale experiment. Int J Phytoremediation 17:437–447

    Article  Google Scholar 

  • Kumar KV, Patra DD (2012) Alteration in yield and chemical composition of essential oil of Mentha piperita L. plant: effect of fly ash amendments and organic wastes. Ecol Eng 47:237–241

    Article  Google Scholar 

  • Kumar V, Awasthi G, Chauhan PK (2012a) Cu and Zn tolerance and responses of the biochemical and physiochemical system of wheat. J Stress Physiol Biochem 8:203–213

    Google Scholar 

  • Kumar G, Kushwaha HR, Sabharwal VP, Kumari S, Joshi R, Karan R, Mittal S, Pareek SLS, Pareek A (2012b) Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol 12:107

    Article  CAS  Google Scholar 

  • Küpper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129

    Article  CAS  Google Scholar 

  • Kuramata M, Abe T, Kawasaki A, Ebana K, Shibaya T, Yano M, Ishikawa S (2013) Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice (N Y) 6:3

    Google Scholar 

  • Kuzmick DM, Mitchelmore CL, Hopkins WA, Rowe CL (2007) Effects of coal combustion residues on survival, antioxidant potential, and genotoxicity resulting from full-lifecycle exposure of grass shrimp (Palaemonetes pugio Holthius). Sci Total Environ 373:420–430

    Article  CAS  Google Scholar 

  • Kvesitadze G, Gordeziani M, Khatisashvili G, Sadunishvili T, Ramsden JJ (2001) Some aspects of the enzymatic basis of phytoremediation. J Biol Phys Chem 1:49–57

    Article  CAS  Google Scholar 

  • Lal N (2010) Molecular mechanisms and genetic basis of heavy metal toxicity and tolerance in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Berlin-Heidelberg, pp 35–58

    Chapter  Google Scholar 

  • Lal K, Minhas PS, Chaturvedi RK, Yadav RK (2008) Cadmium uptake and tolerance of three aromatic grasses on Cd-rich soils. J Indian Soc Soil Sci 56:290–294

    CAS  Google Scholar 

  • Lal K, Yadav RK, Kaur R, Bundela DS, Khan MI, Chaudhary M, Meena RL, Dar SR, Singh G (2013) Productivity, essential oil yield, and heavy metal accumulation in lemon grass (Cymbopogon flexuosus) under varied wastewater–groundwater irrigation regimes. Ind Crop Prod 45:270–278

    Article  CAS  Google Scholar 

  • Lane BG, Kajioka R, Kennedy TD (1987) The wheat germ Ec protein is a zinc containing metallothionein. Biochem Cell Biol 65:1001–1005

    Article  CAS  Google Scholar 

  • Lee S, Kim YY, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842

    Article  CAS  Google Scholar 

  • Leskó K, Simon-Sarkadi L (2002) Effect of cadmium stress on amino acid and polyamine content of wheat seedlings. Periodica Polytechnica Ser Chem Eng 46:65–71

    Google Scholar 

  • Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146–1169

    Article  CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2007) Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings. Chemosphere 66:905–915

    Article  CAS  Google Scholar 

  • Li XF, Ma JF, Matsumoto H (2000) Pattern of aluminium induced secretion of organic acids differs between rye and wheat. Plant Physiol 123:1537–1543

    Article  CAS  Google Scholar 

  • Li X, Cen H, Chen Y, Xu S, Peng L, Zhu H, Li Y (2015) Physiological analyses indicate superoxide dismutase, catalase, and phytochelatins play important roles in Pb tolerance in Eremochloa ophiuroides. Int J Phytoremediation 18(3):251–260

    Article  CAS  Google Scholar 

  • Lim HS, Lee J-S, Chon H-T, Sager M (2008) Heavy metal contamination and health risk assessment in the vicinity of the abandoned songcheon Au–Ag mine in Korea. J Geochem Explor 96:223–230

    Article  CAS  Google Scholar 

  • Lin Z-Q, Schemenauer R, Cervinka V, Zayed A, Lee A, Terry N (2000) Selenium volatilization from a soil–plant system for the remediation of contaminated water and soil in the San Joaquin Valley. J Environ Qual 29:1048–1056

    Article  CAS  Google Scholar 

  • Liphadzi MS, Kirkham MB, Paulsen GM (2006) Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil. Environ Technol 27:695–704

    Article  CAS  Google Scholar 

  • Liu WK, Wong MH, Tam NFY, Sun SE (1987) Fly ash hemolysis as related to its alkalinity. Environ Res 44:136–147

    Article  CAS  Google Scholar 

  • Liu Y-G, Zhang H-Z, Zeng G-M, Huang B-R, Li X (2006) Heavy metal accumulation in plants on Mn mine tailings. Pedosphere 16:131–136

    Article  CAS  Google Scholar 

  • Loch RJ (2000) Effects of vegetation cover on runoff and erosion under simulated rain and overland flow on a rehabilitated site on the Meandu mine, Tarong, Queensland. Aust J Soil Res 38:299–312

    Article  Google Scholar 

  • Lone MI, He Z-l, Stoffella PJ, Yang X-e (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9:210–220

    Article  CAS  Google Scholar 

  • Lonergan PF, Pallotta MA, Lorimer M, Paull JG, Barker SJ, Graham RD (2009) Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytol 184:168–179

    Article  CAS  Google Scholar 

  • Lorestani B, Cheraghi M, Yousefi N (2011) Phytoremediation potential of native plants growing on a heavy metals contaminated soil of copper mine in Iran. World Acad Sci Eng Technol 77:377–382

    Google Scholar 

  • Loscos J, Naya L, Ramos J, Clemente MR, Matamoros MA, Becana M (2006) A reassessment of substrate specificity and activation of phytochelatin synthases from model plants by physiologically relevant metals. Plant Physiol 140:1213–1221

    Article  CAS  Google Scholar 

  • Lu Y, Li X, He M, Zeng F (2013) Behaviour of native species Arrhenatherum elatius (poaceae) and Sonchus transcaspicus (Asteraceae) exposed to a heavy metal-polluted field: plant metal concentration, phytotoxicity, and detoxification responses. Int J Phytoremediation 15:924–937

    Article  CAS  Google Scholar 

  • Lydakis-Simantiris N, Skoula M, Fabian M, Naxakis G (2012) Cultivation of medicinal and aromatic plants in heavy metalcontaminated soils- exploitation with caution. In: CRETE, 3rd international conference on industrial and hazardous waste management. pp 1–8

    Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  CAS  Google Scholar 

  • Ma Y, Dickinson N, Wong M (2002) Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability. Biol Fertil Soils 36:79–86

    Article  CAS  Google Scholar 

  • Macovei A, Ventura L, Donà M, Faè M, Balestrazzi A, Carbonera D (2010) Effects of heavy metal treatments on metallothionein expression profiles in white poplar (Populus alba L.) cell suspension cultures. Analele Universităţii din Oradea – Fascicula Biologie 18:274–279

    Google Scholar 

  • Magalhaes JV, Liu J, Guimarães CT, Lana UGP, Alves VMC, Wang Y-H, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  CAS  Google Scholar 

  • Maiti SK, Jaiswal S (2008) Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash deposits: a field study from Santaldih thermal power plant, West Bengal, India. Environ Monit Assess 136:355–370

    Article  CAS  Google Scholar 

  • Maiti SK, Singh G, Srivastava SB (2005) Study of the possibility of utilizing fly ash for back filling and reclamation of opencast mines: plot and pot scale experiments with Chandrapura FA. Proceedings of International Congress on Fly Ash TIFAC. New Delhi, India

    Google Scholar 

  • Malik N, Biswas A (2012) Role of higher plants in remediation of metal contaminated sites. Sci Revs Chem Commun 2:141–146

    CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals, Springer briefs in biometals. Springer, Netherlands, pp 27–53

    Google Scholar 

  • Matsi T, Keramidas VZ (1999) Fly-ash application on two acid soils and its effect on soil salinity, pH, B, P, and on ryegrass growth and composition. Environ Pollut 104:107–112

    Article  CAS  Google Scholar 

  • Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Mazhoudi S, Chaoui A, Ghorbal MH, Ferjani EE (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum Mill.) Plant Sci 127:129–137

    Article  CAS  Google Scholar 

  • Meagher R, Rugh C, Kandasamy M, Gragson G, Wang N (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 201–219

    Google Scholar 

  • Meeinkuirt W, Kruatrachue M, Tanhan P, Chaiyarat R, Pokethitiyook P (2013) Phytostabilization potential of Pb mine tailings by two grass species, Thysanolaena maxima and Vetiveria zizanioides. Water Air Soil Pollut 224:1750

    Article  CAS  Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    Article  CAS  Google Scholar 

  • Mehes-Smith M, Nkongolo KK (2015) Physiological and cytological responses of Deschampsia cespitosa and Populus tremuloides to soil metal contamination. Water Air Soil Pollut 226:125

    Article  CAS  Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments- an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  Google Scholar 

  • Mendez MO, Glenn EP, Maier RM (2007) Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes. J Environ Qual 36:245–253

    Article  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  Google Scholar 

  • Mishra M, Sahu RK, Padhy RN (2007) Growth, yield and elemental status of rice (Oryza sativa) grown in fly-ash amended soil. Ecotoxicology 16:271–278

    Article  CAS  Google Scholar 

  • Mitrovic M, Pavlovic P, Lakusic D, Djurdjevic L, Stevanovic B, Kostic O, Gajic G (2008) The potential of Festuca rubra and Calamagrostis epigejos for the revegetation of fly ash deposits. Sci Total Environ 407:338–347

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Montes-Hernandez G, Perez-Lopez R, Renard F, Nieto J, Charlet L (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161:1347–1354

    Article  CAS  Google Scholar 

  • Moore JN, Luoma SN (1990) Hazardous wastes from large-scale metal extraction. Environ Sci Technol 24:1278–1285

    Article  CAS  Google Scholar 

  • Mourato M, Reis R, Martins LL (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In: Montanaro G, Dichio B (eds) Advances in selected plant physiology aspects. InTech, Vienna, pp 23–44. http://hdl.handle.net/10400.5/4410

    Google Scholar 

  • Mugica-Alvarez V, Cortés-Jiménez V, Vaca-Mier M, Domínguez-Soria V (2015) Phytoremediation of mine tailings using Lolium multiflorum. Int J Environ Sci Dev 6:246–251

    Article  Google Scholar 

  • Mulhern DW, Robel RJ, Furness JC, Hensley DL (1989) Vegetation of waste disposal areas of a coal fired power plant in Kansas. J Environ Qual 18:285–292

    Article  Google Scholar 

  • Munzuroğlu O, Kırbağ Zengin F, Yahyagil Z (2008) The abscisic acid levels of wheat (Triticum aestivum L. cv. Çakmak 79) seeds that were germinated under heavy metal (Hg++, Cd++, Cu++) stress. GU J Sci 21:1–7

    Google Scholar 

  • Nadgórska-Socha A, Ptasiński B, Kita A (2013) Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: a field study. Ecotoxicology 22:1422–1434

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron, and selenium. Plant Soil 329:139–153

    Article  CAS  Google Scholar 

  • Notton BA, Hewitt EJ (1974) Molybdenum and tungsten in nitrate reductase. J Less-Common Met 36:437–448

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Nsanganwimana F, Pourrut B, Mench M, Douay F (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manag 143:123–134

    Article  CAS  Google Scholar 

  • Nsanganwimana F, Pourrut B, Waterlot C, Louvel B, Bidar G, Labidi S, Fontaine J, Muchembled J, Lounès-Hadj Sahraoui A, Fourrier H, Douay F (2015) Metal accumulation and shoot yield of Miscanthus x giganteus growing in contaminated agricultural soils: insights into agronomic practices. Agric Ecosyst Environ 213:61–71

    Article  CAS  Google Scholar 

  • Nunes C, Araújo SS, Silva JM, Fevereiro P, Silva AB (2009) Photosynthesis light curves: a method for screening water deficit resistance in the model legume Medicago truncatula. Ann Appl Biol 155:321–332

    Article  Google Scholar 

  • Ouzounidou G, Ciamporova M, Moustakas M, Karataglis S (1995) Responses of maize (Zea mays L.) plants to copper stress-growth, mineral content and ultrastructure of roots. Environ Exp Bot 35(167):176

    Google Scholar 

  • Pandey VC (2015) Assisted phytoremediation of fly ash dumps through naturally colonized plants. Ecol Eng 82:1–5

    Article  Google Scholar 

  • Pandey VC, Singh B (2012) Rehabilitation of coal fly ash basins: current need to use ecological engineering. Ecol Eng 49:190–192

    Article  Google Scholar 

  • Pandey VC, Singh N (2014) Fast green capping on coal fly ash basins through ecological engineering. Ecol Eng 73:671–675

    Article  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere 61:40–47

    Article  CAS  Google Scholar 

  • Pandey VC, Abhilash PC, Singh N (2009) The Indian perspective of utilizing FA in phytoremediation, phytomanagement and biomass production. J Environ Manag 90:2943–2958

    Article  CAS  Google Scholar 

  • Pandey VC, Singh K, Singh RP, Singh B (2012) Naturally growing Saccharum munja L. on the fly ash lagoons: a potential ecological engineer for the revegetation and stabilization. Ecol Eng 40:95–99

    Article  Google Scholar 

  • Pandey VC, Bajpai O, Pandey DN, Singh N (2015) Saccharum spontaneum: an underutilized tall grass for revegetation and restoration programs. Genet Resour Crop Evol 62:443–450

    Article  Google Scholar 

  • Pang J, Chan GSY, Zhang J, Liang J, Wong MH (2003) Physiological aspects of vetiver grass for rehabilitation in abandoned metalliferous mine wastes. Chemosphere 52:1559–1570

    Article  CAS  Google Scholar 

  • Papernik LA, Bethea AS, Singleton TE, Magalhaes JV, Garvin DF, Kochian LV (2001) Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese spring wheat. Planta 212:829–834

    Article  CAS  Google Scholar 

  • Patham SM, Aylmore LAG, Colmer TG (2003) Properties of several fly ash materials in relation to use as soil amendments. J Environ Qual 32:687–693

    Article  Google Scholar 

  • Patra J, Lenka M, Panda BB (1994) Tolerance and co-tolerance of the grass Chloris barbata Sw. to mercury, cadmium and zinc. New Phytol 128:165–171

    Article  CAS  Google Scholar 

  • Patra HK, Marndi DS, Mohanty M (2015) Chromium toxicity, physiological responses and tolerance potential of lemon grass (Cymbopogon flexuosus nees ex steud. wats.) Ann Plant Sci 4:1080–1084

    Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci U S A 98:9995–10000

    Article  CAS  Google Scholar 

  • Petruzzelli G, Labrano L, Cervelli S (1987) Heavy metal uptake by wheat seedlings grown in fly-ash amended soils. Water Air Soil Pollut 32:389–395

    Article  CAS  Google Scholar 

  • Pichtel J, Salt CA (1998) Vegetative growth and trace metal accumulation on metalliferous wastes. J Environ Qual 27:618–624

    Article  CAS  Google Scholar 

  • Pineros MA, Kochian LV (2001) A patch-clamp study on the physiology of aluminium toxicity and aluminium tolerance in maize. Identification and characterization of Al3+- induced anion channels. Plant Physiol 125:292–305

    Article  CAS  Google Scholar 

  • Prain D (1903) Bengal plants, vol I. Botanical Survey of India, Calcutta, p 994

    Google Scholar 

  • Prasad A, Chand S, Kumar S, Chattopadhyay A, Patra DD (2014) Heavy metals affect yield, essential oil compound, and rhizosphere microflora of vetiver (Vetiveria zizanioides Linn. nash) grass. Commun Soil Sci Plant Anal 45:1511–1522

    Article  CAS  Google Scholar 

  • Pricop A, Lixandru B, Dragomir N, Bogatu C, Mâşu S, Morariu F (2010) Phytoextraction of heavy metals from soil polluted with waste mining by using forage plants in successive cultures. Sci Pap Anim Sci Biotechnol 43:129–132

    Google Scholar 

  • Probst A, Liu H, Fanjul M, Liao B, Hollande E (2009) Response of Vicia faba L. to metal toxicity on mine tailing substrate: geochemical and morphological changes in leaf and root. Environ Exp Bot 66:297–308

    Article  CAS  Google Scholar 

  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177:465–474

    Article  CAS  Google Scholar 

  • Quitans-Junior LJ, Souza TT, Leite BS, Lessa NMN, Bonjardim LR, Santos MRV, Alves PB, Blank AF, Antoniolli AR (2008) Phytochemical screening and anticonvulsant activity of Cymbopogon winterianus Jowitt (Poaceae) leaf essential oil in rodents. Phytomedicine 15:619–624

    Article  CAS  Google Scholar 

  • Radloff B, Walsh K, Melzer A (1995) Direct Revegetation of Coal Tailings at BHP, Saraji Mine. In: Proceedings of the 12th Australian Mining Council Environment Workshop. Darwin, pp 849–854

    Google Scholar 

  • Rahmaty R, Khara J (2011) Effects of vesicular arbuscular mycorrhiza Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium. Turk J Biol 35(2011):51–58

    CAS  Google Scholar 

  • Rai D (1987) Inorganic and organic constituents in fossil fuel combustion residues. EPRI Res Proj 2:2485–2488

    Google Scholar 

  • Ramgareeb S, Cooke JA, Watt MP (2004) Responses of meristematic callus cells of two Cynodon dactylon genotypes to aluminium. J Plant Physiol 161:1245–1258

    Article  CAS  Google Scholar 

  • Rao BRR (1999) Aromatic plants for dry areas. In: Singh RP, Osman M (eds) Sustainable alternate land use systems for dryland. Oriental Enterprises, Dehradun, pp 157–170

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Rastgoo L, Alemzadeh A, Afsharifar A (2011) Isolation of two novel isoforms encoding zinc-and copper-transporting P1BATPase from Gouan (Aeluropus littoralis). Plant Omics J 4:377–383

    CAS  Google Scholar 

  • Rau N, Mishra V, Sharma M, Das MK, Ahaluwalia K, Sharma RS (2009) Evaluation of functional diversity in rhizobacterial taxa of a wild grass (Saccharum ravennae) colonizing abandoned fly ash dumps in Delhi urban ecosystem. Soil Biol Biochem 41:813–821

    Article  CAS  Google Scholar 

  • Rea PA (2012) Phytochelatin synthase: of a protease a peptide polymerase made. Physiol Plant 145:154–164

    Article  CAS  Google Scholar 

  • Reichenauer TG, Germida JJ (2008) Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem 1:708–717

    Article  CAS  Google Scholar 

  • Romheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130:127–134

    Article  Google Scholar 

  • Roongtanakiat N (2009) Vetiver phytoremediation for heavy metal decontamination. Pacific Rim Vetiver Network Technical Bulletin No. 2009/1:1–20

    Google Scholar 

  • Roongtanakiat N, Sanoh S (2011) Phytoextraction of zinc, cadmium and lead from contaminated soil by vetiver grass. Kasetsart J (Nat Sci) 45:603–612

    CAS  Google Scholar 

  • Roongtanakiat N, Osotsapar Y, Yindiram C (2008) Effects of soil amendment on growth and heavy metal content in vetiver grown in iron ore tailings. Kasetsart J (Nat Sci) 42:397–406

    CAS  Google Scholar 

  • Rosas-Castor JM, Guzmán-Mar JL, Hernández-Ramírez A, Garza-González MT, Hinojosa-Reyes L (2014) Arsenic accumulation in maize crop (Zea mays): a review. Sci Total Environ 488–489:176–187

    Article  CAS  Google Scholar 

  • Ross SM (1994) Toxic metals in soil-plant systems. Wiley, Chichester

    Google Scholar 

  • Rotkittikhun P, Chaiyarat R, Kruatrachue M, Pokethitiyook P, Baker AJM (2007) Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Chemosphere 66:45–53

    Article  CAS  Google Scholar 

  • Ruwei W, Jiamei Z, Jingjing L, Liu G (2013) Levels and patterns of polycyclic aromatic hydrocarbons in coal-fired power plant bottom ash and fly ash from Huainan China. Arch Environ Contam Toxicol 65:193–202

    Article  CAS  Google Scholar 

  • Sabir M, Waraich EA, Hakeem KR, Öztürk M, Ahmad HR, Shahid M (2015) Phytoremediation: mechanisms and adaptations. In: Hakeem K, Sabir M, Ozturk M, Murmet A (eds) Soil remediation and plants: prospects and challenges. Academic Press\Elsevier, Waltham, pp 85–105

    Chapter  Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12

    Article  CAS  Google Scholar 

  • Schiller M, Hegelund JN, Pedas P, Kichey T, Laursen KH, Husted S, Schjoerring JK (2014) Barley metallothioneins differ in ontogenetic pattern and response to metals. Plant Cell Environ 37:353–367

    Article  CAS  Google Scholar 

  • Schmohl N, Horst WJ (2000) Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cell grown in suspension culture. Plant Cell Environ 23:735–742

    Article  CAS  Google Scholar 

  • Schmohl N, Pilling J, Fisahn J, Horst WJ (2000) Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum. Physiol Plant 109:419–427

    Article  CAS  Google Scholar 

  • Schnoor JL (2000) Phytostabilization of metals using hybrid poplar trees. In: Raskin I, Ensley YBD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 133–150

    Google Scholar 

  • Schonfeld SJ, Winde F, Albrecht C, Kielkowski D, Liefferink M, Patel M, Sewram V, Stoch L, Whitaker C, Schüz J (2014) Health effects in populations living around the uraniferous gold mine tailings in South Africa: gaps and opportunities for research. Cancer Epidemiol 38:628–632

    Article  CAS  Google Scholar 

  • Schreider YP, Culbertson MR, Raabe OG (1985) Comparative pulmonary fibrogenic potential of selected particles. Environ Res 38:256–274

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Google Scholar 

  • Schwegler F (2006) Air quality management: a mining perspective. In: Longhurst JWS, Brebbia CA (eds) Air pollution XIV, WIT transactions on ecology and the environment, vol 86. WIT Press, Southampton, pp 205–212

    Google Scholar 

  • Scotti IA, Silva S, Botteschi G (1999) Effect of fly ash on the availability of Zn, Cu, Ni and Cd to chicory. Agric Ecosyst Environ 72:159–163

    Article  Google Scholar 

  • Sen S, Kumar V, Sen P (2014) Feasibility of Cymbopogon citratus (DC) ex nees in revegetation of coal mine overburden dumps- a study. J Mines Met Fuels 62:96–104

    Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Shahid MA, Balal RM, Pervez MA (2014) Exogenous proline and proline-enriched Lolium perenne leaf extract protects against phytotoxic effects of nickel and salinity in Pisum sativum by altering polyamine metabolism in leaves. Turk J Bot 38:914–926

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012

    Google Scholar 

  • Sharma MP, Tanu U, Adholeya A (2001) Growth and yield of Cymbopogon martinii as influenced by fly ash, AM fungi inoculation and farmyard manure application. In: Proceedings of the 7th international symposium on soil and plant analysis. pp 43–43, Edmonton

    Google Scholar 

  • Shen GM, Zhu C, Du QZ (2010) Genome-wide identification of PHYTOCHELATIN and PHYTOCH_SYNTH domain-containing phytochelatin family from rice. Electron J Biol 6:73–79

    Google Scholar 

  • Shu WS, Xia HP, Zhang ZQ, Lan CY, Wong MH (2002a) Use of vetiver and three other grasses for revegetation of Pb/Zn mine tailings: field experiment. Int J Phytoremediation 4:47–57

    Article  CAS  Google Scholar 

  • Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH (2002b) Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ Pollut 120:445–453

    Article  CAS  Google Scholar 

  • Shu W-S, Zhao Y-L, Yang B, Xia H-P, Lan C-Y (2004) Accumulation of heavy metals in four grasses grown on lead and zinc mine tailings. J Environ Sci 16:730–734

    CAS  Google Scholar 

  • Shutcha MN, Mubemba MM, Faucon M-P, Luhembwe MN, Visser M, Colinet G, Meerts P (2010) Phytostabilisation of copper-contaminated soil in Katanga: an experiment with three native grasses and two amendments. Int J Phytoremediation 12:616–632

    Article  CAS  Google Scholar 

  • Sikka R, Kansal B (1995) Effect of fly-ash application on yield and nutrient composition of rice, wheat and on pH and available nutrient status of soils. Bioresour Technol 51:199–203

    Article  CAS  Google Scholar 

  • Šimić D, Drinić SM, Zdunić Z, Jambrović A, Ledenčan T, Brkić A, Brkić I (2012) Quantitative trait loci for biofortification traits in maize grain. J Hered 103:47–54

    Article  CAS  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    Article  CAS  Google Scholar 

  • Singh N, Yunus M (2000) Environmental impacts of fly-ash. In: Iqbal M, Srivastava PS, Siddiqui TO (eds) Environmental hazards: plant and people. CBS, New Delhi, pp 60–79

    Google Scholar 

  • Singh R, Singh DP, Kumar N, Bhargava SK, Barman SC (2010) Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. J Environ Biol 31:421–430

    CAS  Google Scholar 

  • Sinha RK, Heart S, Tandon PK (2004) Phytoremediation: role of plants in contaminated site management. In: Singh SN, Tripathi RD (eds) Book of environmental bioremediation technologies. Springer, Berlin, pp 315–330

    Google Scholar 

  • Sinha S, Rai UN, Bhatt K, Pandey K, Gupta AK (2005) Fly-ash-induced oxidative stress and tolerance in Prosopis juliflora L. grown on different amended substrates. Environ Monit Assess 102:447–457

    Article  CAS  Google Scholar 

  • Sinha S, Mishra RK, Sinam G, Mallick S, Gupta AK (2013) Comparative evaluation of metal phytoremediation potential of trees, grasses and flowering plants from tannery-wastewater-contaminated soil in relation with physicochemical properties. Soil Sediment Contam 22:958–983

    Article  Google Scholar 

  • Smith RAH, Bradshaw AD (1979) The use of metal tolerant plant populations for the reclamation of metalliferous wastes. J Appl Ecol 16:595–612

    Article  CAS  Google Scholar 

  • Soreng RJ, Davis JI (1998) Phylogenetics and character evolution in the grass family (Poaceae): simultaneous analysis of morphological and chloroplast DNA restriction site character sets. Bot Rev 64:1–85

    Article  Google Scholar 

  • Soudek P, Petrova S, Vaňkova R, Song J, Vaněk T (2014) Accumulation of heavy metals using Sorghum sp. Chemosphere 104:15–24

    Article  CAS  Google Scholar 

  • Sudo E, Itouga M, Hatanaka KY, Ono Y, Sakakibara H (2008) Gene expression and sensitivity in response to copper stress in rice leaves. J Exp Bot 59:3465–3474

    Article  CAS  Google Scholar 

  • Sultana R, Kobayashi K, Kim K-H (2015) Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation. Environ Monit Assess 187:4101

    Article  CAS  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  Google Scholar 

  • Tabuchi A, Matsumoto H (2001) Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminium induced growth inhibition. Physiol Plant 112:353–358

    Article  CAS  Google Scholar 

  • Takács T, Biró B, Vörös I (2001) Arbuscular mycorrhizal effect on heavy metal uptake of ryegrass (Lolium perenne L.) in pot culture with polluted soil. In: Horst WWJ, Scheck MK, Bürkert A et al (eds) Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research, developments in plant and soil sciences. Kluwer Academic Publishers, Dordrecht, pp 480–481

    Chapter  Google Scholar 

  • Tam PC (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5:181–187

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:31. doi:10.1155/2011/939161

    Article  Google Scholar 

  • Técher D, Laval-Gilly P, Henry S, Bennasroune A, Formánek P, Martinez-Chois C, D’Innocenzo M, Muanda F, Dicko A, Rejsek K, Falla J (2011) Contribution of Miscanthus _ giganteus root exudates to the biostimulation of PAH degradation: an in vitro study. Sci Total Environ 409:4489–4495

    Article  CAS  Google Scholar 

  • Técher D, D’Innocenzo MC, Laval-Gilly P, Henry S, Bennasroune A, Martinez-Chois C, Falla J (2012a) Assessment of Miscanthus x giganteus secondary root metabolites for the biostimulation of PAH-utilizing soil bacteria. Appl Soil Ecol 62:142–146

    Article  Google Scholar 

  • Técher D, Laval-Gilly P, Bennasroune A, Henry S, Martinez-Chois C, D’Innocenzo M, Falla J (2012b) An appraisal of Miscanthus x giganteus cultivation for fly ash revegetation and soil restoration. Ind Crop Prod 36:427–433

    Article  CAS  Google Scholar 

  • Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9

    Article  CAS  Google Scholar 

  • Travieso L, Cannizarez RO, Borja R, Benitez F, Dominguez AR, Dupeyron R, Valiente V (1999) Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62:144–151

    Article  CAS  Google Scholar 

  • Truong P (1999) Vetiver grass technology for mine rehabilitation. Pacific Rim Vetiver Network Technical Bulletin No. 1999/2. Office of the Royal Development Projects Board, Bangkok

    Google Scholar 

  • Truong PNV (2004) Vetiver grass technology for mine tailings rehabilitation. In: Barker D, Watson A, Sompatpanit S, Northcut B, Maglinao A (eds) Ground and water bioengineering for erosion control and slope stabilisation. Science Publishers Inc, Troung

    Google Scholar 

  • Tuli R, Chakrabarty D, Trivedi PK, Tripathi RD (2010) Recent advances in arsenic accumulation and metabolism in rice. Mol Breed 26:307–323

    Article  CAS  Google Scholar 

  • Turnau K (1998) Heavy metal content and localization in mycorrhizal Euphorbia cyparissias zinc wastes in southern Poland. Acta Soc Bot Pol 67:105–113

    Article  CAS  Google Scholar 

  • Turner RG, Marshall C (1972) The accumulation of zinc by subcellular fractions of roots of Agrostis tenuis Sibth. In relation to zinc tolerance. New Phytol 71:671–676

    Article  CAS  Google Scholar 

  • Twiss PC, Suess E, Smith RM (1969) Morphological classification of grass phytoliths. Soil Sci Soc Am Proc 33:109–115

    Article  Google Scholar 

  • Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF (2009) A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytol 182:644–653

    Article  CAS  Google Scholar 

  • Upadhyaya H, Panda SK, Bhattacharjee MK, Dutta S (2010) Role of arbuscular mycorrhiza in heavy metal tolerance in plants: prospects for phytoremediation. J Phytol 2:16–27

    Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  Google Scholar 

  • Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals. J Biol Chem 276:20817–20820

    Article  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv LO, Rea PA (2004) Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with γ-glutamylcysteine during catalysis. J Biol Chem 279:22449–22460

    Article  CAS  Google Scholar 

  • Vázquez MD (2001) Membranous configurations in plants, contaminated with metallic elements, and their relation with the sequestration and the expulsion of determinates plant toxic elements. Biol Cell 93:362

    Article  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  CAS  Google Scholar 

  • Verkleij JAC, Schat H (1990) Mechanisms of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 179–193

    Google Scholar 

  • Verkleij JAC, Sneller FEC, Schat H (2003) Metallothioneins and phytochelatins: ecophysiological aspects. In: Abrol YP, Ahmad A (eds) Sulphur in plants. Springer, Dordrecht, pp 163–176

    Chapter  Google Scholar 

  • Verma SR, Chaudhari PR, Satyanaranyan S (2012) Impact of leaching from iron ore mines on terrestrial and aquatic environment. Intl J Environ Sci 2:2378–2386

    CAS  Google Scholar 

  • Verma SK, Singh K, Gupta AK, Pandey VC, Trivedi P, Verma RK, Patra DD (2014) Aromatic grasses for phytomanagement of coal fly ash hazards. Ecol Eng 73:425–428

    Article  Google Scholar 

  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575

    Article  CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:1–12

    Article  CAS  Google Scholar 

  • Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides. Plant Physiol 92:1086–1093

    Article  Google Scholar 

  • Watson L (1990) The grass family poaceae. In: Chapman GP (ed) Reproductive versatility in the grasses. Cambridge University Press, New York, pp 1–21

    Google Scholar 

  • Welch RM, Norvell WA (1993) Growth and nutrient uptake by barley (Hordeum vulgare L. cv Herta): studies using an N-(2-Hydroxyethyl) ethylenedinitrilotriacetic acid-buffered nutrient solution technique (II. Role of zinc in the uptake and root leakage of mineral nutrients). Plant Physiol 101:627–631

    Article  CAS  Google Scholar 

  • White PH, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  Google Scholar 

  • Wiebe K, Harris NS, Faris JD, Clarke JM, Knox RE, Taylor GJ, Pozniak CJ (2010) Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum). Theor Appl Genet 121:1047–1058

    Article  CAS  Google Scholar 

  • Wilde EW, Bringmon RL, Dunn DL, Heitkamp MA, Dagnan DC (2005) Phytoextraction of lead from firing range soil by vetiver grass. Chemosphere 61:1451–1457

    Article  CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  CAS  Google Scholar 

  • Wojas S, Clemens S, Sklodowska A, Antosiewicz DM (2010) Arsenic response of AtPCS1- and CePCS-expressing plants—effects of external As(V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175

    Article  CAS  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456

    Article  CAS  Google Scholar 

  • Wu F, Zhang G, Dominy P (2003) Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot 50:67–78

    Article  CAS  Google Scholar 

  • Xia HP, Ao HX, Liu SZ, He DQ (1999) Application of the vetiver eco-engineering for the prevention of highway slippage in South China. In: International Erosion Control Association, proceedings of the First Asia-Pacific conference on ground and water bioengineering erosion control and slope stabilization. Manila, pp 522–527

    Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    Article  CAS  Google Scholar 

  • Xu Y, An D, Li H, Xu H (2011) Review: breeding wheat for enhanced micronutrients. Can J Plant Sci 91:231–237

    Article  CAS  Google Scholar 

  • Yang Z, Chu C (2011) Towards understanding plant response to heavy metal stress. In: Shankar AK, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. InTech, Rijeka, pp 59–78

    Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005a) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  CAS  Google Scholar 

  • Yang XE, Jin XF, Feng Y, Islam E (2005b) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47:1025–1035

    Article  CAS  Google Scholar 

  • Ye ZH, Wong JWC, Wong MH (2000) Vegetation response to lime and manure compost amendments on acid lead/zinc mine tailings: a greenhouse study. Rest Ecol 8:289–295

    Article  Google Scholar 

  • Yun L, Larson SR, Jensen KB, Staub JE, Grossl PR (2015) Quantitative trait loci (QTL) and candidate genes associated with trace element concentrations in perennial grasses grown on phytotoxic soil contaminated with heavy metals. Plant Soil 396:277–296

    Article  CAS  Google Scholar 

  • Zeng X, Ma LQ, Qiu R, Tang Y (2009) Responses of nonprotein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ Exp Bot 66:242–248

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants- a review. Gene 179:21–30

    Article  CAS  Google Scholar 

  • Zhang CH, Ge Y (2008) Response of glutathione and glutathione S-transferase in rice seedlings exposed to cadmium stress. Rice Sci 15:73–76

    Article  Google Scholar 

  • Zhang J, Zhu Y-G, Zeng DL, Cheng W-D, Qian Q, Duan GL (2008) Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). New Phytol 177:350–355

    CAS  Google Scholar 

  • Zhang X, Gao B, Xia H (2014a) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicol Environ Saf 106:102–108

    Article  CAS  Google Scholar 

  • Zhang X, Zhang X, Gao B, Li Z, Xia H, Li H, Li J (2014b) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of an energy crop, king grass (Pennisetum americanum x P. purpureum). Biomas Bioenergy 67:179–187

    Article  CAS  Google Scholar 

  • Zhang J, Yang S, Huang Y, Zhou S (2015) The tolerance and accumulation of Miscanthus sacchariflorus (maxim.) Benth., an energy plant species, to cadmium. Int J Phytoremediation 17:538–545

    Article  CAS  Google Scholar 

  • Zhao C, Xu J, Li Q, Li S, Wang P, Xiang F (2014) Cloning and characterization of a Phragmites australis phytochelatin synthase (PaPCS) and achieving Cd tolerance in tall Fescue. PLoS One 9:e103771

    Article  CAS  Google Scholar 

  • Zheljazkov VD, Nielsen NE (1996a) Effect of heavy metals on peppermint and corn mint. Plant Soil 178:59–66

    Article  CAS  Google Scholar 

  • Zheljazkov VD, Nielsen NE (1996b) Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn, and Fe) upon the growth, productivity, and quality of lavender (Lavandula angustifolia Mill.) production. J Essent Oil Res 8:259–274

    Article  CAS  Google Scholar 

  • Zheljazkov VD, Craker LE, Baoshan X (2006) Effects of Cd, Pb and Cu on growth and essential oil contents in dill pepper mint and basil. Environ Exp Bot 58:9–16

    Article  CAS  Google Scholar 

  • Zhou GK, Xu YF, Liu JY (2005) Characterization of a rice class II metallothionein gene: tissue expression patterns and induction in response to abiotic factors. J Plant Physiol 162:686–696

    Article  CAS  Google Scholar 

  • Zhou HH, Chen YN, Li WH, Chen YP (2010) Photosynthesis of Populus euphratica in relation to groundwater depths and high temperature in arid environment, Northwest China. Photosynthetica 48:257–268

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, Government of India (Sanction No. 38(1367)/13/EMR-II dated 01.10.2013, “Investigation on iron ore mine site restoration and species performance in spoil dumps slope stabilization with vetiver system technology”) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manosij Ghosh or Anita Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ghosh, I., Ghosh, M., Mukherjee, A. (2017). Remediation of Mine Tailings and Fly Ash Dumpsites: Role of Poaceae Family Members and Aromatic Grasses. In: Anjum, N., Gill, S., Tuteja, N. (eds) Enhancing Cleanup of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-319-55426-6_7

Download citation

Publish with us

Policies and ethics