Skip to main content

Light

  • Chapter
  • First Online:
Plant Ecology

Abstract

This chapter is dedicated to the significance of visible light and ultraviolet (UV)-B radiation for plant life. The dual role of radiation in the visible range as an energy source for photosynthesis, and as a signal for the control of a plant’s development, is the focus of the first part of the chapter. Acclimation to the ever-changing light environment is explained, addressing ultrastructural, physiological and molecular aspects. We discuss light stress caused by overexcitation, the emergence of reactive oxygen species (ROS) and the functioning of ROS-scavenging systems, as well as other protective mechanisms such as non-photochemical quenching. Several photoreceptors (phytochromes, cryptochromes, phototropins), each class specific for a particular range of the visible spectrum and connected to overlapping signal transduction cascades, cooperate in the regulation of growth and other developmental processes of a plant. The second major topic of this chapter is UV-B radiation. Following a discussion of damage caused by UV-B, repair mechanisms and the avoidance of UV-B stress by chemical screening are described. Both UV-B stress responses and developmental processes are triggered by UV-B receptors, whose biochemistry and association with signalling chains are discussed. Finally, the crosstalk between UV-B and visible light responses, which is based on the multifunctionality of regulator proteins, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn TK, Avenson TJ, Ballottari M, Cheng Y-C, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Andersson B (1988) The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem Sci 13:351–355

    Article  CAS  PubMed  Google Scholar 

  • Barnes JD, Percy KE, Paul ND, Jones P, McLaughlin CK, Mullineaux PM, Creissen G, Wellburn AR (1996) The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L.) leaf surfaces. J Exp Bot 47:99–109

    Article  CAS  Google Scholar 

  • Berg JM, Tymoczko JL, Gatto Jr. CJ, Stryer L (2015) Biochemistry, Internatl edn. Springer, Berlin, Heidelberg

    Google Scholar 

  • Björkman O, Demming-Adams B (1994) Regulation of photosynthetic light capture, conversion, and dissipation in leaves of higher plants, Ecol Stud. Springer, Heidelberg, New York; 100:17–47.

    Google Scholar 

  • Björkman O, Powles SB (1981) Leaf movement in the shade species Oxalis oregana. I. Response to light level and quality. Carnegie Inst Wash Year B 80:59–62

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry and molecular biology of plants, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64:403–427

    Article  CAS  PubMed  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu Y-J, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    Article  CAS  PubMed  Google Scholar 

  • Chelle M, Evers JB, Combes D, Varlet-Grancher C, Vos J, Andrieu B (2007) Simulation of the three-dimensional distribution of the red:far-red ratio within crop canopies. New Phytol 176:223–234

    Article  PubMed  Google Scholar 

  • Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins GI, Getzoff ED (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa-Galvis V, Poschmann G, Melzer M, Stühler K, Jahns P (2016) PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat Plants 2:15225

    Article  CAS  PubMed  Google Scholar 

  • Day TA, Martin G, Vogelmann TC (1993) Penetration of UV-B radiation in foliage: evidence that the epidermis behaves as a non-uniform filter. Plant Cell Environ 16:735–741

    Article  Google Scholar 

  • Evans JR (1995) Carbon fixation profiles do reflect light absorption profiles in leaves. Austral J Plant Physiol 22:865–873

    CAS  Google Scholar 

  • Fan M, Li M, Liu Z, Cao P, Pan X, Zhang H, Zhao X, Zhang J, Chang W (2015) Crystal structures of the PsbS protein essential for photoprotection in plants. Nat Struct Mol Biol 22:729–735

    Article  CAS  PubMed  Google Scholar 

  • Filella I, Peñuelas J (1999) Altitudinal differences in UV absorbance, UV reflectance and related morphological traits of Quercus ilex and Rhododendron ferrugineum in the Mediterranean region. Plant Ecol 145:157–165

    Article  Google Scholar 

  • Gardner KH, Correa F (2012) How plants see the invisible. Science 335:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Gruber H, Heijde M, Heller W, Albert A, Seidlitz HK, Ulm R (2010) Negative feedback regulation of UV-B–induced photomorphogenesis and stress acclimation in Arabidopsis. Proc Natl Acad Sci U S A 107:20132–20137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall DO, Rao KK (1994) Photosynthesis. Cambridge University Press, Cambridge

    Google Scholar 

  • Heijde M, Ulm R (2012) UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci 17:230–237

    Article  CAS  PubMed  Google Scholar 

  • Heldt HW, Piechulla B (2010) Plant biochemistry, 4th edn. Spektrum Akad. Verl, Heidelberg

    Google Scholar 

  • Herndl GH (1996) Ultraviolett-Strahlung und Bakterioplankton. Biologie unserer Zeit 26:234–239

    Article  Google Scholar 

  • Holmes MG, Keiller DR (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ 25:85–93

    Article  CAS  Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267

    Article  CAS  Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135

    Article  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  CAS  PubMed  Google Scholar 

  • Jenkins GI (2014) The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell 26(1):21–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nature Rev 8:217–230

    Article  CAS  Google Scholar 

  • Kami C, Lorrain S, Hornitschek F, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Dev Biol 91:29–66

    Article  CAS  PubMed  Google Scholar 

  • Kim G-T, Yano S, Kozuka T, Tsukaya H (2005) Photomorphogenesis of leaves: shade-avoidance and differentiation of sun and shade leaves. Photochem Photobiol Sci 4:770–774

    Article  CAS  PubMed  Google Scholar 

  • Kitajima K, Hogan KP (2003) Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant Cell Environ 26:857–865

    Article  PubMed  Google Scholar 

  • Kliebenstein DJ, Lim JE, Landry LG, Last RL (2002) Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human Regulator of Chromatin Condensation 1. Plant Physiol 130:234–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Körner C (1999) Alpine plant life: functional ecology of high mountain ecosystems. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Kühlheim C, Ågren J, Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297:91–93

    Article  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Lau OS, Deng XW (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trend Plant Sci 17:584–593

    Article  CAS  Google Scholar 

  • Li Z, Ahn TK, Avenson TJ, Ballottari M, Cruz JA, Kramer DM, Bassi R, Fleming GR, Keasling JD, Niyogi KK (2009) Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 21:1798–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wang Q, Yu X, Liu H, Yang H, Liu X, Tan C, Klejnot J, Zhong D, Lin C (2011) Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proc Natl Acad Sci USA 108:20844–20849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Liu B, Zhao C, Pepper M, Lin C (2011) The action mechanisms of plant cryptochromes. Trend Plant Sci 16:684–691

    Article  CAS  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38

    Article  Google Scholar 

  • Manetas Y (2003) The importance of being hairy: the adverse effects of hair removal on stem photosynthesis of Verbascum speciosum are due to solar UV-B radiation. New Phytol 158:503–508

    Article  Google Scholar 

  • Matsubara S, Krause GH, Seltmann M, Virgo A, Kursar TA, Jahns P, Winter K (2008) Lutein epoxide cycle, light harvesting and photoprotection in species of the tropical tree genus Inga. Plant Cell Environ 31:548–561

    Article  CAS  PubMed  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1018

    Article  CAS  PubMed  Google Scholar 

  • Minagawa J (2013) Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation of photosynthesis. Front Plant Sci 4:513

    Article  PubMed  PubMed Central  Google Scholar 

  • Munk K (ed) (2009) Taschenlehrbuch Biologie Botanik. Thieme, Stuttgart

    Google Scholar 

  • Munns R, Schmidt S, Beveridge C (2010) Plants in Action 2nd edition, Copyright © Australian Society of Plant Scientists, New Zealand Society of Plant Biologists, and New Zealand Institute of Agricultural and Horticultural Science. http://plantsinaction.science.uq.edu.au/edition1/?q=content/1-1-2-light-absorption

  • Nishio JN, Sun J, Vogelmann TC (1993) Carbon fixation gradients across spinach leaves do not follow internal light gradients. Plant Cell 5:953–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nultsch W (2001) Allgemeine Botanik, 11th edn. G. Thieme, Stuttgart, New York

    Google Scholar 

  • Nybakken L, Aubert S, Bilger W (2004) Epidermal UV-screening of arctic and alpine plants along a latitudinal gradient in Europe. Polar Biol 27:391–398

    Article  Google Scholar 

  • Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, Kanegae T, Niwa Y, Kadota A, Wada M (2003) CHLOROPLAST UNUSUAL POSITIONING1 is essential for proper chloroplast positioning. Plant Cell 15:2805–2815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa K, Yamasato A, Kong SG, Kasahara M, Nakai M, Takahashi F, Ogura Y, Kagawa T, Wada M (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol 148:829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oravecz A, Baumann A, Máté Z, Brzezinska A, Molinier J, Oakeley EJ, Ádám É, Schäfer E, Nagy F, Ulm R (2006) CONSTITUTIVELY PHOTOMORPHOGENIC 1 is required for the UV-B response in Arabidopsis. Plant Cell 18:1975–1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osmond B, Badger M, Maxwell K, Björkman O, Leegood R (1997) Too many photons: photorespiration, photoinhibition and photooxidation. Trends Plant Sci 2:119–120

    Article  Google Scholar 

  • Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulphurbacterium from the Black Sea. Limnol Oceanogr 37:150–155

    Article  CAS  Google Scholar 

  • Prior SA, Pritchard SG, Runion GB (2004) Leaves and the effects of elevated carbon dioxide levels. Encyclopedia of Plant and Crop Science, Marcel Dekker Inc

    Google Scholar 

  • Pritchard SG, Rogers HH, Prior SA, Peterson CM (1999) Elevated CO2 and plant structure: a review. Glob Change Biol 5:807–837

    Article  Google Scholar 

  • Rastogi RP, Richa SRP, Singh SP, Häder DP (2010) Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 37:537–558

    Article  CAS  PubMed  Google Scholar 

  • Rius SP, Emiliani J, Casati P (2016) P1 epigenetic regulation in leaves of high altitude maize landraces: effect of UV-B radiation. Front Plant Sci

    Google Scholar 

  • Rizzini L, Favory J-J, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  CAS  PubMed  Google Scholar 

  • Robberecht R, Caldwell MM, Billings WD (1980) Leaf ultraviolet optical properties along a latitudinal gradient in the arctic–alpine life zone. Ecology 61:612–619

    Article  Google Scholar 

  • Schäfer KVR, Dirk VW (2011) The physical environment within forests. Nat Educ Knowl 2(12):5

    Google Scholar 

  • Schnitzler JP, Jungblut TP, Heller W, Köfferlein M, Hutzler P, Heinzmann U, Schmelzer E, Ernst D, Langebartels C, Sandermann H Jr (1996) Tissue localization of UV-B screening pigments and of chalcone synthase mRNA in needles of Scots pine seedlings. New Phytol 132:247–258

    Article  CAS  Google Scholar 

  • Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3:763–774

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment on in vivo photosynthesis, Ecol Studies. Springer, Berlin, Heidelberg, New York; 100:49–70.

    Chapter  Google Scholar 

  • Strasburger F (1983) Lehrbuch der Botanik. 32nd edn.Fischer, Stuttgart

    Google Scholar 

  • Stratmann J (2003) Ultraviolet-B radiation co-opts defense signalling pathways. Trends Plant Sci 8:526–533

    Article  CAS  PubMed  Google Scholar 

  • Strobl S, Fetene M, Beck EH (2011) Analysis of the “shelter tree-effect” of natural and exotic forest canopies on the growth of young Podocarpus falcatus trees in southern Ethiopia. Trees 25:769–783

    Article  Google Scholar 

  • Taiz L, Zeiger E et al (2015) Plant physiology and development, 6th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Usami H, Maeda T, Fujii Y, Oikawa K, Takahashi F, Kagawa T, Wada M, Kasahara M (2012) CHUP1 mediates actin-based light-induced chloroplast avoidance movement in the moss Physcomitrella patens. Planta 236:1889–1897

    Article  CAS  PubMed  Google Scholar 

  • Velez-Ramirez AI, van Ieperen W, Vreugdenhil D, Millenaar FF (2011) Plants under continuous light. Trends Plant Sci 16:310–318

    Article  CAS  PubMed  Google Scholar 

  • Wada M (2013) Chloroplast movement. Plant Sci 210:177–182

    Article  CAS  PubMed  Google Scholar 

  • Weiler E, Nover L (2008) Allgemeine und molekulare Botanik. Georg Thieme Verlag Stuttgart, New York

    Google Scholar 

  • Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Deng H, Wang H, Deng XW, Shi Y (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–220

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Singer SD, Qiao H, Liu Y, Jiao C, Wang H, Li Z, Fei Z, Wang Y, Fan C, Wang X (2016) Insights into the mechanisms underlying ultraviolet-C induced resveratrol metabolism in grapevine (V. amurensis Rupr.) cv. “Tonghua-3”. Front Plant Sci 7:503

    PubMed  PubMed Central  Google Scholar 

  • Zaks J, Amarnath K, Kramer DM, Niyogi K, Fleming GR (2012) A kinetic model of rapidly reversible nonphotochemical quenching. Proc Natl Acad Sci U S A 109:15757–15762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze, ED., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., Scherer-Lorenzen, M. (2019). Light. In: Plant Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56233-8_3

Download citation

Publish with us

Policies and ethics