Skip to main content

Jute Biology, Diversity, Cultivation, Pest Control, Fiber Production and Genetics

  • Chapter
  • First Online:
Organic Fertilisation, Soil Quality and Human Health

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 9))

Abstract

The genus Corchorus, commonly known as jute, includes more than 170 species, all of which are annual fibrous plants. Jute fiber is totally biodegradable and compostable and therefore an extremely attractive renewable resource. While the cultivated species, C. olitorius L. and C. capsularis L., are economically important for fibre production, the wild species are considered important genetic resources for biotic and abiotic stress tolerance and fine fibre trait. However, there are some constraints in jute cultivation and research. The cultivation requires lot of watering which is often hampered due to late showering and low moisture content in the air. Jute is very prone to disease and pest attack. Although application of pesticides is a popular preventive measure it also raises the issue of biomagnifications of those harmful chemicals by entering the food chain of the ecosystem. In addition, the fibre processing disturbs the environment by causing water pollution during retting. Some other negative issues related to its cultivation are indoor air emissions from the products, and greenhouse gas emission due to using waste jute for energy.

The high cost of production in comparison to synthetic materials leads to unemployment due to closing of jute processing factories which becomes a major concern in terms of socio economic impact of jute cultivation. Apart from these issues related to cultivation, some other constraints also exists in its research. The cell wall of Corchorus is composed of high amount of lignin which is a major barrier for cytological and cytogenetical analysis. Due to these problems the wild as well as the cultivated species of jute are poorly understood and explored and thus in most of the cases hybridization attempts was not successful till now. However, proper hybridization between wild and cultivated species needs adequate information on morphological, cytological, cytogenetical biochemical and molecular aspects and will result in the emergence of novel plant types with several beneficial characters. With a view to all of these including the economical importance of jute species, an overview is conducted involving nearly all essential aspects to provide updated and adequate information to researchers for effective utilization in human benefit.

This chapter reviews morphological, biochemical, cytological, palynological, anatomical and molecular analysis of genome along with induced mutagenesis, interspecific hybridization, pest management, retting procedures, tissue culture and transgenic development strategies in jute species for their successful exploitation. Cytological and cytogenetical aspects will provide a wealth of information about the chromosomes and their behavior that forms the basis of efficient interspecific hybri­dization. Information on biochemical parameters is important for providing a knowledge base regarding further research on fibre quality improvement. Although induced mutagenesis is known as an effective tool for creating superior plant types having morphological and biochemical marker traits, adequate reports on jute is meager. This aspect is discussed in detail as one of the major points. Jute cultivation has always suffered from pest attack and various microbial infections. Reports on jute pests and disease and their management will be helpful for taking necessary preventive measures against its damage in field. Moreover, transgenic development and efficient tissue culture method are important for rapid propagation of jute and for introducing desirable traits in short times and for optimum utilization of available resource to achieve a low cost of production and high benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

AFLP:

amplified fragment length polymorphism

AI:

anaphase I

AII:

anaphase II

BAP:

6-benzylaminopurine

cp DNA:

chloroplast DNA

EcoRI:

E. coli RI

H2SO4 :

sulphuric acid

I:

univalent

II:

bivalent

IAA:

indole-3-acetic acid

ISSR:

inter simple sequence repeat

MI:

metaphase I

MS:

Murashige and Skoog medium

mV:

milli volt

NaOH:

sodium hydroxide

NDGA:

nordihydroguiaretic acid

NPK:

nitrogen phosphorous potassium

PEG:

polyethylene glycol

PMC:

pollen mother cell

RAPD:

random amplified polymorphic DNA

SDS–PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

SSR:

simple sequence repeat

References

  • Ahmed Z, Akhter F (2001) Jute retting: an overview. Online J Biol Sci 1:685–688

    Google Scholar 

  • Ahmed S, Ahmed QA, Islam AS (1983) Inheritance study of fibre colour, disease resistance and water logging tolerance in Corchorus capsularis L. for breeding a variety with snow white fibre. Bangladesh J Bot 12:207–215

    Google Scholar 

  • Akhter R, Haque MI, Sarker RH, Alam SKS, Haque MM (1991) Karyotype analysis in diploid and colchicine induced tetraploids of Corchorus olitorius and C. capsularis. Bangladesh J Sci Ind Res 21:183–188

    Google Scholar 

  • Alam SM (1970) Jute retting bacteria from certain ditches of East Pakistan. Pakistan J Sci Ind Res 12:229–231

    Google Scholar 

  • Alam SS, Rahman ANMRB (2000) Karyotype analysis of three Corchorus species. Cytologia 65:443–446

    Google Scholar 

  • Alam MM, Sharmin S, Nabi Z, Mondal SI, Islam MS, Nayeem SB, Shoyaib M, Khan H (2010) A putative leucine-rich repeat receptor-like kinase of jute involved in stress response. Plant Mol Biol Rep 28:394–402

    CAS  Google Scholar 

  • Ali MM, Sayem AZM, Eshque AKM (1972) Effect of neutralization of retting liquor on the progress retting and quality of fibre. J Sci Ind Res 7:134–136

    Google Scholar 

  • Anonymous (1970) Annual report. Jute Agricultural Research Institute, 5

    Google Scholar 

  • Annual Report (1959) Jute agricultural research institute (1952–1953). In: Kundu BC, Basak KC, Sarcar PB (eds) Jute in India- a monograph (s.), pp 38

    Google Scholar 

  • Arangzeb S (1994) Cross compatibility of eight wild species of jute with cultivars and among themselves. PhD thesis, University of Dhaka, Dhaka

    Google Scholar 

  • Arangzeb S, Khatun A (1980) A short note on interspecific hybridization between C. trilocularis and C. capsularis. Bangladesh J Jute Fibre Res 5:85–89

    Google Scholar 

  • Banerjee I (1932) Chromosome number of Indian crop plants: a chromosome number in jute. J Indian Botanical Soc 11:82–85

    Google Scholar 

  • Basak SL (1993) Review on the genetics and breeding of jute InterNatureional Jute Organization. Dhaka, Bangladesh, pp 1–167

    Google Scholar 

  • Basak SL, Jana MK, Paria P (1971) Inheritance of some characters in jute. Indian J Genet Plant Breed 31:248–255

    Google Scholar 

  • Basak SL, Paria P, Kumar D, Hazra SK (1979) Production of high frequency monoploid in jute through genetic manipulation. Nucleus 22:87–88

    Google Scholar 

  • Basu RK (1965) Radiation induced morphological mutant of jute. J Genet 59:60–69

    Google Scholar 

  • Basu A, Ghosh M, Mayer R, Powell W, Basak SL, Sen SK (2004) Analysis of genetic diversity in cultivated jute determined by means of SSR markers and AFLP profiling. Crop Sci 44:678–685

    CAS  Google Scholar 

  • Bhaduri PN, Chakravarti AK (1948) Colchicine induced autotetraploid in jute C. capsularis and C. olitorius and the problem of raising improved varieties. Sci Cult 14:212–213

    Google Scholar 

  • Bhattacharjee AK, Mitra BN, Mitra PC (2000) Seed agronomy of jute. I. Production and quality of Corchorus olitorius seed as influenced by seed size used at planting. Seed Sci Technol 28:29–39

    Google Scholar 

  • Bobak M, Herich R (1978) Cytomixis as manifestation of pathological changes after the application of trifluraline. Nucleus 20:22–27

    Google Scholar 

  • Bose S, Banerjee B (1976) Induced mutation breeding in jute. Food Farm Agric 27:13–19

    Google Scholar 

  • Brown MS (1947) A case of spontaneous reduction of chromosome number in somatic tissues of cotton. Am J Bot 34:384–388

    PubMed  CAS  Google Scholar 

  • Chattopadhyay S, Chaudhury SK, Gupta D, Hazra SK, Kumar D, Mahapatra AK, Mandal N, Saha A (1999) Crop improvement. In: Fifty years of research. CRIJAF, Barrackpore, pp 40–63

    Google Scholar 

  • Chauhan BS, Johnson DE (2008) Seed germination and seedling emergence of nalta jute (Corchorus olitorius) and Redweed (Melochia concateNaturea): Important Broadleaf Weeds of the Tropics. Weed Sci 56:814–819

    CAS  Google Scholar 

  • Chen BZ (1991) Fibre development of different varieties in Corchorus capsularis. J Fujian Agric Coll 20:378–384

    Google Scholar 

  • Chen SH, Lu HR, Zheng YY (1990) The genetic relationship between anatomical characters and fibre yield and quality in jute. J Fujian Agric Coll 19:257–262

    Google Scholar 

  • Choudhuri BB, Basak SL (1969) Moisture stress and excess on cultivated jute. Indian J Agric Sci 39:667–671

    Google Scholar 

  • Chowdhury SK, Kumar D, Saha A (2004) Varietal development and improved varieties of jute. CRIJAF publication, Technical Bulletin Service 1/2004, 1–12

    Google Scholar 

  • Colmenero Robles JA, Gual-Díaz M, Fernández-Nava R (2010) El género Corchorus (Tiliaceae) en México. Polibotanica 29:38–41

    Google Scholar 

  • Cooper DD (1952) The transfer of deoxyribose Nucleuseic acid from the tapetum to the microsporocytes at the onset of meiosis. Am Nat 86:219–229

    CAS  Google Scholar 

  • Das BB (1995) Studies on the seasonal incidence and population dynamics of major insect pests of jute. Annual Report: 1990–1991 and 1991–1992. CRIJAF, Barrackpore, pp 66

    Google Scholar 

  • Das LK (2000) Integrated management of jute pests. In: Pathak S (ed) Workshop-cum-training on adaptive research on improved varieties of jute and allied fibres and their utilization for enhanced income generation of farmers. CRIJAF, Barrackpore, pp 15–16

    Google Scholar 

  • Das LK, Ghosh T (1973) Myllocerus discolor Boheman on Corchorus olitorius – a new pest. Jute Bull 36:199

    Google Scholar 

  • Das LK, Roychaudhuri DN (1979) Physalis minima (Solanaceae) – a new host plant of yellow mite, Polyphagotarsonemus latus (Banks). Sci Cult 45:169–170

    Google Scholar 

  • Das LK, Singh B (1976) The effect of Bacillus thuringiensis Berliner on the gut of jute semilooper, Anomis sabulifera Guen. Sci Cult 42:567–569

    Google Scholar 

  • Das LK, Singh B (1985) Number of sprays suitable against yellow mite, Polyphagotarsonemus latus (Banks) of jute. Sci Cult 51:376–377

    Google Scholar 

  • Das LK, Singh B, Pradhan SK (1995) Efficiency of different synthetic pyrethroids insecticides against pest complex of jute. Sci Cult 61:203–204

    Google Scholar 

  • Das LK, Laha SK, Pandit NC (1999) Entomology. In: Central Research Institute for Jute and Allied Fibres (ed) Fifty years of research on jute and allied fibres agriculture. CRIJAF, Barrackpore, pp 142–164

    Google Scholar 

  • Dasgupta PC, Sardar D, Majumdar AK (1976) Chemical retting of jute. Food Farm Agric 8:7–9

    Google Scholar 

  • Datta RM (1952) Meiosis in C. capsularis. Sci Cult 17:523

    Google Scholar 

  • Datta RM (1953) Meiosis in some Corchorus spp. Sci Cult 1:385–386

    Google Scholar 

  • Datta RM (1954) Chromosome numbers of some types of C. capsularis L., C. depressus (L.) Christensen and C. olitorius L. wild. In: Kundu BC, Basak KC, Sarcar PB (eds) Jute in India – a monograph (s). Jute Bull 17:173–195

    Google Scholar 

  • Datta RM (1968) Karyology of some jute species. Proceeding InterNatureional Seminar on ‘Chromosome – its structure and function’. Nucleus 11:43–44

    Google Scholar 

  • Datta P, Palit P (2003) Activation of jute (Corchorus capsularis) growth by applied electromotive force. Indian J Plant Physiol Special Iss 114–118

    Google Scholar 

  • Datta RM, Sen SK (1961) Interspecific hybridization between Corchorus sidoides F. Muell. and C. siliquosus L., a Natureural polyploid. Euphytica 10:113–119

    Google Scholar 

  • Datta RM, Panda BS, Roy K, Bose MM, De TK (1966) Cytotaxonomic studies of different Corchorus (Jute) species. Botanical Mag Tokyo 79:467–473

    CAS  Google Scholar 

  • Datta RM, Mukhopadhaya D, Panda BS, Sasmal PK (1975) Cytotaxonomic studies of different Corchorus (Jute) species. Cytologia 40:685–692

    Google Scholar 

  • Dutt N (1958) Anomis sabulifera Guen and Apion corchori Marsh – incidences and control. Jute Bull 21:121–128

    Google Scholar 

  • Edmonds JM (1990) Herbarium survey of African Corchorus species: systematic and eco-geographic studies in crop gene pools. InterNatureional Board of Plant Genetic Resources, Rome, Italy, pp 2–3

    Google Scholar 

  • Emongor VE, Mathowa T, Kabelo S (2004) The effect of hot water, sulphuric acid, nitric acid, gibberellic acid and ethephon on the germination of Corchorus (Corchorus tridens) seeds. J Agron 3:196–200

    Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy: angiosperms. Almqvist and Wiksell, Stockholm

    Google Scholar 

  • Faruqi S (1962) Interspecific hybridization between C. olitorius and C. walcotti F.V.M. and C. trilocularis  ×  C. capsularis. MSc thesis, Sindh University, Pakistan, pp 105

    Google Scholar 

  • Figueiredo FJC, Carvalho JEU, Oliveira RP, Frazao DAC (1980) Temperature and light in the germination of jute seeds. Boletim de Pesquisa, Centro de Pesquisa Agropecuaria do Tropico Umido 4:16

    Google Scholar 

  • Gates RR (1911) Pollen formation in Oenothera gigas. Ann Bot 25:909–940

    Google Scholar 

  • Ghorai AK, Mitra S (2008) Water management in jute and ramie. In: Karmakar PG, Hazra SK (eds) Jute and allied fiber updates, 327p. CRIJAF, Barrackpore, pp 162–174

    Google Scholar 

  • Ghorai AK, Bhattacharjee AK, Saha S, Rao PV, Bandopadhyay AK (2005) Impact of waterlogging stress on yield and quality of jute (Corchorus olitorius L.). Indian J Agronomy 50:220–223

    Google Scholar 

  • Ghosh T (1983) Handbook on jute. FAO, Rome, p 219

    Google Scholar 

  • Ghosh T, Basak M (1958) Method of storing jute seed and effects of age of seed on yield of fibre. Indian J Exp Biol 16:411–413

    Google Scholar 

  • Ghosh BL, Dutta AK (1980) The enzymatic softening and upgrading of lignocellulosic fibres. Part 1: The softening and cleaning of low grade mesta and jute. J Text Ind 2:108–116

    Google Scholar 

  • Ghosh N, Sen S (1981) Influence of seed size on growth characters in jute. SABRAO J Breed Genet 13:69–73

    Google Scholar 

  • Ghosh RL, Rao MKR, Kundu BC (1948) The genetics of Corchorus (jute) V. The inheritance and linkage relation of bitter taste, anther and corolla colour. J Genet 49:12–22

    Google Scholar 

  • Ghosh M, Saha T, Nayak P, Sen SK (2002) Genetic transformation by particle gun bombardment of cultivated jute. Corchorus capsularis L. Plant Cell Rep 20:936–942

    CAS  Google Scholar 

  • Gopalkrishnan S, Goswami NN (1970) Note on varietal differences in leaf area development and net assimilation rate in tossa jute (Corchorus olitorius L.). Indian J Agric Sci 40:552–555

    Google Scholar 

  • Halder SK, Seraj ZI (1992) Cell suspension cultures in three varieties of jute (Corchorus spp.). Plant Tissue Cult 2:15–20

    Google Scholar 

  • Haque M (1992) Scope of anatomical manipulation for genetic improvement of jute, kenaf and mesta, specialized techniques in jute and kenaf breeding. In: Proceedings, IJO/BJRI Training Course, pp 194–198

    Google Scholar 

  • Haque M, Islam AS (1970) Some promising material among F4 and back-cross derivatives of the Natureural hybrid C. aestuans  ×  C. olitorius. Sindh Univ Res J (Sci Ser) 4:97–107

    Google Scholar 

  • Haque KS, Hussain M, Ahmed QA (1976) Anatomical study on fibre content of some strains of jute. Bangladesh J Jute Fibre Res 1:37–49

    Google Scholar 

  • Haque MS, Ahmed Z, Asaduzzaman M, Quashem MA, Akhter F (2002) Distribution and activity of microbial population for jute retting and their impact on water of jute growing areas of Bangladesh. Pak J Biol Sci 5:704–706

    Google Scholar 

  • Hazra SK, Karmakar PG (2008) Anatomical parameters of bast fibres for fibre yield and quality improvement. In: Karmakar PG, Hazra SK (eds) Jute and allied fiber updates 327p. CRIJAF, Barrackpore, pp 46–56

    Google Scholar 

  • Hossain MB, Haque S, Khan H (2002) DNA Fingerprinting of Jute Germplasm by RAPD. J Biochem Mol Biol 35:414–419

    PubMed  CAS  Google Scholar 

  • Hussain MA, Huq MI, Rahman SM, Ahmed Z (2002) Estimation of lignin in jute by titration method. Pak J Biol Sci 5:521–522

    Google Scholar 

  • Ingram CI, Montalvo RJ, Stone LA, Islam A, Sathasivan K (2006) RNA polymerase C1-like (rpoC1) gene from chloroplast partial sequence from Corchorus capsularis (DQ198155) PLN 12-APR-2006, NCBI Genbank

    Google Scholar 

  • Islam AS, Sattar MA (1961) Interspecific hybridization in the genus Corchorus: C. aestuans  × C. capsularis. In: Proceedings of 13th Pakistan science conference, Part 3B, pp 6–7

    Google Scholar 

  • Islam AS, Shah N, Haque M (1973) Origin of spontaneous amphidiploid in the F3 progeny of the cross, Corchorus olitorius × C. depressus. Bangladesh J Bot 2:41–50

    Google Scholar 

  • Islam MZ, Haque M, Haque MS (1980) Fibre bearing potentiality of two jute hybrids. Indian J Genet Plant Breed 40:378–380

    Google Scholar 

  • Islam AS, Jahan B, Chowdhury MKU (1981) Attempt to produce polyploids from a spontaneous amphidiploid of the jute hybrid, C. olitorius × C. depressus. Bangladesh J Bot 10:63–68

    Google Scholar 

  • Islam SMA, Hossain I, Fakir GA, Asad-Ud-Doullah M (2001) Effect of physical seed sorting, seed treatment with garlic extract and vitavax 200 on seed borne fungal flora and seed yield of jute (Corchorus capsularis L.). Pak J Biol Sci 4:1509–1511

    Google Scholar 

  • Islam AS, Taliaferro M, Lee CT, Ingram C, Montalvo RJ, Ende G, Alam S, Siddiqui J, Sathasivan K (2005) Preliminary progress in Jute (Corchorus species) genome analysis. Plant Tissue Cult Biotechnol 15:145–156

    Google Scholar 

  • Jacob KT (1941) Certain abnormalities in the root tips of cotton. Curr Sci 10:174–175

    Google Scholar 

  • Jacob KT, Sen S (1961) Haploidy in Corchorus olitorius. Nature 192:288–289

    Google Scholar 

  • JCU (2010) Discover nature at JCU. James Cook University, Townsville

    Google Scholar 

  • Johansen DA (1940) Botanical microtechnique part 2. Staining botanical sections. Plant microtechnique. McGraw Hill, New York

    Google Scholar 

  • Karmakar PG, Hazra SK, Sinha MK, Chaudhury SK (2008) Breeding for quantitative traits and varietal development in jute and allied fiber crops. In: Karmakar PG, Hazra SK (eds) Jute and allied fiber updates, 327 p. CRIJAF, Barrackpore, pp 57–75

    Google Scholar 

  • Khatun A (2007) Recent agricultural developments in jute, kenaf and mesta through traditional and biotechnological approaches, 6p. A seminar on jute and kenaf. Ministry of Agriculture and Irrigation, Myanmar Jute Industries and the International Jute Study Group (IJSG), Myanmar, pp 1–13

    Google Scholar 

  • Khatun A, Laourar L, Davey MR, Power JB, Mulligan BJ, Lowe KC (1993) Effects of Pluronic F-68 on shoot regeneration from cultured jute cotyledons and on growth transformed roots. Plant Cell Tissue Organ Cult 34:133–140

    CAS  Google Scholar 

  • Khatun A, Saha CK, Naher Z, Shirin M, Siddique AB, Bilkis S (2003) Plant Regeneration from the Cotyledonds of Tossa Jute (Corchorus olitorius L.). Biotechnol 2:206–213

    Google Scholar 

  • Kornicke M (1901) Uber Ortsveranderung von Zellkarnern. S. B. Niederrhein,Ges. Natureur-und and Heilkunde Bon, pp 14–25

    Google Scholar 

  • Kumar D, Paria P, Basak SL (1981) Genotypic control of chromosome behavior in Corchorus olitorius L. Cytologia 46:643–647

    Google Scholar 

  • Kundu BC (1951) Origin of jute. Indian J Genet Plant Breed 2:95–99

    Google Scholar 

  • Kundu BC (1954) Origin, development and structure of important vegetable fibres. Presidential address, Section of Botany, 41st Indian Science Congress, pp 82–101

    Google Scholar 

  • Kundu BC (1968) Some immediate problems, possibilities and experimental approaches in relation to the genetic improvement of jute. Indian J Genet Plant Breed 28:78–87

    Google Scholar 

  • Kundu AK, Roy AB (1962) Degumming of ramie. Jute Bull 25:150–151

    Google Scholar 

  • Kundu BC, Basak KC, Sarcar PB (1959) Jute in India, pp 38–41

    Google Scholar 

  • Kundu BC, Ghosh K, Sharma MS (1961) Studies on the effects of X-irradiation on C. capsularis and C. olitorius. Genetica 32:51–73

    Google Scholar 

  • Laskar S, Majumdar SG, Basak B (1987) Extraction and chemical investigation of jute (Corchorus olitorius Linn.) seed protein. Appl Biochem Biotechnol 14:253–257

    CAS  Google Scholar 

  • Lefroy HM (1907) Insect pests of jute. Agric J India 2:100–115

    Google Scholar 

  • Mahapatra AK, Saha A (2008) Genetic resources of jute and allied fiber crops. In: Karmakar PG, Hazra SK (eds) Jute and allied fiber updates, 327 p. CRIJAF, Barrackpore, pp 18–37

    Google Scholar 

  • Mahapatra AK, Saha A, Basak SL (1998) Origin, taxonomy and distribution of Corchorus species in India. Green J 1:64–82

    Google Scholar 

  • Maiti RK (1997) World fibre crops. Science Publishers, INC, Enfield, p 208

    Google Scholar 

  • Maity S, Datta AK (2008) Cytomorphological studies in F1 hybrids (Corchorus capsularis L. × Corchorus trilocularis L.) of jute (Tiliaceae). Comp Cytogenet 2:143–149

    Google Scholar 

  • Maity S, Datta AK (2009a) Karyomorphology in nine species of Jute (Corchorus L., Tiliaceae). Cytologia 74:1–7

    Google Scholar 

  • Maity S, Datta AK (2009b) Meiosis in nine species of Jute (Corchorus). Indian J Sci Technol 2:27–29

    Google Scholar 

  • Maity S, Datta AK (2009c) Spontaneous dysynapsys in Corchorus fascicularis Lamk. (Family: Tiliaceae). Indian J Sci Technol 2:34–36

    CAS  Google Scholar 

  • Maity S, Datta AK (2009d) Induced viable macromutants in Corchorus olitorius L. J Phytological Res 22:43–46

    Google Scholar 

  • Maity S, Datta AK (2010) Cytomorphological studies in F2, F3 and in an induced amphidiploid of Jute (Corchorus trilocularis L. × Corchorus capsularis L.). Nucleus 53:85–87

    Google Scholar 

  • Maity S, Datta AK, Maiti GG, Sinha MK (2008) Morphological characterization of nine jute (Corchorus) species. Plant Arch 8:643–646

    Google Scholar 

  • Maity S, Datta AK, Chattopadhyay A (2009a) Seed protein polymorphism in nine species of Jute (Corchorus, Family: Tiliaceae). Indian J Sci Technol 2:34–36

    CAS  Google Scholar 

  • Maity S, Datta AK, Chowdhury S, Maity GG (2009b) Pollen morphology in nine species of Jute (Corchorus). J Phytological Res 22:57–60

    Google Scholar 

  • Maity S, Datta AK, Maity GG, Chowdhury S (2009c) Comparative study on stem anatomy of nine species of Corchorus (Tiliaceae). Plant Arch 9:135–139

    Google Scholar 

  • Majumdar S (2002) Prediction of fibre quality from anatomical studies of jute stem. Part I- Prediction of fineness. Indian J Fibre Text Res 27:248–253

    CAS  Google Scholar 

  • Majumdar AK, Day A (1977) Chemical constituents of jute ribbon and the materials removed by retting. Food Farm Agric 21:25–26

    Google Scholar 

  • Majumdar B, Maji B, Saha MN, Borkar UN (2008) Ecologically viable improved method and biochemistry of retting of jute and mesta. In: Karmakar PG, Hazra SK (eds) Jute and allied fiber updates, 327 p. CRIJAF, Barrackpore, pp 242–250

    Google Scholar 

  • Michiyama H, Yamamoto R (1990) Seed germination in jute and Indian mallow. Crop Sci Soc Japan 110:9–14

    Google Scholar 

  • Mir RR, Rustgi S, Sharma S, Singh R, Goyal A, Kumar J, Gaur A, Tyagi AK, Khan H, Sinha MK, Balyan HS, Gupta PK (2007) A preliminary genetic analysis of fibre traits and the use of few genomic SSRs for genetic diversity in jute. Euphytica 161:413–427

    Google Scholar 

  • Mir JI, Roy A, Ghosh SK (2008) Biotechnology in jute: present status and future perspectives. In: Karmakar PG, Hazra SK (eds) Jute and allied fiber updates, 327p. CRIJAF, Barrackpore, pp 125–139

    Google Scholar 

  • Mitra S, Sinha MK, Natureh R (2006) Growth and yield of jute as influenced by moisture stress. Annual Report CRIJAF, Barrackpore, pp 68–71

    Google Scholar 

  • Mukherjee SK (1952) Meiosis in some Corchorus species. Sci Cult 18:91

    Google Scholar 

  • Nair MRGK (1986) Insects and mites of crops in India. ICAR, New Delhi, pp 122–126

    Google Scholar 

  • Nandi HK (1937) Trisomic mutations in jute. Nature 140:973–974

    Google Scholar 

  • Palit P (1987) Adenine Nucleuseotide, energy change and protein synthesis in germinating jute (Corchorus capsularis L.) seeds under water stress. Indian J Exp Biol 25:135–138

    CAS  Google Scholar 

  • Palit P (1993) Radiation and carbon use efficiency in field grown jute (Corchorus spp.) in relation to potential primary production. Photosynthetica 28:369–375

    CAS  Google Scholar 

  • Palit P (1999) Jute. In: Smith DL, Hamel C (eds) Crop yield, physiology and processes. Springer–Verlag, Berlin, pp 271–283

    Google Scholar 

  • Palit P, Bhattacharya AC (1981) Germination and water uptake of jute seeds under water stress. Indian J Experimental Biol 19:848–852

    Google Scholar 

  • Palit P, Bhattacharya AC (1984) Characterization of the type of photosynthetic carbon dioxide fixation in jute (Corchorus olitorius L.). J Exp Bot 35:169–173

    CAS  Google Scholar 

  • Palit P, Meshram JH (2004) Physiological characterization of a phenotypically distinct jute (Corchorus olitorius) genotype. Plant Genet Resour 2:175–180

    Google Scholar 

  • Palit P, Singh VK (1991) External water potential as the effector for proline accumulation in imbibing jute (Corchorus capsularis L.) seeds. Indian J Exp Biol 29:793–794

    CAS  Google Scholar 

  • Palit P, Meshram JH, Sengupta G, Nachane RP (2004) Low lignin mutant (dlpf) and the wild type (JRC 212) Jute (Corchorus capsularis) show similar a-cellulose structure. Jaf News, CRIJAF Newsletter, July–December 2, 15

    Google Scholar 

  • Palit D, Meshram JH, Palit P (2006) Biology of jute fibre quality. Sci Cult 72:379–382

    Google Scholar 

  • Palve SM, Sinha MK, Chattopahdyay S (2004) Genetic variability for fiber strength and fitness in wild relatives of genus Corchorus. In: Karmakar PG, Hazra SK (eds) Proceedings of national seminar on diversified uses of jute and allied fiber crops, Kolkata, pp 18–37

    Google Scholar 

  • Paria P, Basak SL (1973) The pachytene chromosomes of Jute (Corchorus olitorius). Curr Sci 42:832

    Google Scholar 

  • Patel CS, Mandal AK (1983) Effect of moisture regimes and level of fertilizer application on yield and water requirement of jute (Corchorus olitorius L. and Corchorus capsularis L.). J Agric Sci 101:311–316

    Google Scholar 

  • Pradhan SK, Ghosh SK (1995) Occurrence of major insect pests on rice necrosis mosaic virus-innoculated jute plants. Int J Trop Plant Dis 13:193–197

    Google Scholar 

  • Pradhan SK, Saha MN (1997) Effect of yellow mite (Polyphagotarsonemus latus Bank) infestation on the major nutrient contents of tossa jute (Corchorus olitorius L.) varieties. J Entomol Res 21:123–127

    Google Scholar 

  • Purseglove JW (1968) Tropical crops-Dicotyledons, 2. Longman. Green and Co. Ltd, London, pp 613–618

    Google Scholar 

  • Qi JM, Zhou D, Wu WR, Wu W, Lin L, Fang P, Wu JM, Wu J (2004) A comparison between RAPD and ISSR technology in detection of genetic diversity of jute. Sci Agric Sin 37:2006–2011

    Google Scholar 

  • Rakshit SC (1967) Induced male-sterility in jute (Corchorus capsularis). Japan J Genet 42:139–142

    Google Scholar 

  • Rao NS, Datta RM (1953) Chromosomes of the genus Corchorus. Nature 171:754

    PubMed  CAS  Google Scholar 

  • Rao NS, Joshua DC, Thakre RG (1983) ‘Mohadev’ (TJ-40) a high yielding tossa jute mutant variety. Mutat Breed Newsl 23:3–24

    Google Scholar 

  • Roy Chowdhury S, Choudhury MA (1985) Hydrogen peroxide metabolism as an index of water stress tolerance in jute. Physiol Plant 65:503–507

    Google Scholar 

  • Saha A (2008) Raw jute seed sector: development, present status and issues. In: Karmakar PG, Hazra SK (eds) Jute and allied fiber updates, 327p. CRIJAF, Barrackpore, pp 98–111

    Google Scholar 

  • Saha A, Hazra SK (2008) Jute – the heritage of India. In: Karmakar PG, Hazra SK (eds) Jute and allied fiber updates, 327 p. CRIJAF, Barrackpore, pp 1–17

    Google Scholar 

  • Saha SK, Sen SK (1992) Somatic embryogenesis in protoplast derived calli of cultivated jute, Corchorus capsularis L. Plant Cell Rep 10:633–636

    Google Scholar 

  • Saha T, Ghosh M, Sen SK (2004) Plant regeneration from cotyledonary explants of jute, Corchorus capsularis L. Plant Cell Rep 18:544–548

    Google Scholar 

  • Samad MA, Kabir G, Islam AS (1992) Chromosome banding in two species of Corchorus and their F1 hybrid. Bangladesh J Bot 9:113–117

    Google Scholar 

  • Samira R, Moosa MM, Alam MM, Keka SI, Khan H (2010) In silico analysis of jute SSR library and experimental verification of assembly. Plant Omics J 3:57–65

    CAS  Google Scholar 

  • Sapre AB, Deshpande DS (1987) A change in chromosome number due to cytomixis in an interspecific hybrid of Coix L. Cytologia 52:167–174

    Google Scholar 

  • Sarvella P (1958) Cytomixis and the loss of chromosomes in meiotic and somatic cells of Gossypium. Cytologia 23:14–24

    Google Scholar 

  • Schippers RR (2000) African indigenous vegetable – an overview of the cultivated species. NRI/CTA, Chatham, pp 193–199

    Google Scholar 

  • Selwin L (ed) (1981) Poisonous plants of Australia. Angus & Robertson, Sydney

    Google Scholar 

  • Sengupta G, Palit P (2004) Characterization of a lignified secondary-fibre deficient mutant of jute (Corchorus capsularis). Ann Bot 23:211–220

    Google Scholar 

  • Shaikh MAQ, Miah MM (1985) Genetic improvement of jute through Nucleus technique. Bangladesh J Nucl Agric 1:1–16

    Google Scholar 

  • Sharma MC, Datta RM (1953) Complex chromosome mosaics are variable microsporocytes in C. capsularis L. Sci Cult 19:202–203

    Google Scholar 

  • Sharma MS, Ghosh K (1961) Genetics of X-ray induced pigmentation in jute. J Hered 52:83–88

    Google Scholar 

  • Sharma AK, Roy M (1958) Cytological studies on Jute and its allies. Agron Lusitania 20:5–15

    Google Scholar 

  • Singh DP (1976) Jute. In: Simmonds NW (ed) Evolution of crop plants. Longman, London/New York, pp 290–291

    Google Scholar 

  • Singh B, Das LK (1979) Semilooper (Anomis sabulifera Guen.) escalating on jute pods. Sci Culture 45:121–123

    Google Scholar 

  • Singh DP, Sharma BK, Banerjee SC (1973) X-ray induced mutations in jute (C. capsularis & C. olitorius). Genet Agrar 27:115–147

    Google Scholar 

  • Sinhamahapatra SP (2005) Development of desirable strains in jute C. capsularis L. using mutants in cross breeding. J Nucl Agric Biol 34:111–114

    Google Scholar 

  • Stone LA, Ingram CM, Montalvo RJ, Islam A, Sathasivan K (2005) Putative phosphate transport ATP-binding protein gene from Corchorus capsularis, partial sequence (DQ151661) PLN 24-AUG-2005, NCBI Genbank

    Google Scholar 

  • Tarkowska J (1960) Cytomixis in epidermis of scales and leaves and in meristems of the root apex of Allium cepa L. Acta Soc Bot Pol 29:149–168

    Google Scholar 

  • Thakare RG, Joshua DC, Rao NS (1973) Induced viable mutations in Corchorus olitorius. Indian J Genet Plant Breed 33:204–228

    Google Scholar 

  • Thakare RG, Joshua DC, Rao NS (1974) Radiation induced trisomics in jute. Indian J Genet Plant Breed 34:337–345

    Google Scholar 

  • Tirel C, Jeremie J, Lobreau-Callen D (1996) Corchorus neocaledonicus (Tiliaceae), véritable identité de l’énegmatique Oceanopapaver. Bull du Muséum nat d’hist nat B, Adansonia 18:35–43

    Google Scholar 

  • Tripathi RL (1967) Relative contact toxicity of some insecticides to the larvae of jute semilooper, Anomis sabulifera (Guen.) (Lepidoptera: Noctuidae). Indian J Entomol 29:234–236

    CAS  Google Scholar 

  • Tripathi RL, Bhattacharya SP (1963) Studies on the comparative efficacy of some modern insecticides in the control of leaf injuries in jute by Anomis sabulifera Guen.(Lepidoptera: Noctuidae). Jute Bull 26:164–165

    Google Scholar 

  • Tripathi RL, Ghosh SK (1964) Studies on prophylactic and curative measures against jute Semilooper Anomis sabulifera Guen (Lepidoptera: Noctuidae). Jute Bull 27:75–77

    Google Scholar 

  • Tripathi RL, Ram S (1971) A review of entomological researches on jute, mesta, sunnhemp and allied fibres, ICAR Technical Bulletin No. ICAR, New Delhi, 36:1–39

    Google Scholar 

  • Wallace DR (1909) Romance of jute 1909. In: Kundu BC, Basak KC, Sarkar PB (eds) Jute in India. Indian Central Jute Committee, Calcutta, p 4

    Google Scholar 

  • Wazni MW, Islam AS, Taliaferro JM, Anwar N, Sathasivan K (2007) Novel ESTs from a Jute (Corchorus olitorius L.) cDNA library. Plant Tissue Cult Biotech 17:173–182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandipan Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Maity, S., Chowdhury, S., Datta, A.K. (2012). Jute Biology, Diversity, Cultivation, Pest Control, Fiber Production and Genetics. In: Lichtfouse, E. (eds) Organic Fertilisation, Soil Quality and Human Health. Sustainable Agriculture Reviews, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4113-3_9

Download citation

Publish with us

Policies and ethics