Skip to main content

Tropical Biomes: Their Classification, Description and Importance

  • Chapter
  • First Online:
Tropical Agroforestry

Abstract

Tropical biome classifications are mainly based on climate, the structure and function of plant communities, and soil type, with climate being the most frequently used criterion. The most common climate classification systems are the Köppen-Geiger system, which is composed of 5 groups, and Holdridge Life Form classifications, which consist of 38 classes. The Köppen-Geiger system classification is calculated from long term averages of temperature and precipitation at annual, seasonal and monthly time-scales to delineate climatic zones, whereas the Holdridge system uses rainfall and temperature as the main determinants of vegetation type in a given location. Biome classification is also based on soil nutrient status and function of the system. These classification systems have allowed researchers to describe the major biomes that are encountered the tropics, including the Amazon Basin, the Congo Basin, the Borneo-Mekong Basin, and Oceania. Tropical biomes include forests, savannas, mosaics of forest-crop and forest-savanna, woodlands and other plant formations. Tropical savannas include savanna woodlands, savanna parkland, savanna grassland, low tree and scrub savanna, and scrub communities. Tropical forests include mangroves, dense evergreen forests, semi-deciduous, transitional, gallery and fresh swamp forests. In mountainous areas around the equator, tropical cloud forests occur. These dense evergreen forests are located at elevations between 2000 and 3500 m in humid, marine, and equatorial conditions. Tropical forests are significant carbon sinks; they also harbor biodiversity hotspots, and provide agricultural land for people living around or inside these forests. Forest products contribute significantly to tax revenues and the gross domestic products of tropical countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Ashton PS (1988) Dipterocarp biology as a window to the understanding of tropical forest structure. Ann Rev Ecol Sys 19:347–370

    Article  Google Scholar 

  • Baruch Z (2005) Vegetation-enrichment relationships and classification of the seasonal Savannas in Venezuela Flora 200(1):49–64

    Google Scholar 

  • Beard JS (1944) Climax vegetation in Tropical America. Ecology 25(2):127–158

    Article  Google Scholar 

  • Becker LC (2001) Seeing green Mali’s wood: Colonial legacy, forest use and local control. Ann assoc Am Geog 9(1):504–526

    Article  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Altaf Arain M, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834–838

    Article  PubMed  CAS  Google Scholar 

  • Bladystein J (1967) Tropical Savanna vegetation of the Llanos of Colombia. Ecology 48(1):1–15

    Article  Google Scholar 

  • Bridgewater S, Ibanez A, Ratter JA, Fyrley P (2002) Vegetation classification and floristics of the Savannas and associated wetlands of the Rio Bravo conservation and management area, Belize. Edinb J Bot 59:421–442

    Article  Google Scholar 

  • Brown S, Lugo AE (1980) Preliminary estimate of the storage of organic carbon in tropical forest eco-systems. In: Brown S, Lugo AE, Liegel B (eds) The Role of Tropical Forests in the World Carbon Cycle. US Dep. Energy CONF-800350, pp 65—117

    Google Scholar 

  • Campbell DG, Daly DC, Prance GT, Maciel UN (1986) Quantitative ecological inventory of terra firme and Várzea tropical forest on the Rio Xingu, Brazilian Amazon. Brittonia 38(4):369–393

    Article  Google Scholar 

  • Chen X, Hutley LB, Eamus D (2003) Carbon balance of a tropical savanna of Northern Australia. Oecologia 137:405–416

    Article  PubMed  Google Scholar 

  • Cole MM (1986) The Savannas—Biogeography and Geobotany. Academic Press, Florida, pp 438

    Google Scholar 

  • Coomes OT, Burt GJ (2001) Peasant charcoal production in the Peruvian Amazon: rainforest use and economic reliance. For Ecol Manag 140(1):39–50

    Article  Google Scholar 

  • Couteron P, Kokou K (1997) Woody spatial patterns in a semi-arid savanna of Burkina Faso, West Africa. Plant Ecol 132:211–227

    Article  Google Scholar 

  • de Wasseige C, de Marcken P, Bayol N., Hiol Hiol F, Mayaux Ph, Desclée B, Nasi R, Billand A, Defourny P, Eba’a AR, eds (2012) Les Forêts du Bassin du Congo—Etat des Forêts 2010. Office des publications de l’Union Européenne. Luxembourg, pp 276, ISBN 978-92-79-22717-2, doi:10.2788/48830

    Google Scholar 

  • Fujisaka S, Escobar G, Veneklaas E (1998) Plant community diversity relative to human land uses in an Amazon forest colony. Biodivers Conserv 7:41–57

    Article  Google Scholar 

  • Hamann A, Barbon EB, Curio E, Madulid DA (1999) A botanical inventory of a submontane tropical rainforest on Negros Island, Philippines. Biodivers Conserv 8:1017–1031

    Article  Google Scholar 

  • Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105:367–368.

    Article  PubMed  CAS  Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Science Center, Costa Rica, pp 206

    Google Scholar 

  • Holdridge LR, Grenke WC, Hatheway WH, Liang T, Tosi JA Jr (1971) Forest environments in tropical life zones. Pergamon, New York, pp 747

    Google Scholar 

  • Huber O (1987) Neotropical savannas: Their flora and vegetation. Trends in Ecol Evol 2(3):67–71.

    Article  CAS  Google Scholar 

  • Hughes CE, Styles BT (1984) Exploration and seed collection of multiple purpose dry zone trees of Central America. Intern Tree Crop J 3(1):1–31

    Article  Google Scholar 

  • Jordan CF (1985) Nutrient cycling in tropical forest ecosystems: principles and their application in management and conservation. Wiley, Chichester, pp 189

    Google Scholar 

  • Justice C, Wilkie D, Zhang Q, Brunner J, Donoghue C (2001) Central African forests, carbon and climate change. Clim Resear 17:229–246

    Article  Google Scholar 

  • Kellman M (1979) Soil enrichment by neotropical savanna trees. J Ecol 67:565–577

    Article  CAS  Google Scholar 

  • Köppen W (1936) Das geographisca System der Klimate. In: Köppen W, Geiger G (eds) Handbuch der Klimatologie 1. C. Gebr, Borntraeger. pp 1–44

    Google Scholar 

  • Kpikpi WM (1992) Rating Musanga cecropioides and Delonix regia as papermaking hardwoods. Fiber supply—Tappi J. pp 73–75

    Google Scholar 

  • Letouzey R (1985) Notice de la carte phytogeographique du Cameroun au 1/500000. 5-B I. Bibliographie et index des noms scientifiques. Institut de la Carte Internationale de la Vegetation, Toulouse, France, pp 143–240

    Google Scholar 

  • Lewis SL, Lopez-Gonzalez G, Sonke B, et al. (2009) Increasing carbon storage in intact African tropical forests. Nature 457:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Lloyd J, Grace J, Miranda AC, Meir P, Wong SC, Miranda HS, Wright IR, Gash JHC, McIntyre J (1995) A simple calibrated model of Amazon rainforest productivity based on biochemical properties. Plant Cell Environ 18(10):1129–1145

    Article  Google Scholar 

  • Ludwig JA, Tongway DJ, Eager RW, Williams RJ, Cook GD (1999) Fine-scale vegetation patches decline in size with increasing rainfall in Australian Savannas. Landscape Ecol 14:557–566

    Article  Google Scholar 

  • McKeon GM, Day KA, Howden SM, Mott JJ, Orr DM, Scattini WJ, Weston EJ (1990) Northern Australian Savannas: management for pastoral production. J Biog 17:355–372

    Article  Google Scholar 

  • Medina E, Silva JF (1990) Savannas of Northern South America: A steady state regulated by water-fire interactions on a background of low nutrient availability. J Biog 17(a/5):403–413

    Article  Google Scholar 

  • Mittermeier RA, Myers N, Thomsen JB, Da Fonseca GAB, Olivieri S (1998) Biodiversity hotspots and major tropical wilderness areas: areas to setting conservation priorities. Conser Biol 12(3):516–520

    Article  Google Scholar 

  • Moran EF, Brondizio ES, da Tucker JM, Silva-Forsberg MC, McCracken S, Falesi I (2000) Effects of soil fertility and land-use on forest succession in Amazonia. For Ecol Manag 139(1–3):93–108

    Article  Google Scholar 

  • Mott JJ, Williams J, Andrew MH, Gillison AN (1985) Australian savanna ecosystems. Ecology and management of the world’s Savannas. In: Tothill JC, Mott JJ (eds) Australian Academy of Science, Canberra, ACT, Australia, pp 56–82

    Google Scholar 

  • Murphy PG, Ariel E, Lugo AE (1986) Ecology of tropical dry forests. Ann rev Ecol Sys 17:67–88

    Article  Google Scholar 

  • Oldeman RAA, van Dijk J (1991) Diagnosis of the temperament of tropical rain forest trees: Rain forest regeneration and management. Man Biosph Ser 6:119–136

    Google Scholar 

  • Pascal JP (1984) Les forêts denses humides sempervirentes des Ghâts occidentaux de l’Inde: écologie, structure, floristique, succession. Travaux de la Section Scientifique et Technique, Tome XX, Institut Français de Pondichéry, Inde, pp 318

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Sys Earth Sci 11:1633–1644

    Article  Google Scholar 

  • Pélissier R (1998) Tree spatial patterns in three contrasting plots of a southern Indian tropical moist evergreen forest. J Trop Ecol 14:1–16

    Article  Google Scholar 

  • Philips OL, Malhi Y, Higuchi N et al (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442

    Article  Google Scholar 

  • Pitman NCA, Terborgh JW, Silman MR, Nunez VP, Neill DA, Ceron CE, Palacios WA, Aulestia M (2000) Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82(8):2101–2117

    Article  Google Scholar 

  • ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino J-F, Prévost M-F, Spichiger R, Castellanos H, von Hildebrant P, Vásquez R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    Article  PubMed  CAS  Google Scholar 

  • Ratter JA, Bridgewater S, Atkinson R, Ribeiro JF (1996) Analysis of the floristic composition of the Brazilian cerrado vegetation II: comparison of the woody vegetation of 98 areas. Edinb J Bot 53:153–180

    Article  Google Scholar 

  • Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230

    Article  Google Scholar 

  • Scholes RJ (1990) The influence of soil fertility on the ecology of Southern African dry savannas. J Biogeogr 17(4–5):415–419

    Article  Google Scholar 

  • Sanchez PA (1981) Soils of the humid tropics. In: Col. William and Mary, Department of Anthropology, Williamsburg Va (ed) Blowing in the wind: deforestation and low-range implications. pp 347–410

    Google Scholar 

  • Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Ann Rev Ecol Sys 28:517–544

    Article  Google Scholar 

  • van de Vijver CADM, Foley CA, Olff H (1999) Changes in the woody component of an East African savanna during 25 years. J Trop Ecol 15(5):545–564

    Article  Google Scholar 

  • Vitousek PM, Sanford RL Jr (1986) Nutrient cycling in moist tropical forest. Annl Rev Ecol Sys 17:137–167

    Article  Google Scholar 

  • Walker BH, Landridge JL (1994) Predicting savannah vegetation structure on the basis of plant available moisture (PAM) and plant available nutrients (PAN): a case study from Australia. J Biogeogr 24:813–825

    Article  Google Scholar 

  • Williams RJ, Duff GA, Bowman DMJS, Cook GD (1996) Variation in the composition and structure of tropical savannas as a function of rainfall and soil texture along a large-scale climatic gradient in the Northern Territory, Australia. J Biog 23:747–756

    Article  Google Scholar 

  • Zhang J, Cao M (1995) Tropical forest vegetation of Xishuangbanna, SW China, and its secondary changes, with special references to some problems in local nature conservation. Biodivers Conserv 73:229–238

    Google Scholar 

  • Zhu H, Cao M, Hu H (2006) Geological history, flora and vegetation of Xishuangbanna, southern Yunnan. Biotropica 38:310–317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Atangana .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Atangana, A., Khasa, D., Chang, S., Degrande, A. (2014). Tropical Biomes: Their Classification, Description and Importance. In: Tropical Agroforestry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7723-1_1

Download citation

Publish with us

Policies and ethics