Skip to main content

Molecular Approaches in Conservation and Restoration of Agrobiodiversity

  • Chapter
  • First Online:
Agro-biodiversity and Agri-ecosystem Management

Abstract

Agrobiodiversity is the variety and variability of animals, plants and microorganisms that are used directly or indirectly for food and agriculture, including crops, livestock, forestry and fisheries. It also includes the diversity of non-harvested species that support production (soil microorganisms, predators, pollinators) and those in the wider environment that support agroecosystems. Now, the agrobiodiversity is threatened by changing patterns of land use (urbanization, deforestation), agricultural modernization (monocultures and abandoning of traditional, biodiversity-based practices), westernization of diets and their supply chains. After analysing the target species, strategies adopted to conserve and promote agrobiodiversity are in situ and ex situ conservation along with habitat conservation, management and promotion of agrobiodiversity through sustainable uses. Recently, molecular techniques are facilitating the identification and evaluation of interspecific diversity and evolutionary history, restoration of potential species which may be vulnerable in the near future and conservation of closely related species for the possibility of exploring useful bioactive molecules present in them. These molecular approaches include both non-PCR- and PCR-based techniques. PCR-based techniques have been widely applied in conservation and restoration of agrobiodiversity through molecular characterization, assessing genetic diversity, DNA barcoding, phylogenetics, QTL mapping, MAS, genome sequencing, pangenome construction, etc. Besides these, target genes were discovered for quantitative traits using association mapping and genome-wide prediction studies. Different biotechnological tools have also been employed for genomic manipulation through important gene cloning and genetic modification and genome editing tools in important crop germplasm to conserve, manage and restore from wild population to avoid its depletion. These DNA technologies can be a viable option to develop genetically modified crops with enhanced resistance and improved yields to fight against climate change, droughts and chronic food shortages. National Plant Germplasm System (NPGS) and GenBank repositories are developed to maintain agricultural biodiversity and ensure the preservation of the genetic resources and reduce the genetic vulnerability. Thus, a wide array of DNA approaches available may be used to exploit and harness the diversity in wild crop resource of agriculture for achieving higher genetic gains for food and nutritional security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Haleem H, Carter TE, Purcell LC et al (2012) Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr). Theor Appl Genet 125(5):837–846

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Haleem H, Carter TE, Rufty TW et al (2014) Quantitative trait loci controlling aluminum tolerance in soybean: candidate gene and single nucleotide polymorphism marker discovery. Mol Breed 33(4):851–862

    Article  CAS  Google Scholar 

  • Abdurakhmonov IY, Kohel RJ, Yu JZ et al (2008) Molecular diversity and association mapping of fiber quality traits in exotic Gossypium herbaceum L. germplasm. Genomics 92(6):478–487

    Article  CAS  PubMed  Google Scholar 

  • Achleitner A, Tinker N, Zechner E et al (2008) Genetic diversity among oat varieties of worldwide origin and associations of AFLP markers with quantitative traits. Theor Appl Genet 117(7):1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Acquadro A, Portis E, Albertini E et al (2005) M-AFLP-based protocol for microsatellite loci isolation in Cynara cardunculus L. (Asteraceae). Mol Ecol Notes 5:272–274

    Article  CAS  Google Scholar 

  • Agrama HA, Moussa ME (1996) Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91:89–97

    Article  CAS  Google Scholar 

  • Agrama HA, Eizenga GC, Yan W (2007) Association mapping of yield and its components in rice cultivars. Mol Breed 19:341–356

    Article  Google Scholar 

  • Ajibade SR, Weeden NF, Chite SM (2000) Inter-simple sequence repeat analysis of genetic relationships in the genus Vigna. Euphytica 111:47–55

    Article  CAS  Google Scholar 

  • Albertini E, Porceddu A, Marconi G et al (2003) Microsatellite-AFLP for genetic mapping of complex polyploids. Genomics 46:824–832

    CAS  Google Scholar 

  • Al-Dous EK, George B, Al-Mahmoud ME et al (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29(6):521–527

    Article  CAS  PubMed  Google Scholar 

  • Amar MH, Biswas MK, Zhang Z et al (2011) Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of citrus germplasm collection. Sci Hortic 128:220–227

    Article  CAS  Google Scholar 

  • Anand D, Prabhu KV, Singh AK (2012) Analysis of molecular diversity and fingerprinting of commercially grown Indian rice hybrids. J Plant Biochem Biotechnol 21:173–179

    Article  CAS  Google Scholar 

  • Andersson M, Turesson H, Nicolia A et al (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  CAS  PubMed  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aranzana MJ, Kim S, Zhao K et al (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1(5):e60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arens P, Odinot P, Van Heusden AW et al (1995) GATA and GACA repeats are not evenly distributed throughout the tomato genome. Genomics 38:84–90

    CAS  Google Scholar 

  • Argout X, Salse J, Aury JM et al (2011) The genome of Theobroma cacao. Nat Genet 43(2):101–108

    Article  CAS  PubMed  Google Scholar 

  • Arora RK, Nayar ER (1984) Wild relatives of crop plants in India. NBPGR Sci Mongr 9:90

    Google Scholar 

  • Arora RK, Mehra KL, Hardas MW (1975) The Indian gene centre: prospects for exploration and collection of herbage grasses. Forage Res 1(1):11–22

    Google Scholar 

  • Asad MA, Bai B, Lan C et al (2014) Identification of QTL for adult-plant resistance to powdery mildew in Chinese wheat landrace Pingyuan 50. Crop J 2:308–314

    Article  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S et al (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi V, Chani E, Lavi U et al (2001) Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. Genomics 44:50–62

    CAS  Google Scholar 

  • Asoro FG, Newell MA, Beavis WD et al (2013) Genomic, marker-assisted, and pedigree-blup selection methods for b-glucan concentration in elite oat. Crop Sci 53:1894–1906

    Article  CAS  Google Scholar 

  • Awad M, Fahmy RM, Mosa KA et al (2017) Identification of effective DNA barcodes for Triticum plants through chloroplast genome-wide analysis. Comput Biol Chem 71:20–31

    Article  CAS  PubMed  Google Scholar 

  • Badji A, Otim M, Machida L et al (2018) Maize combined insect resistance genomic regions and their co-localization with cell wall constituents revealed by tissue-specific QTL meta-analyses. Front Plant Sci 9:895

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao JS, Corke H, Sun M (2006) Microsatellites, single nucleotide polymorphisms and a sequence tagged site in starch-synthesizing genes in relation to starch physicochemical properties in nonwaxy rice (Oryza sativa L.). Theor Appl Genet 113(7):1185–1196

    Article  CAS  PubMed  Google Scholar 

  • Bar-Hen A, Charcosset A, Bourgoin M et al (1995) Relationship between genetic-markers and morphological traits in a maize inbred line collection. Euphytica 84:145–154

    Article  Google Scholar 

  • Barrero JM, Cavanagh C, Verbyla KL et al (2015) Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biol 16:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becher SA, Steinmetz K, Weising K et al (2000) Microsatellites for cultivar identification in pelargonium. Theor Appl Genet 101:643–651

    Article  CAS  Google Scholar 

  • Beckman JS, Soller M (1990) Toward a unified approach to gene mapping of eukaryotes based on sequence tagged microsatellite sites. Bio/Technology 8:930–932

    Google Scholar 

  • Beer SC, Siripoonwiwat W, O’donoughue LS et al (1997) Associations between molecular markers and quantitative traits in an oat germplasm pool: can we infer linkages? J Agric Genom 3:1–16

    Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30(6):555–561

    Article  CAS  PubMed  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genome-wide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Bertier LD, Ron M, Huo H et al (2018) High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR-Cas9 induced modifications of NCED4 in lettuce (Lactuca sativa). G3 8:1513–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharat SS, Li S, Li J et al (2020) Base editing in plants: current status and challenges. Crop J 8:384–395

    Article  Google Scholar 

  • Bhatia D, Wing RA, Yu Y et al (2018) Genotyping by sequencing of rice interspecific backcross inbred lines identifies QTLs for grain weight and grain length. Euphytica 214:41

    Article  Google Scholar 

  • Biswas MK, Xu Q, Deng XX (2011) Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Sci Hortic 124:254–261

    Article  CAS  Google Scholar 

  • Bonneau J, Taylor J, Parent B et al (2013) Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat. Theor Appl Genet 126:747–761

    Article  CAS  PubMed  Google Scholar 

  • Botwright Acuña TL, Rebetzke GJ, He X et al (2014) Mapping quantitative trait loci associated with root penetration ability of wheat in contrasting environments. Mol Breed 34(2):631–642

    Article  CAS  Google Scholar 

  • Bouchez A, Causse M, Gallais A et al (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162(4):1945–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredemeijer GMM, Arens P, Wouters D et al (1998) The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theor Appl Genet 97:584–590

    Article  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2014) Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding. PLoS One 9:e110387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryan GJ, Collins AJ, Stephenson P et al (1997) Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet 94:557–563

    Article  CAS  Google Scholar 

  • Budak H, Shearman RC, Parmaksiz I et al (2004) Comparative analysis of seeded and vegetative biotype buffalo grasses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor Appl Genet 109:280–288

    Article  CAS  PubMed  Google Scholar 

  • Burton AL, Johnson JM, Foerster JM et al (2014) QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor Appl Genet 127:2293–2311

    Article  PubMed  Google Scholar 

  • Busti A, Caceres ME, Calderini O et al (2004) RFLP markers for cultivars identification in tall fescue (Festuca arundinacea Schreb.) Genet. Resour Crop Evol 51:443–448

    Article  CAS  Google Scholar 

  • Caceres ME, Pupilli F, Piano E et al (2000) RFLP markers are an effective tool for the identification of creeping bentgrass (Agrostis stolonifera L.) cultivars. Genet Resour Crop Evol 47:455–459

    Article  Google Scholar 

  • Caetano-Anollis G (1994) MAAP - a versatile and universal tool for genome analysis. Plant Mol Biol 25:1011–1026

    Article  Google Scholar 

  • Caetano-Anollis G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology 9:553–557

    Google Scholar 

  • Cai Y, Chen L, Liu X et al (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soybean. Plant Biotechnol J 16:176–185

    Article  CAS  PubMed  Google Scholar 

  • Cannarozzi G, Plaza-Wuthrich S, Esfeld K et al (2014) Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics 15(1):581–600

    Article  PubMed  PubMed Central  Google Scholar 

  • Cantos C, Francisco P, Trijatmiko KR et al (2014) Identification of “safe harbor” loci in indica rice genome by harnessing the property of zinc finger nucleases to induce DNA damage and repair. Front Plant Sci 5:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Caramante M, Corrado G, Monti LM et al (2011) Simple sequence repeats are able to trace tomato cultivars in tomato food chains. Food Control 22:549–554

    Article  CAS  Google Scholar 

  • Cerrudo D, Cao S, Yuan Y et al (2018) Genomic selection outperforms marker assisted selection for grain yield and physiological traits in a maize doubled haploid population across water treatments. Front Plant Sci 9:366

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaib J, Lecomte L, Buret M et al (2006) Stabilityover genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 112:934–944

    Article  CAS  PubMed  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953

    Article  CAS  PubMed  Google Scholar 

  • Chan AP, Crabtree J, Zhao Q et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28(9):951–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chankaew S, Isemura T, Naito K et al (2014) QTL mapping for salt tolerance and domestication-related traits in Vigna marina subspp. oblonga, a halophytic species. Theor Appl Genet 127(3):691–702

    Article  CAS  PubMed  Google Scholar 

  • Charters YM, Wilkinson MJ (2000) The use of self-pollinated progenies as ‘in-groups’ for the genetic characterization of cocoa germplasm. Theor Appl Genet 100:160–166

    Article  Google Scholar 

  • Charters YM, Robertson A, Wilkinson MJ et al (1996) PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera) using 5’-anchored simple sequence repeat (SSR) primers. Theor Appl Genet 92:442–447

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary J, Deshmukh R, Sonah H (2019) Mutagenesis approaches and their role in crop improvement. Plants 8(11):467

    Article  CAS  PubMed Central  Google Scholar 

  • Cheema KK, Navtej SB, Mangat GS et al (2008) Development of high yielding IR64 × Oryza rufipogon (Griff.) introgression lines and identification of introgressed alien chromosome segments using SSR markers. Euphytica 160:401–409

    Article  CAS  Google Scholar 

  • Chen H, Wang S, Zhang Q (2002) New gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an elite restorer line. Phytopathology 92(7):750–754

    Article  CAS  PubMed  Google Scholar 

  • Chen HM, Liu CA, Kuo CG et al (2007) Development of a molecular marker for a bruchid (Callosobruchus chinensis L.) resistance gene in mung bean. Euphytica 157(1–2):113–122

    Article  CAS  Google Scholar 

  • Chen S, Yao H, Han J et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:e8613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Z, Wang B, Dong XL et al (2014) An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics 15(1):433

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lu X, Shu N et al (2017) Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep 7(1):44304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chwedorzewska KJ, Bednarek PT, Puchalski J (2002) Studies on changes in specific rye genome regions due to seed aging and regeneration. Cell Mol Biol Lett 7:569–576

    CAS  PubMed  Google Scholar 

  • Cobos MJ, Winter P, Kharrat M et al (2009) Genetic analysis of agronomic traits in a wide cross of chick pea. Field Crop Res 111(1-2):130–136

    Article  Google Scholar 

  • Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27:86–93

    Article  CAS  Google Scholar 

  • Concibido VC, La Vallee B, Mclaird P et al (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    Article  CAS  PubMed  Google Scholar 

  • Convention on Biological Diversity (1992). https://www.cbd.int/doc/legal/cbd-en.pdf

  • Cretazzo E, Meneghetti S, De Andre’s MT et al (2010) Clone differentiation and varietal identification by means of SSR, AFLP, SAMPL and M-AFLP in order to assess the clonal selection of grapevine: the case study of Manto Negro, Callet and Moll, autochthonous cultivars of Majorca. Ann Appl Biol 157:213–227

    Article  CAS  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J et al (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217

    Article  PubMed  CAS  Google Scholar 

  • Demirsoy L, Demir T, Demirsoy H et al (2008) Identification of some sweet cherry cultivars grown in Amasya by RAPD markers. Acta Hortic 795:147–152

    Article  CAS  Google Scholar 

  • Denoeud F, Carretero-Paulet L, Dereeper A et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345(6201):1181–1184

    Article  CAS  PubMed  Google Scholar 

  • Deokar A, Sagi M, Daba K et al (2019) QTL sequencing strategy to map genomic regions associated with resistance to ascochyta blight in chickpea. Plant Biotechnol J 17:275–288

    Article  CAS  PubMed  Google Scholar 

  • Descalsota GIL, Swamy BPM, Zaw H et al (2018) Genome-wide association mapping in a rice MAGIC plus population detects QTL and genes useful for biofortification. Front Plant Sci 9:1347

    Article  PubMed  PubMed Central  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  CAS  PubMed  Google Scholar 

  • Dje Y, Tahi GC, Zoro BIA et al (2006) Optimization of ISSR marker for African edible-seeded cucurbitaceae species genetic diversity analysis. Afr J Biotechnol 5:83–87

    CAS  Google Scholar 

  • Dje Y, Tahi CG, Zoro BI et al (2010) Use of ISSR markers to assess genetic diversity of African edible seeded Citrullus lanatus landraces. Sci Hortic 124:159–164

    Article  CAS  Google Scholar 

  • Djukanovic V, Smith J, Lowe K et al (2013) Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J 76:888–899

    Article  CAS  PubMed  Google Scholar 

  • Dohm JC, Minoche AE, Holtgrawe D et al (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505(7484):546–549

    Article  CAS  PubMed  Google Scholar 

  • Dong QH, Cao X, Guang Y et al (2010) Discovery and characterization of SNPs in Vitis vinifera and genetic assessment of some grapevine cultivars. Sci Hortic 125:233–238

    Article  CAS  Google Scholar 

  • Dong W, Liu J, Yu J et al (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One 7:e35071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du X, Liu S, Sun J et al (2018) Dissection of complicate genetic architecture and breeding perspective of cotton seed traits by genome-wide association study. BMC Genomics 19:451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubreuil P, Warburton ML, Chastanet M et al (2006) More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica 51:281–291

    Google Scholar 

  • Dussle C, Quint M, Xu M et al (2002) Conversion of AFLP fragments tightly linked to SCMV resistance genes Scmv1 and Scmv2 into simple PCR-based markers. Theor Appl Genet 105(8):1190–1205

    Article  CAS  PubMed  Google Scholar 

  • Ersoz ES, Yu J, Buckler ES (2007) Applications of linkage disequilibrium and association mapping in crop plants. In: Genomics-assisted crop improvement. Springer, pp 97–119

    Chapter  Google Scholar 

  • Eyzaguirre P, Linares OF (2004) Home gardens and agrobiodiversity. Smithsonian Books, Washington, DC

    Google Scholar 

  • Fang J, Zhu X, Wang C et al (2016) Applications of DNA technologies in agriculture. Curr Genom 17:379–386

    Article  CAS  Google Scholar 

  • FAO (1996) Report on the state of the World’s plant genetic resources for food and agriculture, prepared for the international technical conference on plant genetic resources, Leipzig, Germany, 17-23 June 1996. FAO, Rome

    Google Scholar 

  • FAO (1997) The state of the world’s plant genetic resources for food and agriculture. FAO, Rome. www.fao.org/ag/AGP/AGPS/PGRFA/pdf/swrfull.pdf

    Google Scholar 

  • FAO (1999a) Agricultural biodiversity. In: Multifunctional Character of Agriculture and Land Conference, Background Paper 1. Maastricht, Netherlands. FAO, Rome

    Google Scholar 

  • FAO (1999b) Women: users, preservers and managers of agrobiodiversity. FAO, Rome. www.fao.org/FOCUS/E/Women/Biodiv-e.htm

    Google Scholar 

  • FAO (2002) Gene flow from GM to non-GM populations in the crop, forestry, animal and fishery sectors. In: Background Document to Conference 7 of the FAO Biotechnology Forum (31 May to 5 July 2002). FAO, Rome. www.fao.org/biotech/C7doc.htm

    Google Scholar 

  • FAO (2006) Status the role of biotechnology in exploring and protecting agricultural genetic resources by John Ruane and Andrea Sonnino. Italy, Rome. http://www.fao.org/3/a0399e/A0399E00.htm

    Google Scholar 

  • Ferreira ME (2005) Molecular analysis of gene banks for sustainable conservation and increased use of crop genetic resources. In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome

    Google Scholar 

  • Fister AS, Landherr L, Maximova SN et al (2018) Transient expression of CRISPR/cas9 machinery targeting TCNPR3 enhances defense response in Theobroma cacao. Front Plant Sci 9:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR et al (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A et al (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Nesbitt TC, Frary A et al (2000) fw22: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103:185–190

    Article  CAS  Google Scholar 

  • Gadaleta A, Giancaspro A, Blechl AE et al (2008) A transgenic durum wheat line that is free of marker genes and expresses 1DY10. J Cereal Sci 48:439–445

    Article  CAS  Google Scholar 

  • Gao R, Feyissa BA, Croft M et al (2018) Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. Planta 247:1043–1050

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Wang S, Zhou Z et al (2019) Linkage mapping and GWAS reveal candidate genes conferring thermotolerance of seed-set in maize. J Exp Bot 70:4849–4864

    Article  CAS  PubMed  Google Scholar 

  • George MLC, Prasanna BM, Rathore RS et al (2003) Identification of QTLs conferring resistance to downy mildews of maize in Asia. Theor Appl Genet 107:544–551

    Article  CAS  PubMed  Google Scholar 

  • Ghareyazie B, Huang N, Second G et al (1995) Classification of rice germplasm, I Analysis using ALP and PCR-based RFLP. Theor Appl Genet 91:218–227

    Article  CAS  PubMed  Google Scholar 

  • Gidoni D, Rom M, Kunik T et al (2006) Strawberry cultivar identification using randomly amplified polymorphic DNA (RAPD) markers. Plant Breed 113(4):339–342

    Article  Google Scholar 

  • Gilbert JE, Lewis RV, Wilkinson MJ et al (1999) Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet 98:1125–1131

    Article  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan T et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100

    Article  CAS  PubMed  Google Scholar 

  • Golicz AA, Bayer PE, Barker GC et al (2016) The pangenome of an agronomically important crop plant Brassica oleracea. Nat Commun 7:13390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez SM, Boopathi NM, Kumar SS et al (2010) Molecular mapping and location of QTLs for drought-resistance traits in indica rice (Oryza sativa L.) lines adapted to target environments. Acta Physiol Plant 32:355–364

    Article  Google Scholar 

  • Gonzalez VM, Benjak A, Henaff EM et al (2010) Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy. BMC Plant Biol 10(1):246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon SP, Contreras-Moreira B, Woods DP et al (2017) Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat Commun 8:2184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grenier C, Cao TV, Ospina Y et al (2015) Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding. PLoS One 10:e0136594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groombridge B (1992) Global biodiversity: status of the Earth’s living resources. A report compiled by the world conservation monitoring Centre. Chapman and Hall, London

    Book  Google Scholar 

  • Guo YP, Saukel J, Mittermayr R et al (2005) AFLP analyses demonstrate genetic divergence, hybridization, and multiple polyploidization in the evolution of Achillea (Asteraceae-Anthemideae). New Phytol 166:273–289

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Zhang J, Sun H et al (2013a) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Tucker DM, Wang D et al (2013b) Accuracy of across-environment genome-wide prediction in maize nested association mapping populations. G3 3:263–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Chyi YS, Romero-Severson JR et al (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple sequence repeats. Theor Appl Genet 89:998–1006

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26(2):145–161

    Article  Google Scholar 

  • Gupta PK, Kulwal PL, Jaiswal V (2014) Association mapping in crop plants: opportunities and challenges. Adv Genet 85:110–139

    Google Scholar 

  • Ha BK, Vuong TD, Velusamy V et al (2013) Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica 193(1):79–88

    Article  CAS  Google Scholar 

  • Hamwieh A, Imtiaz M, Malhotra RS (2013) Multi-environment QTL analyses for drought-related traits in a recombinant inbred population of chickpea (Cicer arietinum L.). Theor Appl Genet 126(4):1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Han L, Chen J, Mace ES et al (2015) Fine mapping of qGW1, a major QTL for grain weight in sorghum. Theor Appl Genet 128:1813–1821

    Article  CAS  PubMed  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan MM, Rafii MY, Ismail MR et al (2015) Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol Biotechnol Equip 29(2):237–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Haun W, Coffman A, Clasen BM et al (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    Article  CAS  PubMed  Google Scholar 

  • Haverkort AJ, Struik PC, Visser RGF et al (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 52:249–264

    Article  Google Scholar 

  • Hayashi K (1992) PCR-SSCP: a method for detection of mutations. Genet Anal Tech Appl 9:73–79

    Article  CAS  PubMed  Google Scholar 

  • He Y, Wu D, Wei D et al (2017) GWAS, QTL mapping and gene expression analyses in Brassica napus reveal genetic control of branching morphogenesis. Sci Rep 7:15971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heath DD, Iwama GK, Devlin RH (1993) PCR primed with VNTR core sequences yields species specific patterns and hypervariable probes. Nucleic Acids Res 21:5782–5785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann D, Barre P, Santoni S et al (2010) Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa. Theor Appl Genet 121:865–876

    Article  CAS  PubMed  Google Scholar 

  • Hess GT, Tycko J, Yao D et al (2017) Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell 68:26–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heywood VH (1995) Global biodiversity assessment. UNEP. Cambridge University Press, Cambridge

    Google Scholar 

  • Hirakawa H, Shirasawa K, Miyatake K et al (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world. DNA Res 21(6):649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch CN, Foerster JM, Johnson JM et al (2014) Insights into the maize pan-genome and pantranscriptome. Plant Cell 26:121–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain F, Muthusamy V, Pandey N et al (2018) Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. J Genet 97(1):287–298

    Article  CAS  PubMed  Google Scholar 

  • Hou S et al (2018) Genome-wide association studies reveal genetic variation and candidate genes of drought stress-related traits in cotton (Gossypium hirsutum L). Front Plant Sci 9:1276

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Wang L, Xie X et al (2010) Genetic diversity of wild populations of Rheum tanguticum endemic to China as revealed by ISSR analysis. Biochem Syst Ecol 38:264–274

    Article  CAS  Google Scholar 

  • Hua K, Tao X, Zhu JK (2019) Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J 17:499–504

    Article  PubMed  Google Scholar 

  • Huang XQ, Coster H, Ganal MW et al (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z et al (2009a) The genome of the cucumber, Cucumis sativus L. Nat Genet 41(12):1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Feng Q, Qian Q et al (2009b) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Wei X, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • Hurgobin B, Edwards D (2017) SNP discovery using a pangenome: has the single reference approach become obsolete? Biology 6:21

    Article  PubMed Central  Google Scholar 

  • Hurgobin B, Golicz AA, Bayer PE et al (2018) Homeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol J 16:1265–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyeong JJ, Walid F, Wilfre DV et al (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10:1067–1076

    Article  CAS  Google Scholar 

  • Ibrahim IK, Zhang L, Niyitanga S et al (2020) Principles and approaches of association mapping in plant breeding. Trop Plant Biol 13:212–224

    Article  Google Scholar 

  • Iglesias-Garcia R, Prats E, Fondevilla S et al (2015) Quantitative trait loci associated to drought adaptation in pea (Pisum sativum L.). Plant Mol Biol Rep 33(6):1768–1778

    Article  CAS  Google Scholar 

  • Ito Y, Nishizawa-Yokoi A, Endo M et al (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467:76–82

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE (2012) What is wrong with the sustainability of Quinoa production in Southern Bolivia - a reply to Winkel et al. (2012). J Agron Crop Sci 198:320–323

    Article  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G et al (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaganathan D, Bohra A, Thudi M et al (2020) Fine mapping and gene cloning in the post-NGS era: advances and prospects. Theor Appl Genet 133:1791–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janga MR, Campbell LM, Rathore KS (2017) CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). Plant Mol Biol 94:349–360

    Article  CAS  PubMed  Google Scholar 

  • Jankowicz-Cieslak J, Tai TH et al (2017) Biotechnologies for plant mutation breeding. Springer International Publishing, Cham, p 340. ISBN 978-3-319-45021-6

    Book  Google Scholar 

  • Jannati M, Fotouhi R, Pourjan A et al (2009) Genetic diversity analysis of Iranian citrus varieties using microsatellite (SSR) based markers. J Hortic For 1:120–125

    Google Scholar 

  • Jarvis DI, Hodgkin T (2008) The maintenance of crop genetic diversity on farm: supporting the convention on biological diversity’s programme of work on agricultural biodiversity. Biodiversity 9:23–38

    Article  Google Scholar 

  • Jeong N, Suh SJ, Kim MH et al (2012) Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell 24:4807–4818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia G, Huang X, Zhi H et al (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45:957–961

    Article  CAS  PubMed  Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. Plant Breed Lab Fields 22:45–83

    Google Scholar 

  • Jiang D, Ye QL, Wang FS et al (2010) The mining of citrus EST-SNP and its application in cultivar discrimination. Agric Sci China 9:179–190

    Article  CAS  Google Scholar 

  • Johnson RC (2008) Gene banks pay big dividends to agriculture, the environment, and human welfare. PLoS Biol 6(6):e148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones RB, Rakotoarisaona JJ (2007) Supporting the development of sustainable seed systems for non-hybrid crops. Acta Hortic 752:77–82

    Article  Google Scholar 

  • Jones ES, Dupal MP, Kolliker R et al (2001) Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415

    Article  CAS  Google Scholar 

  • Joshi BK, Shrestha BB (2017) Notes on plant and crop classification. In: Joshi BK, Kc HB, Acharya AK (eds) Proceedings of 2nd National Workshop: Conservation and Utilization of Agricultural Plant Genetic Resources in Nepal., 22-23 May 2017, Dhulikhel. NAGRC, FDD, DoA and MoAD, Kathmandu, pp 17–20

    Google Scholar 

  • Joshi SP, Gupta VS, Aggarwal RK et al (2000) Genetic diversity and phylogenetic relationship as revealed by inter-simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor Appl Genet 100:1311–1320

    Article  CAS  Google Scholar 

  • Joshi BK, Ghimire KH, Gauchan D et al (2017) Agrobiodiversity: conservation strategies, methods and action plans. In: Joshi BK, Gauchan D (eds) Rebuilding Local Seed System of Native Crops in Earthquake Affected Areas of Nepa. Proceedings of a National Sharingshop 18 Dec 2017, Kathmandu, Nepal. ISBN: 9789937034289

    Google Scholar 

  • Joshi BK, Gauchan D, Bhandari B et al (2020) Good practices for agrobiodiversity management. NAGRC, LI-BIRD and Bioversity International, Kathmandu

    Google Scholar 

  • Juarez MJA, Ramirez-Malagon R, Gil-Vega KC et al (2009) AFLP analysis of genetic variability in three reproductive forms of Agave tequilana. Rev Fitotec Mex 32:171–175

    Google Scholar 

  • Kagalem S, Koh C, Nixon J et al (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun 5:3706

    Article  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M et al (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Kang YJ, Kim SK, Kim MY et al (2014) Genome sequence of mung bean and insights into evolution within Vigna species. Nat Commun 5:5443

    Article  CAS  PubMed  Google Scholar 

  • Kang BC, Yun JY, Kim ST et al (2018) Precision genome engineering through adenine base editing in plants. Nat Plant 4:427–431

    Article  CAS  Google Scholar 

  • Kantety RV, Zeng XP, Bennetzen JL et al (1995) Assessment of genetic diversity in dent and popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification. Mol Breed 1:365–373

    Article  CAS  Google Scholar 

  • Kantor A, McClements ME, MacLaren RE (2020) CRISPR-Cas9 DNA base-editing and prime-editing. Int J Mol Sci 21(17):6240

    Article  CAS  PubMed Central  Google Scholar 

  • Kapusi E, Corcuera-Gomez M, Melnik S et al (2017) Heritable genomic fragment deletions and small indels in the putative engase gene induced by CRISPR/Cas9 in barley. Front Plant Sci 8:540

    Article  PubMed  PubMed Central  Google Scholar 

  • Karaagac E, Yilma S, Cuesta-Marcos A et al (2014) Molecular analysis of potatoes from the pacific Northwest Tri-State cultivar development program and selection of markers for practical DNA fingerprinting applications. Am J Cardiol 91:195–203

    CAS  Google Scholar 

  • Kaur N, Alok A, Kaur SN et al (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct Integr Genom 18:89–99

    Article  CAS  Google Scholar 

  • Keller B, Manzanares C, Jara C et al (2015) Fine-mapping of a major QTL controlling angular leaf spot resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet 128:813–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Park M, Yeom SI et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46(3):270–278

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Alptekin B, Budak H (2018) CRISPR/Cas9 genome editing in wheat. Funct Integr Genom 18:31–41

    Article  CAS  Google Scholar 

  • Klap C, Yeshayahou E, Bolger AM et al (2017) Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotecnol J 15:634–647

    Article  CAS  Google Scholar 

  • Klein A, Houtin H, Rond C et al (2014) QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance. Theor Appl Genet 127(6):1319–1330

    Article  PubMed  Google Scholar 

  • Klimek-Chodacka M, Oleszkiewicz T, Lowder LG et al (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolliker R, Jones ES, Jahufer MZZ et al (2001) Bulked AFLP analysis for the assessment of genetic diversity in white clover (Trifolium repens L.). Euphytica 121:305–315

    Article  CAS  Google Scholar 

  • Korir NK, Han J, Shangguan L et al (2012) Plant variety and cultivar identification: advances and prospects. Crit Rev Biotechnol 33(2):111–125

    Article  PubMed  Google Scholar 

  • Kraakman ATW, Martinez F, Mussiraliev B et al (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed 17:41–58

    Article  CAS  Google Scholar 

  • Krishnan NM, Pattnaik S, Jain P et al (2012) A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC Genomics 13(1):464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulwal P, Kumar N, Gaur A et al (2005) Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theor Appl Genet 111:1052–1059

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134

    Article  CAS  PubMed  Google Scholar 

  • Kumawat S, Rana N, Bansal R et al (2019) Expanding avenue of fast neutron mediated mutagenesis for crop improvement. Plants 8(6):164

    Article  CAS  PubMed Central  Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ et al (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168

    Article  CAS  PubMed  Google Scholar 

  • Kunert A, Naz AA, Dedeck O et al (2007) AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (Triticum turgidum ssp. dicoccoides × T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appl Genet 115:683–695

    Article  CAS  PubMed  Google Scholar 

  • Kunihisa M, Fukino N, Matsumoto S (2005) CAPS markers improved by cluster-specific amplification for identification of octoploid strawberry (Fragaria × ananassa Duch.) cultivars, and their disomic inheritance. Theor Appl Genet 110:1410–1418

    Article  CAS  PubMed  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li JZ, Huang XQ, Heinrichs F et al (2006) Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genomics 49:454–466

    CAS  Google Scholar 

  • Li YY, Shen JX, Wang TH et al (2007) Construction of a linkage map using SRAP, SSR and AFLP markers in Brassica napus L. Sci Agric Sin 40:1118–1126

    CAS  Google Scholar 

  • Li Q, Liu QC, Zhai H et al (2008a) Genetic diversity in main parents of sweet potato in China as revealed by ISSR markers. Acta Agron Sin 34(6):972–977

    CAS  Google Scholar 

  • Li YL, Dong Y, Niu S et al (2008b) Identification of agronomically favourable quantitative trait loci alleles from a dent corn inbred Dan232 using advanced backcross QTL analysis and comparison with the F2:3 populations in popcorn. Mol Breed 21:1–14

    Article  CAS  Google Scholar 

  • Li X, Wang Z, Gao S et al (2008c) Analysis of QTL for resistance to head smut (Sporisorium reiliana) in maize. Field Crop Res 106:148–155

    Article  Google Scholar 

  • Li X, Wei Y, Moore K et al (2011) Association mapping of biomass yield and stem composition in a tetraploid alfalfa breeding population. Plant Genom 4(1):24–35

    Article  Google Scholar 

  • Li YH, Zhou GY, Ma JX et al (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lin F, Wang W et al (2016) Fine mapping and candidate gene analysis of two loci conferring resistance to Phytophthora sojae in soybean. Theor Appl Genet 129:2379–2386

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sun Y, Du J et al (2017a) Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant 10:526–529

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang H, Si X et al (2017b) Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J Genet Genom 44:465–468

    Article  Google Scholar 

  • Li C, Hao M, Wang W et al (2018) An efficient CRISPR/cas9 platform for rapidly generating simultaneous mutagenesis of multiple gene homoeologs in allotetraploid oilseed rape. Front Plant Sci 9:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang F, Deng Q, Wang Y et al (2004) Molecular marker assisted selection for yield-enhancing genes in the progeny of “9311× O. rufipogon” using SSR. Euphytica 139(2):159–165

    Article  CAS  Google Scholar 

  • Liller CB, Walla A, Boer MP et al (2017) Fine mapping of a major QTL for awn length in barley using a multiparent mapping population. Theor Appl Genet 130:269–281

    Article  PubMed  Google Scholar 

  • Lin ZX, Zhang XL, Nie YC et al (2003) Construction of a genetic linkage map for cotton based on SRAP. Chin Sci Bull 48:2063–2067

    Article  CAS  Google Scholar 

  • Lin K, Zhang N, Severing EI et al (2014) Beyond genomic variation-comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics 15:250

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipper L, Anderson CL, Dalton TJ, Keleman A (2010) Conclusions and policy implications. In: Lipper L, Anderson CL, Dalton TJ (eds) Seed trade in rural markets: implications for crop diversity and agricultural development. United National Food and Agricultural Organization (FAO), Rome, Italy, pp 209–222

    Google Scholar 

  • Liu LW, Zhao LP, Gong YQ et al (2008a) DNA fingerprinting and genetic diversity analysis of late-bolting radish cultivars with RAPD, ISSR and SRAP markers. Sci Hortic 116:240–247

    Article  CAS  Google Scholar 

  • Liu L, Mu P, Li X et al (2008b) Localization of QTL for basal root thickness in japonica rice and effect of marker-assisted selection for a major QTL. Euphytica 164:729–737

    Article  Google Scholar 

  • Liu S, Liu Y, Yang X et al (2014a) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    Article  CAS  PubMed  Google Scholar 

  • Liu MJ, Zhao J, Cai QL et al (2014b) The complex jujube genome provides insights into fruit tree biology. Nat Commun 5:5315

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Gong J, Xiao X et al (2018) GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high density SNP markers. Front Plant Sci 9:1067

    Article  PubMed  PubMed Central  Google Scholar 

  • Lou J, Chen L, Yue G et al (2009) QTL mapping of grain quality traits in rice. J Cereal Sci 50:145–151

    Article  CAS  Google Scholar 

  • Lu J, Knox MR, Ambrose MJ et al (1996) Comparative analysis of genetic diversity in pea assessed by RFLP- and PCR-based methods. Theor Appl Genet 93:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Lu XJ, Liu LW, Gong YQ et al (2009) Cultivar identification and genetic diversity analysis of broccoli and its related species with RAPD and ISSR markers. Sci Hortic 122:645–648

    Article  CAS  Google Scholar 

  • Lu Y, Zhang S, Shah T et al (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. PNAS 107(45):19585–19590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Sangha JS, Wang S et al (2012) Marker-assisted breeding of Xa4, Xa21 and Xa27 in the restorer lines of hybrid rice for broad-spectrum and enhanced disease resistance to bacterial blight. Mol Breed 30(4):1601–1610

    Article  CAS  Google Scholar 

  • Lv C, Song Y, Gao L et al (2014) Integration of QTL detection and marker assisted selection for improving resistance to Fusarium head blight and important agronomic traits in wheat. Crop J 2(1):70–78

    Article  Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  CAS  PubMed  Google Scholar 

  • Malik S, Rahman M, Malik TA (2015) Genetic mapping of potential QTLs associated with drought tolerance in wheat. J Anim Plant Sci 25(4):1032–1040

    CAS  Google Scholar 

  • Malosetti M, van der Linden CG, Vosman B et al (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175:879–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannur DM, Babbar A, Thudi M et al (2019) Super Annigeri 1 and improved JG 74: two Fusarium wilt resistant introgression lines developed using marker-assisted backcrossing approach in chickpea (Cicer arietinum L.). Mol Breed 39:2

    Article  CAS  PubMed  Google Scholar 

  • Martin JP, Sanchez-Yelamo MD (2000) Genetic relationships among species of the genus Diplotaxis (Brassicaceae) using inter-simple sequence repeat markers. Theor Appl Genet 101:1234–1241

    Article  CAS  Google Scholar 

  • Martineau B (2001) First fruit. The creation of the flavr tomato and the birth of biotech foods. MC Graw-Hill Press, p 269

    Google Scholar 

  • Massman JM, Jung HJG, Bernardo R (2013) Genome-wide selection vs. marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53:58–66

    Article  CAS  Google Scholar 

  • Maulana F, Ayalew H, Anderson JD et al (2018) Genome-wide association mapping of seedling heat tolerance in winter wheat. Front Plant Sci 9:1772

    Article  Google Scholar 

  • McGregor CE, Lambert CA, Greyling MM et al (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L) germplasm. Euphytica 113:135–144

    Article  CAS  Google Scholar 

  • McGregor CE, van Treuren R, Hoekstra R et al (2002) Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor Appl Genet 104:146–156

    Article  CAS  PubMed  Google Scholar 

  • Meilleur BA, Hodgkin T (2004) In situ conservation of crop wild relatives: status and trends. Biodivers Conserv 13:663–684

    Article  Google Scholar 

  • Meng Y, Hou Y, Wang H et al (2017) Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Rep 36:371–374

    Article  CAS  PubMed  Google Scholar 

  • Merchuk-Ovnat L, Barak V, Fahima T et al (2016) Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front Plant Sci 8:703

    Article  Google Scholar 

  • Mi X, Swenson NG, Valencia R et al (2012) The contribution of rare species to community phylogenetic diversity across a global network of forest plots. Am Nat 180:E17–E30

    Article  PubMed  Google Scholar 

  • Ming R, Hou S, Feng Y et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452(7190):991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montenegro JD, Golicz AA, Bayer PE et al (2017) The pangenome of hexaploid bread wheat. Plant J 90:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Vogel J (1994) Compound microsatellite primers for the detection of genetic polymorphisms. U.S. Patent Application No. 08/326456

    Google Scholar 

  • Morris GP, Ramu P, Deshpande SP et al (2012) Population genomic and genomewide association studies of agroclimatic traits in sorghum. PNAS 110:453–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukeshimana G, Butare L, Cregan PB et al (2014) Quantitative trait loci associated with drought tolerance in common bean. Crop Sci 54(3):923–938

    Article  Google Scholar 

  • Mulualem T, Bekero Z (2016) Advances in quantitative trait loci, mapping and importance of marker assisted selection in plant breeding research. Int J Plant Breed Genet 10(2):58–68

    Article  CAS  Google Scholar 

  • Munos S, Ronc N, Botton E et al (2011) Increase in tomato locule number is controlled by two single-nucleotide nucleotide polymorphisms located near Wuschel. Plant Physiol 156:2244–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murtaza N (2006) Cotton genetic diversity study by AFLP markers. Electron J Biotechnol 9(4). https://doi.org/10.2225/vol9-issue4-fulltext-9

  • Myburg A, Grattapaglia D, Tuskan G et al (2011) The Eucalyptus grandis Genome Project: genome and transcriptome resources for comparative analysis of woody plant biology. IUFRO Tree Biotechnology Conference 2011: From Genomes to Integration and Delivery. Arraial d’Ajuda, Bahia, Brazil, 26 June - 2 July 2011. BMC Proc 5(7):120

    Google Scholar 

  • NAAS (1998) Conservation, management and use of agrobiodiversity. Policy paper 4. National Academy of Agricultural Sciences, New Delhi, p 7

    Google Scholar 

  • Nair SK, Prasanna BM, Garg A et al (2005) Identification and validation of QTLs conferring resistance to sorghum downy mildew (Peronosclerospora sorghi) and Rajasthan downy mildew (P. heteropogoni) in maize. Theor Appl Genet 110:1384–1392

    Article  CAS  PubMed  Google Scholar 

  • Nair SK, Babu R, Magorokosho C et al (2015) Fine mapping of Msv1, a major QTL for resistance to Maize Streak Virus leads to development of production markers for breeding pipelines. Theor Appl Genet 128:1839–1854

    Article  CAS  PubMed  Google Scholar 

  • Nakajima I, Ban Y, Azuma A et al (2017) CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One 12:e0177966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nalluri N, Karri VR (2020) Recent advances in genetic manipulation of crops: promising approach to address the global food and industrial applications. Plant Sci Today 7(1):70–92

    Article  CAS  Google Scholar 

  • Nandi S, Subudhi P, Senadhira D et al (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255:1–8

    Article  CAS  PubMed  Google Scholar 

  • Naz AA, Kunert A, Lind V et al (2008) AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population. Theor Appl Genet 116:1095–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negi MS, Sabharwal V, Wilson N et al (2006) Comparative analysis of the efficiency of SAMPL and AFLP in assessing genetic relationships among Withania somnifera genotypes. Curr Sci 91:464–471

    CAS  Google Scholar 

  • Negri V (2005) Agro-biodiversity conservation in Europe: ethical issues. J Agric Environ Ethics 18:3–25

    Article  Google Scholar 

  • Nie G, Huang T, Ma X et al (2019) Genetic variability evaluation and cultivar identification of tetraploid annual ryegrass using SSR markers. Peer J 7(4):e7742

    Article  PubMed  PubMed Central  Google Scholar 

  • Novakova A, Simackova K, Barta J (2009) Potato variety identification by molecular markers based on retrotransposon analyses. Czech J Genet Plant Breed 45:1–10

    Article  CAS  Google Scholar 

  • Nwakanma DC, Pillay M, Okoli BE et al (2003) Sectional relationships in the genus Musa L. inferred from the PCR-RFLP of organelle DNA sequences. Theor Appl Genet 107:850–856

    Article  CAS  PubMed  Google Scholar 

  • Odipio J, Alicai T, Ingelbrecht I et al (2017) Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci 8:1780

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira E, Vilela de Resende MD, Santos V et al (2012) Genome-wide selection in Cassava. Euphytica 187:263–276

    Article  CAS  Google Scholar 

  • Onogi A, Ideta O, Inoshita Y et al (2015) Exploring the areas of applicability of whole-genome prediction methods for Asian rice (Oryza sativa L.). Theor Appl Genet 128:41–53

    Article  PubMed  Google Scholar 

  • Oraguzie NC, Rikkerink EHA, Gardiner SE et al (2007) Association mapping in plants. Springer, Tokyo; New York, NY., p 277

    Book  Google Scholar 

  • Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56(3):389–400

    Article  CAS  PubMed  Google Scholar 

  • Osei MK, Prempeh R, Adjebeng-Danquah J et al (2018) Marker-assisted selection (MAS): a fast-track tool in tomato breeding. In: Recent advances in tomato breeding and production. Intech Open

    Google Scholar 

  • Osman SA, Ramadan WA (2019) DNA barcoding of different Triticum species. Bull Nat Res Centre 43:1–13

    Article  Google Scholar 

  • Paliwal R, Roder MS, Kumar U et al (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125:561–575

    Article  PubMed  Google Scholar 

  • Pan C, Ye L, Qin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papa R (2005) Gene flow and introgression between domesticated crops and their wild relatives. In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome

    Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    Article  CAS  PubMed  Google Scholar 

  • Park KJ, Sa KJ, Kim BW et al (2014) Genetic mapping and QTL analysis for yield and agronomic traits with an F2: 3 population derived from a waxy corn× sweet corn cross. Genes Genom 36:179–189

    Article  Google Scholar 

  • Pasam RK, Sharma R, Malosetti M et al (2012) Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551–556

    Article  CAS  PubMed  Google Scholar 

  • Patishtan J, Hartley TN, Fonseca de Carvalho R et al (2018) Genome-wide association studies to identify rice salt-tolerance markers. Plant Cell Environ 41:970–982

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Lu Y, Li L et al (2013) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45(4):456–461

    Article  CAS  PubMed  Google Scholar 

  • Pierre CS, Burgueno J, Crossa J et al (2016) Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones. Sci Rep 6:1–11

    CAS  Google Scholar 

  • Pilliai SV, Sunderasan S, Sheela MN (2002) Biotechnology in cassava germplasm conservation and breeding in India. In: Proceedings of the 7th Regional Cassava Workshop: Cassava Research and Development in Asia: Exploring New Opportunities for an Ancient Crop. October 28 to November 1, Bangkok, Thailand, pp 140–149

    Google Scholar 

  • Poland J, Endelman J, Dawson J et al (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genom 5:103–113

    CAS  Google Scholar 

  • Polashock J, Zelzion E, Fajardo D et al (2014) The American cranberry: first insights into the whole genome of a species adapted to bog habitat. BMC Plant Biol 14(1):165–181

    Article  PubMed  PubMed Central  Google Scholar 

  • Poulton C, Dorward A, Kydd J (2010) The future of small farms: new directions for services, institutions, and intermediation. World Dev 38(10):1413–1428

    Article  Google Scholar 

  • Powell W, Morgante M, Andre C et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Pradeep RM, Sarla N, Siddiq EA (2002) Inter simple sequence repeat ISSR polymorphism and its application in plant breeding. Euphytica 128:9–17

    Article  Google Scholar 

  • Presterl T, Ouzunova M, Schmidt W et al (2007) Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet 114:1059–1070

    Article  PubMed  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Pushpavalli R, Krishnamurthy L, Thudi M et al (2015) Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2× JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol 15(1):124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qian W, Ge S, Hong DY (2001) Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor Appl Genet 102:440–449

    Article  CAS  Google Scholar 

  • Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  PubMed  CAS  Google Scholar 

  • Qualset CO, Damania AB, Zanatta ACA et al (1997) Locally based crop plant conservation. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman and Hall, London, pp 160–175

    Google Scholar 

  • Ranjan R, Yadav R (2019) Targeting nitrogen use efficiency for sustained production of cereal crops. J Plant Nutr 42(9):1086–1113

    Article  CAS  Google Scholar 

  • Ravel C, Praud S, Murigneux A et al (2006) Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genomics 49:1131–1139

    CAS  Google Scholar 

  • Rawal R, Kumar V, Rani A et al (2020) Genetic elimination of off-flavour generating lipoxygenase-2 gene of soybean through marker assisted backcrossing and its effect on seed longevity. Plant Breed Biotechnol 8(2):163–173

    Article  Google Scholar 

  • Ren B, Yan F, Kuang Y et al (2018) Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol Plant 11:623–626

    Article  CAS  PubMed  Google Scholar 

  • Resende RT, de Resende MDV, Azevedo CF et al (2018) Genome-wide association and regional heritability mapping of plant architecture, lodging and productivity in Phaseolus vulgaris. G3 8:2841–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riesner DG, Steger U, Wiese M et al (1992) Temperature-gradient electrophoresis for the detection of polymorphic DNA and for quantitative polymerase chain reaction. Electrophoresis 13:632–636

    Article  CAS  PubMed  Google Scholar 

  • Roder MS, Wendehake K, Korzun V et al (2002) Construction and analysis of a microsatellite-based database of European wheat varieties. Theor Appl Genet 106:67–73

    Article  CAS  PubMed  Google Scholar 

  • Roder MS, Huang XQ et al (2008) Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genom 8:79–86

    Article  CAS  Google Scholar 

  • Rommens CM, Yan H, Swords K et al (2008) Low acrylamide French fries and potato chips. Plant Biotechnol J 6:843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron M, Kajala K, Pauluzzi G et al (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. PNAS 103(49):18656–18661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousset M, Bonnin I, Remoue C et al (2011) Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). Theor Appl Genet 123(6):907–926

    Article  PubMed  Google Scholar 

  • Rutkoski JE, Poland JA, Singh RP et al (2014) Genomic selection for quantitative adult plant stem rust resistance in wheat. Plant Genom 7:1–10

    Article  Google Scholar 

  • Saade S, Maurer A, Shahid M et al (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:32586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saghai-Maroof MA, Biyashev RM, Yang GP et al (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations and population dynamics. PNAS 91:5466–5470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saıdou AA, Mariac C, Luong V et al (2009) Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet. Genetics 182:899–910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saini P, Saini P, Kaur JJ et al (2020) Molecular approaches for harvesting natural diversity for crop improvement. In: Salgotra R, Zargar S (eds) Rediscovery of genetic and genomic resources for future food security. Springer, Singapore

    Google Scholar 

  • Salimath SS, de Oliveira AC, Godwin ID et al (1995) Assessment of genome origins and genetic diversity in the genus Eleusine with DNA markers. Genomics 38:757–763

    CAS  Google Scholar 

  • Salvi S, Sponza G, Morgante M et al (2007) Conserved noncoding genomic sequences associated with a flowering time quantitative trait locus in maize. PNAS 104:11376–11381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez de la Hoz MP, Davila JA, Loarce Y et al (1996) Simple sequence repeat primers used in polymerase chain reaction amplifications to study genetic diversity in barley. Genomics 39:112–117

    CAS  Google Scholar 

  • Santra D, Chen X, Santra M et al (2008) Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar Stephens. Theor Appl Genet 117:793–802

    Article  CAS  PubMed  Google Scholar 

  • Schatz MC, Maron LG, Stein JC et al (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol 15:506

    PubMed  PubMed Central  Google Scholar 

  • Schmalenbach I, March TJ, Bringezu T et al (2011) High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the Illumina Golden-Gate assay. G3 1:187–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidhuber J, Tubiello F (2007) Global food security under climate change. PNAS 104(50):19703–19708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmierer DA, Kandemir N, Kudrna DA et al (2004) Molecular marker-assisted selection for enhanced yield in malting barley. Mol Breed 14(4):463–473

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46(7):707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Shabanimofrad M, Yusop MR, Ashkani S et al (2015) Marker-assisted selection for rice brown plant hopper (Nilaparvata lugens) resistance using linked SSR markers. Turkish J Biol 39(5):666–673

    Article  CAS  Google Scholar 

  • Shapcott A, Forster PI, Guymer GP et al (2015) Mapping biodiversity and setting conservation priorities for SE Queensland’s rainforests using DNA barcoding. PLoS One 10:e0122164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443

    Article  CAS  PubMed  Google Scholar 

  • Shukla KV, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43(2):109–116

    Article  CAS  PubMed  Google Scholar 

  • Sierro N, Battey JN, Ouadi S et al (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833

    Article  CAS  PubMed  Google Scholar 

  • Singh BD, Singh AK (2015) Marker-assisted plant breeding: principles and practices. Springer, New Delhi

    Book  Google Scholar 

  • Singh R, Ong-Abdullah M, Low ET et al (2013) Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature 500(7462):335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Datta P, Kakade M et al (2017) Evaluation of potential DNA barcoding loci from plastid genome: intraspecies discrimination in rice (Oryza species). Int J Curr Micro Appl Sci 6(5):2746–2756

    Article  CAS  Google Scholar 

  • Sivaraj N, Sunil N, Kumar R et al (2018) Agrobiodiversity status in India: status and concern. In: Kumar B, Singh R (eds) Sustainable agriculture for food security concepts and approaches. Biotech Book, New Dehli, pp 121–137. ISBN: 978-81-7622-411-6

    Google Scholar 

  • Skot L, Humphreys J, Humphreys MO et al (2007) Association of candidate genes with l owering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 177:535–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spindel J, Wright M, Chen C et al (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 126:2699–2716

    Article  CAS  PubMed  Google Scholar 

  • Spindel J, Begum H, Akdemir D et al (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11:e1004982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spindel JE, Begum H, Akdemir D et al (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116:395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spindel JE, Dahlberg J, Colgan M et al (2018) Association mapping by aerial drone reveals 213 genetic associations for Sorghum bicolor biomass traits under drought. BMC Genomics 19:679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spooner DM, Nunez J, Trujillo G et al (2007) Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. PNAS 104:19398–19403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens R, Buret M, Duffe P et al (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stich B, Melchinger AE, Piepho HP et al (2006) A new test for family-based association mapping with inbred lines from plant breeding programs. Theor Appl Genet 113:1121–1130

    Article  PubMed  Google Scholar 

  • Stich B, Piepho H, Schulz B et al (2008) Multi-trait association mapping in sugar beet (Beta vulgaris L.). Theor Appl Genet 117(6):947–954

    Article  PubMed  Google Scholar 

  • Stracke S, Haseneyer G, Veyrieras JB et al (2009) Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theor Appl Genet 118:259–273

    Article  CAS  PubMed  Google Scholar 

  • Su J, Li L, Zhang C et al (2018) Genome-wide association study identified genetic variations and candidate genes for plant architecture component traits in Chinese upland cotton. Theor Appl Genet 131:1299–1314

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran S, Yu J (2014) Association mapping of genetic resources: achievements and future perspectives. In: Genomics of plant genetic resources. Springer, Dordrecht, pp 207–235

    Chapter  Google Scholar 

  • Sun L, Rodriguez GR, Clevenger JP et al (2015) Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape. J Exp Bot 66:6471–6482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Jiao G, Liu Z et al (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Li H, Zhang Y et al (2018) Identification of SNPs and candidate genes associated with salt tolerance at the seedling stage in cotton (Gossypium hirsutum L). Front Plant Sci 9:1011

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutton T, Baumann U, Hayes J et al (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Sun M, Xing Y et al (2001) Mapping quantitative trait loci for milling quality, protein content and colour characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet 103:1037–1045

    Article  CAS  Google Scholar 

  • Tanaka M, Takahata Y, Nakayama H et al (2010) Development of cleaved amplified polymorphic sequence (CAPS)-based markers for identification of sweet potato cultivars. Sci Hortic 123:436–442

    Article  CAS  Google Scholar 

  • Tang F, Yang S, Liu J et al (2016) Rj4, a gene controlling nodulation specificity in soybeans, encodes a thaumatin-like protein but not the one previously reported. Plant Physiol 170:26–32

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Sretenovic S, Ren Q et al (2020) Plant prime editors enable precise gene editing in rice cells. Mol Plant 13(5):667–670

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Mace ES, Tai S et al (2017) Whole-genome analysis of candidate genes associated with seed size and weight in Sorghum bicolor reveals signatures of artificial selection and insights into parallel domestication in cereal crops. Front Plant Sci 8:1237

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Zhao X, Mace E et al (2019) Exploring and exploiting pan-genomics for crop improvement. Mol Plant 12:156–169

    Article  CAS  PubMed  Google Scholar 

  • Tar’An B, Michaels TE, Pauls KP (2001) Mapping genetic factors affecting the reaction to Xanthomonas axonopodis pv. phaseoli in Phaseolus vulgaris L. under field conditions. Genomics 44(6):1046–1056

    Google Scholar 

  • Taramino G, Sauer M, Stauffer JL et al (2007) The maize (Zea mays L) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J 50:649–659

    Article  CAS  PubMed  Google Scholar 

  • Taylor MS, Tornqvist CE, Zhao X et al (2018) Genome-wide association study in pseudo-F2 populations of switch grass identifies genetic loci affecting heading and anthesis dates. Front Plant Sci 9:1250

    Article  PubMed  PubMed Central  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. PNAS 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thalapati S, Batchu AK, Neelamraju S et al (2012) Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice. Funct Integr Genom 12:277–289

    Article  CAS  Google Scholar 

  • The 3000 Rice Genomes Project (2014) The 3000 rice genome project. Giga Sci 3:7

    CAS  Google Scholar 

  • The Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039

    Article  CAS  Google Scholar 

  • The French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  Google Scholar 

  • The International Peach Genome Initiative (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–494

    Article  CAS  Google Scholar 

  • The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475(7355):189–195

    Article  CAS  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641

    Article  CAS  Google Scholar 

  • Tian HL, Xue JH, Wen J et al (2008) Genetic diversity and relationships of lotus (Nelumbo) cultivars based on allozyme and ISSR markers. Sci Hortic 116:421–429

    Article  CAS  Google Scholar 

  • Tian Y, Zhang H, Xu P et al (2015) Genetic mapping of a QTL controlling leaf width and grain number in rice. Euphytica 202:1–11

    Article  Google Scholar 

  • Tian S, Jiang L, Gao Q et al (2017) Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep 36:399–406

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Guo X, Zhang Z et al (2019) Improving blast resistance of the rice restorer line, Hui 316, by introducing Pi9 or Pi2 with marker-assisted selection. Biotechnol Biotechnol Equip 33(1):1195–1203

    Article  CAS  Google Scholar 

  • Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. PNAS 96:5995–6000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tracy WF, Whitt SR, Buckler ES (2006) Recurrent mutation and genome evolution: example of Sugary1 and the origin of sweet maize. Crop Sci 46:S49–S54

    Article  Google Scholar 

  • Trick M, Adamski NM, Mugford SG et al (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol 12:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai CC, Chen YKH, Chen CH et al (2013) Cultivar identification and genetic relationship of mango (Mangifera indica) in Taiwan using 37 SSR markers. Sci Hortic 164:196–201

    Article  CAS  Google Scholar 

  • Tseng YT, Lo HF, Hwang SY (2002) Genotyping and assessment of genetic relationships in elite polycross breeding cultivars of sweet potato in Taiwan based on SAMPL polymorphisms. Bot Bull Acad Sin 43:99–105

    CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604

    Article  CAS  PubMed  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S et al (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Van Bakel H, Stout JM, Cote AG et al (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:102

    Article  CAS  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2011) Draft genome sequence of pigeon pea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30(1):83–90

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31(3):240–248

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN et al (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    Article  CAS  PubMed  Google Scholar 

  • Veillet F, Perrot L, Chauvin L et al (2019) Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int J Mol Sci 20(2):402

    Article  PubMed Central  CAS  Google Scholar 

  • Verma KVVK, Behera TK, Munshi AD et al (2007) Genetic diversity of ash gourd [Benincasa hispida (Thunb.) Cogn.] inbred lines based on RAPD and ISSR markers and their hybrid performance. Sci Hortic 113:231–237

    Article  CAS  Google Scholar 

  • de Vicente MC, Guzman FA, Engels J et al (2005) Genetic characterization and its use in decision-making for the conservation of crop germplasm. In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome

    Google Scholar 

  • Vijayalakshmi K, Fritz AK, Paulsen GM et al (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol Breed 26:163–175

    Article  CAS  Google Scholar 

  • Virk PS, Ford-Lloyd BV, Jackson MT et al (1996) Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76:296–304

    Article  Google Scholar 

  • Vitte C, Ishii T, Lamy F et al (2004) Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Mol Genet Genomics 272:504–511

    Article  CAS  PubMed  Google Scholar 

  • Vlk D, Repkova J (2017) Application of next-generation sequencing in plant breeding. Czech J Genet Plant Breed 53:89–96

    Article  CAS  Google Scholar 

  • Von Zitzewitz J, Cuesta-Marcos A, Condon F et al (2011) The genetics of winterhardiness in barley: perspectives from genome-wide association mapping. Plant Genom 4(1):76–91

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada N, Ueta R, Osakabe Y et al (2020) Precision genome editing in plants: state of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol 20:234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wambugu PW, Brozynska M, Furtado A et al (2015) Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci Rep 5:13957

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Mahalingan R, Knap HT (1998) CA and GA anchored simple sequence repeats (ASSRs) generated polymorphism in soybean, Glycine max (L.) Merr. Theor Appl Genet 96:1086–1096

    Article  CAS  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li B et al (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, McClean P, Lee R et al (2008) Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor Appl Genet 116(6):777–787

    Article  CAS  PubMed  Google Scholar 

  • Wang JP, Dobrowolski MP, Cogan NOI et al (2009) Assignment of individual genotype to specific forage cultivars of perennial ryegrass based on SSR markers. Crop Sci 49:49–58

    Article  CAS  Google Scholar 

  • Wang M, Sukumaran S, Barkley N et al (2011) Population structure and marker-trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet 123(8):1307–1317

    Article  PubMed  Google Scholar 

  • Wang AY, Li Y, Zhang CQ (2012) QTL mapping for stay-green in maize (Zea mays). Can J Plant Sci 92:249–256

    Article  Google Scholar 

  • Wang L, Chen L, Li R et al (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65:8674–8682

    Article  CAS  PubMed  Google Scholar 

  • Wang WS, Mauleon R, Hu ZQ et al (2018a) Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature 557:43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Pan Q, He F et al (2018b) Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. CRISPR J 1(1):65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang J, Zhao X et al (2020) Overexpression of the transcription factor gene Osstap1 increases salt tolerance in rice. Rice 13(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Oda-Yamamizo C, Sage-Ono K et al (2018) Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Res 27:25–38

    Article  CAS  PubMed  Google Scholar 

  • Weber AL, Briggs WH, Rucker J (2008) The genetic architecture of complex traits in teosinte (Zea mays ssp. parviglumis): new evidence from association mapping. Genetics 180:1221–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks JT, Ye J, Rommens CM (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res 17:587–597

    Article  CAS  PubMed  Google Scholar 

  • Wei XM, Jackson PA, McIntyre CL et al (2006) Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor Appl Genet 114:155–164

    Article  CAS  PubMed  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whankaew S, Sraphet S, Thaikert R (2011) M-AFLP based development of microsatellite markers for the characterization of cassava (Manihot esculenta Crantz). Genet Mol Res 11(2):1319–1326

    Article  CAS  Google Scholar 

  • White MB, Carvalho M, Derse D et al (1992) Detecting single base substitutions as notes heteroduplex polymorphisms. Genomics 12:301–306

    Article  CAS  PubMed  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams MNV, Pande N, Nair M et al (1991) Restriction fragment length polymorphism analysis of polymerase chain reaction products amplified from mapped loci of rice (Oryza sativa L.) genomic DNA. Theor Appl Genet 82:489–498

    Article  CAS  PubMed  Google Scholar 

  • Wilson EO (1992) The diversity of life. Penguin, London

    Google Scholar 

  • Wilson LM, Whitt SR, Rocheford TR et al (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witcombe JR, Joshi A, Joshi KD et al (1996) Farmer participatory crop improvement. I: varietal selection and breeding methods and their impact on biodiversity. Exp Agric 32:445–460

    Article  Google Scholar 

  • Witsenboer H, Michelmore RW, Vogel J (1997) Identification, genetic localization, and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genomics 40:923–936

    CAS  Google Scholar 

  • Wolff K, Zietkiewicz E, Hofstra H (1995) Identification of Chrysanthemum cultivars and stability of DNA fingerprint patterns. Theor Appl Genet 91:439–447

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z et al (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GA, Prochnik S, Jenkins J (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32(7):656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhang M, Zhang X et al (2017) Development of InDel markers for the restorer gene Rf1 and assessment of their utility for marker-assisted selection in cotton. Euphytica 213(11):251

    Article  CAS  Google Scholar 

  • Wurschum T, Maurer H, Kraft T et al (2011) Genome-wide association mapping of agronomic traits in sugar beet. Theor Appl Genet 123(7):1121–1131

    Article  PubMed  Google Scholar 

  • Xie RJ, Zhou J, Wang GY et al (2011) Cultivar identification and genetic diversity of Chinese bayberry (Myrica rubra) accessions based on fluorescent SSR markers. Plant Mol Biol Rep 29:554–562

    Article  Google Scholar 

  • Xie JZ, Wang LL, Wang Y et al (2017) Fine mapping of powdery mildew resistance gene PmTm4 in wheat using comparative genomics. J Integr Agric 16:540–550

    Article  CAS  Google Scholar 

  • Xiong FQ, Tang RH, Chen ZL et al (2009) SCoT: a novel gene targeted marker technique based on the translation start codon. Mol Plant Breed 7:635–638

    CAS  Google Scholar 

  • Xu Q, Chen LL, Ruan X et al (2013a) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zeng L, Tao Y et al (2013b) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. PNAS 110:13469–13474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhang XQ, Harasymow S et al (2018) Molecular marker-assisted backcrossing breeding: an example to transfer a thermostable β-amylase gene from wild barley. Mol Breed 38(5):63

    Article  CAS  Google Scholar 

  • Xu Z, Hua J, Wang F et al (2020) Marker-assisted selection of qMrdd8 to improve maize resistance to rough dwarf disease. Breed Sci 70:183–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadawad A, Gadpale A, Hanchinal RR (2017) Pyramiding of leaf rust resistance genes in bread wheat variety DWR 162 through marker assisted backcrossing. Ind J Genet Plant Breed 77:251–257

    Article  CAS  Google Scholar 

  • Yan J, Cirincione A, Adamson B (2020) Prime editing: precision genome editing by reverse transcription. Mol Cell 77(2):210–212

    Article  CAS  PubMed  Google Scholar 

  • Yang W, de Oliveira AC, Godwin I et al (1996) Comparison of DNA marker technologies in characterizing plant genome diversity: variability in Chinese sorghums. Crop Sci 36:1669–1676

    Article  Google Scholar 

  • Yang H, Sweetingham MW, Cowling WA et al (2001) DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms, and isolation of sequence-specific PCR markers in lupin (Lupinus angustifolius L.). Mol Breed 7:203–209

    Article  Google Scholar 

  • Yang X, Caro M, Hutton SF et al (2014) Fine mapping of the tomato yellow leaf curl virus resistance gene on chromosome 11 of tomato. Mol Breed 34:749–760

    PubMed  PubMed Central  Google Scholar 

  • Yang X, Xia X, Zeng Y et al (2018) Identification of candidate genes for gelatinization temperature, gel consistency and pericarp color by GWAS in rice based on SLAF-sequencing. PLoS One 13:e0196690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao H, Song J, Liu C et al (2010) Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One 5:e13102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79–92

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Lorenz A, Rutkoski J et al (2011) Association mapping and gene-gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theor Appl Genet 123(8):1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Qiu Z, Xu Q et al (2017) Fine mapping of low tiller 1, a gene controlling tillering and panicle branching in rice. Plant Growth Regul 83:93–104

    Article  CAS  Google Scholar 

  • Zaefizadeh M, Goliev R (2009) Diversity and relationships among durum wheat landraces (subconvars) by SRAP and phenotypic marker polymorphism. Res J Biol Sci 4:960–966

    Google Scholar 

  • Zhang X, Yuan Y (2019) Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Front Plant Sci 9:1919

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YX, Sun J, Zhang XR et al (2011) Analysis on genetic diversity and genetic basis of the main sesame cultivars released in China. Agric Sci China 10:509–518

    Article  CAS  Google Scholar 

  • Zhang Q, Chen W, Sun L et al (2012) The genome of Prunus mume. Nat Commun 3:1318

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Ku L, Han Z et al (2014) The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). J Exp Bot 65:5063–5076

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, LeBlanc C, Irish VF et al (2017) Rapid and efficient CRISPR/Cas9 gene editing in citrus using the YAO promoter. Plant Cell Rep 36:1883–1887

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hua L, Gupta A et al (2019) Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol J 17:1623–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Sun Y, Liu J et al (2021) DNA barcoding of Oryza: conventional, specific, and super barcodes. Plant Mol Biol 105:215–228

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Paulo M, Jamar D et al (2007) Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa. Genomics 50(10):963–973

    CAS  Google Scholar 

  • Zhao Q, Feng Q, Lu HY et al (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50:278–284

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Peng Z, Long J et al (2015) Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82:632–643

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Tan H, Li Q et al (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis of RAS in Salvia miltiorrhiza. Phytochemistry 148:63–70

    Article  PubMed  CAS  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D et al (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

  • Zong Y, Wang Y, Li C et al (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Jiang C, Cao Z et al (2010) Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping. Genomics 53(11):908–916

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Dhakad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhakad, A.K., Mohanapuria, P., Ranjan, R., Vaishnav, V., Yadav, S.K. (2022). Molecular Approaches in Conservation and Restoration of Agrobiodiversity. In: Kumar, P., Tomar, R.S., Bhat, J.A., Dobriyal, M., Rani, M. (eds) Agro-biodiversity and Agri-ecosystem Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-0928-3_10

Download citation

Publish with us

Policies and ethics