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Abstract: Medicinal plants contain numerous bioactive molecules that synergistically provide ther-
apeutic benefits. We have devoted our attention to various EOs without toxicity to normal cells,
studying their activities against human cancer cells. In particular, we have studied the cytotoxicity
of Vepris macrophylla (Baker) I. Verd. EO. V. macrophylla is an evergreen tree of Madagascar where
is much appreciated as a source of traditional remedies. Its major volatile components are citral,
i.e., a mixture of neral and geranial, citronellol and myrcene. The antiproliferative activities of
V. macrophylla EO were studied against human breast adenocarcinoma cell line SKBR3. Cellular
metabolism was analyzed by MTT assay at different concentrations of EO and at different times of
incubation (24, 48 and 72 h). Moreover, morphological and ultrastructural analyses were performed
to study its antiproliferative effects against human adenocarcinoma cells, demonstrating the ability of
V. macrophylla EO, stored inside numerous intracellular vesicles, to damage both plasma membranes
and disorganize the cytoskeleton protein as actin filaments.

Keywords: Vepris macropylla; essential oil; citral; antiproliferative activity; fluorescence and scanning
electron microscopy; human breast cancer cell line

1. Introduction

Breast cancer is a major public health problem, representing the highest incidence
rate of death for women [1,2]. The interest in products of natural origin from plants
with different pharmacological activities that can be used in chemotherapy is increasingly
broad. Many natural compounds have shown anticancer activities [3]. The most famous
antineoplastic drug, paclitaxel, used for the treatment of breast cancer, was isolated from
the bark of Taxus brevifolia Nutt. [4]. Furthermore, among the natural products, there are
aloe-emodin, which is isolated from the root of Rheum palmatum L. and the leaves of aloe
vera. Numerous in vitro studies have demonstrated that aloe-emodin is able to reduce the
viability and proliferation of different human cancer cell lines, inducing apoptotic cell death
and inhibiting adhesion and the migration process [5,6]. Another compound is curcumin,
the active ingredient of turmeric, which is a polyphenolic compound with a broad range
of medicinal properties, such as antibreast-cancer activity. Curcumin is able to enhance
the effects of chemotherapeutic agents such as paclitaxel [3]. A natural stilbene and non-
flavonoid polyphenol, resveratrol is present in grapes, peanuts and red wine. This natural
product possesses anti-inflammatory, antioxidant, cardioprotective and anticancer proper-
ties [7]. Moreover, a synergistic effect has been reported by the combination of genistein
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and doxorubicin [8]. Additionally, rosemary (Rosmarinus officinalis L.) extract can increase
the activity of the anti-breast-cancer agents tamoxifen, trastuzumab, and paclitaxel [9].
Currently, one of the most interesting approaches in the fight against this tumor comprises
new therapeutic strategies using natural products in combination with synthetic drugs in
order to increase the therapeutic index of the drug and reduce the many undesirable side
effects caused by the doses used in typical chemotherapy protocols. After chemotherapy
or radiotherapy, a number of adverse effects in patients occur [10]. A natural flavonoid,
quercetin has anti-inflammatory and antioxidative effects. After high dose chemotherapy,
quercetin, administered in capsules of 250 mg (twice daily for four weeks), can reduce
oral mucositis events in patients with blood malignancy [11]. A combination of curcumin
and α-tocopherol regulates rat liver enzymes via inhibition of oxidative stress, revealing
protection against cisplatin-induced hepatotoxicity [12]. Naringenin, a natural flavanone
isolated from Thymus vulgaris L., has growth inhibitory and chemosensitization effects on
human breast and colorectal cancer [13]. Naringenin can reduce the nephrotoxicity induced
by daunorubicin treatment in rats [14]. Several drugs derived from natural products have
already received clinical approval, and many are currently undergoing in clinical trials.
To date, the Food and Drug Administration (FDA) has approved the administration of
resveratrol and quercetin [15].

Essential oils (EOs) are products obtained from vegetable raw material [16]. They
are complex, multicomponent systems composed of volatile small molecular weight com-
ponents, mainly terpenes and non-terpene components. EOs have been used for a long
time by various traditional medicine systems as antiseptic agents [17]. Nowadays, sci-
entific evidence is available showing that certain EOs have antimicrobial, antimycotic,
antiviral, antioxidant, immunomodulant and anticancer properties [18,19]. Some of these
characteristics are related to their functions in plants. Vepris macrophylla (Baker) I. Verd.
(Rutaceae) is a tree endemic to Madagascar, where it is known by many names, such as
itampody, ampodiberavina, mampodifotsy, mampody (evoking its euphoric properties)
(Figure 1) [20]. Indeed, the roots of V. macrophylla are traditionally used to manufacture
euphoric alcoholic beverages. In Malagasy ethnomedicine, each part of the plant has a
specific use. The root bark, grated and macerated in water, is administered as a drink to
treat nervous depression or apathetic states. Fruits are used to prepare steam baths during
convalescence periods following infectious diseases. The leaves are used to regulate the
coronary blood flow. [21–25]. The EO obtained from V. macrophylla leaves showed antimi-
crobial activities for the treatment of infectious diseases [26]. Furthermore, it was effective
against phytopathogenic fungi such as Phytophthora cryptogea and Fusarium avenaceum [27].

In our previous study, the V. macrophylla EO showed notable effects on human tumor
cells, notably breast adenocarcinoma and colon carcinoma cell lines, highlighting its cyto-
toxicity [26]. These results pushed us to further explore the effects of this EO on tumor cells.
Thus, in the present study, we evaluated the antiproliferative activity of V. macrophylla EO,
at different times and concentrations, on human breast cell line SKBR3.

Furthermore, the ultrastructural morphological alterations of SKBR3 cells were evalu-
ated by fluorescence and scanning electron microscopy analyses.
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2. Materials and Methods
2.1. Plant Material and Essential Oil (EO) Extraction and Composition

The EO was obtained by hydrodistillation of V. macrophylla leaves, collected in the
east coast of Madagascar (Sahamamy/Analalava), using a portable alembic as reported in
Maggi et al. [26]. Following GC and GC-MS analysis the following major components were
detected in the EO chemical profile: geranial (33.2%), neral (23.1%), citronellol (14.5%), and
myrcene (8.3%).

2.2. Cell Culture

SKBR3 cell line from human breast cancer was obtained from American Type Culture
Collection (ATCC, Rockville, MD, USA) and was grown in Dulbecco’s Modified Eagle’s
Medium (DMEM) medium with 10% fetal bovine serum (HyClone™ FBS (U.S.A. origin),
Characterized), 1% nonessential amino acids, 1% L-glutamine, 100 IU per mL penicillin,
100 IU per mL streptomycin, in a humidified atmosphere at 37 ◦C with 5% CO2.

2.3. Cell Viability Assay

MTT assay was utilized to evaluate cell viability. Briefly, cells were seeded for 24 h
in a 96-well plate (NunclNunclonTM, NuncGmbH & Co., Wiesbaden, Germany) with a
density of 1.2 × 104 cells/well. Then were treated with V. macrophylla EO at concentration
of 1.25; 2.5; 5 and 10 µg/mL for 24, 48 and 72 h. After the incubation period, 0.5 mg/mL of
MTT (Sigma, Deisenhofen, Germany) was added to each well for 2 h at 37 ◦C and the cells
were dissolved with 200 µL/well of dimethylsulfoxide (Merck, Darmstadt, Germany). The
absorbance of formazan was read at 570 nm on a scanning microtiter spectrophotometer
plate reader. The results were calculated as the percentage of viability in relation to the
untreated cells standardized to 100%. They are the mean ± SD of three separate experiments
done in triplicate.
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2.4. Immunfluorescence Microscopy

SKBR3 cells were grown for 24 h on 12 mm diameter coverslips and treated with
V. macrophylla EO for an incubation time of 24 and 48 h. Cells were then fixed with 4%
paraformaldehyde for 30 min and were permeabilized with 0.5% Triton X-100 (Sigma
Chemicals Co., St. Louis, MO, USA) for 5 min. For actin detection, cells were stained with
FITC-phalloidin (Sigma) at room temperature for 30 min. For nuclei detection, cells were
stained with Hoechst 33258 (Sigma-Aldrich, St. Louis, MO, USA; #861405) at 37 ◦C for
15 min. After the washing with PBS coverslips were mounted with glycerol-phosphate
and images were acquired with a Nikon Microphot fluorescence microscope (Nikon Instru-
ments, Melville, NY, USA) equipped with a Zeiss CCD camera (Carl Zeiss, Oberkochen,
Germany).

2.5. Scanning Electron Microscopy (SEM)

SEM analysis allowed the study of cell surface modifications induced by V. macrophylla
EO. Samples were grown for 24 h on glass coverslips and treated for 24, 48 and 72 h with V.
macrophylla EO with a concentration of 0.01; 0.1; 1.25 and 2.5 µg/mL. Then cells were fixed
in 2.5% glutaraldehyde in 0.2 M Na-cacodylate buffer for 2 h and postfixed with 1% (w/w)
OsO4 for 1 h. Subsequently, cells were dehydrated using an ethanol gradient. After the
passage in 100% ethanol, the samples were submitted to drying with CO2 (Critical point
dryer CPD 030, Bal-Tec AG, Lichtenstein) and gold coated by sputtering (SCD 050 Blazers
device, Bal-Tec). Samples were observed with a scanning electron microscope FE-SEM
Quanta Inspect F (FEI—Thermo Fisher Scientific; Eindhoven—The Netherlands).

2.6. Statistical Analysis

All data were repeated in at least three different experiments, and results are expressed
as the mean ± standard deviation. Statistical differences were determined using a one-way
ANOVA test and values with p < 0.05 being considered significant.

3. Results
3.1. Evaluation of Citotoxicity of V. macrophylla EO

MTT assay was used to study cell viability and consequently the proliferative capacity
of SKBR3 adenocarcinoma cells after treatment with V. macrophylla EO. This assay allows
to evaluate the toxicity of a substance, through the comparison of cell viability indices
obtained from treated cells compared to control. Figure 2 shows the results of the MTT assay
obtained from treatments at 24, 48 and 72 h at different concentrations of V. macrophylla EO
(1.25; 2.5; 5 and 10 µg/mL) on human breast adenocarcinoma cells SKBR3.

The results showed that V. macrophylla EO was able to reduce cell proliferation below
60%, even at the lowest concentrations (1.25 µg/mL) after 24 h of treatment. This trend
was also observed at longer times (48 and 72 h) for all other concentrations (2.5; 5, and
10 µg/mL).

3.2. Immunoflorescence Microscopy Observations

In the course of experimental analyses, we performed investigations by fluorescence
microscopy that allowed us to evaluate the morphological alterations of cells after treatment
with V. macrophylla EO at different times and concentrations.

After treatment with V. macrophylla EO, the SKBR3 cells were labeled both with
Hoechst 33258, which is used to highlight morphological-ultrastructural alterations in the
nucleus, and with FITC-phalloidin, to highlight changes in the cell cytoskeleton and actin
filaments, induced by different treatments with EO (Figure 3). The micrographs obtained
by fluorescence microscopy showed that at 1.25 and 2.5 µg/mL concentrations, the lowest
concentrations of EO, after 24 h of treatment, the nuclei still possessed a morphology
similar to those of the control cells, while the actin filaments of the cytoskeleton revealed
a significant rearrangement of their ultrastructures. Moreover, in some cells, there were
numerous vesicular structures, probably containing the same EO (Figure 4a,b, see arrow-
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heads). Images of cells treated with the same concentration of EO for an incubation time of
48 h revealed a reduction of nuclei diameters of the cells. Moreover, the morphologies of the
actin filament appeared altered, and numerous green fluorescence points were identified
exclusively around the nucleus (Figure 4c,d). This result reveals that V. macrophylla EO is
able to disorganize the actin filament network (see also Figure 3).
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cells (Figure 5a,b, arrowheads).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 12 
 

 
Figure 3. Images after double-cell staining with FITC-phalloidin (green) and Hoechst 33258 (blue) 
in SKBR3 control cells. 

 
Figure 4. Immunofluorescence micrographs shown the morphological alterations on SKBR3 cells 
induced by Vepris macrophylla EO after treatment with 1.25 (a,c) and 2.5 μg/mL (b,d) concentrations 
at two incubation times 24 h (a,b) and 48 h (c,d). Arrowheads indicate probably vesicles filled with 
EO. 

Immunofluorescence observations of SKBR3 cells treated with 5 and 10 μg/mL, at 48 
h, were in agreement with results obtained by MTT assay (see Figure 2), showing both the 
same morphological alterations and numerous vesicles inside the cytoplasm of cancer 
cells (Figure 5a,b,arrowheads). 

 

Figure 5. Morphological alterations of SKBR3 cells after treatment with 5 (a) and 10 (b) µg/mL of Vepris macrophylla EO at
48 h. Arrowheads indicate probably vesicles filled with EO.

3.3. SEM Analysis
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crovilli and random “ruffles” on the cell surface (Figure 6).
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Figure 6. SEM images of SKBR3 control cells at 24, 48 and 72 h (a–c respectively).

After treatment with EO at different concentrations, cancer cells appeared very dam-
aged. Figures 7–9 show important ultrastructural alterations of SKBR3 cells. The mor-
phological alterations are clearly visible after only 24 h of treatment (Figure 7) with four
different concentrations of EO (0.01; 0.1; 1.25 and 2.5 µg/mL, respectively). Moreover, at
higher concentrations (1.25 and 2.5 µg/mL), SKBR3 cells appeared flat and adherent to
the substrate, probably due the effect on cytoskeletal actin disorganization, as also shown
by fluorescence microscopy analysis (Figure 4). When cells were treated with the lowest
concentrations of EO (0.01 and 0.1 µg/mL), at 48 h, the plasma membranes were entirely
destroyed (Figure 8a,b). Cells showed plasma membrane alterations like those observed
24 h after treatment with the highest concentration (2.5 µg/mL) of EO. Figure 8d shows
cells treated with 2.5 µg/mL for 48 h, in which the plasma membranes are completely
damaged. Finally, as a dose-dependent effect, after 72 h, these morphological alterations
were clearly visible in all SKBR3 cells treated with V. macrophylla EO (Figure 9a–c).
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Figure 7. SEM micrographs of SKBR3 cells after 24 h of V. macrophylla EO incubation (0.01 (a), 0.1
(b), 1.25 (c) and 2.5 (d) µg/mL, respectively).
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Figure 8. SEM micrographs of SKBR3 cells after 48 h of V. macrophylla EO incubation (0.01 (a), 0.1 (b),
1.25 (c) and 2.5 (d) µg/mL, respectively).
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Figure 10 shows immunofluorescence and SEM images of the SKBR3 cells with some
vesicles on and inside the cytoplasm (arrowheads). These structures, containing the stored
EO of V. macrophylla, could slow the release of EOs, enhancing both the antiproliferative
activity and alteration of cancer cell adhesion on the substrates by actin filaments.
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microscopy and (b) scanning electron microscopy micrographs. Arrowheads indicate probably
vesicles filled with EO.

4. Discussion

EOs and some of their components exert antitumor activities against numerous cancer
models, such as colon [28], lung and liver [29], by affecting multiple pathways [30–33]. Di
Martile et al. [34] summarized studies showing the properties of EOs to induce in vitro and
in vivo cell death in melanoma models. They also indicated the use of EOs in clinical trials
with the reduction of the side effects in cancer patients. Moreover, frankincense, pine needle
and geranium EOs are also able to suppress tumor progression through the regulation of
the AMPK/mTOR pathway in breast cancer [35]. Several EOs also have chemopreventive
properties [34]. In eukaryotic cells, EOs can cause depolarization of mitochondrial mem-
branes and decrease their fluidity. In this way, EOs are able to induce severe damage in the
mitochondria, leading to cell death. Bhakkiyalakshmi et al. demonstrated that carvacrol, a
phenolic monoterpenoid, is able to cause cell death as apoptosis. This process is associated
with the production of free radicals that cause the rapid consumption of the intracellular
pool of antioxidants [36]. Another study by Arunasree et al. evaluated the mechanism of
action of carvacrol in the MDA-MB-231 cell line. This monoterpenoid induced cell death
via cytochrome C release after mitochondria permeabilization [37]. Moreover, we also
demonstrated the antitumoral activity of Tea Tree Oil (TTO), with an apoptotic effect on
melanoma cell lines [38]. In general, the cytotoxic effects of EOs in toto, or those of some of
their components, such as monoterpenoids [39], are due to their lipophilicity, which allows
them to cross membranes and destroy them [40,41].

Herein, the damage caused by V. macrophylla EO to the cell membranes of SKBR3 cells
can be attributed to its main component, citral, which is a mixture of the two monoterpenes,
neral and geranial. Citral is generally recognized as safe (GRAS) by the FDA, and is
commonly used as a flavoring agent in the EU. On the other hand, this compound is
endowed with antimicrotubule [42] and chemopreventive properties [43]. Several studies
have shown that citral is able to cause cell death to tumor cells and severely damage
cytoskeletal structures. On the other hand, other components occurring in the V. macrophylla
EO, including both major and minor constituents, may be involved in the overall synergistic
effect normally displayed by the EO [26]. Moreover, as demonstrated by other authors [44],
our results show that V. macrophylla EO significantly changes the cytoskeletal organization
of SKBR3 cancer cells, suppressing actin cytoskeletal rearrangement and destroying the cell
membrane thanks in part to its monoterpenoid activities. Furthermore, this EO significantly
decreased the proliferation and migration of human SKBR3 cells in a concentration and
time-dependent manner.
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5. Conclusions

In the present study, we examined the in vitro antitumoral activities of V. macrophylla
EO on the SKBR3 human adenocarcinoma cell line. The results demonstrated that this EO
is able to induce numerous ultrastructural alterations thanks its ability to both disorganize
the cytoskeleton and damage the plasma membrane. Thus, these results suggest a potential
use of V. macrophylla EO and its main components as a chemosensitizer in clinical practice.
Future studies should clarify the mechanism of action and biochemical process activated
by this EO. Other studies will be performed using fluorescence microscopy to study all
cytoskeletal proteins in order to assess whether these complexes will be used to reduce the
degree of invasiveness of human cancer cells by increasing their ability to adhere to the
substrate.
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