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Abstract: Accurate maps of the spatial distribution of tropical tree species provide valuable insights
for ecologists and forest management. The discrimination of tree species for economic, ecological,
and technical reasons is usually necessary for achieving promising results in tree species mapping.
Most of the data used in tree species mapping normally have some degree of imbalance. This study
aimed to assess the effects of imbalanced data in identifying and mapping trees species under threat
in a selectively logged sub-montane heterogeneous tropical forest using random forest (RF) and
support vector machine with radial basis function (RBF-SVM) kernel classifiers and WorldView-2
multispectral imagery. For comparison purposes, the original imbalanced dataset was standardized
using three data sampling techniques: oversampling, undersampling, and combined oversampling
and undersampling techniques in R. The combined oversampling and undersampling technique
produced the best results: F1-scores of 68.56 ± 2.6% for RF and 64.64 ± 3.4% for SVM. The balanced
dataset recorded improved classification accuracy compared to the original imbalanced dataset.
This research observed that more separable classes recorded higher F1-scores. Among the species,
Syzygium guineense and Zanthoxylum gilletii were the most accurately mapped whereas Newtonia
buchananii was the least accurately mapped. The most important spectral bands with the ability to
detect and distinguish between tree species as measured by random forest classifier, were the Red,
Red Edge, Near Infrared 1, and Near Infrared 2.

Keywords: tropical forests; endangered tree species; selective logging; imbalanced data; pixel-based
classification; machine learning algorithm

1. Introduction

Tropical forests comprise woody, evergreen vegetation, cover 47% of the world’s total
forest area [1], and host the highest proportion of global tree diversity, i.e., with more than
53,000 tree species, compared to approximately 124 in temperate Europe [2]. The height
of the tree crowns forming the forest canopy is in the range of 30 to 50 m, but emergent
trees may attain heights of approximately 70 m. Tropical forests cover approximately 7%
of the globe, and they are home to more than half of all earth’s biodiversity [1]. Vital
environmental processes such as the water cycle, soil conservation, carbon sequestration,
and habitat protection are immensely regulated by tropical tree species [1], therefore, those
forests maintain the ecosystem services and mitigate climate change [3]. Information on
key parameters such as tree species, tree diameter, and height, crown size, and location
are important for resource management, biodiversity assessment, ecosystem services as-
sessment, and conservation [3]. Ecologists have long been interested in explaining species’
distribution in ecosystems [2], as it can drive the exploitation and management policies of
forests. In tropical forests, the maintenance of a canopy composed of emergent trees of fun-
damental species has been shown to provide conditions favorable to ecological processes,
playing an essential role in the forest community’s resilience and perpetuation [4].
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Traditionally, detailed tree species identification is obtained in relatively small areas
with time-consuming, high levels of manpower and the associated high costs and often
operationally prohibitive field inventories [4,5]. Tropical rainforests are characterized by
very high species richness and lack of access to some parts of the forests [5]. Therefore,
obtaining exact information about the occurring species using field inventories is almost
impossible [5], thus, they have difficulty resolving large geographic patterns. Remote
sensing captures information over extensive areas in fine detail [6]. Plant species mapping
with remote sensing is linked to an understanding that species have unique spectral
signatures associated with characteristic biochemical and biophysical properties [7].

Several studies have assessed the potential of multispectral data in tree species map-
ping in tropical forests. The earliest study by Clark et al. [7] attempted a classification of
seven species of emergent trees in a tropical rain forest in Costa Rica using hyperspectral
digital collection experiment (HYDICE) imagery. Spectral-based species classification
was performed using linear discriminant analysis (LDA), maximum likelihood (ML), and
spectral angle mapper (SAM) classifiers applied to combinations of bands from a stepwise-
selection procedure. Zhang et al. [8] selected five species to assess intra- and inter-class
variability of tree species using a high spectral and spatial resolution imagery acquired
using the airborne sensor HYDICE data. Trichon and Julien [9] used two sets of aerial pho-
tographs to identify tree species through air photo interpretation. Somers and Asner [10]
performed hyperspectral time series analysis of two native and two invasive species
in Hawaiian rainforests, using the separability index (SI). Féret and Asner [11] applied
semi-supervised support vector machine classification using tensor summation kernel to
identify individual crowns using imaging spectroscopy and light detection and ranging
(LiDAR). Clark and Roberts [12] mapped seven tropical rainforest tree species using hy-
perspectral data. Narrowband indices, derivative- and absorption-based techniques, and
spectral mixture analysis were used to derive metrics that respond to vegetation chemistry
and structure. The random forest (RF) classifier was used to discriminate species with
minimally-correlated, importance-ranked metrics. Papeş et al. [13] used Earth Observing-1
Hyperion satellite hyperspectral imagery to spectrally discriminate between crowns of
42 individual trees of 5 taxa using linear discriminant analysis, and they also evaluated
seasonal variation in species discriminations related to phenology. Féret and Asner [14]
applied supervised classification to identify canopy species using airborne hyperspectral
imagery acquired with the Carnegie Airborne Observatory-Alpha system. Singh et al. [15]
mapped and characterized selected tree species using aerial data. To delineate individ-
ual tree crowns (ITCs) from very-high-resolution (VHR) aerial imagery and LiDAR data,
the study used object-based image analysis (OBIA). Both maximum likelihood (ML) and
spectral angle mapper (SAM) classifiers were applied to the aerial imagery. Other studies
have combined hyperspectral and LiDAR sensors. For example, Baldeck et al. [16] used
airborne imaging spectroscopy to identify individuals of three focal canopy tree species in
a diverse tropical forest on Barro Colorado Island, Panama. The addition of co-registered
LiDAR data further improved performance by identifying intra- and inter-canopy shadows
that alter species signatures [16]. Ferreira et al. [17] used LDA, RF, and SVM classifiers on
hyperspectral and multispectral data to discriminate and map tree species, at the pixel level.
Simulated WorldView-3 data were used to assess the role of SWIR bands in species classifi-
cation. A tree crown segmentation approach on the hyperspectral data was used to map tree
species. Graves et al. [18] assessed the accuracy of a support vector machine (SVM) model
with a highly imbalanced dataset using a hyperspectral image mosaic. Wagner et al. [3]
applied automatic ITC delineation in a highly diverse tropical forest using WorldView-2
satellite images. Ferreira et al. [4] applied visible to shortwave infrared WorldView-3
images and texture analysis to classify tropical tree species in a semi-deciduous forest in
different seasons.

Conventional multispectral sensors such as Landsat or MODIS lack both the spatial
and spectral resolution to detect changes in tree species composition [5,6]. Other satellite-
borne multispectral sensors such as IKONOS or QuickBird have a high spatial resolution
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but they lack the spectral resolution to map tree species in tropical forests [6]. High spatial
resolution sensors are not suited for species-level mapping, but rather adequately suited for
mapping fine targets, e.g., tree canopies or canopy gaps [6]. Air-borne cameras that provide
the highest spatial resolution do not offer the spectral resolution required [5]. Moreover,
aerial photos’ wide field of view results in strong effects from bi-directional reflectance
characteristics of most land cover types [5]. Therefore, the spectral signature of an object can
differ significantly. Tropical forests consist of trees of different species and ages, growing
close to each other, with their crowns intertwined, and this has made tree species mapping
a challenge. Their mapping requires remote sensing systems that can provide high spatial
resolution as well as high spectral resolution. Airborne hyperspectral and LiDAR sensors
enable mapping at very fine scales, but the high cost related to hyperspectral and LiDAR
data acquisition and processing has hindered their application in mapping tree species in
tropical forests [6]. However, some of the inherent features of hyperspectral data such as the
carotenoids and chlorophyll sensitive bands are preserved in WorldView-2 multispectral
data [19]. Thus, the high-resolution multispectral sensor, Worldview-2, has shown great
potential to generate the information required in the identification of tree species and
canopy attributes in complex tropical forest environments [17].

Kenya’s rainforest cover, mostly montane forests, are scattered patches that are being
further degraded [20]. The intense growth of population around Mount Kenya Forest
Reserve (MKFR) since the early 1970s has led to degradation of the indigenous forests due
to illegal logging of important timber trees [21]. This greatly reduced plant diversity and
the regenerative capacity of such tree species [21–24]. More demand than supply for wood
in Kenya has led to over-exploitation of high valued tree species [25]. Examples of the
targeted tree species are African pencil-cedar (Juniperus procera), Wild olive (Olea europaea),
East African rosewood (Hagenia abyssinica), East African camphor (Ocotea usambarensis),
red stinkwood (Prunus africana), East African newtonia (Newtonia buchananii), East African
yellow-wood (Podocarpus spp), East African olive (Olea capensis), Meru oak (Vitex keniensis),
Peacock flower (Albizzia gummifera), and others [21–24].

In mapping tree species in closed-canopy tropical forests, the performance of classifi-
cation algorithms may be affected by class imbalance [26]. Both deliberative and purely
random sampling may attract instances of imbalanced data [26]. In simple random sam-
pling, the chance of choosing a class is related to the areal coverage of the class, thus
relatively rare classes will consist of smaller proportions of the training set. Therefore, this
study aims to assess the effect of imbalanced data in identifying and mapping trees species
under threat in a selectively logged sub-montane heterogeneous tropical forest using RF
and SVM classifiers and WorldView-2 multispectral imagery. In assessing the significance
of imbalanced data in mapping endangered tree species in the study site, different training
class sizes comprising imbalanced and balanced datasets were used. To standardize the
original imbalanced data, the oversampling, undersampling, and combined oversampling
and undersampling techniques were applied. In addition„ the explanatory power of the
WorldView-2 spectral bands in discriminating the tree species was evaluated. The maps
showing the spatial distribution and abundance of the endangered tree species in the study
area will form the basis by which efforts can be made for the restoration of the tree species,
among other ecological applications.

2. Materials and Methods
2.1. Study Area

This total study area is 130 ha in MKFR, located between 0◦21′5′′ S t 0◦20′5′′ S latitude
and 37◦31′18′′ E to 37◦32′43′′ E longitude (Figure 1). Mount Kenya is an ice-capped
mountain and the second-highest in Africa, at approximately 5199 m asl. It is an extinct
strato-volcano developed in the Late Pliocene–Quaternary periods [27]. The mountain is
located on the Equator in Kenya, East Africa. The climate of the region is characterized
by large diurnal temperature fluctuations and small monthly disparities. The rainfall
pattern comprises short rains from October to November and long rains from March to
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June [21,27]. The mean annual rainfall values are 1015 mm at the foothills to over 2000 mm
in the montane forest and declining to 1015 mm per year in the alpine zone [28]. The
annual-mean maximum temperatures are 26 ◦C at the foothills, decreasing to 2 ◦C at the
nival zone [21].
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Figure 1. WorldView-2 false-color composite (near-infrared 2: yellow: coastal) of the study area
showing tree crowns identified to the species level and other forest landscape features in the field.

Mount Kenya’s abrupt changes in altitude within short distances result in a variety of
plant species in a quite small area [21]. MKFR’s highly heterogeneous canopy consists of
deciduous and evergreen tree species. Anthropogenic activities determine vegetation types
and their distribution at the lower altitudes [21,29]. The montane forest zone lies between
1980 and 3000 m asl on the western, eastern, and southern sides of the mountain [30]. The
northern side is covered by grass, scattered trees, and Ericaceae and Protea scrub [30].
Nyayo Tea Zone, established by Legal Notice No. 265 of 1986 provides a buffer zone to
check against human encroachment into MKFR.

2.2. Acquisition and Pre-Processing of WorldView-2 Satellite Data

The study site was covered by one WorldView-2 scene, acquired on 30 January 2019. The
image utilized in this study was pre-processed and orthorectified by the image distributor [31].
It was geo-referenced to World Geodetic System (WGS) 1984 datum and the Universal
Transverse Mercator (UTM) zone 37S projection. Theoretically, the radiometric correction
and calibration of image data are necessary for detailed feature extraction. Atmospheric
effects can complicate the spectral separability between landscape features with fine spectral
differences [32]. Therefore, for optimal feature extraction, the WorldView-2 image was
atmospherically calibrated by converting the digital numbers (DN) to the top-of-atmosphere
reflectance. The conversion was done using the ENVI module (ENVI 5.3) FLAASH.

2.3. Field Data Collection

Because a published inventory of threatened plant taxa for Kenya does not exist, most
botanists discover a rising number of species requiring special protection [33]. Different
sources have tried to classify tree species considered to be threatened or endangered. For



Remote Sens. 2021, 13, 4970 5 of 20

example, a State of the Environment report by the National Environment Management Au-
thority (NEMA) terms East African camphor (Ocotea usambarensis), Red stinkwood (Prunus
Africana), African satinwood (Zanthoxylum gilletii), East African sandalwood (Osyris lanceo-
lata), and Meru oak (Vitex keniensis) as endangered [20]. Ng’eno [24] listed Prunus africana
as an endangered tree species in Kenya, and Podocarpus spp., Vetex keniensis, Newtonia
buchananii, and Albizia gummifera are threatened species. Hagenia abyssinica, Juniperus pro-
cera, and Ocotea usambaraensis are listed as restricted tree species. According to KWS [21],
threatened plant species in Kenya include Prunus africana, Vitex keniensis, Ocotea usam-
barensis, among others. All these tree species are commercial indigenous tree species
of Kenya [34]. Therefore, field data collection involved the following endangered tree
species: Prunus Africana, Zanthoxylum gilletii, Albizia gummifera, and Newtonia buchananii.
Other species covered in this study were Anthocleista grandiflora, Syzygium guineense, and
Macaranga kilimandscharica; they are not currently under any threat, however, an increase
in the volume of extraction could endanger them. Rampant selective logging targeting
especially Ocotea usambarensis has made the species to be very rare in the study site, and
only eight samples were identified in the field. Other landscape classes, i.e., other woody
vegetation and shadow, were also sampled. Other woody vegetation class consists of all
species with very few samples, brought together to form a single mixed-species class. This
allowed for their inclusion in the model so that they could be mapped, although individual
species distinctions could not be made.

The ground truth points were collected in January and February 2020. Due to very
steep mountainous terrain and dense forest cover, only a few areas were accessible, there-
fore, the field campaign randomly selected tree species along trails traversing the study
area. The field measurement involved identification of tree species, tree height, diameter at
breast height (DBH), tree dominance, and size, which varied among stands. A handheld
global positioning system (Garmin eTrex® 20 GPS Receiver) and an RGB false-color com-
posite (Near Infrared 2: Yellow: Coastal) of WorldView-2 image (pixel = 1.89 m), aided in
locating tree crowns in the field. Using a GIS (ArcGIS v. 10.3®, ESRI, Redlands, CA, USA),
points were set on all relevant crown pixels on the WorldView-2 imagery. By following the
edges of the pixels, the points were made into polygons. A lot of care was taken to ensure
that the pixels extracted were as pure as possible, without contamination from lianas or
neighboring trees [7]. Any additional valuable information, such as tree flowering and
leaves from identified crowns, was noted. Tree species information was assigned to each
tree crown. The collected field data resulted in an imbalanced dataset, i.e., with common
species having many samples and less common species containing few samples (Table 1).
The dataset was randomly partitioned into 70% for training and 30% for testing.

Table 1. List of tree species, codes, family, leafy phenology, diameter at breast height (DBH), number of individual tree
crowns, and composition of training and test data for each species used to map trees in Mt. Kenya Forest Reserve.

Botanical Name Code Family Leaf Phenology DBH (m) Train Data Test Data Total

Macaranga k. MK Euphorbiaceae Semi-deciduous 0.30–0.57 56 24 80
Zanthoxylum g. ZG Rutaceae Semi-deciduous 0.97–3.00 56 24 80

Syzygium g. SG Myrtaceae Evergreen 1.00–2.50 56 24 80
Newtonia b. NB Fabaceae Deciduous 1.50–4.50 56 24 80

Anthocleista g. AnG Gentianaceae Evergreen 1.01–2.50 36 15 51
Prunus a. PA Rosaceae Evergreen 1.24–3.50 22 10 32

Albizzia g. AlG Fabaceae Deciduous 1.37–4.00 20 8 28
Other woody

vegetation OWV — — — 56 24 80

Shadow SD — — — 56 24 80

Shown in Figure 2 are samples of the tree species in the study area.
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Figure 2. Samples of endangered tree species in the study area.

2.4. Spectral Separability

On-screen digitizing of samples from the display of the WorldView-2 false-color
composite was implemented to generate the respective signature files. An assessment
of the signatures was done to examine the spectral properties of the training sample
classes and their separability over others. The spectral information was extracted using the
central pixel within the crown polygon. Jeffries–Matusita (JM) distance was chosen as a
separability measure. The JM distance among the distributions of two classes ωi and ωj
has been defined as follows [35]:

JMij = 2
(

1− e−Bij
)

, (1)

where Bij is the Bhattacharyya distance calculated as [36]:

Bij =
1
8
(µi − µj)

T
(

∑i +∑j

2

)−1(
µi − µj

)
+

1
2

In

1
2

∣∣∣∑i +∑j

∣∣∣√∣∣∣∑i +∑j

∣∣∣
 (2)

where µi and µj are the mean reflectances of species i and j, and Σi and Σj correspond
to their covariance matrices, whereas |Σi|and |Σj|are the determinants of Σi and Σj,
respectively. ln is the natural logarithm function, and T is the transposition function.

The JM distance was calculated for all pairwise combinations between the mean
spectral reflectance of the samples of a species and those of all other species, one at a time.
The VNIR (450–1040 nm) WorldView-2 bands were used for computing the JM distance.

2.5. Training of Random Forest and Support Vector Machine Classifiers

The RF and SVM algorithms were applied using RStoolbox in R software in a pixel-
based classification setting approach. The RF algorithm groups decision trees and the
splitting variables are randomly chosen feature subsets with bagged samples [37]. Nor-
mally, the number of decision trees (ntree) in the ensemble and the number of predictor
variables (mtry) randomly selected at each node need to be defined before applying the RF
model. To extract the best performing parameters to be utilized in training the algorithm,
a 10-fold grid search method was applied. RF brings together many weak learners, i.e.,
decision trees, into a stronger predictor by aggregating the predictions from all decision
trees [37]. The majority ‘vote’ of all the trees is used to allocate a final class for unknown
features. The mean decrease in accuracy (MDA) was used to evaluate the explanatory
power of the input variables [37]. The MDA shows how much accuracy the model loses by
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excluding each variable [37]. The higher the MDA value, the more important the variable
in the model.

The SVM finds the position of the optimal separating hyperplane, i.e., decision bound-
ary, which meets two ultimate goals at a go: (i) separate the original data while maximizing
the margin between classes, and (ii) minimize the misclassification error [38]. In the present
study, the radial basis function (RBF) was selected as the kernel function because it has
fewer parameter values to predefine, and it is as robust as other kernel types [26]. The
success of an SVM model depends on the C (penalty) and γ (Gamma) parameters in the
kernel function. The goal is to identify the best C and γ for the tree species mapping
problem so that the classifier can accurately predict unknown data [39].

2.6. Class Imbalance

A dataset’s imbalanced class distribution is characterized by cases where some classes
have more samples than others. Most classifier learning algorithms that assume a fairly
balanced distribution have found it challenging [26,40]. Previous studies have shown
that the k-NN (k-nearest neighbor), RF, and SVM algorithms are affected by imbalanced
training data [26].

To evaluate the impact of training data imbalance in mapping endangered tree species,
this study applied data sampling techniques that aimed to modify the imbalanced dataset
into balanced distribution, i.e., by altering the overall number of samples used in the
training [26]. In choosing the best model in the classification of tree species in the study
area, four datasets were compared: category 1 was composed of the original imbalanced
dataset (Table 1) from the field. In category 2, the training data for all classes were ran-
domly oversampled to match that of the majority classes, i.e., 56 data points. Category 3
consisted of the same number of samples for all classes, which was attained by randomly
undersampling the training data for all classes to match that of the smallest class, i.e., 20.
Finally, category 4 comprised a dataset created by combining both downsampling and
oversampling techniques. First, the oversampling technique is applied to create duplicate
and artificial data points, then the undersampling technique was used to eradicate noise
data points, thus creating a robust balanced dataset suitable for model training. Therefore,
the last three categories are subsets of the original field acquired dataset.

In all cases, the datasets were split into test and training data before running the
models. Running models before splitting datasets can allow identical samples to be present
in both the test and training data, leading to the models overfitting the training data. In all
models, the 10-fold cross-validation method was repeated 10 times.

2.7. Measures of Model Performance

A multidimensional scaling (MDS) technique was applied in the analysis of (dis)similarities
in the tree species datasets. MDS calculates a (dis)similarity matrix among pairs of tree species
and then displays the data in a low-dimensional representation [41]. Therefore, MDS shows
(dis)similarities among pairs of tree species as distances between points in a low-dimensional
space. The Euclidean distance formula can be used to calculate distance between two points,
e.g., i and j, as follows [42]:

dij =

√√√√ p

∑
k=1

(
xik − xjk

)
2 (3)

where p is the number of dimensions, dij is the distance, and xik is the data value of the
ith row and kth column. The dissimilarity between points i and j is denoted dij and sij
for similarity. Small dij values indicate points that are close together, thus, they belong
to the same group and vice versa. The similarity values are the opposite, i.e., small sij
values indicate points that are farther apart, hence they are not in the same group, and
vice versa [43]. The goodness-of-fit statistic, the stress measure, which is based on the
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differences between the observed data and their predicted values, was used to express how
well the datasets are represented by the model [42].
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To fully evaluate model effectiveness, precision and recall performance metrics were

used. Precision measures how accurate is the classifier’s prediction of a class [18]. Low
precision indicates a high number of false positives. Recall, also known as sensitivity,
measures the classifier’s ability to identify a class [18]. Low recall indicates a high number
of false negatives. For an imbalanced dataset, F1-score is a more appropriate metric. It is
the harmonic mean of the precision and recall, and the expression is [18]:

F1− score = 2· Precision · Recall
Precision + Recall

(5)

To evaluate the performance of RF and SVM algorithm classifiers on mapping the
selected tree species using WorldView-2 data, 30% of the ground truth data were used to
generate confusion matrices from which precision, recall, and F1-score were calculated. The
overall, producer’s, and user’s accuracies were also calculated. The producer’s accuracy
(PA) is the ratio of the correctly detected trees to all the positive ground truth tree samples,
whereas the user’s accuracy (UA) is the ratio of the correctly detected trees to all the positive
model-predicted tree samples [18].

The McNemar test, a non-parametric test focused on the binary distinction between
correctly classified and misclassified class allocations of two classification outputs, was
used to compare and indicate the statistical significance of any difference in results [44]:

Z =
f12 − f21√

f12 + f21
(6)

where f 12 is the total number of samples classified correctly by the first classification,
but misclassified by the second, and f 21 is the total samples classified correctly by the
second classification but misclassified by the first one. A difference in accuracy between
the confusion matrices of the different models is regarded statistically significant (p ≤ 0.05)
if Z ≥ 1.96 (44).

3. Results
3.1. Spectral Separability between the Tree Species

The first step in mapping tree species is to figure out if the classes are spectrally
different. Figure 3 shows the mean spectral signatures for the eight tree species in the
study area. In the visible bands, Syzygium guineense has higher reflectance values compared
to the other seven tree species which reflect almost the same. The Coastal band shows
the highest reflectance values for all tree species. The difference in reflectance between
Syzygium guineense and the other tree species keeps on increasing from the Coastal band
towards the Red band.

The reflectance values in the Red Edge, Near Infrared 1, and Near Infrared 2 bands are
generally higher for the deciduous and semi-deciduous tree species than for the evergreen
tree species. Zanthoxylum gilletii and Albizzia gummifera showed the highest reflectance
values and differ significantly from the others. Among the evergreen tree species, Prunus
africana shows the highest reflectance values, followed by Anthocleista grandiflora. Syzygium
guineense has notably low reflectance values. Among the three bands, Near Infrared 1
shows the highest reflectance values by all tree species. The Near Infrared 1 and Near
Infrared 2 bands show the largest differences in reflectance between the seven tree species
in the study area.
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Figure 3. Tree species mean spectral signatures derived from the WorldView-2 data.

Figure 4 shows significant spectral overlaps between tree species. Band-specific within-
species variance is evident, e.g., Syzygium guineense within-species variance is bigger in
Coastal and Blue bands, and quite small in the Near Infrared 2. Zanthoxylum gilletii has the
smallest within-species variance in the Red band, whereas the Coastal and Green bands
show larger variances.Remote Sens. 2021, 13, x FOR PEER REVIEW  10 of 22 
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Figure 4. Box-whisker plots showing tree species mean reflectance values derived from WorldView-2
data. The central lines within each box represent the medians, while the top and bottom edges of the
boxes are the upper and lower quartiles, respectively. The dots represent the outlier values within
tree species. Full species names for each species code are given in Table 1.

Table 2 is a matrix showing the inter-specific spectral separability of the tree species
calculated from the WorldView-2 VNIR bands using the JM distance. The highest JM
distances were reported for Syzygium guineense, i.e., values greater than 1. The lowest
values were 0.42 for separability between Newtonia buchananii and Albizzia gummifera, and
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0.43 for Newtonia buchananii and Anthocleista grandiflora. The highest values are shown
in bold.

Table 2. Tree species’ inter-specific spectral separability as calculated by the Jeffries–Matusita distance
(Equation (1)). The bold shows those species which are separable and those not separable (not in bold).

SG ZG AnG AlG PA NB MK

SG 1.37 1.21 1.23 1.27 1.25 1.16
ZG 1.01 0.75 1.05 0.89 1.22

AnG 0.51 0.59 0.43 0.66
AlG 0.65 0.42 0.87
PA 0.58 0.90
NB 0.74
MK

3.2. Optimization of Random Forest and Support Vector Machine

In all models, extracting the best performing ntree and mtry parameters to be used in
training of the RF algorithm, repeated 10-fold cross-validation (CV) technique, dependent
on the out-of-bag (OOB) error was applied. Using the same approach, the SVM parameters
were optimized for the WorldView-2 dataset. The best parameters combinations under
each of the four models are summarized in Table 3. As expected, the dataset produced by
the combined oversampling and then downsampling techniques performed better than the
others. For the R model, the default mtry value of 2 and ntree value of 3500 produced the
lowest OOB error rate, 0.271 (Figure 5a). The SVM parameters, i.e., gamma and cost, were
optimized for the WorldView-2 dataset, also using a 10-fold grid search approach. As seen
in Figure 5b, a gamma value of 1 and a cost value of 100 yielded the best performance with
a cross-validation error of 0.326. For the undersampled dataset, the best performance was
an OOB error rate of 0.476 produced by mtry value of 2 and ntree value of 3500. The SVM
yielded a gamma value of 0.01 and a cost value of 10, with a cross-validation error of 0.422.

Table 3. The RF and SVM model optimization parameters.

Model
Train

Data per Species
RF SVM

mtry ntree OOB Error Gamma Cost CV Error

Original dataset Refer to Table 1 3 1500 0.377 0.01 1000 0.387
Oversampling

technique 56 4 4500 0.279 0.01 1000 0.327

Undersampling
technique 20 2 3500 0.476 0.01 10 0.422

Combined
technique varied 2 3500 0.271 1 100 0.326

The sampling techniques were only applied to training data to avoid model overfitting.

3.3. Relative Importance of Variables

After running the classification models, the MDA provided the relative importance of
each band (Figure 6). The most important spectral bands in all models, i.e., bands depicted
by highest MDA were the Red, Red Edge, Near Infrared 1, and Near Infrared 2.

The classification models also evaluated the ability of the WorldView-2 spectral bands
to detect the tree species. Figure 7 shows that the Red band was critical in the identification
of especially Syzygium guineense, and also involved to a greater extent in mapping Albizzia
gummifera, Anthocleista grandiflora, Prunus africana, and Zanthoxylum gilletii. The Near
Infrared 1 band contributed significantly to the mapping of Albizzia gummifera and Prunus
africana, as well as Anthocleista grandiflora, Macaranga kilimandscharica, Newtonia buchananii,
and Zanthoxylum gilletii. The Red Edge band majorly contributed to the identification of
Macaranga kilimandscharica and other woody vegetation, and, to a greater extent, shadow.
The Near Infrared 2 band was helpful in the mapping of all tree species at different
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proportions, but it was very vital in the identification of Albizzia gummifera, Anthocleista
grandiflora, and Prunus Africana.
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Figure 7. The mean decrease accuracy (MDA) values show the relationship between each tree species
and WorldView-2 spectral bands as measured by the RF classifier. Full species names for each species
code are given in Table 1.

3.4. Model Performance

Figure 8a shows RF multidimensional scaling (MDS) is a nice way to visualize
(dis)similarity within and among tree species, using the proximity matrix calculated
from the variables in the training dataset. SVM multidimensional scaling also visual-
izes (dis)similarity within and among tree species, using the test data, as seen in Figure 8b.
The undersampled dataset performed poorly by attaining higher stress values, i.e., 2.41%
for RF and 2.09% for SVM. The rest of the datasets performed fairly as their stress values
were in the range of 1.41–1.89% for RF and SVM classifiers.
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The confusion matrices in Table 4 are for RF and SVM classifiers, for the combined
technique, and F1-scores were closest to their model mean. They were computed using the
test data, which comprised 30% of the ground truth data.

Table 4. Confusion matrices for (a) RF algorithm and (b) SVM algorithm, for the combined oversampling
and undersampling technique. Full species names for each species code are given in Table 1.

(a) Random Forest

AlG AnG MK NB OWV PA SD SG ZG Total UA (%)

AlG 4 1 1 3 0 0 1 0 0 10 40.0
AnG 0 9 4 1 2 2 0 0 0 18 50.0
MK 0 0 16 2 0 2 0 0 0 20 80.0
NB 3 4 2 9 1 0 0 0 1 20 45.0

OWV 0 0 0 2 17 0 0 0 1 20 85.0
PA 0 0 1 5 1 6 0 0 0 13 46.2
SD 0 0 0 0 0 0 23 0 0 23 100.0
SG 0 0 0 0 0 0 0 23 0 23 100.0
ZG 1 1 0 2 3 0 0 1 22 30 73.3

Total 8 15 24 24 24 10 24 24 24 177
PA
(%) 50.0 60.0 66.7 37.5 70.8 60.0 90.0 90.0 80.0

Overall accuracy = 72.9% F1-score = 68.0%

(b) Support Vector Machine algorithm

AlG AnG MK NB OWV PA SD SG ZG Total UA (%)

AlG 3 1 1 2 1 0 0 0 0 8 37.5
AnG 1 8 3 2 2 2 1 0 1 20 40.0
MK 0 0 15 3 0 2 1 0 0 21 71.4
NB 3 4 2 7 1 0 0 0 1 18 38.9

OWV 0 0 0 2 17 0 0 0 0 19 89.5
PA 1 1 2 6 2 6 0 0 0 18 33.3
SD 0 0 0 0 0 0 22 0 0 22 100.0
SG 0 0 0 0 0 0 0 24 0 24 100.0
ZG 0 1 1 2 1 0 0 0 22 27 81.5

Total 8 15 24 24 24 10 24 24 24 177
PA
(%) 37.5 53.3 62.5 29.2 70.8 60.0 80.0 100.0 70.8

Overall accuracy = 70.1% F1-score = 64.2%

The combined technique dataset achieved the highest average overall accuracy on both
RF and SVM models, i.e., 73.2 ± 2.5% and 70.9 ± 2.7%, respectively. The average species
F1-score was 68.56 ± 2.6% for RF and 64.64 ± 3.4% for SVM. The F1-score ranged between 18
and 100%. Syzygium guineense and Zanthoxylum gilletii are characterized with high accuracy
and low variability, unlike Albizzia gummifera, Anthocleista grandiflora, and Newtonia buchananii,
which had low variability across iterations and also low F1-score (Figure 9).

The undersampled data reported the lowest F1-score, i.e., 45.8 ± 5% for RF, compared
to SVM’s 48 ± 6%, unlike the other datasets where RF performed better than SVM. The
original dataset’s F1-score were 63.8 ± 3.9% for RF and 62.7 ± 4.3% for SVM. The over-
sampled dataset achieved F1-score values of 67.8 ± 4.1% and 63.6 ± 3.7% for RF and SVM,
respectively (Figure 10).

The McNemar’s test, applied to test whether there was a significant difference between
the two best maps produced by the RF and SVM models, using the combined oversampling
and undersampling techniques, returned a Z value of 0.96 (Table 5). Thus, there were no
significant differences (Z ≥ 1.96) at 95% confidence level, existing amongst the confusion
matrices of the two classifiers.
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Table 5. McNemar’s test results to compare RF and SVM classification models using the combined
oversampling and undersampling technique.

Classifier RF

SVM

CC IC Total
CC 98 11 111
IC 16 52 66

Total 114 63 177
CC stands for correctly classified and IC is for incorrectly classified samples.

3.5. The Spatial Distribution of the Endangered Tree Species

In showing the distribution of tree species in the study area, two classified maps, i.e.,
one by RF and the other by SVM, produced using the combined technique dataset, whose
F1-score was closest to their model mean are used (Figure 11). These maps show that tree
species distribution is not haphazard. In the northwestern part of the study area is the
Macaranga kilimandscharica. Syzygium guineense is mostly occupying the lower and central
parts of the study area. Zanthoxylum gilletii covers the central-eastern and western parts.
A combination of other vegetation types can be seen dominating mostly the lower parts
of the study area. The other tree species, i.e., Albizzia gummifera, Anthocleista grandiflora,
Prunus africana, and Newtonia buchananii are found throughout the study area.

The RF and SVM classifiers show differences in the size of each class. Macaranga
kilimandscharica shows an area of 45.2 ha and 44.1 ha for RF and SVM classifier, respectively
(Table 6). Zanthoxylum gilletii reported 7.1 ha for RF and 7.2 ha for SVM, a negligible
difference of 0.1% between them. For Syzygium guineense, there was a 0.8% difference
between the two classifiers: RF recorded 9.6 ha and SVM recorded 10.6 ha. Newtonia
buchananii reported a difference of 0.4 ha between the two classifiers. Anthocleista grandiflora
had the second largest difference between the two classifiers, 1.8 ha, i.e., 13.4 ha for RF and
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15.2 ha for SVM. Other woody vegetation showed a difference of 1.9 ha between RF and
SVM classifiers. Shadow recorded 10.6 ha and 11.1 ha for RF classifier and SVM classifier,
respectively. The areal coverage of Prunus Africana and Albizzia gummifera was insignificant
compared to that of the other classes.
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and (b) support vector machine.

Table 6. Area coverage in hectares and percentage of the classes using RF and SVM classifiers.

Classes RF Classified
Area (ha) Percentage (%) SVM Classified

Area (ha) Percentage (%)

Macaranga
kilimandscharica 45.2 34.8 44.1 33.9

Zanthoxylum gilletii 7.1 5.5 7.2 5.6
Syzygium guineense 9.6 7.4 10.6 8.2

Newtonia
buchananii 23.6 18.1 23.2 17.8

Anthocleista
grandiflora 13.4 10.3 15.2 11.7

Prunus africana 0.0 0.0 0.0 0.0
Albizzia gummifera 0.0 0.0 0.0 0.0

Other woody
vegetation 20.5 15.8 18.6 14.3

Shadow 10.6 8.1 11.1 8.5

Total 130 100 130 100
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4. Discussion
4.1. Spectral Separability between the Tree Species

This study aimed to evaluate the impact of imbalanced data in mapping endangered
trees species in a selectively logged sub-montane heterogeneous tropical forest using
random forest and support vector machine classifiers, and WorldView-2 multispectral
imagery. As seen in Figure 4, there are spectral overlaps within the tree species classes. The
overlaps could be due to, among other reasons, the study area’s complex forest structure,
because some stands were multi-storied and also some tree crowns were relatively small,
thus the presence of mixed pixels [5]. This led to some of the misclassifications between
species, which was in agreement with their inter-specific separability (Table 2). Newtonia
buchananii, Anthocleista grandiflora, and Albizzia gummifera are examples of tree species with
significantly low F1-scores. The J–M distance values showed that the species were not as
separable as Syzygium guineense, Zanthoxylum gilletii, and Macaranga kilimandscharica, which
indicated higher spectral separability values and were more separable, and therefore had
higher F1-score values. In addition, very steep mountainous terrain and dense forest made
it difficult to collect data in the field. This may have interfered with the quality of ground
data used in the validation process. This research observed that higher spectral similarity
within a class and higher spectral variability among classes led to higher classification
accuracy. However, the contribution of the within- and among-species spectral variability
on the classification accuracy of tropical tree species is poorly understood [17].

4.2. Relative Importance of Variables

In the classification process, the study was able to single out the most valuable bands,
by making use of the variable importance (VI) measurement in the RF algorithm. RF
uses the mean decrease in accuracy (MDA) and mean decrease in Gini (MDG) to evaluate
the explanatory power of the input variables [37]. Generally, the best four bands in the
classification process were the Red, Red Edge, Near Infrared 1, and Near Infrared 2 bands.
This shows that both the visible and the infrared portions of the electromagnetic spectrum
are quite relevant in the mapping of endangered tree species in the study area. The
MDA was also used to show bands that were crucial in detecting particular tree species
(Figure 7). However, both MDA and MDG are biased in adapting to the variables in the
tree structure, hence larger values are provided than the actual value. Strobl et al. [45]
point out that two indicators are unable to determine the explanatory power of variables
in the classification process because they cannot distinguish false correlations due to
data characteristics. Strobl et al. [45] developed a technique to evaluate the influence of
conditional variable classification to solve this problem, but the technique is inconsistent in
grasping the explanatory power variables [46]. Hur et al. [46] developed another technique
based on the Shapley Value method on random forest regression. The determination of the
relative importance of variables remains an active area of research.

4.3. Class Imbalance

The effect of unequal training class sizes for species classification from WorldView-2
imagery was reported in Section 3.4. The original dataset was imbalanced despite efforts
to add samples of rare species, such as Prunus Africana and Albizzia gummifera, whose
density has diminished in MKFR. The variation in the sample size across classes in the
original dataset increased the rate of classification errors [26]. As expected, tree species with
larger sample sizes had positive prediction bias, i.e., commission errors were greater than
omission errors, and vice versa [18,40]. In addition„ species with small samples recorded
high F1-score variability across iterations (Figure 9). The degree of bias in the model was
minimized when the training data size was standardized across classes. The model that
used the original dataset reported a reduced overall accuracy. In recent times, research
shows that balanced data offers better overall classification performance [26,40]. The F1-
score for the combined technique model was 68.56± 2.6% and 64.64± 3.4% for RF and SVM,
respectively, whereas the unbalanced, original dataset reported F1-scores of 63.8 ± 3.9%
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for RF and 62.7 ± 4.3% for SVM. Previous studies have shown that the k-NN (k-nearest
neighbor), RF, and SVM algorithms are affected by imbalanced training data [26]. Although
these results are consistent with other studies using similar classification algorithms, they
may not be directly comparable because of factors such as differences in the topography
of the study area, size of samples, species diversity in the study area, a continuous closed
canopy, size of the study area, and spectral and spatial resolutions of the images used.

The undersampling techniques reduce observation numbers from the majority class to
make the dataset balanced. This technique may lead to the loss of important information
in the training data. According to Graves et al. [18], lowering the number of the sampled
common tree species while maintaining the species’ full range spectral variability solves the
reduced overall accuracy problem. Spectral variability in data can be retained when using
SVM algorithms by selecting data points on the border between classes to delineate the
separation between them [44], or to iteratively prune the support vectors to attain the best
separation between classes [47]. Another way is the manipulation of the SVM algorithm by
adjusting margin variable misclassification costs, e.g., the cost of misclassifying a feature
in the minority class is set higher than that of misclassifying a feature in the majority
class [26]. However, the effects of these selection processes on bias in models and successive
application to larger areas with many classes have not been quantified [18].

Apart from the techniques applied in this study to reduce class imbalance, other
methods, e.g., balanced class weight, and generating synthetic data of the minority class
that are similar to the original minority examples in the feature space using methods
such as the synthetic minority over-sampling (SMOTE) technique [40], among others, can
be used. In this study, the idea was to combine the undersampling and oversampling
techniques to create a robust balanced dataset fit for model training.

According to Krawczyk [48], the imbalanced classification problem is not solved; at a
time when we have such terms as big data, large neural network models, deep learning,
and models such as the xgboost, solutions should be identified and addressed specifically
for each training dataset [48].

4.4. Model Performance

In using an imbalanced dataset, the final classification under-predicts the classes with
fewer samples, thus minority classes will have less effect on the accuracy compared to
larger classes [49]. Therefore, test samples belonging to smaller classes are more often
misclassified than those belonging to the dominant classes [26,40]. In such a case, a model
may report a high accuracy level, but the map would not be useful. Accuracy is appropriate
for balanced datasets but not good for imbalanced ones [18]. In some cases, the accuracy of
samples in the smaller classes can be of greater importance than the contrary case [26,40].
This is the case in this research because the mapping of sparse tree species, e.g., Prunus
Africana and Albizzia gummifera is crucial.

The balancing of the original dataset slightly improved the F1-scores for RF and SVM
classifiers. Omission errors were recorded for each species, but Newtonia buchananii had
the highest omission errors in all models. Newtonia buchananii and Anthocleista grandiflora
exhibited a higher level of spectral confusion. This further degraded the F1-scores in all
models, because tree species with low separability tend to have high misclassification
rates. Furthermore, these tree species exhibited different crown color and density [50]. In
addition„ because random sampling was used to collect field data, tree crowns used to
train and validate the classifications of tree species are not distributed equally over the
forest. The dense forest and rough mountainous terrain limited the places we could access
within the forest. This may as well have influenced the outcome of the classification.

Finally, although error matrices are very crucial in comparing classification results,
they only give an estimate of the accuracy of the classification, determined by the samples
collected from the field. Thus, only biased conclusions can be made from such data [44].
Other metrics of model performance should be tried, e.g., balanced accuracy, bias score, or
the F-score, among others [16].
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4.5. The Spatial Distribution of Endangered Tree Species

This study found that, Macaranga kilimandscharica, an invasive species, mostly occupies
the northwestern part of the study area. This tree species is found in areas that have
experienced heavy intensive logging and forest disturbance. Logging activities have taken
place in this area in the recent past. The RF and SVM classified maps of the study area have
shown that Newtonia buchananii is more dominant than Syzygium guineense, Zanthoxylum
gilletii, Anthocleista grandiflora, Albizzia gummifera, and Prunus africana. Both Prunus africana
and Albizzia gummifera are hard to find in the study area. The same applies to Ocotea
usambarensis. Once dominant in the wet forests of Mount Kenya, the endangered tree
species are now rare.

In cases where differences in accuracy are marginal, i.e., a few percentage points apart,
Janssen and van der Wel [51] propose that a statistically rigorous way must be used to
compare the accuracies, and the results should be expressed with confidence limits. In
this study, the McNemar test was used to evaluate the RF and SVM classification outputs
of the combined technique dataset. The McNemar test was meant to indicate whether
a difference of 3.9% was statistically important. A difference in accuracy between the
confusion matrices of different WorldView-2 spectral subsets is statistically significant
(p ≤ 0.05) if the Z value is more than 1.96 [44] The Z value was 0.96, meaning there is no
significant difference between the two maps. Therefore, either of the two maps can be
considered for conservation purposes.

5. Conclusions

This study aimed to assess the effects of imbalanced data on identifying and mapping
trees species under threat in a selectively logged sub-montane heterogeneous tropical forest
using RF and SVM classifiers and WorldView-2 multispectral imagery. The study obtained
average F1-scores of 68.56 ± 2.6% and 64.64 ± 3.4% for RF and SVM, respectively, for
the best model, the combined oversampling and undersampling technique. This was an
improvement from the original imbalanced dataset. The F1-scores reported were directly
related to the differences between the spectral variability within and among species. The
most important spectral bands identified to have played a major role in mapping the
endangered tree species in the study area were the Red, Red Edge, Near Infrared 1, and
Near Infrared 2 bands. The tree species portrayed significant spectral overlaps, and this
may have led to misclassification errors between classes. As well, difficult mountainous
terrain and dense forest made it hard to collect data in the field, and this may have interfered
with the quality of data, and thus contributed to increased classification errors.

Given the results presented here, the approach used in this study may serve as the
basis for forest recovery initiatives in MKFR, an ecosystem that is considered a biodiversity
hot-spot for conservation priorities. However, these applications are based on models of
species classification that are not perfect [18]; therefore, more methods need to be developed
to overcome the challenges caused by imbalanced data. Further research will target a larger
study area and a higher number of tree species using VHR satellite data and object-based
image analysis techniques.
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