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Abstract: Vanilla planifolia is a species of commercial importance. However, vanilla presents gene
erosion problems due to its clonal reproduction. In the Huasteca of Hidalgo, there is no information
on vanilla populations. Therefore, the objectives of this study were to identify the current populations
and the potential distribution of, and the morphological variation in, the labellum of V. planifolia in the
Huasteca of Hidalgo. Twenty-two accessions were located and selected. Based on 21 environmental
variables, the niche modeling of the potential distribution was carried out with the MaxEnt program;
with the Jackknife test being used to identify the variables that contributed to the model. Flowers
from 22 accessions were collected and the labellum of each flower was dissected. Subsequently,
64 morphological variables were obtained and various multivariate analyses were performed. The
results showed three regions, defined by the highest to the lowest probability that V. planifolia
was distributed. The precipitation of the driest month, altitude, and vegetation cover delimited
the distribution. Five different morphotypes were distinguished, and the main differences were
associated with the middle part of the labellum as well as the entrance of pollinators to the flower;
therefore, the characterization of the labellum showed an infraspecific variation in V. planifolia in
populations of the Huasteca of Hidalgo.

Keywords: MaxEnt; potential distribution; labellum; vanilla; morphotypes

1. Introduction

Vanilla planifolia Andrews is a species of economic and ecological importance that is
distributed from Mexico to Costa Rica [1,2]. Vanilla is native to Oaxaca and the crop was
developed in the north of Veracruz, Mexico [1,3,4], although its cultivation has spread
to different regions of the world. V. planifolia is a hemi-epiphytic or rupicolous plant
that develops in evergreen or almost evergreen tropical forests, in primary or secondary
vegetation at a height between 150 and 900 m above sea level (masl) [3,5]. It grows in
evergreen or sub-evergreen forests with year-round rains on calcareous soils. In wetter
areas, it can be found in young secondary forests. The flowers appear from March to April,
and flowering is activated by low winter temperatures followed by warm temperatures in
early spring [3]. Vanilla is subject to Special Protection (Pr) by the Mexican Government
under NOM-059-SEMARNAT-2010, since there are only 30 registered collects in their
natural environment [3]. Because Vanilla planifolia is propagated by cuttings, there are
problems of genetic erosion in the crops [2,6–8] and susceptibility to diseases (fungi and
bacteria) [9].

Through the modeling of ecological niches and potential distribution, the environmental
and anthropogenic variables that affect the distribution of a species can be identified [10–13],
in addition to determining if there is gene flow between populations [14–16]. These analyses
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are applied to endangered or threatened species [17] which need to be preserved in priority
conservation areas [18–20].

Maximum entropy (MaxEnt) is a method used to model the potential distribution of
species [21], identify the main environmental variables that determine the distribution [22],
and the pixels where there is a maximum entropy of distribution [23–25]. Therefore, in
V. planifolia, MaxEnt has been used to identify areas of potential distribution in states such
as Puebla, Veracruz [26,27], Oaxaca [28], San Luis Potosí [29,30], and Mexico in general [31].
In Hidalgo, there is no information on the current distribution of V. planifolia [32]. With
the analysis of the geographic distribution of V. planifolia and its interaction with the
environmental variables that delimit its distribution [33,34], areas of conservation of vanilla
germplasm can be identified [35,36].

Due to the low genetic variation in Vanilla planifolia populations [9,37], studies of
vanilla genetics [9,38,39] and floral morphology [40–42] have been conducted to detect
genetically diverse populations and increase germplasm [43]. Flowers are organs with
little morphological variation associated with their genotype [40,42,44,45]; therefore floral
morphology and morphometry delimit species [46,47] and determine infraspecific vari-
ation [42]. The labellum is a fundamental structure in the biology and floral ecology of
orchids due to its specificity with the pollinator [48]. The thicker region of the labellum
acts as a visual attraction and landing zone for pollinators [49]; therefore, the labellum is a
stable organ under constant pressure and selection from pollinators, making it a suitable
indicator to identify the infraspecific variation [50]. For Vanilla planifolia, the shape of the
labellum has been characterized in populations from Oaxaca [40] and San Luis Potosí [42],
in addition to similar characterizations for Vanilla pompona Schiede [41] and Laelia anceps
Lindl. [51]; however, in Hidalgo, there is no information on the morphological variation in
labellum.

Labellum characterization provides information on infraspecific variation, so that
improvement and conservation programs can be developed [52]. Due to the scarcity
of information on the distribution of and infraspecific variation in the populations in
the Huasteca de Hidalgo, the objective of this study was to determine the geographic
distribution and characterize the labellum morphology of V. planifolia populations from the
Huasteca of Hidalgo, Mexico.

2. Materials and Methods
2.1. Geographic Location

The state of Hidalgo is located between 19◦35′52′′–21◦25′00′′ N and 97◦57′27′′–99◦51′51′′W.
Hidalgo extends to the north with the state of San Luis Potosí, northeast and east with
Veracruz, east and southeast with Puebla, to the south with Tlaxcala and Mexico, and to
the west with Querétaro. The study region was the Huasteca of Hidalgo, which includes the
municipalities of Atlapexco, Huautla, Huazalingo, Huejutla, Jaltocan, San Felipe Orizatlán,
Xochiatipan, and Yahualica [53,54]. It presents warm and humid semi-warm climates, is
within the physiographic subprovince Carso Huasteco, and is covered mainly by mountain
cloud forest in which the high forest has been displaced by secondary vegetation, in
addition to presenting various types of crops and induced pastures [55].

2.2. Species Distribution

Visits were made to the eight municipalities belonging to the Huasteca of Hidalgo for
the location of populations of Vanilla planifolia Andrews through direct observation in the
field and with the help of the inhabitants (Figure 1). The locations of the vanilla populations
were recorded using GPS (Garmin Montana 650). The selected populations were located
in vanilla fields that were at least 20 years old and in acahual-type (native and introduced
secondary vegetation) fields or in fields with no or minimal management, to avoid vanilla
fields in the region with recent plants brought from Veracruz.
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Figure 1. Differe nt stages of life of Vanilla planifolia Andrews, flower in April and immature beans
in November.

2.3. Species Distribution Modeling

The potential distribution of Vanilla planifolia Andrews was modeled with 21 envi-
ronmental variables: 20 variables of 30 s of the spatial resolution were obtained from
the WorldClim database (www.worldclim.org, accessed on 18 May 2022) [56,57] and a
vegetation cover variable was obtained from the CONABIO database [58] (Table 1). The
potential distribution was modeled using MaxEnt v. 3.4.1 [23,31,59]. The logistic output
format was used to visualize the ideal habitat (probability of presence) of V. planifolia based
on the different environmental variables [28,60]. The combined pixels in the model were
recorded as the possible maximum entropy distribution space given by MaxEnt. Therefore,
each cell on the map gives an estimate of the value of the suitability of the habitat on a scale
that goes from 0 (least suitable) to 1 (most suitable) [23,31,61].

Table 1. Environmental variables used to obtain the potential distribution of V. planifolia in the
Huasteca of Hidalgo, Mexico.

Code Environmental Variables Units

Bio1 Annual mean temperature ◦C
Bio2 Mean diurnal range ◦C
Bio3 Isothermality Dimensionless
Bio4 Temperature seasonality CV
Bio5 Max temperature of the warmest month ◦C
Bio6 Min temperature of the coldest month ◦C
Bio7 Temperature annual range ◦C
Bio8 Mean temperature of the wettest quarter ◦C
Bio9 Mean temperature of the driest quarter ◦C

Bio10 Mean temperature of the warmest quarter ◦C
Bio11 Mean temperature of the coldest quarter ◦C
Bio12 Annual precipitation mm
Bio13 Precipitation of the wettest month mm
Bio14 Precipitation of the driest month mm
Bio15 Precipitation seasonality CV

www.worldclim.org
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Table 1. Cont.

Code Environmental Variables Units

Bio16 Precipitation of the wettest quarter mm
Bio17 Precipitation of the driest quarter mm
Bio18 Precipitation of the warmest quarter mm
Bio19 Precipitation of the coldest quarter mm
Cover Vegetation cover 16 types

Alt Altitude m

The accuracy of the model was evaluated by calculating the area under the curve (AUC)
ROC (Receiver Operating Characteristic), which considers each value of the prediction result
as a possible discrimination threshold and then calculates the corresponding sensitivity
and specificity of each value. Sensitivity is the proportion of test localities that are present
which were correctly predicted (1-extrinsic omission rate). The quantity (1-specificity) is
the proportion of all of the pixels predicted to have suitable conditions for the species [23];
therefore, based on the AUC value, the model can be considered as poor (AUC < 0.8), fair
(0.8 ≤ AUC < 0.9), good (0.9 ≤ AUC < 0.95), or very good (0.95 ≤ AUC < 1.0) [25].

Subsequently, a Jackknife test [62] was carried out, which allows for analyzing the con-
tribution of each environmental variable individually and jointly, to form the distribution
model of V. planifolia [63]. Therefore, through this test and the percentage of contribution of
the species, the variables that locate the potential distribution of V. planifolia in the Huasteca
of Hidalgo, Mexico were determined.

2.4. Morphological Characterization of the Flower

In April 2013, during the flowering season, 328 turgid flowers with pollinia and no
apparent damage to the floral structure were collected from 22 Vanilla planifolia Andrews
populations (22 accessions) (Figure 2A). The petals, sepals, and labellum were dissected and
stored in a preservative solution (27% ethanol, 4% lactic acid, 3% benzoic acid, 3% glycerin,
and 63% distilled water) inside 220 mL bottles with their respective collection label.
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Figure 2. (A) Flower of Vanilla planifolia Andrews. (B) Dissection of the labellum. (C) Staining of the
labellum. Scale bar: 1 cm.

To identify morphometric variation, the work was based on the geometric morphom-
etry of contours that are used in the analysis of anatomical structures. The shape of a
structure is analyzed as a whole and not in fragments [1], in addition to characterizing the
shapes through multivariate analysis [64,65].

The procedure to characterize the labellum was based on Hernández-Ruíz et al. [39]
and Lima-Morales et al. [42]. First, the labellum stored in a preservative solution was
stained with methylene blue (0.08%) (Figure 2B,C). Photographs were taken at a distance
of 30 cm with a Sony digital camera (SONY α, DSLR-SLT-A55) equipped with a macro
lens (Sony DT 30 mm F/2.8 SAM). Once the digital images of all of the flowers were
obtained, the initial landmark points were placed (Figure 3A). In the curved regions, extra
points were added without overloading the contour edges so as not to generate redundant



Diversity 2023, 15, 678 5 of 25

information [66]. With the first landmark points, the labellum was separated into seven
regions: A, B, C, D, E, F, and G (Figure 3B). Then, the secondary lines were placed to
record the entire shape of the labellum; thus, a total of 57 lines and 7 angles (morphological
variables) were obtained (Figure 3C).
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2.5. Statistical and Numerical Analysis

For all of the labellum lines and angles, the mean and the coefficient of variation were
obtained. Subsequently, an analysis of variance under a completely random unbalanced
scheme was performed to determine if there were significant differences between the
accessions. The 22 accessions were considered to be the source of variation; therefore,
each collection had a different number of replicates (Table 2). Subsequently, a multivariate
analysis of Principal Components and a hierarchical cluster analysis based on the Euclidean
distance of each mean were performed to identify infraspecific variation in the labellum
of Vanilla planifolia Andrews in the Huasteca of Hidalgo using the Software SAS 9.1 (SAS
Institute, Cary, NC, USA) and the JMP 10.0.2 (SAS Institute, Cary, NC, USA).

Table 2. Hidalgo accessions and flowers.

Municipality Locality Accessions Number of Flowers
(Repetition)

Atlapexco

Itzocal
S1 20

S2 13

Huizotlaco
S3 1

S4 7

San Isidro
S5 27

S6 26
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Table 2. Cont.

Municipality Locality Accessions Number of Flowers
(Repetition)

Huejutla

Contepec
S7 19

S8 18

Tezahual S9 20

Xocotitla S10 12

Poxtla

S11 5

S12 9

S13 3

Pahuatlán S14 30

Ichcatepec S15 20

Jaltocán
Tlanepantla S16 20

Mirador S17 16

Huejutla Coacuilco

S18 17

S19 10

S20 14

S21 11

S22 10

3. Results
3.1. Potential Distribution of Vanilla planifolia Andrews
Location of the Populations of Vanilla planifolia Andrews

In the Huasteca of Hidalgo, 22 accessions of Vanilla planifolia Andrews were located
in the municipalities of Atlapexco, Jaltocán, and Huejutla de Reyes (Table 3). These sites
presented the conditions of vanilla plantations that were more than 20 years old and in
traditional systems of acahuales and Coffea arabica Benth plantations under the shade of
native trees (for example Pimenta dioica (L.), Bursera Jacq. ex L. spp., and Ceiba pentandra (L.)
Gaertn.) and minimal management. Sites with intensive management and the recent
acquisition of cuttings were excluded.

Table 3. Location of V. planifolia populations, altitude, climate, and vegetation in the state of
Hidalgo, Mexico.

Municipality Locality Accession Altitude Weather * Vegetation *

Atlapexco

Itzocal
S1 370

Am(f) Warm and wet Agricultural use

S2 382

Huizotlaco
S3 285
S4 273

San Isidro
S5 394
S6 350

Huejutla

Contepec S7 406

(A)C(m)(f)
Semiwarm-temperate

humid

Tropical or
subtropical
evergreen

broadleaf forest

S8 352
Tezahual S9 414
Xocotitla S10 391

Poxtla
S11 312

Agricultural use

S12 367
S13 331

Pahuatlán S14 381
Ichcatepec S15 545
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Table 3. Cont.

Municipality Locality Accession Altitude Weather * Vegetation *

Jaltocán
Tlanepantla S16 482

Mirador S17 316 Am(f) Warm and wet

Huejutla Coacuilco

S18 420 A(f) Warm humid coldest
month less than 18 ◦C

Tropical or
subtropical
evergreen

broadleaf forest

S19 400
S20 473 (A)C(fm) Semi-warm

humid of group CS21 398
S22 423

* Taken from CONABIO data, 2022.

The municipality of Huejutla presented the largest number of V. planifolia populations
with 63.6% of the total, while Atlapexco had 27.2% and Jaltocán had 9.2% (Figure 4). The
vanilla populations were located between 273 and 545 masl; 31.8% of the accessions were
in a warm humid climate, 45.4% in a humid semi-warm climate, 9.1% in a humid warm
climate with the coldest month less than 18 ◦C, and 13.7% in a humid semi-warm climate
of group C (Table 3).

Diversity 2023, 15, x FOR PEER REVIEW 8 of 27 
 

 

 

Figure 4. Locations of the 22 accessions of V. planifolia in the Huasteca of Hidalgo. 

3.2. Potential Distribution 

The MaxEnt model predicted the potential distribution of Vanilla planifolia Andrews 

with a training area under the curve (AUC) of 0.985 (Figure 5A). The red curve (indicating 

the degree of fit of the sampling data) and the blue one (indicating the fit of the model) 

were identical and the values were considered to be acceptable. Figure 5B shows the omis-

sion rate calculated on both the training presence records and the test records. In the omis-

sion rate, a small part fell below the predictions, and another remained above the predic-

tions because the sample used and the training samples were dependent. 

Figure 4. Locations of the 22 accessions of V. planifolia in the Huasteca of Hidalgo.



Diversity 2023, 15, 678 8 of 25

3.2. Potential Distribution

The MaxEnt model predicted the potential distribution of Vanilla planifolia Andrews
with a training area under the curve (AUC) of 0.985 (Figure 5A). The red curve (indicating
the degree of fit of the sampling data) and the blue one (indicating the fit of the model) were
identical and the values were considered to be acceptable. Figure 5B shows the omission
rate calculated on both the training presence records and the test records. In the omission
rate, a small part fell below the predictions, and another remained above the predictions
because the sample used and the training samples were dependent.
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(A) Sensitivity versus specificity. The red curve represents the fit of the model to the sample data.
The blue curve indicates the degree of adjustment of the model to the test data, which is the real test
of the predictive power of the model. The black line represents the expected line if the model were
no better than random. (B) The omission rate of the model created by MaxEnt and the cumulative
threshold of the predicted area. If the omission on the test samples is close to the predicted omission,
the distribution model for V. planifolia is considered to be adequate.

Once the modeling carried out by MaxEnt was validated, the potential distribution of
V. planifolia was obtained (Figure 6). The 22 accessions were located only in the northern
and northwestern parts of Hidalgo that belong to the region of the Huasteca of Hidalgo.
The areas in red showed the highest probability of presenting populations of V. planifolia.
By contrast, the green areas are the places where there is little probability of finding a
population of V. planifolia (Figure 6).

The populations marked by GPS were divided into three groups that were differ-
entiated by the probability of finding V. planifolia. In Group I (GI), the largest number
of populations was present (red area, 67–100% probability); therefore, it is the area with
adequate environmental conditions for the development of V. planifolia in the Huasteca of
Hidalgo. Group II (GII) was located in the orange area, with a 51–66% probability that the
V. planifolia populations were distributed there. Finally, in Group III (GIII), the probability
of finding populations of V. planifolia was 34–50% (Figure 6). The areas in gray were the
areas where V. planifolia is not distributed and cannot be cultivated.
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Figure 6. Potential distribution of V. planifolia in the Huasteca of Hidalgo. The color variation showed
the probability of finding vanilla populations or individuals. GI: Group I, GII: Group II, GIII: Group III.

3.3. Effect of Environmental Variables

The variables that contributed the most to the potential distribution model generated
by MaxEnt were the precipitation of the driest month (Bio14) (43%) and vegetation cover
(Cover) (14.9%). Therefore, the two variables Bio14 and Cover were the determinants to
generate the potential distribution model of Vanilla planifolia Andrews in the Huasteca of
Hidalgo (Table 4).

Table 4. Percentage contribution of the variables to the potential distribution model generated
by MaxEnt.

Variable Contribution (%)

Precipitation of driest month (Bio14) 43

Vegetal cover (Cover) 14.9

Precipitation of the driest quarter (Bio17) 7.2

Temperature seasonality (Bio4) 7

Precipitation seasonality (Bio15) 6.5

Mean temperature of the wettest quarter (Bio8) 5.8

Mean temperature of the driest quarter (Bio9) 5.3

Annual mean temperature (Bio1) 4.9

Mean diurnal range (Bio2) 2.7

Altitude (Alt) 1.3

Precipitation of the wettest quarter (Bio16) 0.7

Temperature annual range (Bio7) 0.6
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The environmental variables that were individually most important for the potential
distribution of V. planifolia were precipitation of the driest month, precipitation seasonality,
precipitation of the coldest quarter, altitude, precipitation of the driest quarter, and temper-
ature seasonality (Figure 7). The least important variables, individually, for the potential
distribution of V. planifolia were temperature annual range and vegetation cover, which
individually do not present a direct effect but, if they are eliminated, affect the distribution
of the model when analyzed with the other variables together, as well as the mean diurnal
temperature range (Figure 7).
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Figure 7. Jackknife test of the importance of individual environmental variables represented by the
dark blue bars, the turquoise bars represent the information expressed by the variables when they are
eliminated from the set; the shorter the bar, the more informative the variable. The red bar shows the
information expressed by the entire set of variables.

3.4. Labellum Characterization

The 64 morphological variables which were analyzed presented low coefficients of
variation (3–10%). In addition, highly significant differences were observed between the
accessions for each of the variables (Table 5).
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Table 5. Analysis of variance for the 22 vanilla accessions in the Huasteca of Hidalgo.

Variable Mean
Coefficient

of
Variation

Mean Square
Variable Mean

Coefficient
of

Variation

Mean Square

Accessions Error Accessions Error

A1 2.56 10.15 0.52 *** 0.06 D 7.93 6.05 2.52 *** 0.23
A2 16.76 3.46 4.08 *** 0.33 E1 7.1 11.7 3.18 *** 0.69
A3 16.85 3.65 3.52 *** 0.37 E2 6.81 11.04 4.47 *** 0.56
A4 17 3.6 4.70 *** 0.37 E3 6.23 9.27 5.70 *** 0.33
A5 17.33 4.04 3.39 *** 0.49 E4 6.3 12.62 3.08 *** 0.63
A 16.77 3.51 3.84 *** 0.34 E5 5.04 8.37 1.51 *** 0.17
B1 2.38 5.07 0.16 *** 0.01 E6 6.29 8.62 2.07 *** 0.29
B2 9.4 4.06 2.21 *** 0.14 E7 5.9 7.6 2.95 *** 0.2
B3 6.87 6.08 2.14 *** 0.17 E8 4.94 7.4 2.01 *** 0.13
B4 9.57 4.12 1.37 *** 0.15 E 4.4 6.48 1.17 *** 0.08
B5 10.71 4.21 2.96 *** 0.2 F1 3.32 14.37 1.21 *** 0.22
B6 8.93 5.28 5.14 *** 0.22 F2 4.94 7.64 2.53 *** 0.14
B7 8.83 5.7 6.12 *** 0.25 F3 4.77 7.01 2.25 *** 0.11
B8 10.94 4.2 1.81 *** 0.21 F4 2.91 13.36 1.49 *** 0.15
B 8.36 3.49 1.02 *** 0.08 F5 5.57 6.85 2.76 *** 0.14

C1 9.58 5.1 2.65 *** 0.23 F6 7.34 10.84 4.89 *** 0.63
C2 11.87 5.82 6.83 *** 0.47 F7 6.7 9.38 6.02 *** 0.39
C3 11.45 5.39 7.56 *** 0.38 F8 5.42 6.3 2.56 *** 0.11
C4 9.69 5.32 2.11 *** 0.26 F 2.56 7.25 0.49 *** 0.03
C5 14.24 5.12 7.31 *** 0.53 G1 3.58 13.4 1.94 *** 0.23
C6 11.06 5.76 2.60 *** 0.4 G2 4.45 14.89 2.06 *** 0.43
C7 10.63 4.53 2.71 *** 0.23 G3 3.51 13.6 2.03 *** 0.22
C8 14.43 4.99 6.26 *** 0.51 G4 3.35 11.29 1.15 *** 0.14
C 8.37 3.6 1.01 *** 0.09 G5 3.13 11.68 0.86 *** 0.13

D1 7.74 10.8 5.30 *** 0.7 G 2.35 10.09 0.75 *** 0.05
D2 12.2 10.07 8.31 *** 1.51 aA 24.59 5.3 17.64 *** 1.69
D3 10.83 10.98 8.29 *** 1.41 aB 31.86 5.32 35.28 *** 2.88
D4 8.31 10.61 2.93 *** 0.77 aD 55.82 6.78 162.33 *** 14.36
D5 10.84 6.81 4.96 *** 0.54 aE 86.62 3.96 122.95 *** 11.8
D6 8.97 4.73 2.86 *** 0.18 aDE22 127.87 8.16 972.33 *** 109.06
D7 8.99 4.87 2.70 *** 0.19 aDE55 137.05 8.56 967.25 *** 137.88
D8 10.94 6.56 4.17 *** 0.51 aG 86.31 13.18 679.38 *** 129.45

*** Significant differences.

3.5. Diversity Distribution

In the Principal Component Analysis (PCA), the first three principal components (PC)
had eigenvalues above 1 and explained 79% of the total variation (Table 6). PC1 explained
57.13%, PC2 13.26%, and PC3 8.76% of the total variation. The PC1 was determined by
A4, B2, B4, B8, C1, C4, C5, C8, and C, which conformed to the middle basal regions of the
flower. CP2 was defined by morphological variables of the mid-basal region (B1, B6, and
B7), median (D1 and D2), and labellum width (aA and aB) (Table 6). PC3 was represented
by morphological variables of the middle region (D3, D4, D8, and D), apical middle (E1
and E4), and one of the labellum width (aD) (Table 6).
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Table 6. Vectors, eigenvalues, and cumulative proportion of the variation explained by each variable
in the first three PCs.

Variable PC1 * PC2 * PC3 * Variable PC1 * PC2 * PC3 *

A1 0.094 0.103 −0.062 D 0.081 −0.207 0.236
A2 0.149 −0.071 0.04 E1 −0.034 0.104 0.261
A3 0.145 −0.069 0.048 E2 0.125 0.197 −0.01
A4 0.151 −0.062 0.033 E3 0.146 −0.011 −0.176
A5 0.141 −0.04 0.044 E4 0.079 −0.1 −0.216
A 0.148 −0.069 0.039 E5 0.137 0.02 −0.053
B1 0.066 0.217 0.14 E6 0.132 0.122 0.084
B2 0.15 −0.077 0.058 E7 0.145 −0.073 −0.157
B3 0.118 0.078 0.092 E8 0.147 −0.043 −0.09
B4 0.159 −0.008 0.04 E 0.139 −0.08 −0.023
B5 0.147 −0.039 0.081 F1 0.084 0.182 0.096
B6 0.105 −0.214 −0.015 F2 0.138 0.175 0.01
B7 0.104 −0.231 −0.006 F3 0.146 0.091 −0.108
B8 0.157 0.054 0.062 F4 0.121 −0.127 −0.196
B 0.147 −0.075 0.03 F5 0.142 0.152 0.01

C1 0.157 −0.07 0.018 F6 0.125 0.191 0.018
C2 0.147 0.08 0.061 F7 0.146 −0.014 −0.179
C3 0.147 −0.001 −0.002 F8 0.148 0.08 −0.089
C4 0.154 −0.02 −0.007 F 0.132 0.02 0.001
C5 0.156 −0.005 0.033 G1 0.14 0.114 −0.092
C6 0.132 0.092 0.122 G2 0.092 0.124 0.104
C7 0.148 −0.066 0.052 G3 0.137 0.049 −0.121
C8 0.155 0.041 0.024 G4 0.121 0.183 0.053
C 0.15 −0.068 0.035 G5 0.14 0.105 −0.06

D1 0.096 −0.243 −0.048 G 0.133 0.085 −0.034
D2 0.044 0.245 0.156 aA −0.01 0.249 −0.02
D3 0.112 −0.017 −0.246 aB −0.046 0.226 0.096
D4 0.028 −0.052 0.392 aD 0.089 0.202 −0.224
D5 0.13 −0.132 0.098 aE 0.067 0.196 −0.099
D6 0.138 −0.141 0.119 aDE22 0.104 −0.15 −0.071
D7 0.119 −0.141 0.211 aDE55 0.063 −0.015 0.186
D8 0.108 −0.079 0.269 aG −0.063 0.017 0.205

PC1 PC2 PC3

Eigenvalue 36.56 8.48 5.6
Variance (%) 57.13 13.26 8.76

Accumulative variance (%) 57.13 70.4 79.15

* The values in bold represent the variables with the greatest impact on the variation in each PC.

When plotting the PCs of the vanilla populations, five morphotypes of Vanilla planifolia
Andrews were identified for the Huasteca region of Hidalgo (Figure 8). The variables that
define the morphotypes located in the positive zone of PC1 were A2, A4, B2, B4, B8, C1,
C4, C5, C8, and C; for PC2 the variables were B1, D2, aA, aB, and aD; for PC3 the variables
were D4, D8, D, and E1 (Figure 8, Table 6).
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Figure 8. Dispersion of the 22 accessions of V. planifolia carried out in the Huasteca of Hidalgo (B) and
the variables that most affect the PC (A). The colors in the labellum diagram correspond to the PCs,
the orange color corresponds to the PC1 variables, green colors correspond to the PC2 variables, and
the pink color correspond to the PC3 variables. MI to MV: Morphotype 1 to Morphotype V. Each
Morphotype was surrounded with an arbitrary color to differentiate them.

3.6. Diversity Clustering

The multivariate analysis of the clustering showed that, on a Euclidean distance of
0.831 in the dendrogram of Figure 9, the five morphotypes were confirmed for Vanilla
planifolia Andrews accessions from the Huasteca region of Hidalgo. Similar tones mean
variables with similar values, in addition to the fact that intense blue tones show the
highest values while white tones represent the lowest values. Morphotypes I and II
differed from Morphotypes III, IV, and V at a distance of 1.008 because the variables
that represented the shape of the mid-apical and mid-basal region were the ones that
presented the most information and mainly served to differentiate the morphotypes in the
dendrogram. Subsequently, Morphotype I was separated from Morphotype II by the angles
of the labellum (aA, aB, aD, aE, and aG). The Morphotypes III, IV, and V were separated by
the angles of the labellum and the basal region (aA, aB, aD, aE, aG, A2, A3, A4, and A5)
(Figure 9A).

Based on PC1 (Figure 8), the morphotypes located on the positive side of the graph
were more elongated and broader in the mid-basal and basal region of the labellum (Mor-
photype I and Morphotype II), while those on the negative side were narrower in this
region (Morphtype III, Morphtype IV, and Morphtype V) (Figure 8). In PC2, on the negative
side, the morphotypes were thin in the left part of the middle region of the labellum (D2)
and the basal region (B1, aA, and aB), but long in the middle basal region and the left
part of the middle region of the labellum (B6, B7, and D1) (Morphotypes II, III, and IV).
Morphotype I and V were located in the middle part of PC2 (Figure 8).

For PC3, the labellum on the positive side was longer in the right part of the middle
region (D, D4, and D8) and the left part of the apical middle region of the labellum
(E1). The labellum was narrower on the right side of the mid-region (D3 and aD) and
short on the right side of the apical mid-region (E4). However, only Morphotype III
was found in the positive part, while the other morphotypes were in the middle of PC3
(Figure 8). The morphological expression profile shows the behavior of each variable for
each accession (Figure 9B). The variables with similar behaviors were grouped so that the
five morphotypes were separated based on the differences of each accession. The height of
the peaks corresponds to the value of each variable, and high peaks represent high values;
therefore, Morphotype I is the one with the highest peaks for each accession, while it is the
opposite for Morphotype V (Figure 9B).
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Figure 9. Multivariate cluster analysis for the identification of vanilla morphotypes. (A) Hierarchical
clustering heatmap of the 22 accessions of V. planifolia in the Huasteca of Hidalgo, based on 64 variables
and similarity grouping. The differences in intensity of the blue color denote the differences in the
behavior of the 64 variables analyzed in a multivariate manner. The scale with blue x shows the values
of the Euclidean distance that represent the points where the collects were separated to form the five
morphotypes. (B) Morphological expression profile of the labellum variables of each morphotype,
based on the behavior of the variables concerning the structure of the dendrogram. The number of
lines depends on the number of accessions included in each Morphotype; therefore, Morphotypes I
and IV have the highest number of lines.
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4. Discussion
4.1. Potential Distribution of Vanilla planifolia Andrews
4.1.1. Potential Distribution Model

The potential distribution model of Vanilla planifolia Andrews identified three regions
where there was a higher probability of finding this species and that could be considered
as conservation areas for the germplasm present in the Huasteca region of Hidalgo [19,22].
This measure will prevent the disappearance of vegetation and changes in land use that
reduce the potential distribution areas, as has been reported for V. planifolia in Oaxaca [28],
San Luis Potosí [29,30], and Mexico in general [31].

The value obtained to validate the distribution model of Vanilla planifolia was 0.994,
which means that the model prediction of the potential distribution of V. planifolia was
acceptable (0.95 ≤ AUC < 1.0) because the current test data are adjusted with the training
data [25]. The AUC value is high because V. planifolia is localized to specific environmental
conditions [5], while in species that are located in different environments, the AUC value
tends to be lower [20,67,68].

The evaluation of the model allows us to know its usefulness; therefore, it must be
validated to know if the results are significant. To this end, the omission (or commission)
rate is used, which is a binomial test that is dependent on a threshold based on omission
and predicted area [23,69,70]. The omission rate is the fraction of test locations that fall
into pixels that are not expected to be suitable for V. planifolia; the predicted area is the
fraction of all of the pixels that are predicted to be suitable for the species [25]. In Figure 5B,
the omission in the test examples was adjusted to the predicted omission rate, which is
the omission rate for the test data modeled from the distribution given by MaxEnt (the
omission rate predicted is a straight line due to the cumulative output format). Thus, the
potential distribution modeled by MaxEnt was validated since the omission of the test data
is close to the predicted omission [23,25,69].

4.1.2. Environmental Variables That Define the Potential Distribution

The main environmental variable that defined the potential distribution of Vanilla
planifolia Andrews in the Huasteca of Hidalgo was the precipitation of the driest month. The
abundance of rain in the month of April is a determinant for the establishment of vanilla
populations (Figure 10B), similar to what Armenta-Montero et al. [31] report. Trinidad-
García et al. [30] and Reyes-Hernández et al. [29] mention that the total precipitation in the
Huasteca Potosina is one of the main factors that influence the distribution of vanilla; for
Hernández-Ruíz et al. [28] it was the month with the highest rainfall in Oaxaca. However,
because it is a species under cultivation, Soto-Arenas and Cribb [5] found that V. planifolia
is established in dry conditions in the spring months for Veracruz.

In the case of altitude, there is a greater probability of finding populations of Vanilla
planifolia at lower altitudes than at higher altitudes for the Huasteca region of Hidalgo
(Figure 10A). These values fall within the range that has been reported for other populations
of V. planifolia that are distributed from 150 to 800 masl [3,5]; in Oaxaca they are located
from 200 to 1190 masl [28], and in the Huasteca Potosina, from 61 to 678 masl [29].

The climate in which the populations of the Huasteca of Hidalgo occur is similar to the
Totonacapan region conditions (Puebla-Veracruz), where there are populations in warm
humid and warm sub-humid conditions [71]. The vegetation cover did not turn out to
be a decisive factor because, individually, it does not affect the distribution. However,
based on the Jackknife test together with the other variables, it provides information in the
construction of the model.
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Figure 10. Response of V. planifolia to the variables of altitude and precipitation of driest month.
(A) This graph shows that the higher the altitude, the lower the probability of finding populations
of V. planifolia in the Huasteca of Hidalgo. (B) The probability of finding populations of V. planifolia
depending on the amount of rain in the driest month of the year; the higher the rainfall, the greater
the probability of finding populations.

The largest number of populations (59.1%) was in the type of agricultural use cover.
Vanilla planifolia was located in secondary vegetation, made up of acahuales for timber or
Coffea arabica Benth plantations, and similar to that reported in the areas of Veracruz and
part of Puebla [4,34,71]. Further, 40.9% of the accessions were associated with tropical or
subtropical evergreen broadleaf forests, which are mainly used for Coffea arabica plantation,
and the cultivation of Pimenta dioica (L.) Merr., Ceiba pentandra (L.) Gaertn, and Pouteria
sapota (Jacq.) H. E. Moore and Stearn (direct observation in the field). These conditions are
similar to some acahuales in Puebla and Veracruz [4,34,71], which serve as reservoirs for
native species [72–74].

The use of computational predictive models has allowed for the identification of
the distribution of species through the analysis of the environmental conditions of the
sites where they are collected [75,76]. Geographic Information Systems, together with
predictive algorithms, allow for the modeling of ecological niches. These models constitute
an important technique in analytical biology which is oriented mainly to the conservation
and management of species [10,24,63]. The distribution and geographical area of the plants
are influenced by two main factors: altitude and climate [77,78]. However, plant species
adapt to variations in environmental conditions [79,80] with significant changes in the
composition and structure of populations; therefore, there may be species with a wide
or very restricted distribution (endemic) [35,36]. In the case of Vanilla planifolia, the main
factors were the precipitation of the driest month and altitude. In addition, because its
distribution is restricted, it is considered to be an endemic species to Mexico [81,82].

4.2. Labellum Characterization
4.2.1. Labellum Morphotypes

Generally, biotic and abiotic factors influence the morphological variation in vegetative
and reproductive characters [83]. Within the reproductive characters, the flowers present
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quantitative variation in the populations of the same species. This variation represents the
basis of natural selection that can eventually result in diversification and speciation [46,84].
The size of the flower in some species is modified due to environmental variation; therefore,
they become larger at high altitudes, cold temperatures, and high humidity, and shorter at
low altitudes, warm temperatures, and dry conditions [46,85,86]. However, these variations
occur due to the plasticity that individuals present under different environmental condi-
tions [84,87], as reported for Arabidopsis thaliana (L.) Heynh [45], Narcissus triandrus L. [85],
and Campanula rotundifolia Pall. Ex Roem. and Schult [86].

In many orchids, there is a high degree of pollinator specificity in flower shape;
therefore, as they are specialized in pollination, the variation is minimal within the same
species [48].

The Vanilla planifolia populations analyzed in this work had significant differences in
all of the morphological variables. However, through the PCA, the variables that allowed
for the separation of the populations into five different morphotypes were identified.

The traits that separated the groups for PC1 corresponded to the basal regions and the
middle region of the labellum, similar to those reported for Vanilla planifolia Andrews in
Oaxaca [40] and San Luis Potosí [42], while for Vanilla. pompona Schiede, they were from
the middle and basal region [41].

In the case of PC2, the morphological variables that influence the separation of the
groups corresponded to the middle regions and left part of the callus region, similar to what
Hernández-Ruíz et al. [40] reported for V. planifolia from Oaxaca, but differing from what
Lima-Morales et al. [2] reported in San Luis Potosí. In PC3, the morphological variables that
separated the groups in this study corresponded exclusively to the callus region, a situation
that coincides with V. planifolia from San Luis Potosí [2], and partially coincides with what
they reported for Oaxaca for V. planifolia [40]. Considering the three PCs and comparing
them with V. planifolia from Oaxaca [40], San Luis Potosí [42], and V. pompona [41], the
relevant regions are the middle part and the callus. These regions define the entrance of the
pollinating insect to the flower as suggested by Hernández-Ruíz et al. [41] for V. pompona
and confirmed by Hernández-Ruiz et al. [40] and Lima-Morales et al. [42] for V. planifolia.

Although the variables of each PC are independent between each PC, as observed in
Figure 8, the important variables are located in the same regions and are closer to each
other; therefore, even though they are independent in the multivariate analysis, they are
directly related to the structure of the labellum, a situation that was not observed in the
published articles on Vanilla from San Luis Potosí and Oaxaca [40,42].

In addition, through the hierarchical clustering heatmap and the morphological ex-
pression profiles of the labellum of V. planifolia (Figure 9), the areas that varied between the
five morphotypes were obtained:

Morphotype I (MI). Represented by nine accessions, MI had a wide labellum in the
basal and mid-basal region, elongated on the right side, broad on the left side of the middle-
middle apical region, and larger in the region of the apical lobes. It is the largest labellum
compared to the other morphotypes (Figure 9B, Table A1).

Morphotype II (MII). Represented by three accessions. The main characteristic of
MII was the larger basal region where the labellum joins the base of the column. For the
mid-basal region, the structure was more elongated in a similar way to the median and
apical median region of the labellum (Figure 9B, Table A1).

Morphotype III (MIII). With only two accessions, MIII had the third largest labellum
size and was intermediate between Morphotypes I and II (larger) and Morphotypes IV and
V (smaller labellum size) (Figure 9B, Table A1).

Morphotype IV (MIV). Represented by seven accessions, MIV had a small labellum
(only surpassed by Morphotype V) in the basal region and the middle region (Figure 9B,
Table A1).

Morphotype V (MV). This morphotype had only one accession, and presented the
smallest labellum size, mainly in the mid-basal region, apical mean, and apical lobes
(Figure 9B, Table A1).
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Morphotypes I and II were those with the largest labellum sizes, followed by Morpho-
type III, then Morphotype IV, and the one with the smallest labellum was Morphotype V.

These five morphotypes would represent the vanilla populations that develop in the
Hausteca of Hidalgo because, as previously mentioned, the 22 accessions analyzed come
from acahuales and coffee plantations with little or no management, the age of the plants is
more than 20 years old, and they have not been recently acquired from other regions such
as Papantla, Veracruz.

4.2.2. Geographic Distribution of Morphotypes

Reproductive characters generally show a certain degree of morphological variation, a
product of the genetic variability of each species and on which natural selection acts as the
main force of speciation [40]. In situations where morphological variation is associated with
environmental factors, it has been documented that it is generally expressed as gradual or
mosaic patterns across a landscape or geographic area [83]. When the phenotype of a plant
is affected by any of these factors, environmental patterns can be treated as geographic
patterns of phenotypic variation [83,88]. Particularly, this type of variation is related to
species with a wide geographical distribution, and which occupy discontinuous territories
in the form of mosaics [89].

However, in the case of Vanilla planifolia Andrews, the distribution of the five morpho-
types was not associated with abiotic factors: the five morphotypes were distributed within
the same soil moisture regime (Udic from 270 to 330 days of moisture), at the same elevation
that goes from 250 to 556 masl, and in areas with a total annual rainfall of 1000–2000 mm
and an average temperature of 21–23 ◦C. Therefore, vanilla had no climatic pattern since the
same morphotype was distributed in several types of climates, as reported by Soto-Arenas
and Solano-Gómez [82], and as seen in the type of vegetation of the Huasteca of Hidalgo
(Figure 11) [58].
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4.3. Final Considerations on the Labellum Variation

Since the presence of five morphotypes cannot be explained by environmental vari-
ables, other factors such as biotic factors could be considered. McCormirck and Jacque-
myn [90] suggest that micro factors such as mycorrhizae, tutors, and pollinators are factors
that can affect and modify the spatial distribution of orchids in general. Damon et al. [91]
suggest that the distribution and abundance of euglossine bees (Euglossini Latreille) in
agroecosystems and forest fragments in southern Mexico is associated with relict forests
and coffee plantations due to light and humidity, conditions that occur in the Huasteca
of Hidalgo.

Shipunov and Bateman [49] pointed out that the size and shape of the labellum are
important factors for the attraction of pollinators. Benítez-Vieyra et al. [92] reported the
same situation for the orchid Geoblasta pennicillata (Rchb. f.) Hoehne ex M.N Correa, which
attracts its pollinator by having a labellum shaped like the female wasps of the species
Campsomeris bistrimacula Lepeletier. In Cryptostylis R. Br. orchids, the larger labellum
functions as a stimulant for pollinating wasps; therefore, in some orchid species, the
labellum is under constant selection pressure from pollinators [93].

The differences between Vanilla planifolia morphotypes were concentrated in the shape
of the labellum attraction zone and were exposed to selection by pollinators (Figure 12). In
the Huasteca region of Hidalgo, the vanilla plantations in acahual and with little management
of the crop present natural pollination due to the presence of wasps and bees of the Euglossa
Latreille and Eulaema Lepeletier genera [32,94]. Pollinators influence the variation in the
size, shape, and color of floral structures in some plant species [44,95,96]; therefore, they
are one of the main causes of floral evolution [45,46]. The morphological variation in
the flowers depends on the level of specialization with the pollinator (the case of some
orchids) [97]; for this reason, the variation in size of the flower is minimal because there
is a strong relationship between the pollinator and the flower that is stable in climatic
variations [44,93,98,99]. In addition, the labellum is a very important organ, not only to
identify and differentiate highly related taxonomic entities [100], but also to study the
processes and mechanisms that generate variation and adaptation within and between
populations of V. planifolia, as has been reported for other regions of Mexico [40,42].

Diversity 2023, 15, x FOR PEER REVIEW 21 of 27 
 

 

12). In the Huasteca region of Hidalgo, the vanilla plantations in acahual and with little man-

agement of the crop present natural pollination due to the presence of wasps and bees of 

the Euglossa Latreille and Eulaema Lepeletier genera [32,94]. Pollinators influence the var-

iation in the size, shape, and color of floral structures in some plant species [44,95,96]; 

therefore, they are one of the main causes of floral evolution [45,46]. The morphological 

variation in the flowers depends on the level of specialization with the pollinator (the case 

of some orchids) [97]; for this reason, the variation in size of the flower is minimal because 

there is a strong relationship between the pollinator and the flower that is stable in climatic 

variations [44,93,98,99]. In addition, the labellum is a very important organ, not only to 

identify and differentiate highly related taxonomic entities [100], but also to study the 

processes and mechanisms that generate variation and adaptation within and between 

populations of V. planifolia, as has been reported for other regions of Mexico [40,42]. 

 

Figure 12. Labellum morphological variables exposed to selection by pollinators of V. planifolia. 

Possibly, the variation in the morphology of the labellum of the populations of the 

Huasteca Hidalguense are mainly related to the size of the pollinator; however, it is neces-

sary to carry out studies on the biological interactions between plant and pollinator [101], 

as in other species of Vanilla [102], to determine if the shape between the morphotypes is 

related to the size of the pollinators present in the region or if the variation corresponds 

to other environmental factors as a product of the plasticity or accommodation of the 

plants to the environment in which they develop. In addition, to confirm that the morpho-

logical variation reflects the genetic diversity of V. planifolia, analyses with molecular 

markers must be carried out to characterize the germplasm [103,104] and propose generic 

improvement programs (new hybrids or new varieties) [105] and conservation programs 

in the Huasteca de Hidalgo, Mexico. 

5. Conclusions 

In the Huasteca region of Hidalgo, Mexico, 22 accessions of V. planifolia were located 

in acahuales and Coffea arabica Benth plantations with native vegetation and minimal man-

agement. The potential distribution map shows that, based on the probability of presence, 

the populations of V. planifolia were located in three groups from the highest to lowest 

Figure 12. Labellum morphological variables exposed to selection by pollinators of V. planifolia.



Diversity 2023, 15, 678 20 of 25

Possibly, the variation in the morphology of the labellum of the populations of the
Huasteca Hidalguense are mainly related to the size of the pollinator; however, it is necessary
to carry out studies on the biological interactions between plant and pollinator [101], as
in other species of Vanilla [102], to determine if the shape between the morphotypes is
related to the size of the pollinators present in the region or if the variation corresponds to
other environmental factors as a product of the plasticity or accommodation of the plants
to the environment in which they develop. In addition, to confirm that the morphological
variation reflects the genetic diversity of V. planifolia, analyses with molecular markers must
be carried out to characterize the germplasm [103,104] and propose generic improvement
programs (new hybrids or new varieties) [105] and conservation programs in the Huasteca
de Hidalgo, Mexico.

5. Conclusions

In the Huasteca region of Hidalgo, Mexico, 22 accessions of V. planifolia were located
in acahuales and Coffea arabica Benth plantations with native vegetation and minimal man-
agement. The potential distribution map shows that, based on the probability of presence,
the populations of V. planifolia were located in three groups from the highest to lowest
probability of the presence of vanilla. The main environmental variables that delimit the
potential distribution of V. planifolia in the Huasteca of Hidalgo were precipitation and
altitude. In addition, five different labellum morphotypes which were possibly related to
plant–pollinator interaction were obtained. However, it is necessary to deepen the study of
the morphology associated with the floral ecology of the germplasm of V. planifolia in the
Huasteca of Hidalgo.
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Appendix A

Table A1. Morphotype averages for each of the variables.

Variable M I M II M III M IV M V Variable M I M II M III M IV M V

A1 2.68 2.46 2.31 2.66 2.48 D 7.97 8.49 8.2 8.11 7.63
A2 17.12 17.17 16.55 17.03 16.04 E1 7.25 6.55 8.32 7.68 7.18
A3 17.16 17.23 16.72 17.09 16.18 E2 7.36 6.63 6.07 6.3 6.47
A4 17.41 17.41 16.62 17.29 16.23 E3 6.62 6.94 4.55 5.71 5.58
A5 17.64 17.6 17.22 17.57 16.7 E4 6.33 6.81 5.75 6.78 5.94
A 17.11 17.16 16.59 17.04 16.07 E5 5.26 5.31 4.85 4.88 4.78
b1 2.46 2.3 2.22 2.38 2.38 E6 6.64 6.34 6.08 6.05 6.02
b2 9.64 9.77 8.94 9.54 8.94 E7 6.12 6.54 4.96 5.66 5.42
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Table A1. Cont.

Variable M I M II M III M IV M V Variable M I M II M III M IV M V

b3 7.11 7.01 6.09 6.65 6.67 E8 5.18 5.34 4.45 4.78 4.56
b4 9.82 9.79 9.28 9.58 9.2 E 4.55 4.74 4.25 4.34 4.13
b5 10.99 11.06 10.01 10.81 10.22 F1 3.57 3.2 3.42 3.05 3.23
b6 9 9.97 8.65 9.05 8.43 F2 5.38 4.8 4.24 4.5 4.63
b7 8.89 10.04 8.44 9.01 8.28 F3 5.1 4.91 3.88 4.34 4.43
b8 11.24 11.08 10.49 10.86 10.57 F4 2.98 3.46 2.38 2.74 2.64
B 8.53 8.57 8.25 8.54 8 F5 6.01 5.49 4.94 5.12 5.23

C1 9.88 10 9.05 9.58 9.05 F6 7.92 7.16 6.71 6.82 6.97
C2 12.41 12.07 10.34 11.42 11.26 F7 7.08 7.42 5.08 6.2 6.03
C3 11.94 12.07 9.64 10.98 10.76 F8 5.77 5.59 4.63 4.99 5.04
C4 9.97 9.94 9.21 9.6 9.15 F 2.69 2.65 2.53 2.47 2.41
C5 14.77 14.81 12.8 13.97 13.51 G1 3.88 3.61 2.69 3.42 3.19
C6 11.43 11.1 10.58 10.88 10.65 G2 4.71 4.2 4.49 4.07 4.3
C7 10.92 11.11 9.93 10.65 10.2 G3 3.79 3.75 2.96 3.36 3.18
C8 14.93 14.75 13.11 14.04 13.68 G4 3.64 3.16 3.23 3.13 3.11
C 8.55 8.59 8.26 8.47 8.01 G5 3.34 3.14 2.67 2.98 2.88

D1 7.69 8.83 7.17 7.86 7.22 G 2.54 2.38 2.22 2.34 2.09
D2 12.77 11.23 12.55 12.44 12.07 aA 24.9 23.16 22.42 24.5 25.21
D3 11.12 11.53 9.12 11.04 10.13 aB 32.09 29.98 29.98 31.16 33.11
D4 8.47 8.41 9.26 8.46 8.14 aD 58.3 54.31 46.36 52.44 54.58
D5 11.02 11.57 10.11 10.82 10.29 aE 88.17 84.65 77.28 83.78 86.17
D6 9.15 9.56 8.68 8.96 8.52 aDE22 127.81 141.76 112.12 120.28 122.5
D7 9.16 9.51 9.06 9.01 8.6 aDE55 140.41 139.1 130.68 129.01 134.54
D8 11.2 11.36 10.79 10.94 10.54 aG 85.75 81.11 105.52 79.48 90.47
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