Zehneria grandibracteata (Cucurbitaceae), an overlooked new species from western Kenyan forests Neng Wei^{1,2,3}, Zhi-Xiang Zhong^{1,2}, David Kimutai Melly^{1,2,3}, Solomon Kipkoech^{1,2,3}, Benjamin Muema Watuma^{1,2,3}, Veronicah Mutele Ngumbau^{1,2,3,4}, Peris Kamau⁴, Guang-Wan Hu^{1,2}, Qing-Feng Wang^{1,2} 1 CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, CN-430074, China 2 Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China 3 University of Chinese Academy of Sciences, Beijing, CN-100049, China 4 East Africa Herbarium, National Museums of Kenya, P.O. Box 451660-0100, Nairobi, Kenya Corresponding author: Guang-Wan Hu (guangwanhu@wbgcas.cn) Academic editor: N. Holstein | Received 8 August 2020 | Accepted 6 October 2020 | Published 28 October 2020 Citation: Wei N, Zhong Z-X, Melly DK, Kipkoech S, Watuma BM, Ngumbau VM, Kamau P, Hu G-W, Wang Q-F (2020) *Zehneria grandibracteata* (Cucurbitaceae), an overlooked new species from western Kenyan forests. PhytoKeys 165: 85–98. https://doi.org/10.3897/phytokeys.165.57399 #### **Abstract** Zehneria grandibracteata, a new species of Cucurbitaceae from western Kenya, is described here, based on morphological and molecular data. It has long been misidentified as the widely-distributed species Z. scabra. However, it differs by its ovate leafy probract at the base of the inflorescences, subglabrous condition of the entire plant, shorter receptacle-tube and filaments, as well as denser and sessile inflorescences. Furthermore, the molecular phylogenetic analysis of Zehneria, based on nrITS sequences, further supports the argument that Z. grandibracteata should be segregated from Z. scabra. #### **Keywords** East Africa, Flora of Kenya, phylogeny, taxonomy, Zehneria scabra #### Introduction Zehneria Endlicher (1833: 69) is a genus of Cucurbitaceae. It contains over 60 species, which are mainly distributed in tropical and subtropical Africa, Madagascar and southeastern Asia (Schaefer and Renner 2011a; Dwivedi et al. 2018). Zehneria is character- ised by male flowers largely with the three stamens all 2-thecate, the thecae ± erect, straight or little curved (Simmons and De Wilde 2000; Schaefer and Renner 2011a). De Wilde and Duyfjes (2006a, b, 2009a, b) split several genera from *Zehneria* s.l. (in the sense of Jeffrey), with only the type species, *Zehneria baueriana* Endlicher (1833: 69) remaining in *Zehneria* s.s.. Besides, De Wilde and Duyfjes (2006a) proposed morphological characters including leaf drying colour, stamen insertion, presence or absence of staminode, presence or absence of probract and shape of stigmatic lobes, disc and seed, in their circumscription of *Zehneria* s.s. and the related genera. Nevertheless, this treatment is not supported by the molecular phylogeny inferred by Schaefer et al. (2009), Schaefer and Renner (2011a, b) and Dwivedi et al. (2018), who argued against over-splitting of the group. East Africa has been recognised as a neglected diversity centre for *Zehneria* (Wei et al. 2017), with several new taxa discovered and named in recent years (Zhou et al. 2016; Wei et al. 2017; Watuma et al. 2019; Ngumbau et al. 2020). Besides, Africa was also referred to as the origin centre (Schaefer et al. 2009; Dwivedi et al. 2018), followed by recent long-distance dispersal to other continents and islands. During field investigations of the Kenyan flora in 2016, a *Zehneria* species with evident leafy probracts attracted the authors' attention for the first time. Herbarium specimens had been identified as *Z. scabra* Sond. in Harvey and Sonder (1862: 486), a widespread species with great morphological variability. In the following years, more specimens were collected and detailed morphological studies were conducted. Measurements of morphological characters, as well as molecular phylogenetic analysis, based on nrITS, all support the segregation of this *Zehneria* from *Z. scabra*. Hence, we describe it as *Z. grandibracteata* below. #### Materials and methods # Morphology Specimens of East African *Zehneria* deposited in the herbaria of K, EA and HIB were studied, as well as relevant digitised specimens from online databases, including specimens from the herbaria B, BR, BM, E and P (herbarium acronyms follow Thiers (2020)). Morphological measurements of the details given in the description are based on living materials during the field trips, except tendrils and seeds confirmed by specimen observations at herbaria. The detailed morphological comparison between *Z. scabra* and our collection was initially made. Given *Z. longiflora* G.W. Hu & Q.F. Wang in Wei et al. (2017: 89) has largely overlapped the distribution area with our collection, as well as the great similarity with the latter, *Z. longiflora* was also included for morphological comparison. # Molecular phylogeny Aiming to delimitate the phylogenetic position of our *Zehneria* collections, a total of 63 sequences were used to infer a phylogenetic tree. Amongst these sequences, 60 ac- cessions representing 38 Zehneria species were included and another three accessions from Cucumis, Coccinia, Benincasa were treated as outgroups, according to Schaefer et al. (2009) and Dwivedi et al. (2018). Nineteen sequences of African Zehneria species were newly generated in this study, while the other sequences were downloaded from GenBank. The source of the materials and the corresponding GenBank accession numbers were given in Table 1. Total genomic DNA was extracted from silica gel-dried material using a modified CTAB protocol (Doyle and Doyle 1987) (see Suppl. material 1). The primers of nrITS region were obtained from White et al. (1990). PCR amplification, sequencing and data analysis were performed according to Dwivedi et al. (2018). Forward and reverse sequences were manually checked and edited where necessary. Sequences were aligned by MAFFT v. 7 (Katoh and Standley 2013). Gblocks (Talavera and Castresana 2007) was used to trim with the default setting to remove any ambiguous alignment. Additionally, these alignments were visually inspected in Geneious 8.0.2 (Kearse et al. 2012) and manually adjusted where needed. The best-fit model for Bayesian Inference (BI) and Maximum Likelihood (ML) analyses was estimated by ModelFinder (Kalyaanamoorthy et al. 2017) under the Bayesian Information Criterion (BIC). ML analyses were inferred by IQ-TREE v.1.6.8 (Nguyen et al. 2015) under the Ultrafast bootstrapping algorithm (Guindon et al. 2010) with 1000 bootstrap replicates. BI analyses were performed with MrBayes 3.2.7 (Ronquist et al. 2012). Two independent Markov Chain Monte Carlo analyses (MCMC) were run with four simultaneous chains of 10 million generations sampling one tree every 1000 generations with the initial 25% discarded as burn-in. The remaining trees were then used to construct majority-rule consensus trees. The average deviation of split frequencies was verified by reaching a value below 0.01 at the end of MCMC analyses. The effective sample sizes (ESS) for all parameters and statistics were assessed using Tracer version 1.7.1 (Rambaut et al. 2018). The phylogenetic tree was visualised using the online tool iTOL (Letunic and Bork 2007). #### Results # Morphological comparison The Table 2 distinguishes morphological characters of these three species, mainly based on Jeffrey (1967, 1978), Wei et al. (2017) and observations on specimens. Our collection can be readily recognisable by its large leafy probract. Besides, it also differs from the other two species by morphological characters including thick stem, subglabrous leaf blade, sessile inflorescence and size of perianth, pedicel, filament, style and fruit. # Phylogenetic analysis In total, 60 sequences representing 38 Zehneria species were included in our dataset. Multiple sequences per species were identical as to some species, like Z. grandibracteata, Z. anomala, Z. tuberifera and Z. longiflora. They might, however, be different regard- **Table 1.** GenBank accession numbers for sequence data used in this study. | Species and specimen-voucher | Accession No. | | |---------------------------------------------------|---------------|--| | Penincasa hispida, Renner et al. 2760 (M) | KJ467162 | | | Coccinia grandis, DeWilde & Duyfjes 22270 (L) | HQ608207 | | | Eucumis melo, Mitchell & Schaefer 68 (TUM) | KY434575 | | | Neoachmandra boholensis, Ramos 2-107/37215 (US) | KY523290 | | | Neoachmandra capillacea, Achigan-Dako 07nia757 | AM981144 | | | leoachmandra capillacea, Wieringa 11246 (M) | KY523291 | | | leoachmandra cunninghamii, Telford 12489 (M) | KY523292 | | | Neoachmandra filipes, Brass 31994 (US) | KY523293 | | | leoachmandra gilletii, De Wilde 11246 (L) | KY523280 | | | leoachmandra hallii, Achigan-Dako 91sn003 | AM981143 | | | Ieoachmandra hermaphrodita, Phonsena 440938 (K) | KY523281 | | | Ieoachmandra japonica, Su EM0045T001 | MK771856 | | | leoachmandra japonica, Zhang 1518 (M) | KY523294 | | | leoachmandra leucocarpa, Junghuhn s.n. (U) | KY523295 | | | leoachmandra odorata, He s.n. (K) | KY523307 | | | Ieoachmandra odorata, Wallich 6706 (M) | KY523297 | | | leoachmandra pentaphylla, Guillaumin 8611 (US) | KY523286 | | | leoachmandra pentaphylla, McKee 3504 (US) | KY523300 | | | leoachmandra samoensis, Sykes 170278 (L) | KY523301 | | | leoachmandra samoensis, Whistler W2908 (B) | MG680626 | | | leoachmandra thwaitesii, Pallithanam 3637 (BLAT) | KY523314 | | | Neoachmandra wallichii, Fujikawa 053262 (TUM) | KY523310 | | | Tehneria anomala, Gilbert 1681 (EA) | MT733849 | | | Tehneria anomala, Gillett 16503 (M) | KY523289 | | | Tehneria baueriana, McKee 38396 (GH) | KY523288 | | | Jehneria baueriana, Sykes 533 (US) | KY523284 | | | Tehneria bodinieri, Dwivedi 1004 (DUH) | KY523266 | | | Jehneria bodinieri, Tanaka 080913 (MBK) | KY523267 | | | Tehneria emirnensis, Mitchell & Schaefer 25 (TUM) | KY523268 | | | Tehneria grandibracteata, SAJIT 6670 (EA/HIB) | MT733851 | | | Tehneria grandibracteata, SAJIT 6966 (EA/HIB) | MT733852 | | | Tehneria grandibracteata, SAJIT 6968 (EA/HIB) | MT733850 | | | Tehneria guamensis, Perlman 14 (US) | KY523273 | | | Tehneria longiflora, SAJIT 6669 (EA/HIB) | MT733853 | | | Tehneria longiflora, SAJIT 6672 (EA/HIB) | MT733854 | | | ehneria marlothii, Merxmueller & Giess 30031 (M) | KY523283 | | | Tehneria maysorensis, CALI 10625 | KY523386 | | | Tehneria maysorensis, Dwivedi 1002 (DUH) | KY523256 | | | Zehneria microsperma, Loveridge 64 (GH) | KY523274 | | | Tehneria minutiflora, SAJIT 8861 (EA/HIB) | MT733855 | | | Tehneria minutiflora, Stolz 1139 (M) | KY523296 | | | Tehneria monocarpa, SAJIT 7172 (EA/HIB) | MT733856 | | | Tehneria monocarpa, SAJIT 7173 (EA/HIB) | MT733857 | | | Yehneria oligosperma, Luke 11710 (EA) | MT733858 | | | ehneria pallidinervia, Holstein 52 (M) | KY523287 | | | ehneria pallidinervia, SAJIT 6241 (EA/HIB) | MT733859 | | | ehneria perpusilla, Santapau 13074 (BLAT) | KY523255 | | | ehneria perrieri, Mitchell & Schaefer 10 (TUM) | KY523270 | | | ehneria pisifera, Hoogland & Pullen 5926 (GH) | KY523275 | | | ehneria polycarpa, Mitchell & Schaefer 36 (TUM) | KY523276 | | | Tehneria racemosa, Mendes 1841 (M) | KY523298 | | | lehneria scabra, Schaefer 05/317 | HQ202009 | | | Tehneria scabra, SAJIT 6501 (EA/HIB) | MT733860 | | | ehneria scabra, SAJIT 6554 (EA/HIB) | MT733861 | | | ehneria scabra, SAJIT 6736 (EA/HIB) | MT733863 | | | ehneria scabra, SAJIT 6873 (EA/HIB) | MT733865 | | | Species and specimen-voucher | Accession No. | | |-------------------------------------------|---------------|--| | Zehneria scabra, Schaefer s.n. | KY523278 | | | Zehneria scrobiculata, Bolus 11558 (M) | KY523285 | | | Zehneria scrobiculata, Schimper 164 (M) | KY523299 | | | Zehneria tahitensis, Sachet 2662 (US) | KY523313 | | | Zehneria tridactyla, Espirito 3053 (M) | KY523321 | | | Zehneria tuberifera, SAJIT-6350 (EA/HIB) | MT733866 | | | Zehneria tuberifera, SAJIT-W0044 (EA/HIB) | MT733867 | | **Table 2.** Dissimilar characters to distinguish *Zehneria grandibracteata*, *Z. longiflora* and *Z. scabra*, based on Jeffrey (1967, 1978), Wei et al. (2017) and own observations. | Character | Z. grandibracteata | Z. scabra | Z. longiflora | |--------------------|------------------------------------|------------------------------------------|--------------------------------------| | Stem | Thick, up to 2.5 cm in diam., | Thick, up to 1.5 cm in diam., | Thin, up to 0.8 cm in diam., | | | subglabrous | puberulous | subglabrous | | Leaf blade | Membraneous, deeply cordate | Membraneous to subcoriaceous, deeply | Slightly fleshy, membraneous, | | | to subtruncate at the base, | cordate to subtruncate at the base, | subglabrous, cordate to subtruncate | | | subglabrous, with sparsely | puberulous on both sides or sparsely | at the base, with sparsely scattered | | | scabrid setulose on both sides | scabrid-setulose on the veins beneath | bristles on adaxial surface only | | Male inflorescence | Sessile, subumbelliform | Subumbelliform or shortly racemiform | Sessile or pedunculated, | | | | sessile or pedunculate axillary clusters | subumbelliform or racemiform | | Probract | Well-developed, leafy, ovate, up | Linear, hooked or curly, minute, | Linear, hooked or curly, less than | | | to 18 × 12 mm, incurved, beak- | caduceus | 10 mm long, minute, caduceus | | | like, persistent | | | | Perianth | Receptacle-tube 1.8-3 mm long, | Receptacle-tube 2.0-5.5 mm long, | Receptacle-tube 6.0-7.5 mm long, | | | hairy only on inner surface, petal | hairy on both inner and outside | hairy only on inner surface, petal | | | lobes ca. 1.8 mm long | surface, petal lobes 1.5–3.5 mm long | lobes 2.0-3.0 mm long reflexed | | Pedicle | 3-12 mm long in male, 4-6 mm | 1.5-10 mm long in male, 0.4-11.0 | 4-20 mm long in male, 8-25 mm | | | long in female | (20.0) mm long in female | long in female | | Filament length | ca. 1.5 mm | 1–2.5 mm | ca. 3.5 mm | | Style length | 2-3.5 mm long, stigma ca. | 2-4 mm long, stigma ca. 2 mm in | 6-7 mm long, stigma ca. 2 mm in | | , , | 1.5 mm in diam. | diam. | diam. | | Ovary | Glabrous, subglobose, with neck | Puberulous, subglobose to fusiform to | Glabrous, subglobose, with neck up | | | up to 1 mm long | beaked, with neck up to 2 mm long | to 3.5 mm long | | Fruit | 2–16 in clusters, sparsely | 1–10 in clusters, usually glabrous, | 2–8 in clusters, densely covered | | | covered with tiny protuberances, | globose, 8–13 mm in diameter, or | with tiny protuberances, globose, | | | subglobose, 8–10 mm in diam. | ellipsoid, 10–12 × 7–8 mm | 9–11 mm in diam. | ing the other species, such as *Z. scabra*, *Z. pallidinervia* and *Z. minutiflora*. The final trimmed alignment of 63 sequences has 721 columns, with 92 parsimony-informative sites. *Z. grandibracteata* differs in the 71th position (G vs. A) and 208th position (A vs. T) of ITS1 alignment from other *Zehneria* species. HKY+F+G4 was selected as the best-fit model to infer the Maximum Likelihood tree and Bayesian tree. As shown in Figure 1, three accessions of *Z. grandibracteata* clustered together with robust support (PP = 0.99; BS = 98%). Then, it joined the other three East African taxa group (*Z. oligosperma*, *Z. tuberifera* and *Z. longiflora*), which offers morphological synapomorphies and a conclusive biogeographic scenario of its evolution. These four species formed a monophyly with high support (PP = 0.99; BS = 96%). However, accessions of *Z. scabra* did not form a monophyly as expected (newly-sequenced accessions are monophyletic, but two previously-published accessions are nested in *Z. monocarpa*). Despite the new species being closely related to *Z. scabra*, they are not recognised as monophyletic in our phylogenetic tree. **Figure 1.** Bayesian tree inferred from the nrITS sequences dataset to elucidate the phylogenetic position of *Zehneria grandibracteata*. Bayesian posterior probability values > 0.9 and bootstrap values ≥70% are shown below the branches. The new species is highlighted in bold and red colour and *Z. scabra* is noted in blue colour. ### Taxonomic description Zehneria grandibracteata G.W. Hu, Neng Wei & Q.F. Wang, sp. nov. urn:lsid:ipni.org:names:77212572-1 Figures 3, 4 **Diagnosis.** It is close to *Z. scabra*, but differs by its consistently ovate leafy probracts (linear minute or even absent in *Z. scabra*), subglabrous condition of the entire plant (puberulous in *Z. scabra*), shorter receptacle-tube (1.8–3 mm long vs. 2–5.5 mm in *Z. scabra*) and filaments (ca. 1.5 mm long vs. 1–2.5 mm in *Z. scabra*), as well as sessile and denser inflorescences (cluster of 8–30 in male, 6–22 in female vs. 2–60 in male, 1–16 in female in *Z. scabra*) (Table 2). **Type.** Kenya. Nandi County, South Nandi Forest, Morongiot area, 0°04'N, 35°00'E, elev. 1980 m, 20 April 2018, *Sino-Africa Joint Investigation Team (SAJIT)* 006973 (Female) (holotype HIB!; isotype EA!, HIB!) **Description.** Perennial climber, 8 m or longer; rhizome robust, woody when old, up to 2.5 cm in diam., roots slender, branched; stem many-branched, grooved, usually contorted when aged, sparsely puberulous except densely hairy at nodes. Leaves simple, petioles 2–7 cm long, grooved adaxially, subglabrous; blades 38–65 × 28–46 mm, ovate-cordate in outline, shallowly 3-lobed occasionally, membraneous, subglabrous, deeply cordate to subtruncate at base, margin slightly sinuate-toothed, apex acuminate and apiculate; scabrid-punctate above, 3-11 main veins sunken adaxially and protrudent abaxially, with sparsely-scattered bristles on both sides, especially on veins and margins; tendrils simple, up to 15 cm long. Dioecious. Inflorescence base with a welldeveloped leafy probract, up to 18 × 12 mm, ovate, incurved, beak-like, persistent, 2-3 main veins from base, base cordate, apex acuminate. Male inflorescences axillary, sessile, subumbelliform, 8- to 30-flowered, pedicels 3-12 mm long; receptacle-tube 1.8-3 mm long, campanulate, greenish-cream, turning into orange when aged, inner surface densely hairy, outside surface glabrous; sepal lobes 5, ca. 1 mm long, dentiform, pale green; petal lobes 5, ca. 1.8 × 1.5 mm, triangular-ovate, white, turning cream to orange when aged. Stamens 3, inserted in middle of tube; filaments ca. 1.5 mm long, subglabrous, lower half fused with tube; anthers ca. 1 mm long, ellipsoid, 2-thecae; thecae 1 mm long, vertical, slightly curved, connective elliptic, with finely papillose hairs; disc ca. 1 mm in diam., depressed globose, obscurely trilobed, elevated. Female inflorescences axillary, sessile, 6- to 22-flowered in umbelliform clusters; pedicel 4-6 mm long; perianth similar to male flowers; ovary subglobose, glabrous, with evident neck up to 1 mm long; style 2-3.5 mm long, glabrous, stigma ca. 1.5 mm in diam., with 3 down-curved papillose lobes; staminodes 3, ca. 1.5 mm long, linear, glabrous, at base of the tube; disc ca. 1.8 mm in diam., annular, 3-lobed, surrounding base of style, free from tube. Fruits clustered, 8-10 mm in diam., subglobose, subglabrous, sparsely covered with tiny protuberances, turning from green to orange when mature; pedicel 5–10 mm long. Seed ovate in outline, narrowly bordered, lenticular, compressed. **Distribution and ecology.** Numerous populations of this new species have been documented in the western parts of Kenya's forests, including Morongiot and Kobujoi Figure 2. Distribution map of Zehneria grandibracteata in Kenya. Red dots indicate its documented localities. areas of South Nandi Forest, Kapsasur area of Nandi Centre, Yale River Trail of Kakamega Forest, Timbilil and Sambret Catchment area of south-western Mau Forest. It usually climbs over tree trunks or twines around shrubs in moist forests or at forest margin at elevations of 1950–2230 m. **Conservation status.** This new species was found in the western Kenyan forests with numerous localities. It is locally quite common in the wild and frequently grows in forests or at forest margins. Thus, we assess it to be "Least Concern" (LC) based on IUCN Red List Categories and Criteria (IUCN 2001). **Phenology.** Flowering and fruiting from April to July and November to January, corresponding to the wet seasons of the bimodal rainfall pattern of this region. **Etymology.** The epithet "grandibracteata" refers to the fairly large leafy probract of this new species. **Additional specimens examined (Paratypes).** Kenya. Nandi County, South Nandi Forest, Kobujoi area, 34°57′E, 0°04′N, elev. 1970 m, 11 December 2016, *SA*- **Figure 3.** Photographs showing vegetative characters of *Zehneria grandibracteata* **A** climbing stem of female plant in habitat **B** adaxial lamina **C** creeping stem **D** abaxial lamina **E** probracts at different developing stages **F** tendril and probract at base of female inflorescence. Scale in picture **E** represents cm. **Figure 4.** Photographs showing reproductive characters of *Zehneria grandibracteata* **A** male inflorescence **B** male flower, side view **C** male flower, top view **D** dissected male flower showing disc and stamens **E** female inflorescence **F** female flower, side view **G** female flower, top view **H** dissected female flower showing staminodes **I** pistil and disc **J** infructescence **K** cross-section of fruit. Scale bars: 2 mm (**B–D, F–I**); 1 cm (**J, K**). JIT 006670 (EA! HIB!); Nandi County, South Nandi Forest, Morongiot area, 0°04'N, 34°55'E, elev. 1980 m, 19 April 2018, SAJIT 006966 (EA! HIB!) and SAJIT 006968 (EA! HIB!); Nandi County, Nandi Centre, Kapsasur area, elev. 1970 m, 18 April 2018, SAJIT s.n. (HIB!); Kakamega County, Kakamega Forest, Yale River Trail, 0°16'N, 34°52'E, 7 January 2017, SAJIT s.n. (HIB!); Kericho County, Changana Tea Estate, 5.3 miles south of Kericho Town, 0°27'S, 35°18'E, 22 November 1967, Perdue R.E. and Kibuwa S.P. 9179 (BR! EA! K!); Kericho County, Sambret Catchment of southwestern Mau Forest, 0°22'S, 35°23'E, 2160 m, 5 July 1962, Kerfoot O. 3375 (EA! K!); Kericho County, Sambret Catchment of Southwestern Mau Forest, 0°26'S, 35°22'E, 2230 m, 16 Jan 1963, Kerfoot O. 4696 (EA!); Kericho County, Timbilil of southwestern Mau Forest, 0°18'S, 35°31'E, 2130 m, Jan 1963, Kerfoot O. 4708 (EA!). #### **Discussion** Our Z. grandibracteata collections are recognised as monophyletic, separated from the related Z. scabra. The possible reasons to explain the paraphyly of Z. scabra in our phylogeny are 1) the nrITS provides limited phylogenetically-informative sites in Zehneria and mutations on few loci produced inconsistent phylogenetic topology; 2) the two accessions collected by Schaefer here probably should be Z. monocarpa, which was separated from Z. scabra recently (Ngumbau et al. 2020). Furthermore, we also found that species of Neoachmandra in the sense of De Wilde and Duyfjes (2006a) and De Boer et al. (2015), are paraphyly. In line with the conclusion made by Dwivedi et al. (2018), the whole genus tended to be separated into two major clades (clade 1 and clade 2), with African taxa being the basal lineages. Even though the morphological characters proposed by De Wilde and Duyfies (2006a) are not suitable for splitting groups (Dwivedi et al. 2018), they are still important and helpful characters when identifying at the species level. The ovate leafy probracts in our new species are readily distinguishable, while probracts on other East African taxa tend to be minute linear hooked or even caducous. Geographically, it is only documented in western Kenyan forests (Figure 2), while Z. scabra is widely distributed in the pantropical Old World region. Furthermore, the molecular phylogenetic analysis of Zehneria, based on nrITS sequences, also supports the segregation of Z. grandibracteata from Z. scabra. Combined with morphological and phylogenetic analyses, Z. grandibracteata is confirmed as new to science. The broadly circumscribed concept of *Zehneria* may represent a better natural group, while there is no comprehensive classification system for this group until now. Jeffrey (1962) tried to divide *Zehneria* into two subgenera, namely subg. *Zehneria* and subg. *Pseudokedrostis* (Harms 1923: 616) Jeffrey (1962: 368) (largely accord with clade 1 and clade 2 here), mainly based on the position of stamen insertion, the thecae and connective of anther and length of pedicel. Viewing from the phylogenetic tree inferred by Dwivedi et al. (2018), as well our tree here, Jeffrey's morphological summaries mostly work well. Besides, the two fruit shapes, short (sub)globose and long fusiform/ellipsoid, largely fit in with clade 1 and clade 2, respectively, though several taxa with round fruits could also be found in clade 2. All these characters would provide insights into building a classification system within the genus *Zehneria*. Future biogeographical analysis, based on a robust phylogenic framework, would substantially improve our understanding towards its origin and dispersal history. ## Acknowledgements We would like to thank the following herbaria BM, BR, EA, HIB, K and P for hosting our visits or providing relevant high-resolution images during our study. Gratitude is also given to the subject editor Norbert Holstein and the reviewer Hanno Schaefer for providing useful comments and suggestions on earlier drafts of the manuscript and to Mrs. Lunlun Gao from Huazhong Agricultural University for preparing the distribution map. Lastly, we are also grateful to the Kenya Forest Service (KFS) for issuing fieldwork permits (permit number: RESEA/1/KFS 98 and RESEA/1/KFS 22) to conduct the field investigations. This work was supported by grants from the National Natural Science Foundation of China (grant number 31970211) and from Sino-Africa Joint Research Center, CAS (SAJC201614). #### References - De Boer HJ, Cross HB, De Wilde WJJO, Duyfjes BEE, Gravendeel B (2015) Molecular phylogenetic analyses of Cucurbitaceae tribe Benincaseae urge for merging of *Pilogyne* with *Zehneria*. Phytotaxa 236(2): 173–183. https://doi.org/10.11646/phytotaxa.236.2.6 - De Wilde WJJO, Duyfjes BEE (2006a) Redefinition of *Zehneria* and four new related genera (Cucurbitaceae), with an enumeration of the Australasian and Pacific species. Blumea 51(1): 1–88. https://doi.org/10.3767/000651906X622346 - De Wilde WJJO, Duyfjes BEE (2006b) *Scopellaria*, a new genus name in Cucurbitaceae. Blumea 51(2): 297–298. https://doi.org/10.3767/000651906X622238 - De Wilde WJJO, Duyfies BEE (2009a) Miscellaneous cucurbit news III. Gardens' Bulletin (Singapore) 61(1): 205–216. - De Wilde WJJO, Duyfjes BEE (2009b) Miscellaneous South East Asian cucurbit news II. Reinwardtia 12(5): 405–414. - Doyle JJ, Doyle JL (1987) A rapid isolation procedure from small quantities of fresh leaf tissue. Phytochemical Bulletin 19(1): 11–15. - Dwivedi MD, Barfield S, Pandey AK, Schaefer H (2018) Phylogeny of *Zehneria* (Cucurbitaceae) with special focus on Asia. Taxon 67(1): 55–65. https://doi.org/10.12705/671.4 - Endlicher SFL (1833) Prodromus Florae Norfolkicae. Beck, Vienna, 100 pp. https://doi.org/10.5962/bhl.title.6703 - Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 59(3): 307–321. https://doi.org/10.1093/sysbio/syq010 - Harms H (1923) Über Melothria pallidinervia Zimmermann. Notizblatt des Botanischen Gartens und Museums zu Berlin-Dahlem 8: 614–616. - Harvey WH, Sonder OW (1862) Flora capensis: being a systematic description of the plants of the Cape colony, Caffraria, and Port Natal (and neighbouring territories), Vol. 2. Hodges, Smith, and Co. Dublin, 621 pp. https://doi.org/10.5962/bhl.title.821 - IUCN (2001) IUCN Red List Categories and Criteria, Version 3.1. IUCN Species Survival Commission, Gland, Switzerland and Cambridge, United Kingdom, 30 pp. - Jeffrey C (1962) Notes on Cucurbitaceae, including a proposed new classification of the family. Kew Bulletin 15(3): 337–371. https://doi.org/10.2307/4115586 - Jeffrey C (1967) Cucurbitaceae. In: Beentje HJ, Ghazanfar SA (Eds) Flora of Tropical East Africa. Royal Botanic Gardens, Kew, Richmond, 156 pp. - Jeffrey C (1978) Cucurbitaceae. In: Launert E (Ed.) Flora Zambesiaca. Managing Committee, London, 414–499. - Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285 - Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/mst010 - Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: An integrated and extendable desktop software platform for the organisation and analysis of sequence data. Bioinformatics (Oxford, England) 28(12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 - Letunic I, Bork P (2007) Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics (Oxford, England) 23(1): 127–128. https://doi.org/10.1093/bioinformatics/btl529 - Ngumbau VM, Nyange M, Wei N, Malombe I, Hu GW, Wang QF (2020) *Zehneria monocarpa* (Cucurbitaceae), a new species from the relicts of Kenya's coastal forests. Phytotaxa 443(3): 258–264. https://doi.org/10.11646/phytotaxa.443.3.2 - Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1): 268–274. https://doi.org/10.1093/molbev/msu300 - Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5): 901–904. https://doi.org/10.1093/sysbio/syy032 - Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029 - Schaefer H, Renner SS (2011a) Cucurbitaceae. In: Kubitzki K (Ed.) The Families and Genera of Vascular Plants (Vol. 10). Springer Verlag, Berlin, 112–174. https://doi.org/10.1007/978-3-642-14397-7 - Schaefer H, Renner SS (2011b) Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 60(1): 122–138. https://doi.org/10.1002/tax.601011 - Schaefer H, Heibl C, Renner SS (2009) Gourds afloat: A dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous overseas dispersal events. Proceedings. Biological Sciences 276(1658): 843–851. https://doi.org/10.1098/rspb.2008.1447 - Simmons CM, De Wilde WJJO (2000) *Zehneria* subgenus *Zehneria* (Cucurbitaceae) in Java and Bali. Blumea 45(1): 235–243. - Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56(4): 564–577. https://doi.org/10.1080/10635150701472164 - Thiers B (2020 onwards) Index herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/science/ih/ [accessed 2 May 2020] - Watuma BM, Wei N, Melly DK, Kipkoech S, Kirika PM, Hu GW, Wang QF (2019) *Zehne-ria tuberifera* (Cucurbitaceae), a new species from Taita Hills, Kenya. Phytotaxa 411(3): 215–222. https://doi.org/10.11646/phytotaxa.411.3.5 - Wei N, Miyawa DO, David MK, Ngumbau VM, Zhong ZX, Mwachala G, Hu GW, Wang QF (2017) *Zehneria longiflora* (Cucurbitaceae), a new species from Kenya. Phytotaxa 324(1): 89–94. https://doi.org/10.11646/phytotaxa.324.1.7 - White TJ, Burns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR Protocols, a Guide to Methods and Applications. Academic, San Diego, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 - Zhou YD, Mbuni Y, Hu GW, Yan X, Mwachala G, Wang QF (2016) *Zehneria subcoriacea* (Cucurbitaceae), a new species from Kenya. Phytotaxa 277(3): 282–286. https://doi.org/10.11646/phytotaxa.277.3.6 # Supplementary material I # Modified CTAB protocol on the base of Doyle and Doyle (1987) Authors: Neng Wei, Zhi-Xiang Zhong, David Kimutai Melly, Solomon Kipkoech, Benjamin Muema Watuma, Veronicah Mutele Ngumbau, Peris Kamau, Guang-Wan Hu, Qing-Feng Wang Data type: molecular data Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited. Link: https://doi.org/10.3897/phytokeys.165.57399.suppl1