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Abstract

Bahiana is expanded from 1 to 2 species with the description of B. occidentalis K. Wurdack, sp. nov. as a
new endemic of the seasonally dry tropical forests (SDTFs) of Peru. The disjunct distribution of Bahiana
with populations of B. occidentalis on opposite sides of the Andes in northwestern Peru (Tumbes, San
Martin) and B. pyriformis in eastern Brazil (Bahia) adds to the phytogeographic links among the widely
scattered New World SDTFs. Although B. occidentalis remains imperfectly known due to the lack of
flowering collections, molecular phylogenetic results from four loci (plastid mazK; rbcL, and trnL-F; and
nuclear ITS) unite the two species as does gross vegetative morphology, notably their spinose stipules,
and androecial structure. Spinescence in Euphorbiaceae was surveyed and found on vegetative organs in
25 genera, which mostly have modified sharp branch tips. Among New World taxa, spines that originate
from stipule modifications only occur in Bahiana and Acidocroton, while the intrastipular spines of Philyra
are of uncertain homologies.
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Introduction

Seasonally dry tropical forest (SDTF) is a biome broadly characterized by a pronounced
dry season in addition to low mean annual precipitation, flora with diverse drought
adaptations (e.g., deciduousness, succulence), fertile non-acidic soils, fire intolerance,
and sparse herb layers with few grasses (Pennington et al. 2000, 2009; Banda-R et al.
2016). SDTFs have attracted much recent attention and research due to their rich
endemism, interesting historical biogeography, and conservation concern (Pennington
et al. 2009). In the New World they range from northwestern Mexico, through the
Caribbean, and across South America, roughly encircling the Amazon basin. Within
this range they are patchy, especially along the Pacific side and inter-Andean valleys of
South America, and are broken into floristic “nuclei” which display patterns of regional
endemism and a strong geographic component to floristic relatedness. Taxa that are
widespread or disjunct across their breadth are rare, but some distribution patterns and
modeling suggest SDTF formations were more continuous across South America dur-
ing the Pleistocene (Pleistocene Arc Theory; see Werneck et al. 2011). The processes
of SDTF flora assembly and species diversification are thought to revolve around rela-
tively long biome stability, dispersal limitations, and phylogenetic niche conservatism
(Pennington et al. 2009).

Euphorbiaceae are an important component of SDTF floras and in terms of
diversity are among the top six most species-rich families in woody plant invento-
ries (Banda-R et al. 2016). The family is represented by diverse endemics including
Bahiana spp., Croton spp., Gymnanthes boticario Esser, M.ELucena & M.Alves, and a
small species radiation of stem-succulent Euphorbia spp. in eastern Brazil (Hurbath et
al. 2021). Bahiana ]J.F.Carrién was recently described as a monotypic genus and nar-
row SDTF endemic, with a population of ca. 20 plants at the type locality in central
Bahia of eastern Brazil (Carrién et al. 2022). A cryptic plant from the Peruvian SDTF,
here described as a new species of Bahiana, that was first collected 40 years ago (1982)
and is now represented by 35 collections, has lain unidentified to genus (or misidenti-
fied) among Euphorbiaceae in the Missouri Botanical Garden herbarium. The princi-
pal impediment to recognition of this taxon has been that many of those collections
which were made for plot studies are sterile, and the reproductive collections are either
fruiting or else in very young staminate buds. I recognized five years ago that these
collections were united by leaf architecture and spinose stipules, and represented an
unusual, potentially undescribed Euphorbiaceae-Acalyphoideae. However, an initial
analysis of plastid #nL-F sequence data within the context of the family-wide phy-
logeny of Wurdack et al. (2005) only yielded placement with New World members of
Acalyphoideae tribe Bernardiaeae (clade A7; Bernardia clade, Carridn et al. 2022; Ber-
nardieae pro parte, Radcliffe-Smith 2001; Webster 2014), with no clear generic affilia-
tion. The phylogenetic analysis and description of Bahiana pyriformis by Carrién et al.
(2022) expanded the sampling for the Bernardia clade and provided critical context for
the Peruvian plant. The four genera comprising the Bernardia clade are diverse, even
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in habitat, where species of Adenophaedra (Miill.Arg.) Miill. Arg. and Caryodendron
H.Karst. are in rainforests, Bahiana are in SDTF, and Bernardia Houst. ex Mill. are
wide ranging from rainforests to dry-adapted taxa, including SDTF endemics.

Although the Peruvian plants remain incompletely known, morphological simi-
larities and new molecular phylogenetic results indicate that they should be recognized
as a second species of Bahiana. Hopefully its description will spur further efforts to
secure flowering collections and additional localities. Moreover, it adds an unusual
floristic connection among the SDTFs of South America. Given the fragmented and
sometimes erroneous information on spinescence in Euphorbiaceae and its relevance
to ecology (i.e., understanding the evolution anti-herbivory defenses), the character
was reviewed for the entire family, with special emphasis on spinose stipules to enable
comparisons with Bahiana.

Materials and methods

Molecular methods for DNA extraction with modified Qiagen DNeasy Plant kits,
then amplification and fluorescent Sanger sequencing with BigDye Terminator v3.1
chemistry (Thermo Fisher Scientific, Waltham, Massachusetts) on an ABI 3730xl
DNA Analyzer (Thermo Fisher Scientific) followed prior studies (i.e., Wurdack et
al. 2005; Wurdack and Davis 2009; Cardinal-McTeague et al. 2019; van Welzen et
al. 2021). The 2-marker (plastid rbcL, trnl-F) data set of Carridn et al. (2022) was
largely derived from Wurdack et al. (2005) by restricting the taxon sampling to Aca-
lyphoideae and adding Bernardia clade representatives, and then further modified here
by my addition of three tips (two of the Peruvian Bahiana and previously published
Adelia cinerea [Wiggins & Rollins] A.Cerv., V.W.Steinm. & Flores Olv., GenBank
DQ997801, HG971805). Adelia may not be monophyletic (De-Nova and Sosa 2007;
Cervantes et al. 2016), and the addition of A. cinerea to the 2-marker data set provides
better context for the use of that outlier species as an outgroup in the 4-marker data
set. The 4-marker data set of Carridn et al. (2022) included Bernardia clade representa-
tives for plastid matK (including 3” matK-trnK), petD, and trnL-F, and nuclear ribo-
somal ITS, and was modified here by my addition of the Peruvian Bahiana (two tips).
Laboratory work on each of the two Peruvian samples occurred at very different times
and under contamination-control protocols developed for degraded museum samples.
The visually best-preserved (“greenest”) of the 35 collections (A. Gentry et al. 37824,
MO) yielded DNA of sufficient quality to sequence matK (partial), rbcL, trnl-F, ITS,
and ETS (GenBank OP900956, OP900955, OP900957, OP879622, OP901195,
respectively); more degraded DNA from another collection (C. Diaz S. et al. 6545,
US) yielded sequences for #rnL-F, ITS, and ETS (GenBank OP900958, OP879623,
OP901196). Due to the lack of differences in ITS between the new species accessions,
a 400 bp fragment of ETS was sequenced to further explore population variation. Nu-
clear ribosomal ETS has been a useful rapid-evolving complement to I'TS for fine-scale
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resolution of many clades of Euphorbiaceae (e.g., Cardinal-McTeague et al. 2019; van
Welzen et al. 2021). For new data, I amplified and/or sequenced the genetic markers
using mostly standard primers for mazK (400f, 1159r, 1053f, K2r), rbcl (1f, 724r,
626f, 1360r), trnl-F (c, d, e, f, intF), ITS (5a, P3, U2, U4), and ETS (F2; 18s_5pr,
newly published here, CTGGCAGGATCAACCAGGTAGCA).

The reads were assembled with Sequencher v5.2.4 (Gene Codes, Ann Arbor,
Michigan, U.S.A.) and consensus sequences were manually inserted into the multiple
sequence alignments (MSAs) of Carrién et al. (2022), followed by alignment refine-
ments based on a sequence similarity criterion. Preliminary analyses showed that my
minor MSA improvements and various stringencies in the masking of ambiguously
aligned regions had limited impact on resolution or support values, thus a limited
exclusion set of select indel hotspots was implemented (details in the archived MSAs).
The 2-marker data set had 418 columns excluded (original length 3230 bp) and 24.7%
missing data; the 4-marker data set had 260 columns excluded (original length 6560 bp)
and 22.2% missing data. Maximum likelihood (ML) analyses used IQ-TREE v1.6.11
under GTR+F+I+G4 and clade support estimated by 1000 rapid bootstrap replicates
(Trifinopoulos et al. 2016). Bayesian inference (BI) was with MrBayes v3.2.7a (Ron-
quist et al. 2012) as implemented on CIPRES XSEDE with two concurrent runs, each
with four chains and sampling every 1000 generations over 50 000 000 generations, a
0.2 temperature coeflicient, a conservative 25% burn-in, and an Effective Sample Size
(ESS) > 200 verified with Tracer v1.6.0 (Rambaut et al. 2013).

Scanning electron microscopy (SEM) used a Zeiss EVO MA15 (Carl Zeiss SMT,
Inc., Peabody, Massachusetts) at 3 kV after sputter-coating herbarium specimen frag-
ments with Au/Pd over C (11 nm total) using a Leica EM ACE600 (Leica Microsys-
tems GmbH, Wetzlar, Germany). Staminate inflorescences were rehydrated and buds
microdissected before critical point drying (CPD) from an ethanol transition. A leaf
was cleared in 5% sodium hydroxide followed by saturated chloral hydrate, and then
stained with basic fuchsin (1% in absolute ethanol). Light microscopy (LM) was with
a Leica DM6 B (Leica Microsystems Inc., Deerfield, IL) or an Olympus DSX100
(Olympus Corp., Tokyo, Japan). Spinescence was assessed based on literature reports
(mostly confirmed with collections), surveys of herbarium specimens (primarily MO,
NY, US, and type images in JSTOR Global Plants, https://plants.jstor.org/), and ob-
servations of living plants. Words pertaining to spinescence were searched for in litera-
ture treatments (e.g., Webster 2014) of Euphorbiaceae as leads to additional taxa. Not
considered here were trichomes, spines (or horns) associated with reproductive struc-
tures such as fruit pericarps (e.g., Hancea Seem., Mallotus Lour., Microstachys A.Juss.,
Sclerocroton Hochst.) and bracts (e.g., Dalechampia Plum.), or sub-spinose branch tips
that appear to be the result of weathering (e.g., Bernardia obovara [Chodat & Hassl.]
Pax & K.Hoffm.) rather than developmental processes. Many pericarp spinose struc-
tures appear more ornamental in nature in being few (1-2 per valve), short, and/or
blunt. Spinose species estimates are uncertain in Euphorbia L., and there is some sub-
jectivity in the distinctions between spinose and sub-spinose structures (e.g., variations
in Erythrococca spp. stipules).
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Phylogenetic results

The two geographically widely separated samples of the Peruvian Bahiana have identi-
cal ITS and #nL-F sequences, but differ at four positions in ETS (1.0% difference);
slower evolving mazK and rbcL were not compared because sequences were not gener-
ated for both samples. These two samples also provide molecular evidence to unite
staminate and pistillate collections. Within the context of the modified Carrién et
al. data sets, the new species is strongly supported (posterior probabilities, PP = 1.0;
bootstrap percentages, BP = 100%) as sister to Bahiana pyriformis within a similarly
supported Bernardia clade, and branch lengths (not shown) indicate considerable se-
quence divergence between the two species (Figs 1, 2).

Data resources

The data underpinning the phylogenetic analyses reported in this paper are deposited in
GenBank and the Dryad Data Repository at https://doi.org/10.5061/dryad.wstqjq2r6.

Taxonomy

Babhiana occidentalis K. Wurdack, sp. nov.
urn:lsid:ipni.org:names:77314428-1
Figs 3, 5

Diagnosis. Differs from Bahiana pyriformis in leaves smaller (3.5-6[8.1] x 2.1-
3.9[4.6] versus 6-12 x 3—6 cm), staminate cymules 1-flowered (versus usually 3-flow-
ered), fruits smaller and subglobose (ca. 9 x 14 mm versus 18-28 x 17-23 mm and
usually obovoid to pyriform), fruit pedicels longer (10—18 versus up to 5 mm), and
seeds smaller (6.9-7.3 long x 6.4-6.5 wide x 6.8—7.4 thick versus 1015 long x 8-11
wide x 8-13 thick mm).

Type. PEru. Tumbes: Zarumilla Province, Matapalo, zona “El Caucho-Campo
Verde”, Parcela 2 x 500 m (evaluacion floristica) paralela a parcela “V” de evaluacion for-
estal permanente, desde 420 m hasta 500 m, 03°50'29"S, 080°15'30"W (-3.8413800,
-80.2583300), 500 m, 11 Feb 1993 (fr), C. Diaz S. et al. 6288 (holotype: MO sheet
7004543; isotypes: K, NY, US, USM; 13 reported duplicates).

Description. Small trees, 4-10 m, trunk to 12 cm dbh, probably dioecious (col-
lections unisexual); bark of branches smooth, lenticellate; lateral leafy branchlets
1-6 cm long, 1-2 mm wide, terete, sometimes as brachyblasts with numerous com-
pressed nodes, or with zones of compressed nodes (long shoot/short shoot transitions
on same axis), sparsely pubescent when young. Indumentum simple, pale, to 0.5 mm
long. Stipules free, persistent, paired; when young appressed to stem, triangular 1.5—
2.5 x 1 mm, with prominent midrib and narrow membranous margins extending ca.
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Figure 1. Phylogenetic relationships of Bahiana and its Acalyphoideae relatives. Bayesian 50% majority-

rule consensus tree based on the combined 2-marker (rbcL, trnL-F), 96-tip data set with posterior prob-

ability/ ML bootstrap values indicated, respectively. NP = an edge not present with ML.
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triangular, navicular. Leaves alternate, simple, petiolate. Petioles 3-7(11) mm long,
0.5-0.7 mm tall x 0.7-1 mm wide (mid-length cross section), slightly dorsiventrally
flattened (rarely terete), adaxially moderately pubescent and abaxially distinctly less
pubescent to nearly glabrous. Leaf blades elliptic, 3.5-6(8.1) x 2.1-3.9(4.6) cm,
length:width ratio 1.45-2.91:1 (mean = 2.00, SD = 0.313, n = 55, 5 leaves each from
11 collections); base obtuse to acute; apex obtuse to acute, tip minutely retuse and
tipped by a globose gland as on marginal teeth; chartaceous, margins subentire proxi-
mally (near base obscurely crenate with little evidence of teeth) to distinctly toothed
(crenate) distally, tooth depth varying 0.2-0.5 mm, 7-15 well-defined teeth per side,
tooth tip bearing persistent sub-globose glandular knob to 0.2 mm diam. that ter-
minates principal (tertiary) vein; laminar glands (cicatricose-crateriform glands sensu
Cervantes et al. 2009) abaxial, scattered, 5-20 glands per leaf, elliptic, 0.1-0.2 x 0.1-
0.25 mm, associated with tertiary or quaternary veins; other laminar or petiolar glands
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Figure 3. Illustration of Bahiana occidentalis A habit B shoot tip with spinose stipules € staminate
inflorescence in bud D androecium E staminate bract F staminate bractlet G fruit H fruit valve (coccus)
I columella J seed (ventral). Sources: A, B, H=) C. Diaz et al. 6288, US C=F C. Diaz et al. 6148, MO
G C. Diaz et al. 7340, MO.

0.1 mm, sparsely short puberulent; with age spinose, stiff, accrescent to 5-6 mm long,
base with shield-like attachment zone to stem, projecting 45-90° from stem, glabres-
cent; resting buds with multiple series of spines and scales; bud scales 1.5 x 1 mm,
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absent; trichomes abaxially usually only associated with major veins (rarely uniformly
pubescent, A. Gentry et al. 37824), sparsely present along midvein but more densely
as acarodomatial tufts in axils of primary/secondary vein junctions; acarodomatia with
narrow flaps of vein tissues extending to 0.1 mm from vein junctions, not coincident
with laminar glands; adaxial surface micropustulate (likely an artifact of drying around
subsurface crystals), pustules mostly tracing vein fabric. Venation pinnate, agrophic
veins absent, major secondaries bronchidodromous, 5-7 secondary veins per side,
intersecondaries absent, tertiary and quaternary veins mixed percurrent. Staminate
inflorescences axillary and appearing terminal, 6-11 mm long in young bud, rac-
emose, simple, ca. 20+ cymules in 3 anticlockwise spirals, cymules each containing
1 bud, subtended by a bract and 2 lateral bractlets; bract 1.5 x 1 mm, navicular, tip
acuminate; bractlets navicular, 1.7 x 0.4 mm, glabrous internally and hirsute exter-
nally. Staminate flowers: sepals 52, densely hirsute externally, glabrous internally; re-
ceptacle glandular, hirsute; stamens 1215, filaments free; anthers dorsifixed, introrse,
pollen sacs unequal with dorsal pair longer than ventral, connective with protrusion;
petals and disc segments absent. Pistillate infructescences axillary, with 1-2 nodes,
dichotomously branched, 1-2 fruits per inflorescence; proximal internode (peduncle)
10-40 mm long; ultimate branches (pedicels) 10-18 mm long, 0.5-0.6 mm diam.,
articulated and often bent at middle but not detaching there, proximal segment (rela-
tive to articulation) 3-9 mm long, distal segment 4-8 mm long, slightly thicker and
usually darker colored; nodes subtended by navicular bract to 2 mm long. Pistillate
Sflowers (details inferred from fruits) sepals 5, 1.5 x 1-1.5 mm, triangular, slightly un-
equal in size, interior glabrous, disk annular, thin, densely hirsute; locules 3, styles 3,
undivided, thin, to 2.5 mm long, not connate into a column, glabrous. Fruits schizo-
carps, subglobose, trilobed, ca. 9 (long) x 14 (wide) mm, splitting septicidally and
loculicidally into 3 equal 2-valved mericarps; valve segments ca. 13 x 5 mm; sepals and
styles persistent; sparsely pubescent, pericarp dry; endocarp woody, 0.8—1 mm thick
(equatorial at dorsal dehiscence suture); epicarp ca. 0.2 mm thick, separating when
dry, inner surface vascularized, colliculate internally and externally; septa of mericarps
thin, nearly complete except for distal funicular gap, shallow basal triangle 4 x 1 mmy;
columella 5-6 mm long, 1.2-1.3 mm wide (middle), trigonous, tip retaining arms
to 1-1.5 mm long, persistent. Seeds 1 per chamber, ellipsoid, laterally slightly com-
pressed, 6.9-7.3 (long) x 6.4-6.5 (wide) x 6.8—7.4 (thick) mm, minutely apiculate for
0.2-0.4 mm; testa ca. 0.2 mm thick, dry, smooth, obscurely brown-marbled; ecarun-
culate, raphe ventral; hilum near top, triangular, ca. 1.5-2 x 1.5-2 mm; embryo axile
spathulate, straight, stalk 1.2 x 0.6 mm, cotyledons ovate, 4.5 (long) x 4 (wide) x 0.1
(thick) mm, with midrib and higher order veins evident, nearly filling seed profile;
endosperm firm, oily; central cavity absent.

Etymology. The specific epithet occidentalis refers to western, and indicates the
distribution of the new species in western South America, in contrast to B. pyriformis,
which grows on the eastern side of the continent.

Distribution and ecology. The populations of Bahiana occidentalis in Tumbes and
San Martin are separated by more than 520 km and represent two (equatorial and
eastern, respectively) of the three SDTF subunits defined for Peru (Linares-Palomino
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B. pyriformis). Each marker represents multiple collections. Southern limit of the Amotape-Huancabam-
ba zone is beyond the boundary of lower map.

2006). The new species is expected also to occur in adjacent Ecuador, which contains
extensions of the Tumbesian SDTE, and perhaps also in the Maranén inter-Andean
STDF that is in between the two populations, although it is isolated from them and
mostly at a higher elevation. It occurs in lowland SDTF (500-720 m in Tumbes,
350 m in San Martin). Seasonal rains typically fall (Dec-) Jan to Apr (85% of annual
precipitation; Cueva-Ortiz et al. 2020), after critically dry Sep to Nov. Flowering ap-
pears to coincide with the start of the rainy season (young staminate inflorescences
present until mid-Nov) and mature fruit by Feb. The collections, although not diag-
nostic due to having only very young inflorescences or fruits, appear unisexual, which
probably indicates dioecy as has been documented for B. pyriformis (Carrién et al.
2022). The Tumbesian SDTF appears to have few other endemic Euphorbiaceae (e.g.,
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Figure 5. Morphology of Bahiana occidentalis A anther ventral B stamen dorsal € androecium with
outer stamens removed to show hirsute receptacle (young bud) D stipule inner structure (split longitudi-
nally) E leaf gland (abaxial) F leaf surface with prismatic crystals poking through epidermis along veins
(adaxial) G leaf acarodomatia bounded by primary and secondary veins (abaxial) H leaf acarodomatium
(clearing) I leaf gland with crystal along vein indicated by arrow (clearing) ] whole leaf (clearing; tiled from
418 images) K glandular tooth at leaf margin (clearing) A-G SEM H, ] brightfield LM I, K darkfield LM;
sources A=C C. Diaz S. et al. 5522, MO D C. Diaz S. et al. 6148, MO E=K C. Diaz S. et al. 6288, US.
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Acalypha delicata Cardiel, Croton tumbesinus Riina) (Cardiel 2006; Linares-Palomino
et al. 2010; Feio et al. 2018).

Conservation status. Following the criteria and categories of IUCN (2012),
B. occidentalis is given a preliminary status of Vulnerable (VU) under geographic range
criteria B2 area of occupancy < 2000 km?* (B2a, known to exist at no more than 10
locations; B2b, continuing decline projected). The Tumbes population is within the
Reserva Nacional de Tumbes, a protected area of relatively pristine forest and will en-
sure long term conservation of the taxon. However, the eastern SDTFs in San Martin
are fragmented due to farming, including in the area around the Gentry collection
locality (fide Google Earth imagery). Bahiana pyriformis is presently known from a sin-
gle, small population in a mostly deforested region that is not protected and still at risk.

Additional specimens examined. PErU. San Martin: 31 km S of Tarapo-
to, dry forested slopes overlooking Rio Huallaga, Transect 1, 06°35'S, 076°25"W
(-6.5833333, -76.4166667), 350 m, 18 Jul 1982, A.H. Gentry et al. 37732 (MO
sheet 3029763); ibid. loc., Transect 3, 20 Jul 1982 (stam infl), A.H. Gentry et al. 37824
(MO sheet 3211186). Tumbes: Zarumilla, Matapalo. Entre PC. “El caucho” y P.C.
“Campoverde”, Bosque Nacional de Tumbes, Reserva de Bidsfera del Noroeste, Arbol
#326, 03°50'29"S, 080°15'33"W (-3.8413889, -80.2591667), 720 m, 21 Jul 1992,
C. Diaz S. et al. 5009 (MO sheet 55646206); ibid. loc., Arbol #359, 22 Jul 1992, C.
Diaz S. et al. 5072 (MO sheet 6060058). Parcela “V” de evaluacién permanente, No.
393, 03°50'29"S, 080°15'33"W (-3.8413800, -80.2591600), 720 m, 27 Oct 1992,
C. Diaz S. et al. 5176 (MO sheet 6060054); ibid. loc., No. 427, 27 Oct 1992, C. Diaz
S. et al. 5201 (MO sheet 6060056); ibid. loc., No. 641, 27 Oct 1992 (stam infl), C.
Diaz S. et al. 5390 (MO sheet 5707417); ibid. loc., No. 658, 31 Oct 1992 (stam infl),
C. Diaz S. et al. 5432 (MO sheet 5707423); ibid. loc., No. 666, 31 Oct 1992 (stam
infl), C. Diaz S. et al. 5438 (MO sheet 5707422); ibid. loc., No. 679, 31 Oct 1992
(stam infl), C. Diaz S. et al. 5472 (MO sheet 5707421); ibid. loc., No. 719, 2 Nov
1992 (stam infl), C. Diaz S. et al. 5486 (MO sheet 5707420); ibid. loc., No. 720, 2
Nov 1992, C. Diaz S. et al. 5487 (MO sheet 5707415); ibid. loc., No. 732, 2 Nov
1992, C. Diaz S. et al. 5489 (MO sheet 5707416); ibid. loc., No. 735, 2 Nov 1992,
C. Diaz S. et al. 5491 (MO sheet 5707419); ibid. loc., No. 721, 2 Nov 1992, C. Diaz
S. et al. 5520 (MO sheet 5707428); ibid. loc., No. 725, 2 Nov 1992, C. Diaz S. et al.
5521 (MO sheet 6060063); ibid. loc., No. 729, 2 Nov 1992 (stam infl), C. Diaz S.
et al. 5522 (MO sheet 6060062); ibid. loc., No. 743, 2 Nov 1992, C. Diaz S. et al.
5537 (MO sheet 5707424); ibid. loc., No. 326, 10 Nov 1992, C. Diaz S. et al. 5957
(MO sheet 6060061); ibid. loc., No. 359, 10 Nov 1992, C. Diaz S. et al. 5979 (MO
sheet 6060060). Parcela de evaluacién floristica (2 mt. x 500 m) paralela a la parcela
“V?, orientacién Este-Oeste, 03°50'29"S, 080°15'33"W (-3.8413800, -80.2591600),
500 m, 12 Nov 1992, C. Diaz S. et al. 6007 (MO sheet 6060059); ibid. loc., 12 Nov
1992, C. Diaz S. et al. 6127 (MO sheet 6060052); ibid. loc., 12 Nov 1992 (stam infl),
C. Diaz S. et al. 6148 (MO sheet 5707407); ibid. loc., 12 Nov 1992, (stam infl), C.
Diaz S. et al. 6149 (MO sheet 6060065); ibid. loc., 12 Nov 1992, C. Diaz S. et al. 6151
(MO sheet 6060064). Entre P.C. “El caucho” y PC. “Campoverde,” Bosque Nacional
de Tumbes, Reserva de Bidsfera del Noroeste, Arbol 326, 03°50'29"S, 080°15'33"W
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(-3.8413800, -80.2591600), 720 m, 21 Jul 1992, C. Diaz S. et al. 5009 (MO sheet
5564626); Arbol #359, 22 Jul 1992, C. Diaz S. et al. 5072 (MO sheet 6060058). Zona
“El Caucho-Campo Verde”. Parcela 2 x 500 m (evaluacién floristica) paralela a parce-
la “V” de evaluacién forestal permanente, 03°50'29"S, 080°15'30"W (-3.8413800,
-80.2583300), 500 m, 11 Feb 1993, C. Diaz S. et al. 6272 (MO sheet 6060051); ibid.
loc., 11 Feb 1993, C. Diaz S. et al. 6277 (MO sheet 6060053); ibid. loc., 11 Feb 1993,
C. Diaz S. et al. 6282 (MO sheet 6060057). Zona “El Caucho-Campo Verde”, Parce-
la “E” evaluacién permanente, No. 326, 03°50'29"S, 080°15'30"W (-3.8413800,
-80.2583300), 500 m, 16 Feb 1993 (fr), C. Diaz S. et al. 6545 (MO, US); ibid. loc.,
17 Feb 1993, C. Diaz S. et al. 6575 (MO sheet 6060055); ibid. loc., No. 359, 17 Feb
1993, C. Diaz S. et al. 6605 (MO sheet 6060066); ibid. loc., 17 Jan Feb 1995 (fr), C.
Diaz S. et al. 7430 (MO sheet 5707408).

Discussion

Despite being relatively well-collected, Bahiana occidentalis remains imperfectly known
due to the lack of flowering specimens and limitations with inferring floral details from
buds and fruits. Pistillate flowers are unknown, and the anthers are too underdeveloped
for pollen comparisons. Characteristics shared by both Bahiana spp., which in combi-
nation are not in any other genus of Euphorbiaceae, include persistent spinose stipules,
staminate bracts of two orders, 12—15 free stamens with dorsifixed apiculate anthers,
and slender undivided styles (see generic comparisons in Carrién et al. 2022: table 2).
Especially distinctive are the spinose stipules, a feature present in only five genera of
Euphorbiaceae, of which only Bahiana and unrelated Acidocroton (Crotonoideae) have
spiny species in the Neotropics (see below). Other Bernardia clade genera have stipules
that are sheathing and caducous (Caryodendron); or mostly small, triangular, some-
times thickened, and persistent or tardily deciduous (Adenophaedra, Bernardia).
Beyond biogeography there are clear morphological differences in staminate cy-
mules, fruits, and leaves that serve to distinguish the two species of Bahiana, and ad-
ditional differences may be discovered when flowering collections become available.
Dissection of young staminate inflorescences found each cymule of B. occidentalis con-
tained a single bud, while B. pyriformis is described as “cymules usually 3-flowered” with
an early-developing central flower (Carrién et al. 2022). Within the Bernardia clade,
the fruits (and seeds) of B. occidentalis are closer in size to small-fruited Adenophaedra
and most Bernardia (B. macrocarpa A.Cerv. & Flores Olv. is also large-fruited), rather
than large-fruited Bahiana pyriformis and Caryodendron spp. The leaves of both species
of Bahiana are similar in details of simple indument type, abaxial leaf glands, gland-
tipped teeth, and paracytic stomata (Fig. 5SE-K; Carrién et al. 2022: Fig. 3). They
notably differ in leaf size and some anatomical characters, with B. pyriformis possessing
numerous relatively large crystalline druses that do not trace the vein fabric, whereas
B. occidentalis has small epidermal prismatic crystals that follow the venation (Fig. 5I).
The crystals in B. occidentalis often pierce the surface of the dried leaves (Fig. 5F)
and cause rough, finely pustulate adaxial surfaces; similar crystals occur in Acalypha L.
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(Cardiel et al. 2020). Each tooth is capped by a sub-globose marginal gland with a pali-
sade epidermis that resembles a colleter of the standard (S) type, but is not elongate or
stalked (Fig. 5K) as seen in other Euphorbiaceae (Thomas 1991; Vitarelli et al. 2015).
There is little morphological distinction between the Tumbes and San Martin collec-
tions of B. occidentalis, except for more pronounced brachyblasts in the latter. While
one San Martin collection (A. Gentry 37824) is noteworthy in abaxially uniformly pu-
bescent leaves, a second collection (4. Gentry 37732) from the same locality is typical
of the species with sparse pubescence (except the defined hirsute acarodomatia). As-
sociated with the acarodomatia along the primary vein are hairs, but almost no pocket
(merely a narrow flange from the bounding veins), and no pits or glands (Fig. 5G, H).

The biogeography of Bahiana is notable due to its substantial disjunction (Fig. 4).
The two species are nearly 4000 km apart at their closest locations in Peru and Brazil,
and the populations of B. occidentalis in Tumbes and San Martin are separated by
more than 520 km. The known distribution of B. occidentalis is within the floristically
unusual Amotape—Huancabamba zone (see Weigend 2002), and the two populations
are on opposite sides of the Andes across the Huancabamba Depression which is in
the center of the zone. The Huancabamba Depression, the lowest point in the Andean
chain (2145 m at Abra de Porculla), is a dispersal impediment to montane species but
has been considered an opportunity for lowland SDTF taxa (e.g., Bahiana) to cross the
Andes (Linares-Palomino et al. 2003; Quintana et al. 2017). Estimates of diversifica-
tion histories for taxa in this region have been varied. Pennington et al. (2010) found
the SDTF endemic Cyathostegia matthewsii (Benth.) Schery (Fabaceae) had relatively
high sequence divergences among inter-Andean populations, which indicated an older
diversification history and in particular, populations (Loja and Maranén) spanning the
Huancabamba Depression were isolated 2.8 (+/- 0.6) million years. In B. occidentalis,
the low genetic divergences (0—1% across three fast-evolving loci) between the two
populations suggest recent dispersal; however, broader genomic comparisons are need-
ed. While undercollecting in the region limits our full understanding of the distribu-
tion of B. occidentalis, it is likely discontinuous due to altitude barriers and the patchy
nature of SDTE. Its dispersal ability via ballistochory is limited, and its seeds even
lack caruncles which are often implicated in Euphorbiaceae secondary seed dispersal
by ants. Disjunctions across South America are known within and among closely re-
lated SDTF taxa, and in particular the legume species pair Pithecellobium diversifolium
Benth. and P excelsum (Kunth) Benth. resembles the transcontinental distribution of
Bahiana (Lewis et al. 2006; Colli-Silva et al. 2021). Other legumes display stepping
stone patterns either through southern SDTFs or northern connections. Patterns of
Euphorbiaceae distribution and diversification across the SDTFs are largely unstud-
ied beyond Euphorbia. A disjunct Euphorbia species pair — E. heterodoxa Miill. Arg.
of eastern Brasil SDTF and E. lagunillarum Croizat of the dry Venezuelan Andes —
with a distribution pattern approaching that of Bahiana suggests northern connections
(Hurbath et al. 2021). Gymnanthes boticario and Croton laceratoglandulosus Caruzo &
Cordeiro have disjunct distributions that follow the southern SDTF ecosystems from
eastern Brazil to Bolivia (de Oliveira et al. 2013).
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Spinescence in Euphorbiaceae

Many Euphorbiaceae have well-developed intrinsic physical and/or chemical anti-
herbivory defenses that include latex, toxic secondary chemistry, stinging trichomes,
and spinescence. Escalation of plant defenses through multiple defense types rather
than just refinements of a single type may be a recurring pattern in Euphorbiaceae
(e.g., Dalechampia, Armbruster et al. 2009). Spinescence is generally associated with
drier and more open habitats that can have abundant mammal herbivores (Charles-
Dominique et al. 2016). Here, spinescence is considered broadly to include all sharp,
hardened structures, thereby avoiding the inconsistent usage and not always clear dis-
tinctions among traditional definitions of spines (modified leaves or stipules), thorns
(reduced branches), and prickles (emergences with epidermal-subepidermal origin
and usually detachable) (see Bell 2008). My survey found vegetative spines in 25 gen-
era of Euphorbiaceae scattered in subfamilies Acalyphoideae, Crotonoideae, and Eu-
phorbioideae (Table 1). Their distribution is phylogenetically dispersed (relative to
trees in Wurdack et al. [2005] and not explicitly mapped here) such that each genus
has evidently evolved spines one or more times. Of the ca. 590 spiny species, 500+
are in Euphorbia L., the largest genus in the family, and the remaining genera mostly
have a few spiny taxa each. The other two large genera of Euphorbiaceae, Croton and
Acalypha, are notable for their paucity of spines despite considerable diversification in
arid and open environments.

The spines in Euphorbiaceae have diverse origins (homologies) and positions
on the plant, including modified branch tips (stem spines), stipules, peduncles, leaf
margins, and stem emergences (Fig. 6). Leaf spines (i.e., an entire leaf taking the
form of a spine) appear to be absent. The short leafless axillary spines in Croton L.
(and Doryxylon Zoll.) could represent modified prophylls of axillary buds, but the
replacement of spines with inflorescences on Croton bispinosus C.Wright specimens
(e.g., C. Morton & J. Acusia 2964, US) suggests they are fundamentally shoot axes.
Most spiny taxa occur in dry and/or open environments (i.e., SDTE, scrub, and de-
serts), with the exceptions of Hura L. and Macaranga Thouars which are primarily in
wet forests and Caperonia A.St.-Hil. in wetlands. When considering habit, nearly all
spiny genera are woody shrubs or trees, with the exceptions being many Euphorbia
spp. that are succulent (sometimes also woody), and Caperonia that are herbaceous.
Stem spines, widely distributed across 12 genera, can be very plastic in their occur-
rence on individual plants, from terminating all lateral short shoots to an erratic dis-
tribution (sparse or sometimes with varying degrees of sharpness). The spines along
the trunk and/or branches of Hura (Fig. 6G; Lefebvre et al. 2022) and Macaranga
spp. (Jenik and Harris 1969; Whitmore 2008) need further study on their develop-
ment; in the former they are considered cork-spines derived from suber and the latter
derived from roots. Emergences, as sharp structures with epidermal-subepidermal
origin (Bell 2008) on stems or leaves, are prominent in species of at least three gen-
era. While toothed leaf margins occur widely across the family, strongly spinose teeth
appear rare, although subspinose or mucronate intermediates exist (e.g., the teeth
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Figure 6. Diversity of spiny structures on Euphorbiaceae A spinose stipules and protected terminal rest-
ing bud (Bahiana occidentalis, C. Diaz S. et al. 5072, MO) B spinose stipules subtending leafy fascicles
(Acidocroton litoralis, G. Proctor 10991, US) € spinose stipules as clear pairs associated with each fascicle
leaf (Acidocroton verrucosus, G. Webster et al. 8463, US) D spinose branch tips (Sebastiania picardae, E. Ek-
man 2229, US) E spiny emergences along primary vein (abaxial, Caperonia buetmeriacea, G. Hatschbach

6394, US) F intrastipular spine development (sequentially 1-3) in Philyra below stipule pairs at shoot
tip (P brasiliensis, A. Gentry et al. 51884, MO) G spiny emergences on trunk (Hura crepitans) H spiny
leaf margins, p = site of petiole attachment below gland (Hippomane horrida, A. Liogier 14212, US)
I intrastipular spines mature and lignified in Philyra (same branch as F).

of Alchornea castaneifolia [Humb. & Bonpl. ex Willd.] A.Juss. sometimes resemble
less spinose margins of A. ilicifolia [J.Sm.] Miill.Arg.). Trichomes are not treated
here; however, I note that they can be substantial and spinose in Cnidoscolus (e.g.,
C. quercifolius Pohl) (see Maya-Lastra and Steinmann 2019). In some South Ameri-
can Cnidoscolus (e.g., C. bahianus [Ule] Pax & K.Hoffm., C. pavonianus [Miill.Arg.]
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Fern.Casas, C. ulei [Pax] Pax) bark forms around the trichome base as a turbinate
collar and permanently anchors the usually detachable stinging arm. Spines of stipu-
lar origin, of special focus here and further detailed below, occur in five genera (Aci-
docroton Griseb., Bahiana, Erythrococca Benth., Euphorbia, Jatropha L.). Acidocroton
and Bahiana are restricted to the New World, while the other three genera either are
restricted to the Old World (Erythrococca) or have spiny species only there (Euphor-
bia, Jatropha).

Acidocroton (including Ophellantha) has paired spines of stipular origin that are
usually 1-2x the length of the leaves (to 15 mm) in the microphyllous Caribbean spe-
cies and much shorter (to 5> mm) in the large leaved taxa referred to sect. Ophellantha.
A node subtended by a pair of long, strongly attached primary spines (i.e., those sub-
tending the fascicle and that are usually larger) typically contains a cluster of fascicled
leaves (up to 11 leaves per fascicle in A. oligostemon Urb.), long trichomes, and tiny
spines which represent stipules for the other leaves (Fig. 6B). The spines precociously
develop and well arm the branch tips (sometimes before the leaves expand) and then
continue to enlarge and lignify. The spines in Jamaican A. verrucosus Urb. often show
less dimorphism where the primary spines are often of similar short length (<1.5 mm)
to those in the fascicle; they also show spine pairings with fascicle leaves that clearly
indicate stipular origins (Fig. 6C).

Bahiana has paired spines of stipular origin that elongate, lignify, and often spread
with age (Fig. 6A). Their prominence varies across collections in length and degree of
spreading. Resting buds usually have nested sets of scales with spinose tips and overlap-
ping papery basal margins. In B. occidentalis the spine core contains thin walled-cells
and can be hollow towards the base (Fig. 5D).

The paired stipules of Erythrococca can be spinose and 1-5 mm long, but there is
much variation among species as well-summarized by Prain (1911: 848) as “stipules
cartilaginous, glabrous, often accrescent and modified into umbonate mammillae or
weakly conical thorns, rarely into wide-based pungent spines, sometimes minute, sub-
ulate and unaltered”. In spinose E. anomala (Juss. ex Poir) Prain, they are asymmetric
horns resembling rose thorns to 3 mm long, and they easily detach due to their basally
hollow structure (see Uhlarz 1978).

Euphorbia spp. with their remarkable variation in xerophytic growth forms have
equally diverse and complex spines, including stipules, modified branch tips, persistent
peduncles, and tubercules (spine shields) bearing single, paired, or clustered spines of
sometimes unclear origins (White et al. 1941; Uhlarz 1974). The spines can reach
7.5 cm long and be simple or elaborated with short branches. Uhlarz (1974) studied
Euphorbia spine structure and ontogeny, and noted that “dorsal spines” (on the dor-
sal side of the leaf base) develop after the stipules and their formation is influenced
by environmental factors such as light. There are an estimated 500+ spiny species,
especially in subgen. Euphorbia sect. Euphorbia with more than 340 species, mostly
with spine shields and spinose stipules. Spines (non-stipular) have evolved in subgen.
Athymalus (sects. Lyciopsis, Anthacanthae) and subgen. Chamaesyce (sects. Espinosae,



140 Kenneth J. Wurdack / PhytoKeys 219: 121-144 (2023)

Articulofruticosae), but they are apparently absent in subgen. Esula (Yang et al. 2012;
Dorsey et al. 2013; Peirson et al. 2013).

The stipules of Jatropha spp. are typically glandular (or reduced) but can be vari-
ously elaborated as spines in the northeast African species; they are not spinose in
South African, Malagasy, or New World taxa. These stipular spines are stout and sim-
ple, up to 5 cm long (e.g., /. dichtar ].F.Macbr.), or thin and branched so as to cover the
stems in spiny thickets (e.g., /. marginata Chiov.). Somalia contains an especially rich
diversity of spiny-stipuled Jatropha, although some species distributed there are clearly
not spinose (Hemming and Radcliffe-Smith 1987; Thulin 1993).

The paired intrastipular spines of Philyra brasiliensis Klotz. are outgrowths on
each side of the petiole base just below (and distinctly separate when young) the
persistent stipules. The spines usually develop (sometimes starting as a pigmented
spot) near the shoot tips after the young leaves have begun to expand, and then lig-
nify and elongate up to 3 cm (Fig. 6F I). There is considerable plasticity in presence
and mature spine length across branches and collections, and sometimes the spines
are scarcely evident. While not stipular in origin, their homologies are unclear. They
appear to be similar to intrastipular spines described in some legumes and suggested
to be either modified short shoots (Sharma and Kumar 2012; Judrez et al. 2018) or
emergences (Bell 2008).

Conclusions

Bahiana occidentalis is a distinct new species that broadens the character states for
the genus, notably in inflorescence structure details and in fruit more typical of Eu-
phorbiaceae in size and shape. The distribution of Bahiana is unusual and adds to
emerging patterns of SDTF flora disjunctions, although its transcontinental nature is
not informative as to whether this arose from northern or southern dispersal routes.
While legumes are the most species-rich and investigated component of SDTF floras,
Euphorbiaceae deserve further study, and Bahiana demonstrates that surprises remain.
Spines in Euphorbiaceae are diverse in origin, and with relatively few exceptions occur
in woody or succulent taxa from dry or open environments. While the focus here is on
spines from a family perspective, their occurrence in the SDTF flora deserves further
study and quantification (legumes and cacti are notable spiny components).
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