Biodiversity Impact Assessment

ATHA YZERMYN COAL PROJECT

BIODIVERSITY BASELINE & IMPACT ASSESSMENT REPORT

Compiled By:

126 Ballyclare Drive Morningside Sandton 2196 Johannesburg Tel: (011) 787-7400

Fax: (011) 784-7599

NSS Ref No: 1649,1677 & 1933 Date: August 2013

Compiled For:

WSP Environmental (Pty) Ltd

WSP

WSP House Bryanston Place Office Park 199 Bryanston Drive Bryanston 2191 Tel: +27 11 361 1389 Fax: 086 532 8685

All pictures taken on site

ATHA YZERMYN COAL PROJECT

BIODIVERSITY BASELINE & IMPACT ASSESSMENT REPORT

Compiled For:

WSP Environmental (Pty) Ltd WSP House, Bryanston Place 199 Bryanston Drive Bryanston, 2191

Tel: (011) 361-1300 Fax: (011) 361-1301

Compiled By:

Natural Scientific Services CC

126 Ballyclare Drive Morningside Extension 40 Sandton, Johannesburg Tel: (011) 787-7400 Fax: (011) 784-7599

COPYRIGHT WARNING

With very few exceptions the copyright of all text and presented information is the exclusive property of Natural Scientific Services. It is a criminal offence to reproduce and/or use, without written consent, any information, technical procedure and/or technique contained in this document. Criminal and civil proceedings will be taken as a matter of strict routine against any person and/or institution infringing the copyright of Natural Scientific Services.

Ref No:	1649, 1877 & 1933 rev1
Date:	September 2013

EXECUTIVE SUMMARY

Natural Scientific Services CC (NSS) was contracted by WSP Environmental (Pty) Ltd (WSP) to perform Biodiversity Scoping, Baseline and Impact Assessments for selected aspects of the proposed ATHA Yzermyn Coal Project (AYCP) near Dirkiesdorp in southern Mpumalanga. This report presents the results of the Biodiversity Phase 2: Baseline Assessment and the Phase 3: Impact Assessment. The Baseline Assessment included desktop and field-based investigation of flora, fauna, aquatic ecology and wetlands for the proposed underground mining area of the AYCP, with emphasis on the proposed surface infrastructure and coal discard areas. Potential impacts of the proposed project, and recommended measures to mitigate these, were rated using WSP's Impact Rating Methodology.

The floral assessment involved desktop and field-based investigation of the structure, dominant species composition and condition of local floral communities including alien and invasive plants. An ordination analysis revealed six main floral communities excluding alien bushcumps and human settlements. The communities ranged in growth form from isolated patches of tall, woody vegetation to expansive open, grassy areas and wet, grassy seeps. NSS detected 32 Conservation Important (CI) plant species on site, and desktop research indicated that several additional CI plant species may occur in the study area. A low diversity of alien invasive flora was recorded, which was concentrated mainly in riverine areas. Within the proposed underground mining and surface infrastructure areas the identified *Leucosidea–Merxmuellera* riverine, *Searsia–Diospyros–Athrixia* kloof, and *Andropogon–Helichrysum-Bulbostylis* seep communities were assigned Very High sensitivity, and *Andropogon–Hyparrhenia* seasonal seeps were assigned a High sensitivity.

The faunal assessment involved desktop- and field-based investigation of mammals, birds, reptiles, frogs and butterflies. Field surveys involved visual observation, grab-sampling, camera- and live-trapping of fauna, as well as mist-netting, harp-trapping and acoustic surveys for bats. Of all potentially occurring species (spp.) in these faunal groups, 104 spp. (53%) of birds, 10 spp. (34%) of frogs, 27 spp. (25%) of mammals, 17 spp. (25%) of reptiles and 23 spp. (15%) of butterflies were detected in the study area. Close to 300 bats (including four CI species) were found roosting inside local abandoned mine adits, which were assigned Very High sensitivity. The two largest of these adits are situated 315-335m outside the proposed surface infrastructure layout, and 180-300m outside the proposed underground mining area. Wetlands and Scarp Forest provided habitat for many observed and potentially occurring CI mammal, bird and frog species, and were assigned Very High sensitivity. Grasslands supported a high diversity of mammals, birds and frogs, and patches of rocky grassland, in particular, supported a high diversity of reptiles.

The aquatic assessment involved high and low flow investigation of water quality, aquatic habitat integrity, macro-invertebrate and fish communities at four perennial sampling sites. For a fifth, non-

perennial sampling site, only water quality could be analyzed. Measures of water quality fluctuated slightly with natural seasonal variation in precipitation and flow levels. In general, water quality at the sampled localities was good. Aquatic habitat integrity showed similar (natural) seasonal variation, and ranged from natural to moderately modified. This was because in some places, road crossings, rubbish dumping, alien vegetation, over-grazing and bank erosion impacted water flow and quality. Aquatic macro-invertebrate communities were, therefore, largely natural to seriously modified, and also showed slight seasonal variation in abundance. Three indigenous fish species were caught, and the fish communities were largely natural to moderately modified. Seven additional (including three CI) fish species may occur in the study area. Given the good overall current ecological status of aquatic habitat in the study area, local catchments should be effectively managed to avoid deterioration.

The wetland assessment involved desktop- and field-based delineation of wetlands in the proposed surface infrastructure and coal discard areas, and desktop-delineation of wetlands in the remaining underground mining area. Wetlands were classified and delineated using the methods of Ollis *et al.* (2013) and DWAF (2005), and the Present Ecological State (PES), functionality, importance and sensitivity of wetlands was assessed using the respective methods of Macfarlane *et al.* (2008), Kotze *et al.* (2008) and DWAF (1999). The proposed underground mining, surface infrastructure and discard areas contain extensive wetland systems including rivers, channelled valley bottom wetlands and seeps. Approximately 40% of the underground mining area and 42% of the surface infrastructure area therein, comprises wetland habitat. The wetlands are all natural to largely natural with few modifications and are, therefore, of Very High ecological importance and sensitivity. Findings from the floral, faunal and aquatic assessments confirmed that "maintenance of Biodiversity" is the highest scoring eco-service provided by the wetlands on site.

Separate Sensitivity Maps were compiled for flora, fauna, riverine and wetland habitat, which were combined to create an overall Sensitivity Map for Biodiversity in the study area, where:

- Very High sensitive areas included:
 - The Leucosidea-Merxmuellera riverine community.
 - The Searsia-Diospyros-Athrixia kloof (and protected outcrops) community.
 - The Andropogon–Helichrysum-Bulbostylis seasonal seeps.
 - All wetlands (rivers, channelled valley bottom systems and seeps) and the buffers around these.
 - \circ $\;$ The two large abandoned adits, and the buffers around these.
- High sensitive areas included:
 - The Andropogon Hyparrhenia temporary seeps.
 - Smaller, abandoned adits and the buffers around these.

The Sensitivity Maps strongly indicated that the AYCP is situated in an extremely sensitive and conservation important area, which corresponds with the MTPA's (2013) Mpumalanga Biodiversity Sector Plan and the DEA *et al's* (2013) Atlas of Sensitive Areas for Mining.

Six major potential impacts of the mining operation on local Biodiversity were identified including:

- Construction of infrastructure and resultant loss of habitat and species.
- Decline in water inputs and resultant deterioration in PES and functionality.
- Decline in water quality and resultant deterioration in PES and functionality.
- Alien species invasion and resultant impacts on Biodiversity.
- Increased erosion and sedimentation and resultant impacts on Biodiversity.
- Sensory disturbance of fauna.

Although the proposed surface infrastructure layout would comprise a small portion (4.6%) of the target mining area, the combined Baseline and Impact Assessments indicate that the AYCP is fatally flawed, and should be NO GO in terms of Biodiversity. This is largely because of the impact of the proposed underground mining on the supply of water to the surface water resources (due to the de-watering activities) and the potential groundwater contamination. These aspects will have a significant impact on aquatic and wetland ecosystem functioning and biodiversity in a far greater area than the underground mining area. This aspect of the mining project, alone, is in strong conflict with international, national and provincial legislation, policies and guidelines. A high number of CI species were detected, and most habitat in the proposed underground mining and surface infrastructure areas was assigned a Very High or High sensitivity. Most potential impacts of the mining operation had a HIGH overall significance rating, even with mitigation. Moreover, the cumulative impacts of numerous mining applications in the study region are of serious concern. Even though NSS recommends that the project is a NO GO from a Biodiversity perspective, mitigation measures have been discussed should the project go ahead.

TABLE OF CONTENTS

Α.	SETTING THE SCENE	1
В.	FLORAL ASSESSMENT	29
C.	FAUNAL ASSESSMENT	73
D.	AQUATIC ASSESSMENT	140
E.	WETLAND ASSESSMENT	181
F.	SENSITIVITY ASSESSMENT	203
G.	IMPACT ASSESSMENT	229
н.	REFERENCES	

LIST OF ACRONYMS & ABBREVIATIONS

ACRONYM	DESCRIPTION	
ACRONYM	DESCRIPTION	
AD	Adit or shaft from previous mining	
ADU	Animal Demography Unit – a research unit of the Department of Zoology at the University	
	of Cape Town	
AGIS AL	Agricultural Geo-referenced Information System	
	Alien Bushclump	
AMD	Acid Mine Drainage	
APPA	Atmospheric Pollution Prevention Act (Act 45 of 1965)	
	Agricultural Research Council	
ASPT	Average Score Per Taxon	
AYCP	ATHA Yzermyn Coal Project	
BGIS	Biodiversity GIS (website)	
BH ID	Borehole ID	
BLSA	BirdLife South Africa	
BMAP	Biodiversity Management and Action Plan	
CARA	Conservation of Agricultural Resources Act (Act 43 of 1983)	
CBA	Critical Biodiversity Area	
CBD	Convention on Biological Diversity	
CITES	Conservation Important	
CITES	Convention on International Trade in Endangered Species of Wild Fauna and Flora	
CO COD	Catchment Objectives	
	Chemical Oxygen Demand Chamber of Mines	
CoM CoP	Conferences of the Parties	
COP	Conterences of the Fattles Critically Endangered – a classification used for describing species in serious danger of	
UN	facing extinction	
CSIR	Council for Scientific and Industrial Research	
DAFF	Department of Agriculture, Forestry and Fisheries	
DALA	Department of Agriculture and Land Administration	
DCA	Department of Agriculture and Land Administration	
DD	Data Deficient – a classification used for describing species for which there is inadequate	
00		
DDT	data available to assess their danger of facing extinction Data Deficient - Taxonomically Problematic	
DEA	Department of Environmental Affairs	
DEAT	Department of Environmental Affairs and Tourism	
DEC	Delta Environmental Consultants	
DG		
DG DMR	Dry Grassland Department of Mineral Resources	
DIVIR	Dissolved Oxygen	
DWA	Department of Water Affairs (previously known as DWAF)	
DWAF	Department of Water Affairs and Forestry	

Natural Scientific Services CC

ACRONYM	DESCRIPTION		
EC	Ecological Category		
ECA	Environmental Conservation Act (Act 73 of 1989)		
ECO	Environmental Control Officer		
EGBR	Enkangala Grassland Biosphere Reserve		
EIA	Environmental Impact Assessment		
EMC	Ecological Management Category		
EM3	Echo Meter 3 (bat call detector)		
EMP	Environmental Management Programme		
EMPR	Environmental Management Programme Report		
EN	Endangered – a classification used for describing species in danger of facing extinction		
End	Endemic		
EO	Environmental Officer		
ESA	Ecological Support Area		
EWT	Endangered Wildlife Trust		
FEPA	Freshwater Ecosystem Priority Area		
FAII	Fish Assembly Integrity Index (Kleynhans 1999)		
FCII	Fish Community Integrity Index (Karr 1981)		
FRAI	Fish Response Assessment Index (Kleynhans 2008)		
FROC	Frequency of Occurrence		
GDARD	Gauteng Department of Agriculture and Rural Development		
GNorBIG	Gauteng & Northern Regions Bat Interest Group		
GPS	Global Positioning System		
GSM	Gravel, Stones, Mud		
HGM	Hydro-geomorphic		
IBA	Important Bird Area		
ICMM	International Council on Mining and Metals		
IH	Instream Habitat		
IHAS	Integrated Habitat Assessment System (Kleynhans 1996)		
IHI	Index of Habitat Integrity		
IUCN	International Union for Conservation of Nature and Natural Resources, based in Gland,		
	Switzerland		
IWMI	International Water Management Institute		
JPol	Johannesburg Declaration and Plan of Implementation		
LoO	Likelihood of Occurrence of a species in an area		
MA	Minerals Act (Act 50 of 1991)		
MBCP	Mpumalanga Biodiversity Conservation Plan		
MBSP	Mpumalanga Biodiversity Sector Plan		
MIRAI	Macro-Invertebrate Response Assessment Index (Thirion 2008)		
MNCA	Mpumalanga Nature Conservation Act (Act 10 of 1998)		
MoP	Meeting of the Parties		
MPAES	Mpumalanga Protected Area Expansion Strategy		
MPB	Mpumalanga Parks Board		
MPBA	Mpumalanga Parks Board Act (Act 6 of 1995)		
	Natural Scientific Services CC		
	Viii		

ACRONYM	DESCRIPTION		
MTPA	Mpumalanga Tourism and Parks Agency		
MTPAA	Mpumalanga Tourism and Parks Agency Act (Act 5 of 2005)		
MWA	Mines and Work Act Act 27 of 1956)		
NAEHMP	National Aquatic Ecosystem Health Monitoring Programme		
NBSAP	National Biodiversity Strategy and Action Plan		
NEMA	National Environmental Management Act (Act 107 of 1998)		
NEMAA	National Environmental Management Amendment Act (Act 8 of 2004)		
NEM:AQA	National Environmental Management: Air Quality Act (Act 39 of 2004)		
NEM:BA	National Environmental Management: Biodiversity Act (Act 10 of 2004)		
NEM:PAA	National Environmental Management: Protected Areas Act (Act 57 of 2003)		
N-End	Near-Endemic		
NEPAD	New Partnership for Africa's Development		
NFA	National Forests Act (Act 84 of 1998)		
NFEPA	National Freshwater Ecosystem Priority Areas project		
NFFLAA	National Forest and Fire Laws Amendment Act (Act 12 of 2001)		
NHRA	National Heritage Resources Act (Act 25 of 1999)		
NMMU	Nelson Mandela Metropolitan University		
NMPRD	National Mineral and Petroleum Resources Development Act (Act 28 of 2002)		
NSBA	National Spatial Biodiversity Assessment		
NSS	Natural Scientific Services CC		
NT	Near Threatened – a classification used for describing species not yet in danger of facing		
	extinction, but close to such a state		
NVFFA	National Veld and Forest Fire Act (Act 101 of 1998)		
NWA	National Water Act (Act 36 of 1998)		
PCD	Pollution Control Dam		
PES	Present Ecological State (Kleynhans 1999)		
POSA	Plants of southern Africa (website)		
PRECIS	The National Herbarium of Pretoria's Computerized Information System		
PS	Protected Species		
PrNatSci	Professional Natural Scientist		
QDS	Quarter Degree Square – the basic unit used by the Surveyor General for creation of 1:50		
	000 topographical maps		
RG	Rocky Grassland		
RH	Riparian Habitat		
RHP	River Health Programme		
SABAAP	South African Bat Assessment Advisory Panel		
SABAP 1 & 2	First and second Southern African Bird Atlas Projects, managed by the ADU		
SABCA	South African Butterfly Conservation Assessment, managed by the ADU		
SABIF	South African Biodiversity Information Facility		
SAFAP	South African Frog Atlas Project, managed by the ADU		
SAIAB	South African Institute of Aquatic Biodiversity		
SAMBF	South African Mining and Biodiversity Forum		
SANBI	South African National Biodiversity Institute		
	Natural Scientific Services CC		
	ix		

ACRONYM	DESCRIPTION
SANParks	South African National Parks
SANS	South African National Standards
SARCA	Southern African Reptile Conservation Assessment, managed by the ADU
SASS 4 & 5	Versions 4 and 5 of the South African Scoring System for monitoring aquatic macro-
	invertebrates (Dickens & Graham 2002)
SEF	Strategic Environmental Focus
SF	Scarp Forest
SIBIS	SANBI's Biodiversity Information System
SMP	Strategic Management Plan
Spp.	Species
SS	Suspended Solids
SV	Savanna
TDS	Total Dissolved Solids
ToR	Terms of Reference
TSP	Threatened Species Programme - a programme managed by SANBI to assess the Red
	Data status of South African plants
TWQR	Total Water Quality Range
UJ	University of Johannesburg
UN	United Nations
UNCED	UN Conference on Environment and Development
UNEP	United Nations Environment Programme
UNFCCC	United Nations Framework Convention on Climate Change
UNISA	University of South Africa
UP	University of Pretoria
VU	Vulnerable – a classification used for describing species in danger of facing extinction
WGS	World Geodetic System
WITS	University of the Witwatersrand
WMA	Water Management Area
WQ	Water Quality
WRC	Water Research Commission
WSA	Water Services Act (Act 108 of 1997)
WSP	WSP Environment and Energy (Pty) Ltd
WSSD	World Summit on Sustainable Development
WT	Wetland
WWF	World Wildlife Fund
YZ1	Upstream site on the Mawandlane River
YZ2	Downstream site on the Mawandlane River
YZ3	Upstream site on the Mkusaze River
YZ4	Downstream site on a tributary of the Assegaai River
YZ5	Downstream site on the Mawandlane River

Section A: Setting the Scene

NATURAL SCIENTIFIC SERVICES

SECTION A: TABLE OF CONTENTS

1.	Introduction1		
2.	Terms of Reference2		
3.	Project Team		5
4.	4. Applicable Legislation, Policies & Guidelines		
	4.1.	International Agreements	7
		National Legislation, Policies & Guidelines	
		Mpumalanga Legislation, Policies & Guidelines	
5. Study Area Description		20	
		Climate	
		Geology, Soils & Land Types	
	5.3.	Hydrology	21
	5.5.	Land-use	28

SECTION A: LIST OF TABLES

Table 2-1	Spatial extent of the different surface infrastructure components supplied b	уy
	Mindset	2
Table 3-1	Project team with associated areas of specialisation	6
Table 5-1	Vegetation types and their diagnostic plant species in the AYCP lease area2	6

SECTION A: LIST OF FIGURES

Figure 2-1	Location and boundaries of the ATHA Yzermyn Coal Project in Mpumalanga 3
Figure 2-2	Proposed current (0-15 year) and future (>15 year) underground mining areas for the AYCP
Figure 5-1	Total monthly rainfall for Ermelo and Vryheid (SAWS 2012 & 2013). Asterisks indicate when field surveys for the AYCP Biodiversity Assessment were performed
Figure 5-2	Historical climate data for Wakkerstroom (SA Explorer, 2013)21
Figure 5-3	Land Types in the study area
Figure 5-4	Quaternary catchments and major drainage lines in the study area24
Figure 5-5	Vegetation types in the study area25

SECTION A: SETTING THE SCENE

1. Introduction

South Africa is legally bound to the sustainable use and effective conservation of Biodiversity by various international treaties, our national Constitution (Act 108 of 1996), the National Environmental Management Act (NEMA Act 107 of 1998), the National Environmental Management: Biodiversity Act (NEM:BA Act 10 of 2004), and the National Environmental Management: Protected Areas Act (NEM:PAA Act 57 of 2003), among other things.

In cognisance of this, Natural Scientific Services CC (NSS) was contracted by WSP Environmental (Pty) Ltd (WSP) to perform Biodiversity Scoping, Baseline and Impact Assessments for selected aspects of the proposed ATHA Yzermyn Coal Project (AYCP). The AYCP study area is situated within the moist, high-altitude grasslands of south-eastern Mpumalanga Province, South Africa, and includes a mining lease area, a proposed area for underground mining within the lease area, and an area for associated surface infrastructure (including a coal discard area). The lease area includes the Bloemhof-92, Goedgevonden-95, Kromhoek-93, Nauwgevonden-110, Paardekop109, Uitzicht-108, Van der Waltspoort-81(por-2 &RE), Virginia -91and Yzermyn -96 (por-1) & RE farms (or portions thereof), and Zoetfontein-94, which are situated off the R543 near Dirkiesdorp, Mpumalanga, approximately 58km southwest of Piet Retief and 21km north-east of Wakkerstroom.

Grasslands and wetlands in South Africa provide essential ecosystem services, and support considerable Biodiversity including many Conservation Important (CI) species. Roughly 40%-60% of the Grassland Biome in South Africa has been permanently transformed or severely degraded by cultivation, afforestation, urbanization, mining and erosion (Low & Rebelo 1996; Mucina & Rutherford 2006). Remaining natural grassland is highly fragmented, and in some areas as little as 15% remains. In Mpumalanga, coal-mining has had extensive negative impacts on Biodiversity and remaining grasslands and wetlands are severely threatened by the accelerating demand for low-cost energy from coal (Tweddle *et al.* 2009).

It was within this context that NSS performed the Biodiversity Assessment for the AYCP.

2. Terms of Reference

The Terms of Reference (ToR) for the Biodiversity Assessment included a desktop and field-based investigation of flora, fauna, aquatic ecology, and wetlands for the proposed underground mining area of the AYCP (and a wetland assessment in the proposed surface infrastructure area) during three phases:

- Phase 1: Scoping Assessment.
- Phase 2: Baseline Assessment.
- Phase 3: Impact Assessment.

The Scoping Assessment Report was submitted to WSP in May 2012, and was based on desktop research and preliminary findings of field surveys performed during March 2012, for the original (old) underground mining area.

After the boundaries of the AYCP lease, underground mining, and surface infrastructure areas changed, as shown in **Figure 2-1**, the Scoping Assessment Report was revised accordingly and submitted to WSP in February 2013. The ToR were also expanded to include delineation of wetlands in the current (new) surface infrastructure area, and a proposed discard area. The current surface infrastructure area represents a 1km-radius around the proposed Dundas and Alfred declines. The proposed discard area is approximately 400m x 700m, and is situated ~860m north of the proposed declines, outside the current lease area. The 87ha surface infrastructure layout plus the 27ha discard area outside of the current lease boundary, represent 4.6% (114ha) of the 2,500ha 15 year target area. The spatial extent of different components comprising the proposed surface infrastructure layout, as supplied by Mindset Consultants (Pty) Ltd (Mindset), is detailed in **Table 2-1**. The proposed current (0-15 year) and future (>15 year) underground mining areas are shown in **Figure 2-2**. No biodiversity assessment work was performed for the proposed future underground mining area.

COMPONENT	AREA (ha)	AREA (m²)
Box cut	2.4507	24,507
Workshop and related infrastructure	2.0047	20,047
Bus parking	0.2652	2,652
Office building & car parking	0.2959	2,959
Plant area	5.7537	57,537
Isolated pollution control dam (PCD)	2.8289	28,289
Discard dump within lease area	22.7625	227,625
Discard dump & PCD outside lease area	12.2901	122,901
Road (excluding the municipal road)	1.0485	10,485
Collective surface infrastructure	49.7002	497,002
Total area assigned for surface infrastructure	86.5	865,000

 Table 2-1
 Spatial extent of the different surface infrastructure components supplied by Mindset

Natural Scientific Services CC

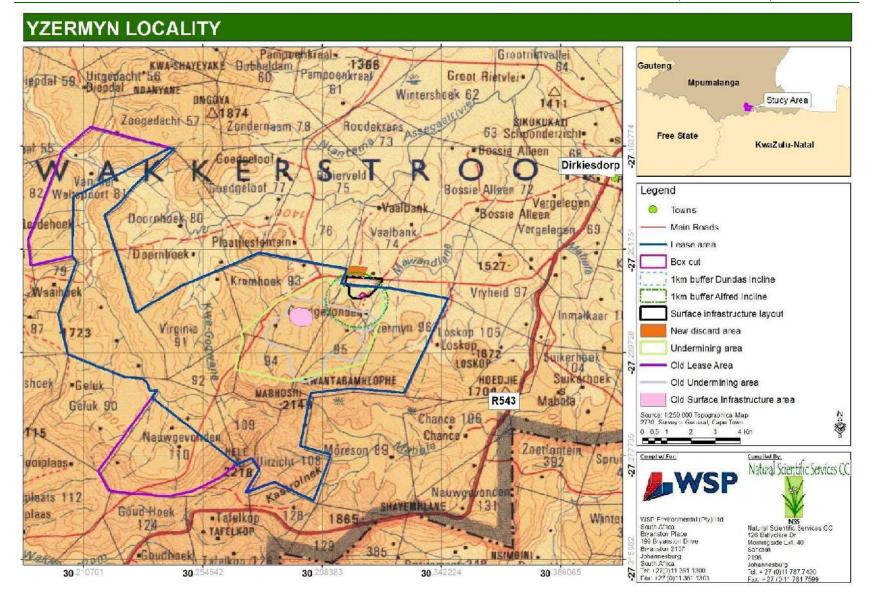


Figure 2-1 Location and boundaries of the ATHA Yzermyn Coal Project in Mpumalanga

NSS

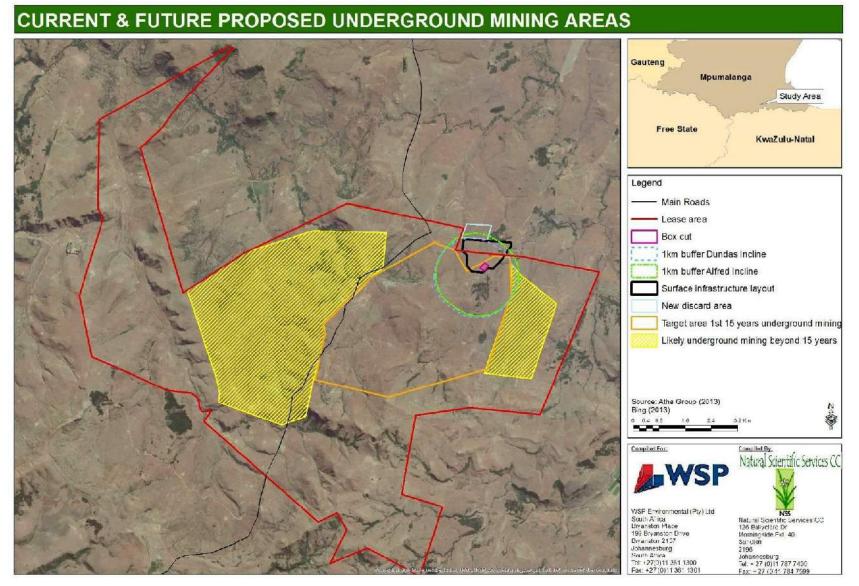


Figure 2-2 Proposed current (0-15 year) and future (>15 year) underground mining areas for the AYCP

In this report the floral, faunal, aquatic and wetland baseline studies for Phase 1 and 2 of the Biodiversity Assessment are described, respectively, in **Sections B, C, D** and **E**. Field surveys for flora, fauna and wetlands (excluding delineations) were performed in the original (old) proposed undermining area during 2012 and in the current undermining area during 2013. Wetlands were delineated in the original surface infrastructure area during 2012 and in the current surface infrastructure and discard areas during 2013. The same localities were sampled for the high and low flow aquatic surveys during 2012, which were fortuitously located in close proximity to the 1km radial area around the proposed declines. An overall Biodiversity Sensitivity Assessment including a Sensitivity Map is provided in **Section F**, and the Phase 3 Impact Assessment is described in **Section G**.

WSP also requested a quote for a Biodiversity Management and Action Plan (BMAP) for the AYCP. NSS has, however, indicated from the onset that a BMAP "should be conducted ONLY if the project gets approved by the Competent Authorities."

3. Project Team

All components for Phases 1-3 were performed by NSS with specialist avifaunal and bat input received from Delta Environmental Consultants (DEC) and the Gauteng & Northern Regions Bat Interest Group (GNorBIG), respectively (**Table 3-1**).

The NSS team has extensive experience in completing Biodiversity Assessments involving floral, faunal, wetland and aquatic (riverine) work, as well as Environmental Impact Assessments (EIAs), Environmental Management Programme Reports (EMPRs), Strategic Management Plans (SMPs) and Environmental Management Plans (EMPs) for the Conservation, Mining, Waste, Commercial and Industrial sectors. In terms of accreditation and professional registrations the following is applicable to NSS:

- Senior team members are registered Professional Natural Scientists in the ecological, environmental and zoological fields.
- Aquatics team members are accredited with DWA to perform the SASS macro-invertebrate monitoring method in South Africa.
- Wetland team members are accredited through DWA to perform Wetland Delineations.

Table 3-1 Project tea	m with associated	areas of specialisation
ASPECT INVESTIGATED	SPECIALIST	QUALIFICATIONS
Aquatic bio-monitoring	Amanda Austin	M.Sc. – Aquatic Health (UJ).
	(NSS)	DWA accredited to perform the SASS macro-invertebrate
		monitoring method.
Aquatic bio-monitoring	Wynand	M.Sc Aquatic Health (UJ).
	Malherbe	DWA accredited to perform the SASS macro-invertebrate
	(UJ)	monitoring method.
Aquatic bio-monitoring	Kerry Brink	Ph.D. Aquatic Health (UJ).
review	(Private contract)	DWA accredited to perform the SASS macro-invertebrate monitoring method.
Ecology	LD Van Essen (NSS)	Ph.D. Wildlife Management (UP) – in progress.
Ecology	Lloyd Mhlongo (NSS)	B.Sc. – Botany (UNISA) - in progress.
Fauna & project	Caroline Lötter	Ph.D. – Zoology (UP).
management	(NSS)	Pr.Sci.Nat. Registered – Zoology.
Fauna & wetland delineation	Tyron Clark (NSS)	B.Sc. Honours - Zoology (WITS) – in progress.
Fauna: birds only	Geoff Lockwood	BirdLife South Africa (BLSA) Council member and Vice
	(DEC)	Chairman for 27 & 5 years.
		Specialist avifaunal consultant for >40 EIAs.
Fauna: bats only	Kate MacEwan	M.Sc. – Zoology (WITS) – in progress.
	(NSS)	Pr.Sci.Nat. Registered – Zoology & Environmental Science. GNorBIG and SABAAP member.
Fauna: bats only	Trevor Morgan	NSS Bat Specialist.
	(NSS)	GNorBIG Executive Committee member.
Fauna: bats only	Julio Balona (GNorBig)	GNorBIG Executive Committee member.
Fauna: mainly reptiles	Bryan Maritz	Ph.D. – Zoology (WITS).
	(Private contract)	Pr.Sci.Nat. Registered – Zoology.
Flora & wetland	Susan Abell	M.Sc. – Resource Conservation Biology (WITS).
delineation	(NSS)	Pr.Sci.Nat. Registered – Ecology & Environmental Science.
Floral assistant	Crystal Rowe (NSS)	B.Sc. Honours – Botany (NMMU).
GIS mapping	Tim Blignaut (NSS)	M.Sc. – Geography (UJ) – in progress.
Wetland delineation &	Kathy Taggart	M.Sc. – Resource Conservation Biology (WITS).
project review	(NSS)	Pr.Sci.Nat. Registered – Ecology & Environmental Science.
		DWA Accredited – Wetland Delineations.

4. Applicable Legislation, Policies & Guidelines

There are several international treaties and considerable national and provincial legislation regarding the sustainable use and conservation of terrestrial and aquatic Biodiversity including species and ecosystems. As coal mining inevitably has major negative impacts on Biodiversity, all the below-mentioned international, regional, national and provincial legislation, policies and guidelines are applicable to the proposed AYCP. While the list below is extensive, additional legislation, policies and guidelines that have not been mentioned may apply.

4.1. International Agreements

Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES)

CITES is an international agreement between governments, which aims to ensure that international trade in specimens of wild animals and plants does not threaten their survival. It was drafted as a result of a resolution adopted in 1963 at a meeting of members of the International Union for Conservation of Nature and Natural Resources (IUCN) in Washington, USA. CITES was opened for signature in 1973 and entered into force during 1975. It accords varying degrees of protection to more than 33,000 species of animals and plants. Since wetlands often form part of special and unique habitats, they are indirectly protected under CITES.

Convention on Wetlands of International Importance, especially as Waterfowl Habitat

This Convention, also called the Ramsar Convention, was developed and adopted by participating nations at a meeting in 1971 hosted by the Iranian Department of Environment in Ramsar, Iran. The Convention deals with the conservation and sustainable use of wetlands. The treaty, which came into force during 1975, aims to stem the increasing transformation and loss of wetlands because of their fundamental ecological, economic, cultural, scientific and recreational value. The Convention works closely with five other organisations including Birdlife International, the IUCN, the International Water Management Institute (IWMI), Wetlands International and the World Wildlife Fund (WWF) International. South Africa is a contracting party to the Convention and has currently got 21 internationally recognized Ramsar sites including Seekoeivlei, which is situated approximately 50km south-west of Yzermyn. Seekoeivlei is drained by the Klip River, which is a tributary of the Vaal River, upon which the highly industrialized and densely populated Gauteng Province depends for its water supply.

Convention Concerning the Protection of World Cultural and Natural Heritage

This Convention, also referred to as the World Heritage or Stockholm Convention, was born during the 1972 United Nations (UN) Conference on Human Environment in Stockholm,

Sweden, and aims to preserve the world's superb natural and scenic areas and historic sites for present and future generations of humanity. The most significant feature of the Convention is that it links together the concepts of nature conservation and the preservation of cultural properties. The Convention recognizes the way in which people interact with nature, and the fundamental need to preserve the balance between the two. Eight World Heritage Sites are currently recognized in South Africa, including the Ukhahlamba Drakensberg Park, which is situated approximately 235km south-west of the AYCP. The proposed Barberton Mountain Land World Heritage Site is approximately 165km north-east of the AYCP.

Convention on the Conservation of Migratory Species of Wild Animals

This Convention, also known as the Bonn Convention, aims to conserve terrestrial, marine and avian migratory species throughout their range. The treaty was signed in 1979 in Bonn, France, and entered into force in 1983. It is an intergovernmental treaty, concluded under the aegis of the United Nations Environment Programme (UNEP), which is concerned with the conservation of wildlife and habitats on a global scale. South Africa is a party to this Convention, which affords protection to all migratory animals in the AYCP area including various bird, bat and butterfly species.

Convention on Biological Diversity (CBD)

This Convention, also referred to as the Biodiversity Convention, was established during the 1992 UN Conference on Environment and Development (UNCED), also known as the 1992 Earth Summit, held in Rio de Janeiro, Brazil. It represented the first global, comprehensive, legally-binding agreement to address all aspects of biological diversity ranging from genetic resources to species and ecosystems. It is regarded as the key document regarding sustainable development. The CBD has three main goals: conservation, and sustainable use of biodiversity, and equitable sharing of benefits arising from genetic resources. South Africa signed this treaty in 1998 showing further commitment to the conservation of biodiversity including biomes (e.g. grassland), ecosystems (e.g. wetlands and rivers), species and sub-specific diversity.

<u>Agenda 21</u>

Agenda 21, an outcome of the 1992 Earth Summit, provides a policy framework and a nonbinding, voluntarily implemented action plan for sustainable development at global, national and regional levels. Local Agenda 21 entails the participation and co-operation of local authorities to develop their own Local Agenda 21 plans and strategies according to the region's specific priorities and available resources. The plans need to be submitted to the Department of Environmental Affairs (DEA) and updated every five years. Reporting on the state of the environment is a requirement in terms of the Environmental Conservation Act (ECA; Act 73 of 1989; Section 13(e)) and the National Environmental Management Act (NEMA; Act 107 of 1998).

The water chapter (Chapter 18) of Agenda 21 requires countries 'to make certain that adequate supplies of water of good quality are maintained for the entire population of this planet, while preserving the hydrological, biological and chemical functions of ecosystems, adapting human activities within the capacity limits of nature'. This chapter of the Agenda provides guidance for the protection of water resources, water quality and aquatic ecosystems, and sets targets including:

- Protection and conservation of water resources on a sustainable basis;
- Water pollution prevention and control;
- Establishment of biological, health, physical and chemical quality criteria for all water resources; and
- Adoption of an integrated approach to environmentally sustainable management of water resources, including the protection of aquatic ecosystems and freshwater living resources.

United Nations Framework Convention on Climate Change (UNFCCC)

The UNFCCC or FCCC, which was also established during the 1992 Earth Summit, is an international agreement to stabilize greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. The treaty itself sets no mandatory limits on greenhouse gas emissions for individual countries and contains no enforcement mechanisms. It is, therefore, non-binding. However, it does provide for updates called "protocols," which set mandatory emission limits. The principal update is the Kyoto Protocol. The UNFCCC entered into force in 1994 and has approximately 194 parties including South Africa. The parties to the Convention have met annually from 1995 in Conferences of the Parties (CoP) to assess progress in dealing with climate change.

Kyoto Protocol

The Kyoto Protocol is aimed at fighting global warming. It was developed during the 3rd Conference of the Parties (CoP 3) in Kyoto, Japan in 1997, and was entered into force in 2005. Approximately 191 states have signed and ratified the Protocol including South Africa. Under the Protocol, 37 countries ("Annex I countries") committed themselves to reduce their greenhouse gas emissions by 5.2% on average for the period 2008-2012. This reduction was relative to their annual emissions in a base year, generally 1990.

Johannesburg Declaration and Plan of Implementation (JPol)

The Johannesburg Declaration and JPol originated from the 2002 UN Conference on Sustainable Development in Johannesburg, which was convened as the World Summit on Sustainable Development (WSSD), otherwise known as the 2002 Earth Summit. The Declaration builds on earlier declarations made during the UN conferences at Stockholm in

1972 and Rio de Janeiro in 1992. While committing nations to sustainable development there is strong emphasis on factors that pose severe threats to sustainable development such as famine, conflict, corruption, terrorism and disease.

The JPol acknowledges that biodiversity is critical for the planet, sustainable development, poverty eradication, human well-being and the cultural integrity people. It also recognizes that biodiversity is currently being lost at unprecedented rates due to human activities, and that this trend can only be reversed if local people benefit directly from the conservation and sustainable use of biological diversity in their countries.

Chapter 4 of the JPol deals with protecting and managing the natural resource base of economic and social development (water, oceans, vulnerability, disaster management, climate change, agriculture, desertification, biodiversity, mountains, tourism, forests, mining). A general target to achieve by 2010 is a significant reduction of the current rate of biodiversity loss at global, regional and national levels, as a contribution to poverty alleviation and to benefit all life on Earth. South Africa uses the National Biodiversity Strategy and Action Plan (NBSAP) as a means to achieve the JPol biodiversity targets. The NBSAP is discussed under **Section 4.4**.

Copenhagen Accord

The 2009 UNFCCC in Copenhagen, also referred to as the Copenhagen Summit, included the 15th Conference of the Parties (CoP 15) to the UNFCCC and the 5th Meeting of the Parties (MoP 5) to the Kyoto Protocol. A framework for climate change mitigation beyond 2012, the Copenhagen Accord, was drafted during the Summit by the United States, China, India, Brazil and South Africa. It was "taken note of," but not "adopted," in a debate of all the participating countries, and it was not passed unanimously. The Accord recognizes that climate change is one of the greatest challenges of the present day and that actions should be taken to keep any temperature increases to below 2°C. The document is not legally binding and does not contain any legally binding commitments for reducing CO_2 emissions. Many countries and non-governmental organisations were opposed to this agreement, but since 2010 > 138 countries have formally signed the agreement. South Africa has agreed to cut emissions by 34% below current expected levels by 2020.

17th Conference of the Parties (CoP 17)

The 2011 UNFCCC in Durban was held to establish a new treaty to limit carbon emissions. This Convention agreed to a legally binding deal comprising all countries, which will be prepared by 2015 and to take effect in 2020. While the president of the conference, Maite Nkoana-Mashabane, declared it a success, scientists and environmental groups warned that the deal was not sufficient to avoid global warming beyond 2°C as more urgent action is needed.

Coal mining releases significant quantities of methane, which is a potent greenhouse gas, and which is released during underground and surface mining, coal transport and processing, and even after mine decommission and abandonment.

4.2. Regional Agreements

Action Plan of the Environmental Initiative of NEPAD

This New Partnership for Africa's Development (NEPAD) Action Plan was established during the 2003 African Convention on Conservation of Nature and Natural Resources held in Maputo. As a contracting state, South Africa has undertaken to adopt measures to ensure the conservation, utilization and development of soil, water, flora and faunal resources in accordance with scientific principles and with due regard to the best interests of the people. The Action Plan encourages sustainable development and associated conservation and wise use of biodiversity in Africa. It has been recognised that a healthy and productive environment is a prerequisite for the success of NEPAD, together with the need to systematically address and sustain ecosystems, biodiversity and wildlife. The Action Plan has six main foci:

- Combating land degradation, drought and desertification;
- Conserving Africa's wetlands;
- Preventing and controlling invasive alien species;
- Conservation and sustainable use of coastal and marine resources;
- Combating climate change in Africa; and
- Cross-border conservation and management of natural resources.

4.3. National Legislation, Policies & Guidelines

Constitution of the Republic of South Africa (Act 108 of 1996)

According to South Africa's Constitution, South African citizens have the right to have the environment protected for the benefit of present and future generations.

Conservation of Agricultural Resources Act (CARA; Act 43 of 1983)

The CARA includes the use and protection of land, soil, wetlands and vegetation and the control of weeds and invader plants. This is the only legislation that is directly aimed at conservation of wetlands in agriculture. In 1984 regulations were passed under CARA, which declared about 50 plant species as "weeds" or "invader plants." On 30 March 2001 the Minister of Agriculture promulgated an amendment to these regulations, which now contain a comprehensive list of declared weed and invader plant species that are divided into three categories:

• Category 1: Declared weeds that are prohibited on any land or water surface in South Africa. These species must be controlled or eradicated where possible.

- Category 2: Declared invader species that are only allowed in demarcated areas under controlled conditions and prohibited within 30 m of the 1:50 year floodline of any watercourse or wetland.
- Category 3: Declared invader species that may remain, but must be prevented from spreading. No further planting of these species are allowed.

In addition, according to the amendments to the regulations under CARA, landowners are legally responsible for the control of alien species on their properties. Various acts administered by the Department of Environmental Affairs (DEA) and the Department of Water Affairs (DWA), as well as other laws (including local by-laws), detail the fines, terms of imprisonment and other penalties for contravening the law. Although no fines have yet been placed against landowners who do not remove invasive species, authorities may clear their land of invasive alien plants and other alien species entirely at the landowners cost and risk. These regulations are likely to be repealed when the NEM:BA Draft Alien and Invasive Species Regulations (2007) are promulgated.

Environmental Conservation Act (ECA; Act 73 of 1989)

The ECA is mentioned here because it is necessary to ensure that, for the remainder of its phasing out period, it is enforced in terms of the new enforcement provisions in the current National Environmental Management Act (NEMA), which were added to NEMA under the National Environmental Management Amendment Act (NEMAA; Act 8 of 2004). ECA is already partially repealed, and although it is envisaged that ECA will eventually be repealed in its totality, it is still being applied for a number of reasons. For example, regulations are being applied for authorisation of activities in certain coastal areas, which were published in terms of Sections 26 and 28 of the ECA in Government Notice R. 1528 of 27 November 1998. Other remaining provisions of the ECA deal with littering, waste-management and regulations on noise, vibration and shock.

Water Services Act (WSA; Act 108 of 1997)

This Act provides for, among other things, the:

- Setting of national water standards, and of norms and standards for water tariffs.
- Monitoring of water services and intervention by the Minister or by the relevant Province.
- Gathering of information in a national information system and the distribution of that information.
- Promotion of effective water resource management and conservation.

Subject to subsection 3 of the WSA, no person may dispose of industrial effluent in any manner other than that approved by the water services provider nominated by the water services authority having jurisdictionin the area in question. No approval given by a water services

authority under this section relieves anyone from complying with any other law relating to the use and conservation of water and water resource, or the disposal of effluent.

National Veld and Forest Fire Act (NVFFA: Act 101 of 1998)

The NVFFA is the principal legislation pertaining to the control of veld fires in South Africa. The purpose of this Act is to prevent and combat veld fires in the country. The Act applies to land owners, lawful occupiers or other persons/organisations in control of land on which a veld, forest or mountain fire can start on the land, burn on the land or spread. Such a person/organization has an obligation to prepare and maintain firebreaks between their land and any adjoining land owned by a Third Party. The NVFFA was amended by the National Forest and Fire Laws Amendment Act (NFFLAA; Act 12 of 2001).

National Water Act (NWA: Act 36 of 1998)

The NWA recognises that water is a scarce and unevenly distributed natural resource that should be equitably utilised in a sustainable manner. The Act ensures that water resources are protected, used, developed, conserved and controlled in ways that take into account a range of needs and obligations, including the need to "Protect aquatic and associated ecosystems and their biological diversity." **The NWA specifies that water use must be authorised**. It indicates the means for authorisation and includes minimum requirements for evaluation and decision-making by relevant authorities. To protect aquatic ecosystems and biodiversity, the NWA has a number of requirements, which are controlled by the DWA, including:

- Section 19(2) which states that: responsible persons of pollution of any water resources must take all measures to prevent and remedy effects of pollution.
- Section 21 which states that: a license for water use is required if the following activities are expected:
 - (a) taking water from a water resource;
 - (b) storing water;
 - (c) impeding or diverting the flow of water in a watercourse;
 - (d) engaging in a stream flow reduction activity contemplated in Section 36;
 - (e) engaging in a controlled activity identified as such in Section 37(1) or declared under Section 38(1).
 - (f) discharging waste or water containing waste into a water resource through a pipe, canal, sewer, sea outfall or other conduit;
 - (g) disposing of waste in a manner which may detrimentally impact on a water resource;
 - (h) disposing in any manner of water which contains waste from, or which has been heated in, any industrial or power generation process;
 - (i) altering the bed, banks, course or characteristics of a watercourse;

- (j) removing, discharging or disposing of water found underground if it is necessary for the efficient continuation of an activity or for the safety of people; and
- (k) using water for recreational purposes.
- Section 37(2) states that: the following activities (described in Section 37(1)) require authorization before being undertaken:
 - (I) irrigation on any land with waste or water containing waste generated through any industrial activity of by a waterworks;
 - (m) intentional recharging of an aquifer with any waste or water containing waste;
 - (n) an activity which has been declared by the minister as a "controlled activity."

National Forests Act (NFA: Act 84 of 1998) and Protected Tree Species

An objective of the NFA is to provide special measures for the protection of certain forests and tree species, and to promote the sustainable use of forests for environmental, economic, educational, recreational, cultural, health and spiritual purposes. In terms of Section 15(1) of the NFA forest trees or Protected Tree Species may not be cut, disturbed, damaged, destroyed and their products may not be possessed, collected, removed, transported, exported, donated, purchased or sold – except under license granted by the Department of Agriculture, Forestry and Fisheries (DAFF) or a delegated authority.

Government Notice 835 of 2010 provides the latest List of Protected Tree Species within the borders of South Africa under the NFA. The criteria used to select tree species for inclusion in the protected list were:

- Red List status (rare or threatened species);
- Keystone species value (whether species play a dominant role in an ecosystem's functioning);
- Sustainability of use (whether a species is threatened by heavy use of its products such as timber, bark etc);
- Cultural or spiritual importance (outstanding landscape value or spiritual meaning attached to certain tree species); and
- Other legislation (whether a species is already adequately protected by other legislation).

National Environmental Management Act (NEMA: Act 107 of 1998)

NEMA is an umbrella Act covering broad principles of environmental management. NEMA can be regarded as the most important piece of general environmental legislation covering three main areas namely: Land, planning and development; Natural and cultural resources use and conservation; Pollution control and waste management. According to NEMA sustainable development requires the consideration of all relevant factors including:

- That the disturbance of ecosystems and loss of biological diversity are avoided, or, where they cannot be altogether avoided, are minimised and remedied;
- That the use and exploitation of non-renewable natural resources is responsible and equitable, and takes into account the consequences of the depletion of the resource; and
- That the development, use and exploitation of renewable resources and the ecosystems of which they are part do not exceed the level beyond which their integrity is jeopardised.

According to Section 2(r) in NEMA, sensitive, vulnerable, highly dynamic or stressed ecosystems require specific attention in management and planning procedures, especially where they are subject to significant human resource usage and development pressure. Grasslands and wetlands in Mpumalanga are a strong case in point.

National Heritage Resources Act (NHRA; Act 25 of 1999)

According to the NHRA heritage sites, sensitive, vulnerable, highly dynamic or stressed ecosystems, such as coastal shores, dolomitic land and ridges, estuaries, wetlands, and similar systems require specific attention in management and planning procedures, especially where they are subject to significant human resource usage and development pressure.

National Mineral and Petroleum Resources Development Act (NMPRD; Act 28 of 2002)

The NMPRDA is concerned with equitable access to and sustainable development of the nation's mineral and petroleum resources. It replaces the Minerals Act (MA; Act 50 of 1991) except for the definition of "Sunday" in the Mines and Work Act (MWA; Act 27 of 1956).

The new Act specifies, inter alia:

- That every person who has applied for a mining right must conduct an EIA, determine the environmental baseline, and submit an EMP;
- That every holder of a mining reconnaissance permit, prospecting right, mining right, mining permit or retention permit must assess and communicate the impacts of the activity on the environment;
- The need to rehabilitate the environment affected by prospecting or mining operations to its natural or predetermined state;
- That the directors of the mining company are liable for unacceptable impacts on the environment.

National Environmental Management: Protected Areas Act (NEM:PAA; Act 57 of 2003)

The NEM:PAA is focussed on the protection and conservation of ecologically viable areas representative of South Africa's biological diversity and its natural landscapes and seascapes, and addresses, inter alia:

- The protection and conservation of ecologically viable areas representative of South Africa's biological diversity and its natural landscapes and seascapes;
- The establishment of a national register of all national, provincial and local protected areas;
- The management of those areas in accordance with national standards;
- Inter-governmental co-operation and public consultation in matters concerning protected areas.

National Environmental Management: Biodiversity Act (NEM:BA; Act 10 of 2004)

A main objective of NEM:BA is to provide for the management and conservation of South Africa's biodiversity within the framework of NEMA and to ensure the sustainable use of indigenous biological resources. In addition to regulations on Threatened, Protected, Alien and Invasive Species in South Africa, the NBSAP was formulated where under the NSBA was used to identify Terrestrial and Aquatic Priority Areas and Threatened Ecosystems for biodiversity conservation.

Threatened, Protected, Alien and Invasive Species Regulations

Chapter 4, Part 2 of NEM:BA provides for listing of species that are threatened or in need of protection to ensure their survival in the wild while regulating the activities, including trade, which may involve such listed threatened or protected species and activities which may have a potential impact on their long-term survival. According to Section 56(1) of NEM:BA, in February 2007 the Minister of Environmental Affairs and Tourism published a list of Critically Endangered (CR), Endangered (EN), Vulnerable (VU) and Protected Species (PS).

The Draft Alien and Invasive Species Regulations (2007) under Section 70 of NEM:BA list all declared weeds and invasive plant species in South Africa. These include 47 invasive plant species in addition to those listed in CARA. The Regulations have not yet been promulgated but are already widely used. Their purpose is to:

- Prevent the unauthorized introduction and spread of alien species to ecosystems and habitats where they do not naturally occur;
- Manage and control invasive species to prevent or minimize harm to the environment and to biological diversity in particular;
- Where possible and appropriate, eradicate invasive species that may cause such harm.

National Biodiversity Strategy and Action Plan (NBSAP)

The development of the NBSAP is part of South Africa's obligations as a signatory to the CBD, and was compiled by the Department of Environmental Affairs and Tourism (DEAT 2005). The NBSAP is based on the recognition that South Africa is extremely rich in terms of biodiversity, but is also a developing country where the majority of the population resides in poverty. It provides an overarching framework for the conservation and sustainable use of South Africa's biodiversity, and equitable sharing of benefits from use of genetic resources. As far we know South Africa is the first country to include a comprehensive spatial assessment of biodiversity (the NSBA) as part of its NBSAP.

Through the NBSAP it is recognized that biodiversity cannot be conserved through protected area networks only. All stakeholders, from private landowners and communities to business and industry must get involved in biodiversity management. NBSAP identified mining as one of the activities that causes significant habitat transformation and degradation, and seriously threatens aquatic and terrestrial biodiversity. The strategy therefore promotes the inclusion of biodiversity considerations in mining regulations, guidelines and best practice codes to mitigate negative impacts and encourage sustainable mining practices through partnerships.

The NBSAP highlights, in particular, that South Africa's rivers are poorly protected and that the present status of many of these freshwater ecosystems is disturbing. To ensure further protection and sustainability of South Africa's wetlands, the Department of Water Affairs and Forestry (DWAF) initiated the National Aquatic Ecosystem Health Monitoring Program (NAEHMP) and River Health Program (RHP).

National Spatial Biodiversity Assessment (NSBA)

The NSBA, which is part of the NBSAP, was led by the SANBI (Driver *et al.* 2004). Its main focus was on mainstreaming biodiversity priorities and making links between biodiversity and socio–economic development in South Africa. The NSBA represents South Africa's first national assessment of spatial priorities for conservation action, integrating terrestrial, river, estuarine and marine ecosystems, using available spatial data, biodiversity planning software and a series of expert and stakeholder workshops.

The NSBA involved systematic biodiversity planning based on three principles:

- The need to conserve a representative sample of biodiversity pattern, such as species and habitats (the principle of representation).
- The need to conserve the ecological and evolutionary processes that allow biodiversity to persist over time (the principle of persistence).

• The need to set quantitative biodiversity targets that tell us how much of each biodiversity feature should be conserved in order to maintain functioning landscapes and seascapes.

National Aquatic Ecosystem Health Monitoring Program (NAEHMP) & River Health Program (RHP)

The NAEHMP is a national programme managed by DWA's Resource Quality Services with support from the Water Research Commission (WRC), the Council for Scientific and Industrial Research (CSIR) and various regional and provincial authorities. The overall purpose of the NAEHMP is to provide ecological information for South African rivers and the broader aquatic ecosystems required to support the rational management of these systems. The best-known component of the NAEHMP is the RHP.

The RHP was initiated in 1994 by the DWAF. It provides information on the overall ecological status of river ecosystems in South Africa, and primarily makes use of in-stream and riparian biological communities (e.g. fish, invertebrates, vegetation) to characterize the response of the aquatic environment to multiple disturbances. The rationale is that the integrity or health of the biota inhabiting the river ecosystems provides a direct and integrated measure of the health of the river as a whole. To date, the implementation of the RHP has been largely voluntary and, therefore, the DWAF initiated the "National Coverage Phase" to establish the RHP as a national programme that is aligned with the requirements of the NWA.

National Environmental Management: Air Quality Act (NEM:AQA; Act 39 of 2004)

The Atmospheric Pollution Prevention Act (APPA; Act 45 of 1965), which largely governed point-source emission control and therefore did not take into consideration the cumulative impacts of air pollution, has been repealed by the NEM:AQA. Amongst other objectives, this Act provides for the "prevention of air pollution and ecological degradation."

Mining & Biodiversity Guideline

The mining industry plays a vital role in South Africa's growth and development. But if mining is not strategically planned and carefully implemented, it has significant negative impacts on Biodiversity and ecosystems, in particular, catchments, rivers and wetlands that support water-related services. The Mining and Biodiversity Guideline: Mainstreaming biodiversity into the mining sector (DEA *et al.* 2013), interprets the best available Biodiversity knowledge and science in terms of the implications and risks for mining in a practical and user-friendly guideline for integrating relevant biodiversity information into decision making. The development of this guideline was initiated by the Chamber of Mines and the South African Mining and Biodiversity Forum (SAMBF), in partnership with the DEA, the Department of Mineral Resources (DMR), and with technical input and co-ordination by the SANBI Grasslands Programme.

4.4. Mpumalanga Legislation, Policies & Guidelines

Mpumalanga Parks Board Act (MPBA; Act 6 of 1995)

The MPBA provides for the:

- Establishment of the Mpumalanga Parks Board (MPB);
- Effective conservation management of natural resources;
- Creation of economic and employment opportunities in pursuit of nature conservation and biodiversity;
- Maintenance of natural systems, biodiversity and ecological functions and processes;
- Determination and enforcement of limits to sustainable utilization of natural resources;
- Advancement of scientific knowledge and technology transfer in respect of conservation; and
- Information and extension services to the public on conservation management, problem species, legal aspects of conservation and other conservation matters.

Mpumalanga Nature Conservation Act (MNCA: Act 10 of 1998)

This Act makes provision with respect to nature conservation in Mpumalanga Province. It provides for, among other things, protection of wildlife, hunting, fisheries, protection of endangered fauna and flora as listed in the CITES, the control of harmful animals, freshwater pollution and enforcement.

Mpumalanga Tourism and Parks Agency Act (MTPAA; Act 5 of 2005)

The MTPAA provides for the:

- Establishment of the Mpumalanga Tourism and Parks Agency (MTPA)
- Confer of powers and functions upon the Agency;
- Sustainable development and improvement of the tourism industry;
- Conservation management of natural resources.

MTPA Guidelines for Biodiversity Assessments

The MTPA is responsible for biodiversity conservation in Mpumalanga, and aims to provide an integrated tourism and bio-diversity conservation management system to stimulate sustainable economic growth for the Province. To promote national uniform standards in EMPs, the MTPA has set minimum standards that need to be conformed to in terms of biodiversity assessments for development applications. These guidelines cover flora, fauna, wetland and aquatic systems.

Mpumalanga Biodiversity Sector Plan (MBSP)

The biodiversity of Mpumalanga has been recorded and catalogued by the Province's conservation biologists for >21 years. This data were analysed to produce a spatial plan for

NSS

biodiversity conservation called the Mpumlanga Biodiversity Conservation Plan (MBCP), which was jointly developed by the MTPA and the Department of Agriculture and Land Administration (DALA) to guide conservation and land-use decisions in support of sustainable development in the province (Ferrar & Lötter 2007). The MBCP has recently been updated and replaced with the Mpumalanga Biodiversity Sector Plan (MBSP; MTPA 2013), which recognizes Ecological Support Areas (ESAs), and Critical Biodiversity Areas (CBAs) containing Irreplaceable, Optimal and Protected Areas for Biodiversity.

5. Study Area Description

5.1. Climate

The vegetation types in the AYCP study area are characterized by mean annual precipitation (MAP) ranging between 800mm and 1,250mm (Mucina & Rutherford 2006). Overall MAP is approximately 900mm, with peak rainfall during mid-summer (i.e. December and January). This higher precipitation relative to adjacent areas is due to the effect of the local, mountainous topography on rainfall.

Figure 5-1 shows total monthly rainfall between January 2012 and August 2013 for Ermelo and Vryheid, which are situated ca. 75km north-west and south-east of the AYCP site, respectively. Asterisks indicate when field surveys for the AYCP Biodiversity Assessment were performed. This approximate weather data suggest that field surveys were performed during months when the AYCP study area had received low to intermediate levels of rainfall (~0-100mm/month).

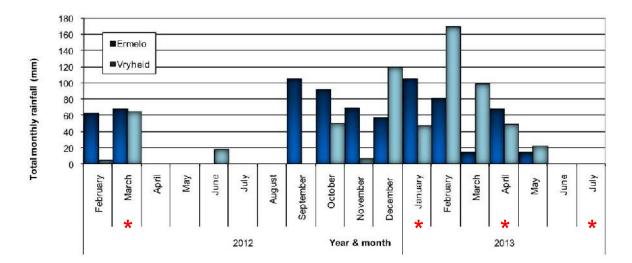


Figure 5-1 Total monthly rainfall for Ermelo and Vryheid (SAWS 2012 & 2013). Asterisks indicate when field surveys for the AYCP Biodiversity Assessment were performed

NSS

Mean daily maximum and minimum temperatures in the study area for January and July, are approximately 25°C and 2°C, respectively. Overall mean annual temperature is approximately 15°C. Incidence of frost is relatively high, but ranging widely from 11 days (at lower altitudes) to 31 days (at higher altitudes) per annum. Presented in **Figure 5-2** are mean monthly values of rainfall and temperature for Wakkerstroom, which is situated ca. 11km south-west of the AYCP site.

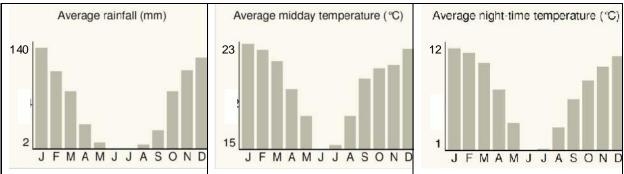


Figure 5-2 Historical climate data for Wakkerstroom (SA Explorer, 2013).

5.2. Geology, Soils & Land Types

The greater AYCP study area comprises low mountains and undulating plains that link the southern and northern Drakensberg escarpments. The geology of the landscape features mainly mudstones, sandstones and shale of the Madzaringwe and Volkrust Formations (Karoo Supergroup), which were intruded by voluminous Jurassic/Karoo dolerite dykes and sills (Mucina & Rutherford, 2006).

Land types represent areas that are uniform with respect to climate, terrain form, and geology and soil. The Agricultural Geo-referenced Information System (AGIS 2010) indicates that seven different land types occur within the boundaries of the AYCP lease area, namely Ab64, Ac39, Ac101, Ba45, Ea25, Fa362 and Fa362 (**Figure 5-3**). Fa362 represents the dominant land type in the proposed undermining area. The proposed surface infrastructure area comprises both the Fa362 and Ba45 land types.

Any one land type may be commonly associated with a number of vegetation types and any one vegetation type may be associated with a number of land types or soils. Specific floral and faunal taxa may, however, be restricted to specific soil or land types.

5.3. Hydrology

The AYCP is situated within the W51A quaternary catchment of the Assegaai River (DWA 2009), which flows through the far north-western corner of the lease/prospecting area (**Figure 5-4**), and which is considered to have a very high ecological sensitivity based on the local

diversity of habitats and species. Although, there will be no underground mining directly under this north-western corner of the area at any time during the life of Mine, the cone of depression will extend to within close proximity of the Assegaai River. Such quaternary catchments and rivers are generally highly sensitive to flow modifications and have no or limited capacity for commercial use. Numerous small headwater and mountain streams, and associated channelled valley bottom wetlands, flow from the study area into small rivers that drain into the Assegaai River. There is also a very high density of seep wetlands in the study area, which are discussed in detail under **Section D**.

5.4. Biome, Eco-region & Vegetation

The AYCP is situated in Rutherford & Westfall's (1994) Grassland Biome and the Olson *et al.* (2001) Highveld Grassland Terrestrial Eco-region. The Grassland Biome has extremely high Biodiversity, second only to the Fynbos Biome. At a 1km² scale, the average species richness of the Grassland Biome is even higher than that of most Fynbos communities, being surpassed only by Renosterveld (Cowling *et al.*, 1997; van Wyk, 2002). As the majority of rare and threatened plant species in the summer rainfall region of South Africa are restricted to high-rainfall grassland, this vegetation is in urgent need of protection.

The majority of plant species within grasslands are non-grassy herbs (forbs), most of which are perennial plants with large underground storage structures. Tree species are limited due to frost, fire and grazing, which maintains the herbaceous grass and forb layer and ultimately prevents the establishment of tall woody plants (Tainton, 1999).

According to Mucina & Rutherford (2006) there are three main vegetation types within the boundaries of the AYCP lease area, which include Gm 14 Wakkerstroom Montane Grassland, GM 15 Paulpietersburg Moist Grassland and Foz 2 Northern Afro-temperate Forest (**Figure 5-5**). The most abundant and prominent plant species in these vegetation types are listed in **Table 5-1**.

Wakkerstroom Montane Grassland is the most widespread vegetation type within the AYCP lease and undermining areas. It occurs on flat to undulating terrein where predominant short, montane grassland is interspersed by short forest and *Leucosidea* thickets on steep, mainly east-facing slopes and drainage areas. Wakkerstroom Montane Grassland is classified as Least Threatened by Mucina & Rutherford (2006), although only 1% of this vegetation type is statutorily protected and invasion by Black Wattle (*Acacia mearnsii*) is problematic in riverine areas.

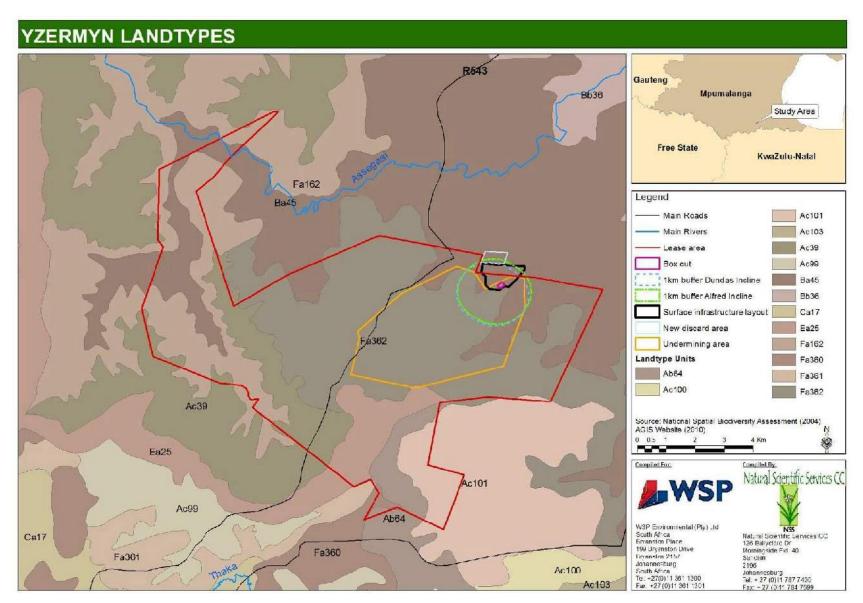


Figure 5-3 Land Types in the study area

Natural Scientific Services CC

NSS

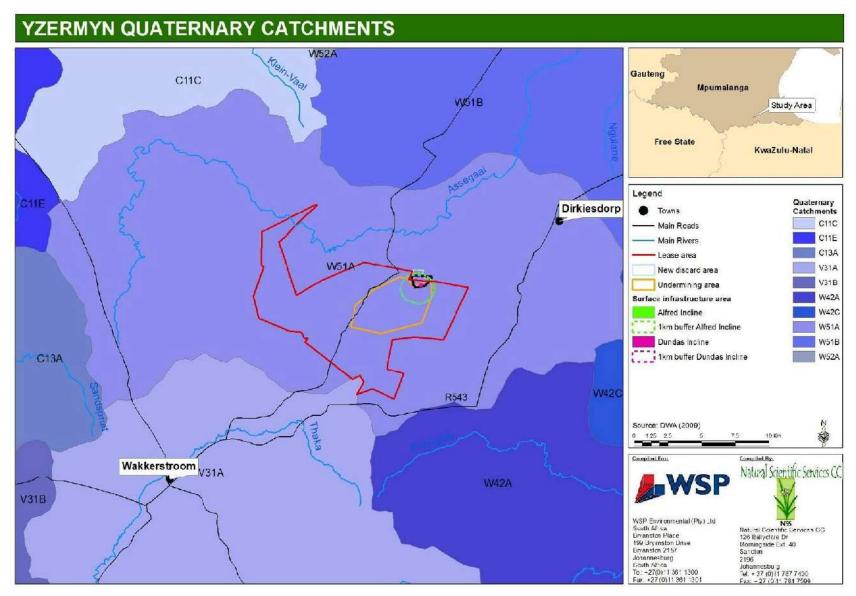
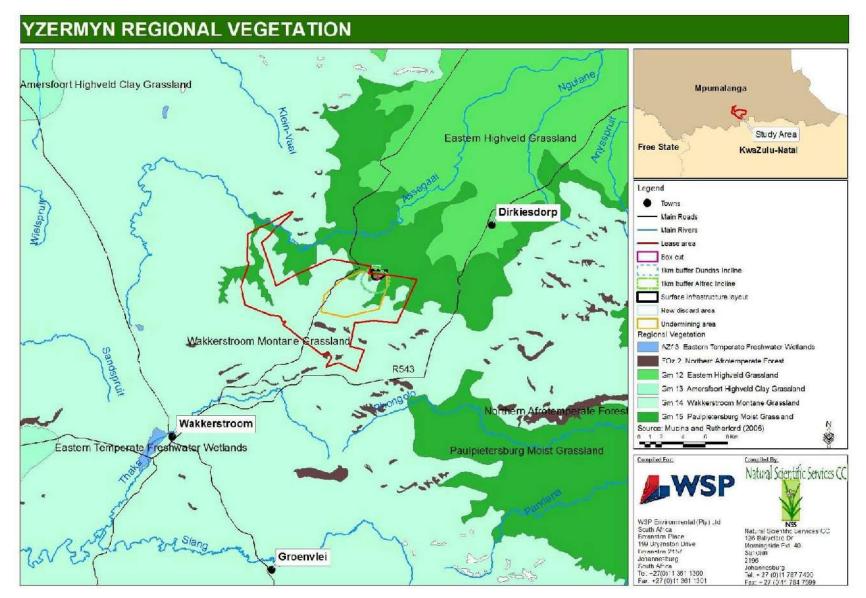



Figure 5-4 Quaternary catchments and major drainage lines in the study area

Figure 5-5 Vegetation types in the study area

Paulpietersburg Moist Grassland is found in the eastern regions of the surface infra-structure and undermining areas, and also in the north-western region of the AYCP lease area. This vegetation occurs on slightly steeper mountain slopes and valleys, and features taller, closed grassland rich in forbs and dominated by *Tristachya leucothrix*, *Themeda triandra*, and *Hyparrhenia hirta*. Evergreen woody vegetation is characteristic on rocky outcrops. Paulpietersburg Moist Grassland is listed as **Vulnerable** by Mucina & Rutherford (2006) because one third of this vegetation type has been transformed by cultivation and afforestation, and remaining areas are highly threatened by livestock over-grazing, alien plant invasion and altered fire regimes.

Northern Afro-temperate Forest is found in small patches in kloofs, and on sub-ridge scarps in the south-eastern region of the AYCP study area. As its name implies, this forest type is of afromontane origin. The forest canopy is low (up to 20m) and species richness is relatively poor. Approximately a third of Northern Afro-temperate Forest is statutorily protected and, therefore, this vegetation type is considered Least Threatened by Mucina & Rutherford (2006). Harvesting of certain plant species, and hot fires in surrounding vegetation, are problematic in some areas.

Table 5-1 Vegetation types and their diagnostic plant species in the AYCP lease area

VEGETATION TYP	E
PLANT GROWTH	SPECIES
FORM	SPECIES

Wakkerstroom Montane Grassland (Least Threatened)

Small Trees: Canthium ciliatum; Protea subvestita

Shrubs: Asparagus devenishii (d); Buddleja salviifolia (d); Buddleja auriculata; Cliffortia linearifolia (d); Helichrysum melanacme (d), Helichrysum splendidium (d); Leucosidea sericea (d); Anthospermum rigidum subsp. pumilum; Clutia natalensis; Diospyros lycioides subsp. guerkei; Erica oatesii; Euclea crispa subsp. crispa; Felicia filifolia subsp. filifolia; Gymnosporia heterophylla; Helichrysum hypoleucum; Hermannia geniculata; Inulanthera dregeana; Metalasia densa; Printzia pyrifolia; Searsia discolor; Searsia montana; S. rehmanniana; S. transvaalensis; Rubus ludwigii subsp. ludwigii.

Herbs: Berkheya onopordifolia var. glabra (d); Cephalaria natalensis (d); Pelargonium luridum (d); Acalypha depressinerva; A. peduncularis; A. wilmsii; Aster bakerianus; Berkheya setifera; Euryops transvaalensis subsp. setilobus; Galium thunbergianum var. thunbergianum; Geranium ornithopodiodes; Helichrysum cephaloideum; H. cooperi; H. monticola; H. nudifolium var. nudifolium; H. oreophillum; H simillimum; Pentanisia prunelloides subsp. latifolia ; Plectranthus laxiflorus; Sebaea leistyla; S. sedoides var. sedoides; Selago densiflora; Striga bilabiata subsp. bilabiata; Vernonia hirsuta; V. natalensis; Wahlenbergia cuspidata.

Geophytic Herbs: Hypoxis costata (d); Agapanthus inarpertus subsp. intermedius; Asclepias aurea; Cheilanthes hirta; Corycium dracomontanum; C. nigrescens; Cyrtanthus tuckii var.

NSS

VEGETATION TYPE			
PLANT GROWTH	SPECIES		
FORM			
	transvaalensis; Disa versicolor; Eriospermum cooperi var. cooperi; Eucomis bicolor; Geum capense; Gladiolus ecklonii; G. Sericeo villosus subsp. villosus; Hesperantha coccinea; Hypoxis rigidula var. pilosissima; Moraea brevistyla; Rhodohypoxis baurii var. confecta.		
Grasses:	Andropogon schirensis (d); Ctenium concinnum (d); Cymbopogon caesius (d); Digitaria tricholaenoides (d); Diheteropogon amplectens (d); Eragrostis chloromelas (d); E. plana (d); E. racemosa (d); Harpochloa falx (d); Heteropogon contortus (d); Hyparrhenia hirta (d); Microchloa caffra (d); Themeda triandra; Trachypogon spicatus (d); Tristachya leucothrix (d); Alloteropsis semialata subsp. eckloniana; Aristida junciformis subsp galpinii; Brachiaria serrata; Diheteropogon filifolius; Elionurus muticus; Eragrostis capensis; Eulalis villosa; Festuca scabra; . Loudetia simplex; Rendlia altera; Setaria nigrirostris.		
Paulpietersburg M	oist Grassland (Vulnerable)		
Small Trees:	Canthium ciliatum (d); Aloe marlothii subsp. marlothii; Dombeya rotundifolia; Vangueria infausta.		
Shrubs:	Anthospermum rigidum subsp. rigidum (d); Calpurnia sericea (d); Diospyros lycioides subsp. guerkei; Searsia discolor (d); S. rehmanniana (d): Anthospermum rigidum subsp. pumilum; Clutia monticola; Diospyros galpinii; Erica oatesii; E. woodii; Hermannia geniculata; Euclea crispa subsp. crispa.; Euphorbia pulvinata; Indigofera arrecta; Otholobium wilmsii; Polygala uncinata; Pseudarthria hookeri; Rubus rigidus.		
Herbs:	Argyrolobium speciosum (d); Cissus diversilobata (d); Dicoma seyheri (d); Eriosema kraussianum (d); Geranium wakkerstroomianum (d); Helichrysum nudifolium var. nudifolium (d); Ipomoea oblongata (d); Pelargonium luridum (d); Acalypha glandulifolia; A. peduncularis; Acanthospermum australe ; Aster bakerianus; Becium filamentosum; Berkheya setifera; Dicoma anomala; Euryops laxus; E. transvaalensis; Helichrysum		
Geophytic Herbs:	rugulosum; H. simillimum; Indigofera hilaris var. hilaris; I. velutina; Kohautia amatymbica; Pearsonia grandifolia; Pentanisia prunelloides subsp. latifolia; Rhynchosia totta; Senecio bupleuroides; S. coronatus; S. inomatus; S. isatideus; S. latifolius; Sonchus nanus; Thunbergia atriplicifoli; Vernonia capensis; V. natalensis; Xerophyta retinervis. Chlorophytum haygarthii (d); Gladiolus aurantiacus (d); Agapanthus inapertus subsp. intermedius; Aloe ecklonis; A. maculata; Asclepias aurea; Cheilanthus hirta; Cyrtanthus tuckii var. transvaalensis; Hypoxis colchifolia; H. costata; H. rigidula var. pilosissima; Lopholaena segmentata; Moraea brevistyla; Pteridium aquilinum; Watsonia latifolia; Zantedeschia; rehmannii.		

Grasses: Alloteropsis semialata subsp. eckloniana (d); Andropogon schirensis (d); Brachiaria serrata (d) Ctenium concinnum (d); Cymbopogon caesius (d); Digitaria trichloronoides (d); Eragrostis racemosa d); Harpochloa falx (d); Heteropogon contortus (d); Hyparrhenia hirta (d); Loudetia simplex (d); Microchloa caffra (d); Monocymbium cereciiforme (d); Rendia altera (d); Setaria nigririgrostis (d); Themeda triandra (d);

VEGETATION TYPE		
PLANT GROWTH FORM	SPECIES	
	Tristachya leucothrix (d); Andropogon appendiculatus; Cynodon hirsutus; Diheteropogon amplectens; D. filifolius; Festuca scabra; Melinis nerviglumis; Panicum ecklonii; P. natalense; Trachypogon spicatus; Uryletrum agropyroides.	
Northern Afro-ter	nperate Forest (Least Threatened)	
Tall trees:	Celtis africana (d); Halleria Iucida (d) Olinia emarginata (d); Pittosporum viridiflorum (d); Podocarpus latifolius (d); Rothmannia capensis (d); Scolopia mundii (d); Afrocarpus falcatus; Buddleja saligna; Dais cotonifolia; Ilex mitis.	
Small Trees:	Acalypha glabrata (d); Buddleja salvifolia (d); Calpurnia aurea (d); Combretum erythrophyllum (d); Diospyros lycioides subsp. guerkei; D. whyteana (d); Euclea crispa subsp. crispa (d); Widdringtonia nodiflora (d); Bowkeria verticillata; Canthium ciliatum; Leucosidea sericea; Scolopia flanaganii.	
Shrubs:	Isoglossa grantii (d); Myrsine africana (d); Cliffortia nitidula. Hypoestes aristata; Plectranthus fruticosus.	
Woody climber:	Cassinopsis ilicifolia (d).	
Herbs:	Plectranthus grallatus (d); P. hereroensis (d); Peperomia retusa; Streptocarpus haygarthii; S. pusillus.	
Sedges:	Cyperus albostriatus; Schoenoxiphium lehmannii; Thamnocalamus tessellates.	
	nant species; alien species in bold .	

Source: Mucina & Rutherford (2006).

5.5. Land-use

Within and around the AYCP lease area the main form of land-use includes livestock (mainly cattle) grazing. Isolated areas show evidence of past or current crop (mainly maize) cultivation.

Section B: Floral Assessment

NATURAL SCIENTIFIC SERVICES

SECTION B: TABLE OF CONTENTS

1.	Intro	duction	29
2.	Meth	nodology	30
	2.1.	Desktop Research	30
	2.2.	Fieldwork	30
	2.3.	Data Analysis	31
	2.4.	Study Limitations	31
3.	Res	ılts	34
	3.1.	Vegetation Communities	36
	3.2.	Conservation Important Species	48
	3.3.	Alien Invasives within the Vegetation Units	60
4.	Area	s of Conservation Importance	63
5.	Арр	endices	66
	5.1.	Appendix 1 Twinspan	66
	5.2.	Appendix 2 PRECIS List for 2730AB	68

SECTION B: LIST OF TABLES

Table 2-1	Braun-Blanquet cover classes (Mueller-Dombois & Ellenberg, 1974)
Table 3-1	Top Ten Dominant Families and Most Dominant Growth Forms obtained from the POSA website for the QDS 2730AA to AD
Table 3-2	Vegetation Communities
Table 3-3	Unit A Leucosidea – Merxmuellera Riverine Community
Table 3-4	Unit B Searsia – Diospyros – Athrixia Protected Outcrops & Kloof Community
Table 3-5	Unit C Hyparrhenia – Microchloa – Helichrysum Plateau Grassland Community
Table 3-6	Unit D Hyparrhenia – Cymbopogon – Monocymbium Slope Grassland Community
Table 3-7	Unit E Andropogon – Hyparrhenia (temporary seeps) Hydromorphic Grasslands Community
Table 3-8	Unit F Andropogon – Helichrysum- Bulbostylis (seasonal seeps) Hydromorphic Grasslands Community
Table 3-9	Numbers of conservation important plant species per Red Data category within South Africa and Mpumalanga
Table 3-10	Species recorded in the surrounding farms (supplied by MTPA, 2013) and QDG (PRECIS Data)
Table 3-11	CI Species found during the surveys on site and in the underground mining area

Table 3-12	Main Alien Invasive Species found within the Study Area	62
Table 4-1	Summary of the different vegetation communities within the 1km	surface
	infrastructure zone	64

SECTION B: LIST OF FIGURES

Main extracted sampling plots areas	3
Photographic representation of the different broad communities found within	n
the study area3	5
DCA ordination of phytosociological data from 24 sampling plots showing	а
distinct growth form separation for the 4 broader units	7
DCA ordination of phytosociological data showing a distinct moisture gradier	nt
for the grassland units	7
Vegetation Units within the 1km buffer of the immediate study area	8
Broader Vegetation Units within the underground mining area	9
Species to look out for in the study area5	3
Examples of the CI species located within the study area5	8
CI Species Distributions (from the surveys conducted)	9
Evidence of Alien species found within the study area	3
	Photographic representation of the different broad communities found withit the study area

SECTION B: FLORAL ASSESSMENT

1. Introduction

As the main component to a Biodiversity Baseline Assessment, the terrestrial fauna and floral hold the basis for the understanding system functioning within the study area. It is important to note that vegetation is a major component when studying ecosystems. The composition, diversity, and structure of vegetation are important factors for assessing biological diversity. Vegetation is the source of primary production, plays a direct role in water and nutrient cycling, and interacts strongly with other biotic components being a determinant habitat for many species.

Within the study region, as indicated in **Section A**, the vegetation is representative of the Grassland Biome. Grasslands provide essential ecosystem services, which include:

- water production,
- wetland functioning and flood attenuation,
- good quality soil and forage for livestock;
- cultural and heritage value; and
- the support for livelihoods (i.e. the use of medicinal plants).

It is well documented that grasslands contain a high diversity of both plants and animals and in South Africa Grasslands are second only to the Cape Floristic Region.

Natural Scientific Services CC (NSS) was contracted by WSP Environment and Energy (Pty) Ltd (WSP) to perform Biodiversity Scoping, Baseline and Impact Assessments for selected aspects of the proposed ATHA Yzermyn Coal Project (AYCP). This report **Section B** details the baseline floral component, which involved desktop and field-based investigations of the structure, dominant species composition and condition of local floral communities including alien and invasive plants.

According to the South African National Biodiversity Institute (SANBI), the AYCP falls within the

NPAs South Eastern Escarpment as well as the proposed Enkangala / Grassland Biosphere Reserve (see insert). The NPA assessment was based on integrating data on species, habitats and ecological processes to identify areas of greatest biodiversity significance. This resulted in the identification of nine spatial priority areas for terrestrial biodiversity. These priority areas represent areas with high concentrations of biodiversity features and/or areas where there are

Enkangala Grasslands Project – WWF-SA

The main objective of the Enkangala Trust is to promote the concept of biosphere reserves and the establishment and maintenance of a biosphere reserve for the high altitude moist grasslands of the Mpumalanga, KwaZulu Natal and Free State Provinces of South Africa. This is in order to ensure the continued functioning of natural systems and associated biodiversity of this threatened biome, taking into account the existing industry and land use, in such a way that it provides for sustained tangible benefits to the affected communities at local, regional and national levels.

few options for meeting biodiversity targets. Further discussions on the national and provincial priority areas will be discussed in **Section F**. Potential impacts on flora of the AYCP and recommended measures to mitigate these impacts are discussed in **Section G**.

2. Methodology

2.1. Desktop Research

A desktop-based investigation of vegetation including Conservation Important (CI) floral species in the greater AYCP area, was performed by consulting the following information sources:

- Google Earth (2011) and Bing satellite imagery.
- Mucina & Rutherford's (2006) vegetation map of southern Africa.
- SANBI's online PRECIS (PREtoria Computerised Information System), which provides taxonomic information for plant species occurring in southern Africa (in the format of Germishuizen & Meyer, 2003).
- SANBI's online Threatened Species Programme (TSP).
- CI plant species records in the greater study area, supplied by the Mpumalanga Tourism and Parks Agency (MTPA, *pers. comm*.).
- The Mpumalanga Biodiversity Sector Plan (MBSP, 2013).

2.2. Fieldwork

As outlined in **Section A**, no detailed information on the AYCP was available until recently, and the boundaries of the lease, underground mining and surface infrastructure areas changed during the course of this Assessment. Consequently, field surveys for flora were performed in the original (old) proposed undermining area and more specifically in the area in which the surface infrastructure was to be placed during 2012 (March 2012). Once the updated surface infrastructural areas were supplied (**Section A: Figure 2-1**), NSS performed additional surveys on the following dates:

- 14-18 January 2013,
- 4-8 April 2013, and
- 15-17 July 2013.

The floral surveys involved:

Sampling vegetation plots to determine the spatial extent and structure of different floral communities (Figure 2-1) specifically in a 1km radius of the surface infrastructure area. Sampling plot size was standardised at 100m². Whilst a plot was sampled, a list of plant taxa was compiled and each taxon was assigned a cover-abundance estimate using the Braun-Blanquet approach (Mueller-Dombois & Ellenberg, 1974). The cover-abundance categories that were used for this purpose are listed in Table 2-1.

- Walking random transects to detect localised and conservation important plant species (i.e. Red Data, endemic, protected and medicinal species).
- Describing vegetation communities/habitats within each sampling plot (including the structure, dominant plant composition and condition of the vegetation).
- Recording alien and invasive plant species and bushclumps.

2.3. Data Analysis

The analysis of floral data involved:

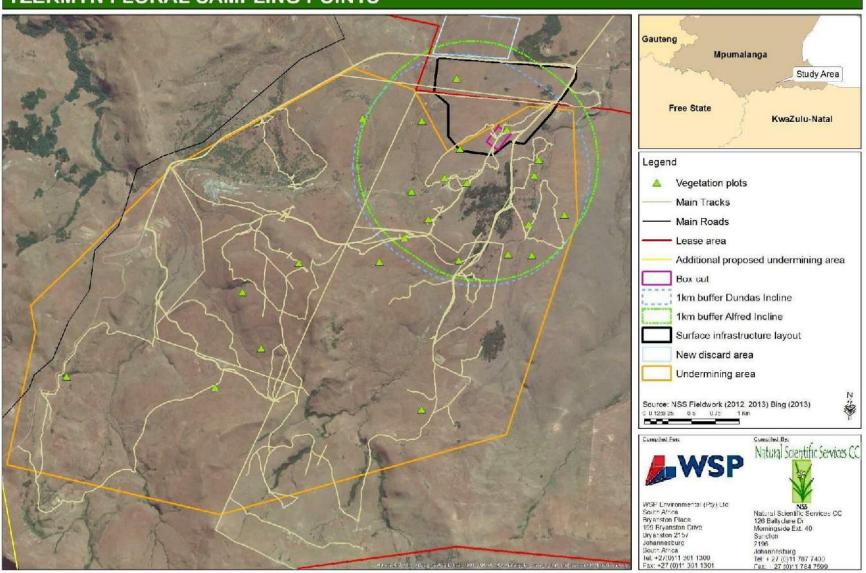
- The Juice (version 7.0.41) software program for management, analysis and classification of ecological data was used to conduct a TWINSPAN analysis and DCA ordination (Tichy & Holt, 2006). The R-program was included as an add-on programme to Juice to conduct the DCA ordination.
- A TWINSPAN analysis (Hill, 1979) of the Braun-Blanquet data, which represented the cover-abundance of species in each sample plot, was used to classify vegetation assemblages. TWINSPAN is used to investigate associations between samples with the purpose of objectively distinguishing groups or assemblages. Samples that cluster together are believed to have similar compositions. The data were left untransformed to allow for only common or dominant species to participate in the analysis.
- An Ordination using a Detrended Correspondence Analysis (DCA) of the same Braun Blanquet data was used to determine the proximity of relationships between sample entities, and confirm the vegetation assemblages (plant communities) identified in the TWINSPAN analysis.

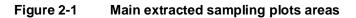
Class Range of cover (%)		Mean
5	75-100	87.5
4	50-75	62.5
3	25-50	37.5
2	5-25	15.0
1	1-5	2.5
Ŷ	<1	0.1
r	<<1	0.01

Table 2-1 Braun-Blanquet cover classes (Mueller-Dombois & Ellenberg, 1974)

2.4. Study Limitations

- Survey work was limited to the current proposed underground mining area, and was not performed in remaining parts of the AYCP lease area.
- NSS was not commissioned to perform surveys for roads, pipelines, power lines, and conveyer systems or any other infrastructure or listed activity (e.g. water extraction) beyond the boundaries of the current proposed underground mining area.
- No detailed information on the AYCP was available until recently, and the boundaries of the lease, underground mining and surface infrastructure areas changed during the course of this Assessment. Consequently, field surveys for flora were performed in the




original (old) proposed undermining area during 2012 and in the current undermining area during 2013.

- Floral survey work was intended for when the study area received significant rain in early summer (i.e. November 2012). Due to delayed finalization of the current surface infrastructure layout and other administrative issues, the survey commenced in January 2013 (mid-summer).
- Some species, which are small, rare or otherwise difficult to detect may not have been detected even though they were potentially present on site.
- Sampling Method
 - As an alternative to other vegetation cover methods (such as the Domin method), the Braun-Blanquet cover-abundance scale was used to analyze vegetation. It is reported that the Braun-Blanquet method requires only one third to one fifth the field time required to other similar methods (Wikum & Shanholtzer, 1978). Furthermore, cover-abundance ratings are better suited than density values to elucidate graphically species-environment relationships. For extensive surveys this method provides sufficiently accurate baseline data to allow environmental impact assessment as required by regulatory agencies. However, there are a couple of problems that have been detected with such sampling methods (Hurford & Schneider, 2007). These are as follows:
 - It can be seen as subjective and dependent upon the experience and knowledge of the vegetation type by the surveyor. The cover estimate may vary from observer to observer.
 - There also may be a problem when the cover estimate is very close to two different classes (on the border so to speak) and then it is for the observer to decide which class it should be allocated to. In Hurford & Schneider's (2007) experience, in marginal situations, where the cover of a species is close to a boundary between two classes, the chance of two observers allocating the species to the same cover class is no better than 50:50. However, when comparing to other sampling methods such as Domin, Braun-Blanquet scale is better adapted for monitoring (less cover classes and fewer boundaries).

YZERMYN FLORAL SAMPLING POINTS

3. Results

SANBI frequently collect/collate floral data within Southern Africa and update their PRECIS database system (National Herbarium Pretoria (PRE) Computerised Information System) and is captured according to QDG squares. For this study, data was extracted from the QDG square 2730AA to AD. From the PRECIS data supplied by SANBI, 1300 plant species of 154 families were recorded (accessed: August 2013). The dominant families were ASTERACEAE; POACEAE and CYPERACEAE (**Table 3-1**), with the herbs representing 33.5%, graminoids representing 9% and geophytic species representing 17.8% of the total species listed for the area.

Table 3-1	Top Ten Dominant Families and Most Dominant Growth Forms obtained from the	
POSA website	or the QDS 2730AA to AD	

IMPORTANT FAMILIES	No. OF SPP	GROWTH FORMS	% TOTAL SPP
ASTERACEAE	176	Herbs/forb species	33.56
POACEAE	116	Geophytes	17.8
CYPERACEAE	62	Graminoids	9.09
FABACEAE	60	Dwarf shrubs	7.6
ORCHIDACEAE	56	Shrubs	5.09
APOCYNACEAE	48	Cyperoid species	4.87
IRIDACEAE	46	Shrub to small trees	4.4
RUBIACEAE	34	Succulents	3.76
HYACINTHACEAE	34	Climbers (geophytic, herbs, shrubs)	3.45

The study area is located within the Mesic Highveld Grassland Bioregion which predominates throughout the higher rainfall, eastern regions of the Highveld and forms a part of the Grassland Biome (Mucina & Rutherford, 2006). Hence the make-up of the different families and growth forms mentioned above (**Table 3-1**). The proposed lease and undermining area span three regional vegetation types within this biome (Section A). These vegetation types are the (i) Paulpietersburg Moist Grassland, (ii) Wakkerstroom Montane Grassland and (iii) Northern Afrotemperate Forest (Mucina & Rutherford, 2006). These vegetation types, like many other units within the Grassland Biome, are highly diverse and under threat through anthropogenic influences. The greater study area (*excluding* the 1km-wide sampling area around the proposed declines) contains the following defined broader habitats (shown in **Figure 3-1** and mapped in **Figure 3-5**):

- Forested Areas;
 - Montane Riverine Forest (3.69ha)
 - Hillslope Forests (13.69ha)
- Exposed Rocky Outcrops and associated grasslands (44.28ha);
- Savanna type Acacia Ziziphus (49.65ha) and Acacia Eucomis (4.56ha) Slope Communities;

- Rocky slope grasslands (482.62ha) and associated hydromorphic seep zones (5.69ha);
- Valley bottom hydromorphic grassland (203.91ha) and riparian communities (18.53ha); and
- Hyparrhenia Eragrostis Pioneer Grasslands (377.84ha).

In addition, transformed areas include:

- Alien invasive bush clumps (7.33ha);
- Small scale crop farming (12.28ha);
- Dwellings and cattle camps (2.77ha);
- Gravel road networks; and
- Old mining adit areas.

These areas were refined into six vegetation communities within the 1km sampling area for the surface infrastructure (refer to **Table 3-2**).

Valley bottom hydromorphic grassland

Riverine Community

Exposed Rock and Slope Grasslands

Alien Invasive bushclumps

Figure 3-1 Photographic representation of the different broad communities found within the study area

3.1. Vegetation Communities

For the detailed sampling area (1km radius of the shaft complex), numerous sample points were investigated in various natural and semi natural habitats of the study area, with a refined 24 being analysed using TWINSPAN. Results of an ordination analysis of the phytosociological data are presented in **Figure 3-2** and **Figure 3-3**. 6 main groups of plant communities emerge from the ordination. The TWINSPAN table (**Appendix 1**) identifies the plant communities in **Table 3-2** and **Figure 3-4**. A clear gradient of growth form is evident from this ordination with **Unit A** and **B** containing a more wooded component, **Units C-F** within the open grasslands and seepage zones.

I able	5-2 Vegetation Communities	
UNIT	HABITAT & VEGETATION COMMUNITIES	HECTARES
	Wooded / Open Thicket Areas	
А	Leucosidea – Merxmuellera Riverine Community	30.72
В	Searsia – Diospyros – Athrixia Protected Outcrops & Kloof Community	3.33
	Upper Slope / Plateau Grasslands	
С	Hyparrhenia – Microchloa – Helichrysum Plateau	18.87
D	Hyparrhenia – Cymbopogon – Monocymbium Slope Community	192.65
	Hydromorphic Grasslands	
Е	Andropogon – Hyparrhenia temporary seeps	99.87
F	Andropogon– Helichrysum- Bulbostylis seasonal seeps	36.37
	Transformed	
	Settlement Areas & Alien Bushclumps	32.7

Table 3-2 Vegetation Communities

A preliminary description and photographic evidence for each main unit is given in the Tables below (**Table 3-3** to **Table 3-8**).

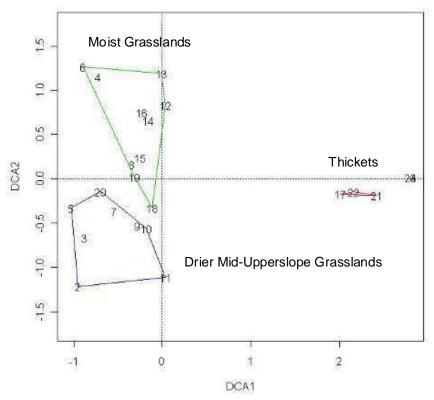
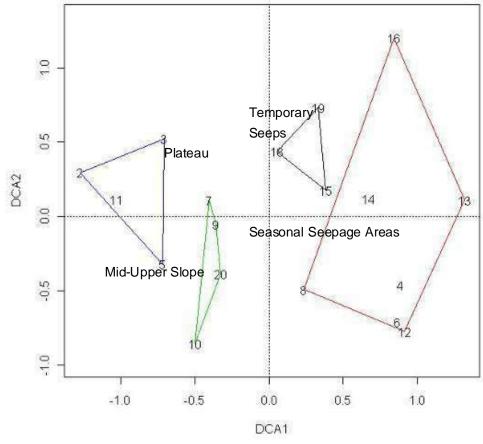
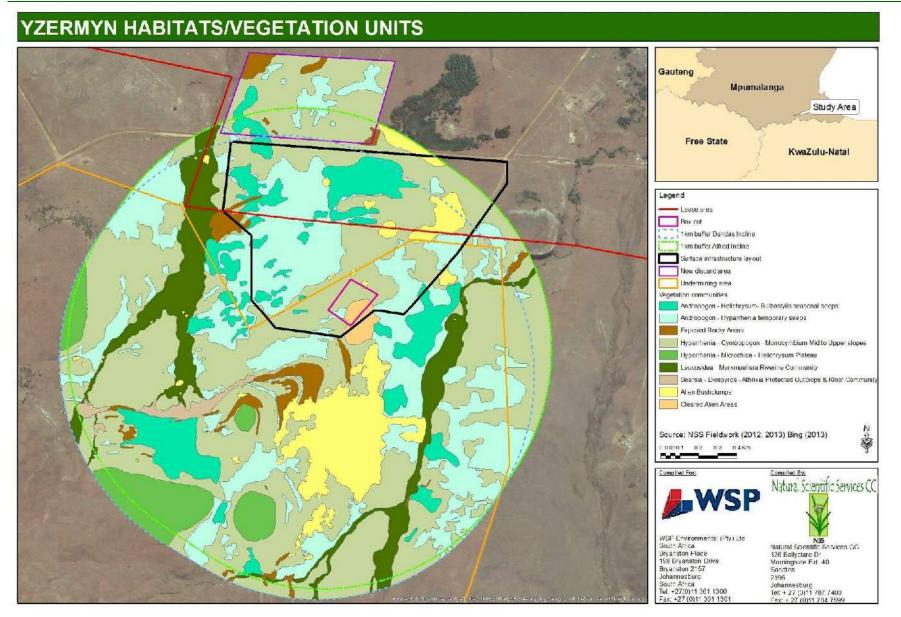
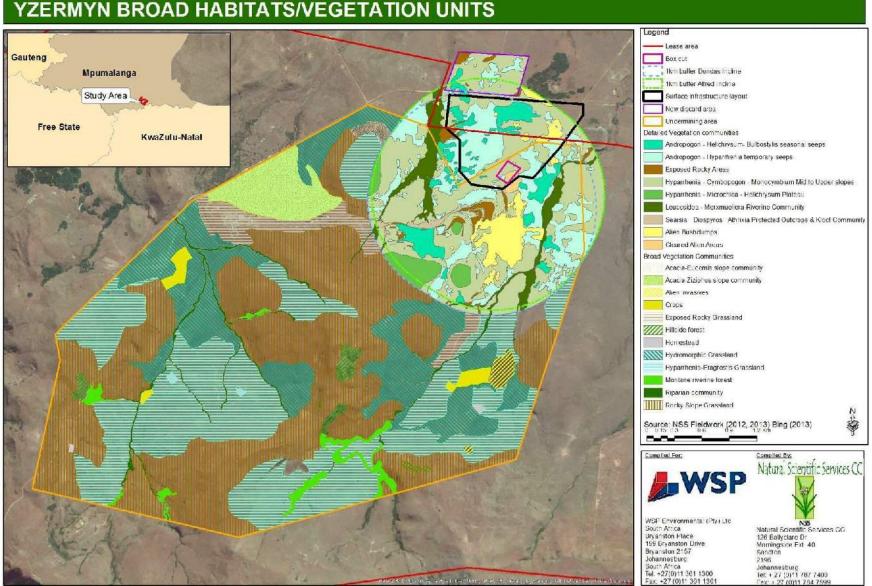


Figure 3-2 DCA ordination of phytosociological data from 24 sampling plots showing a distinct growth form separation for the 4 broader units

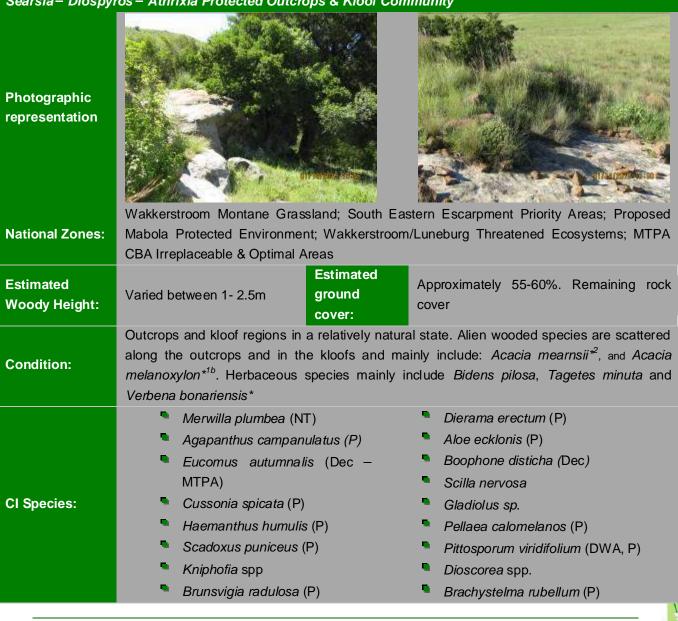




Figure 3-3 DCA ordination of phytosociological data showing a distinct moisture gradient for the grassland units

YZERMYN BROAD HABITATS/VEGETATION UNITS

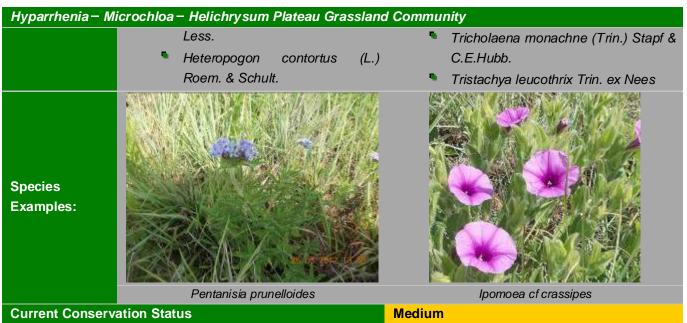
Figure 3-5 Broader Vegetation Units within the underground mining area

Leucosidea – Mei	rxmuellera Riverine Community
Photographic representation	Wakkerstroom Montane Grassland; Paulpietersburg Moist Grassland; South Eastern
National Zones:	Escarpment Priority Areas; Proposed Mabola Protected Environment;
National Zones.	Wakkerstroom/Luneburg Threatened Ecosystems; MTPA CBA Irreplaceable & Optimal
	Areas
Estimated	Approximately 3-4m Estimated Approximately 85-90% Good cover on
Woody Height:	ground cover: edges of streams in most sampling spots
Condition:	Evidence of erosion on the banks of the watercourses from cattle grazing, drinking and crossing points. Alien infestations included wooded clumps along the systems which consisted of species such as <i>Acacia mearnsii</i> ^{*2} , <i>Acacia melanoxylon</i> ^{*1b} <i>Populus x canescens</i> ^{*2} and <i>Salix babylonica</i> [*] . Herbaceous species along the banks included: <i>Solanum incanum; Datura stramonium</i> ^{*1b} ; <i>Physalis viscosa</i> [*] and <i>Verbena bonariensis</i> [*]
Notes:	Woody component scattered and in patches along the river systems. Some areas, however, contain exposed flat rock and limited woody or shrub species.
	 Kniphofia spp Hesperantha coccinea (P)
CI Species:	Gunnera perpensa (Dec)
	Zantedeschia aethiopica (P)
CI Faunal Species:	Serval (Leptailurus serval) – NT
	Aponogeton junceus Leucosidea sericea
	Asplenium spp. Melianthus villosus
	Berula erecta Merxmuellera disticha
	Buddleja salviifolia Miscanthus junceus
	Cliffortia linearifolia Nidorella anomala
	Cynoglossum lanceolatum Paspalum dilatatum
Common	Cyperus congestus Paspalum urvillei
species:	Cyperus digitatus Pelargonium spp.
species.	Drosera natalensis Persicaria serrulata
	Falkia repens Phragmites australis
	Heteromorpha arborescens Schoenoplectus corymbosus
	Hyparrhenia filipendula Searsia dentata
	Hyparrhenia tamba Senecio glaberrimus
	Juncus oxycarpus Sida dregei
	Leersia hexandra Sporobolus africana


Table 3-3 Unit A Leucosidea – Merxmuellera Riverine Community Leucosidea – Merxmuellera Riverine Community

* Alien Species; *¹ Category 1 Alien Invasive; *² Category 2; Dec: Declining TSP; P: Protected – MTPA; NT: Near Threatened

Table 3-4 Unit B Searsia – Diospyros – Athrixia Protected Outcrops & Kloof Community Searsia – Diospyros – Athrixia Protected Outcrops & Kloof Community


Searsia– Diospy	ros – Athrixia Protected Outcrops & Kloc	of Community
	Cyrtanthus tuckii (P)	
CI Faunal Species	Bush Blackcap (Lioptilus nigrica	pillus) - NT
Common species:	 Aristida junciformis Athrixia phylicoides Berkheya erysithales Berkheya setifera Crassula alba Cussonia spicata Cymbopogon pospischilii Dicoma anomala Dierama erectum Diospyros lycioides Elephantorrhiza elephantina Euclea undulata Euclea undulata Gerbera piloselloides Hermannia transvaalensis Hyparrhenia hirta Kalanchoe rotundifolia Ledebouria sp. 	 Melinis nerviglumis Melinis repens Microchloa sp. Monocymbium ceresiiforme Olea europaea Oxalis obliquifolia Pelargonium alchemoides Pellaea calomelanos Rhamnus prinoides Searsia dentata Searsia discolor Searsia montana Selaginella dregei Sonchus dregeanus Sporobolus africana Tristachya leucothrix Uryletrum agropyroides Xerophyta retinervis
Species Examples:	Brachystelma rubellum	Euphorbia pulvinata
Current Conserva	-	Very High
Surrent Conserva		

* Alien Species; *¹ Category 1 Alien Invasive; *² Category 2; Dec: Declining TSP; NT: Near Threatened – MTPA; DWA (P) Protected Species –Forest Act

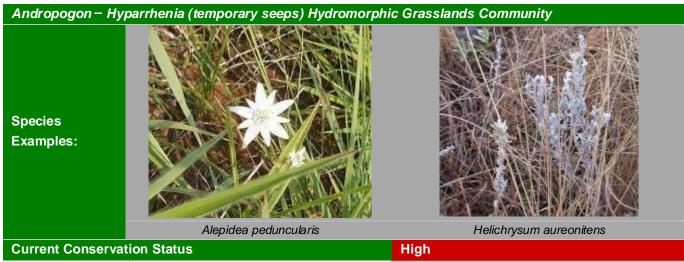
Hyparrhenia – M	icrochloa – Helichrysum Plateau Grassland Community
Photographic representation	Wakkerstroom Montane Grassland; South Eastern Escarpment Priority Areas; Proposed
National Zones:	Mabola Protected Environment; Wakkerstroom/Luneburg Threatened Ecosystems; MTPA CBA Irreplaceable
Estimated Herbaceous Height:	Approximately 0.6-1m Estimated ground cover: Approximately 70-75% (some rock and bare soil evident)
Condition:	Limited alien weedy species present (e.g. <i>Bidens pilosa*, Tagetes minuta*</i>). These are normally found along the gravel tracks on the plateau. Harvesting of <i>Hyparhennia</i> also present
CI Species:	 Gladiolus sp (P) Aloe maculata (P) Eucomis autumnalis (Dec-MTPA)
Cl Faunal Species:	Cape grass lizard (Chamaesaura anguina) – NT
Species: Common species:	 Andropogon appendiculatus Nees Andropogon schirensis Hochst. ex A.Rich. Berkheya setifera DC. Crassula alba Forssk Ctenium concinnum Nees Cymbopogon pospischilii (K.Schum.) C.E.Hubb Digitaria monodactyla (Nees) Stapf Diheteropogon amplectens (Nees) Clayton Eragrostis chloromelas Steud. Eragrostis racemosa (Thunb.) Steud. Eragrostis rigidior Pilg. Geigeria burkei Harv. Hilliardiella aristata (DC.) H.Rob Hyparrhenia filipendula (Hochst.) Stapf Digitaria monodactyla (Nees) Stapf Diheteropogon amplectens (Nees) Clayton Eragrostis chloromelas Steud. Eragrostis racemosa (Thunb.) Steud. Eragrostis rigidior Pilg. Geigeria burkei Harv. Helichrysum nudifolium (L.) Halichrysum nudifolium (L.)

* Alien Species; NT: Near Threatened; Dec- Declining MTPA; P: Protected

Table 3-6 Unit D Hyparrhenia – Cymbopogon – Monocymbium Slope Grassland Community

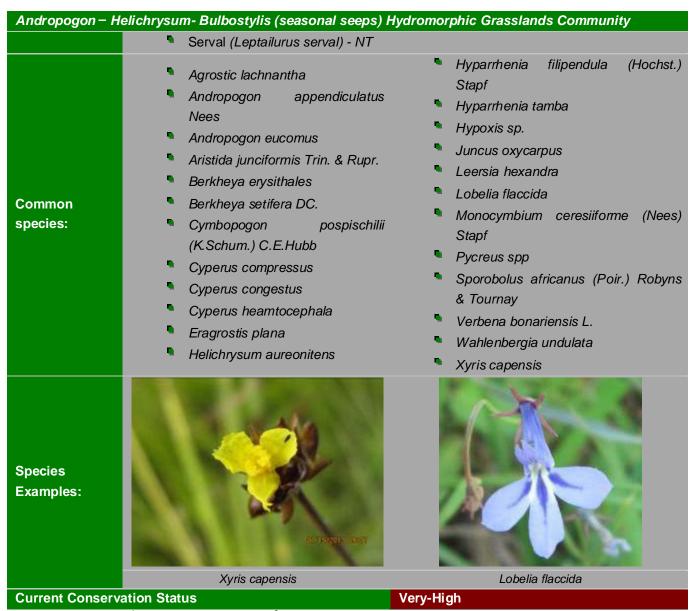
Hyparrhenia – C	Cymbopogon – Monocymbium Mid to Upper slopes Grassland Community
Photographic representation	
National Zones:	WakkerstroomMontaneGrassland;PaulpietersburgMoistGrassland;SouthEasternEscarpmentPriorityAreas;ProposedMabolaProtectedEnvironment;Wakkerstroom/LuneburgThreatenedEcosystems;MTPACBAIrreplaceable & OptimalAreas
Estimated Height:	Estimated Estimated Approximately 0.4 – 1m ground Approximately 55-60%, rocky in nature cover: cover: cover:
Condition:	Limited alien weedy species present, over grazing evident in certain areas. <i>Hyparrhenia</i> and <i>Cymbopogon</i> dominant
CI Species:	 Agapanthus inapertus (P) Aloe ecklonis (P) Boophone disticha (Dec) Gladiolus permeabilis (Patrysuintjie) (P) Habenaria epipactidea (P)
CI Faunal Species:	 White Bellied Korhaan (<i>Eupodotis senegalensis</i>) – VU Black Bellied Bustard (<i>Lissotis melanogaster</i>) - NT
Common species:	 Alloteropsis semialata Aloe ecklonis Andropogon appendiculatus Helichrysum nudifolium

Hyparrhenia – Cymbo	pogon— Monocymbium Mid to Upp	er slopes Grassland Community			
	Nees	Hilliardiella aristata (DC.) H.Rob.			
	Andropogon schirensis	Hyparrhenia filipendula (Hochst.) Stapf			
	Aristida junciformis	Hyparrhenia hirta			
	Berkheya erysithales	Hypericum aethiopicum			
	Berkheya setifera DC.	Ipomoea ommaneyi			
	Crabbea acaulis	Melinis repens (Willd.) Zizka			
	Ctenium concinnum Nees	Microchloa caffra			
	Cymbopogon pospischilii	Monocymbium ceresiiforme (Nees) Stapf			
	(K.Schum.) C.E.Hubb	Nidorella anomala			
	Dicoma anomala	Panicum natalense			
	Digitaria eriantha	Schistostephium crataegifolium (DC.)			
	Digitaria monodactyla (Nees)	Fenzl ex Harv			
	Stapf	Searsia discolor			
	Diheteropogon amplectens	Selago densiflora			
	(Nees) Clayton	Setaria sphacelata			
	Eragrostis chloromelas Steud.	Sporobolus africanus (Poir.) Robyns &			
	Eragrostis curvula	Tournay			
	Eragrostis plana	Themeda triandra Forssk.			
	Eragrostis racemosa (Thunb.)	Tristachya leucothrix Trin. ex Nees			
	Steud.	Vernonia hirsuta			
	Gazania sp				
Species Examples:					
	Boophone disticha	Crassula alba			
Current Conservation	Status	Medium-High			


* Alien Species; *¹ Category 1 Alien Invasive

	Community /parrhenia (temporary seeps) Hydromorphic Grasslands Community
Photographic representation	
National Zones:	Wakkerstroom Montane Grassland; Paulpietersburg Moist Grassland; South Eastern Escarpment Priority Areas; Proposed Mabola Protected Environment; Wakkerstroom/Luneburg Threatened Ecosystems; MTPA CBA Irreplaceable & Optimal Areas
Estimated Height:	Approximately 0.3 - 1.2mEstimated(patchy)ground cover:
Condition:	Limited impacts apart from grazing and scattered weedy species. Frequent fires could also play a role. Alien invasives were minimal with the scattered herbaceous species and <i>Acacia melanoxylon</i> ^{1b}
CI Species:	 Crinum bulbispermum (Dec) Brunsvigia radulosa (P) Eucomis autumnallis (Dec- MTPA) Eucomis autumnallis (Dec- MTPA) Eulophia ovalis (P) Eulophia welwitschii (P) Satyrium cristatum (P)
CI Faunal	Grass Owl (Tyto capensis) - VU
Species	Secretarybird (Sagittarius serpentarius) - NT
Common species:	 Sporobolus africanus (Poir.) Robyns & Tournay Andropogon appendiculatus Nees Aristida junciformis Trin. & Rupr. Bidens pilosa L. Centella asiatica (L.) Urb Ciussonia spicata Thunb. Diheteropogon amplectens (Nees) Clayton Elephantorrhiza elephantina (Burch.) Skeels Eragrostis chloromelas Steud. Helichrysum aureonitens Hyparrhenia filipendula (Hochst.) Stapf Ipomoea spp. Ledebouria cf. revoluta. Microchloa caffra Monocymbium ceresiiforme (Nees) Stapf Paspalum scrobiculatum L. Plantago lanceolata L. Senecio sp. Eragrostis racemosa (Thunb.) Steud.

Table 3-7Unit EAndropogon – Hyparrhenia (temporary seeps)Hydromorphic GrasslandsCommunity



* Alien Species; *1 Category 1 Alien Invasive; Dec: Declining TSP Listing

Table 3-8 Unit F Andropogon – Helichrysum- Bulbostylis (seasonal seeps) Hydromorphic Grasslands Community Grasslands Community

Andropogon – H	elichrysum- Bulbostylis (seasonal seeps) Hydromorphic Grasslands Community
Photographic representation	
National Zones:	Wakkerstroom Montane Grassland; Paulpietersburg Moist Grassland; South Eastern Escarpment Priority Areas; Proposed Mabola Protected Environment; Wakkerstroom/Luneburg Threatened Ecosystems; MTPA CBA Irreplaceable & Optimal Areas
Estimated Height:	Approximately 0.5-0.8m Estimated ground Approximately 80-90% cover:
Condition:	Weedy species included Verbena bonariensis and V brasilliensis (now proposed as a Category 1b) other weedy species found within the seeps included Oenothera rosea and Paspalum dilatatum.
CI Species:	 Crinum bulbispermum (Dec) Eucomis autumnallis (Dec- MTPA) Eulophia hians var.nutans (P) Eulophia ovalis (P) Eulophia ovalis (P) Eulophia ovalis (P) Eulophia ovalis (P)
Cl Faunal Species (MTPA records)	 Grass Owl (Tyto capensis) – VU Marsh Sylph (Metisella meninx) - VU Swamp musk shrew (Crocidura mariquensis) – DD

* Alien Species; *1 Category 1 Alien Invasive; *2 Category 2 Alien Invasive VU: Vulnerable TSP; MTPA Dec: Declining

3.2. Conservation Important Species

It is well documented that heterogeneous landscapes, diverse geology and a range of environmental conditions, provide a diverse number of habitats for plant species (Pickett, *et.al.* 1997; O'Farrell, 2006; KNNCS, 1999). These areas are normally associated with high levels of species endemism and richness. For example, at least 74% of the 23 threatened highveld plant taxa occur on the crests and slopes of ridges and hills (Pfab & Victor 2002). Furthermore, Mpumalanga has three main recognised centres of endemism in the province, all within heterogeneous landscapes (Barberton, Sekhukhuneland and Wolkberg). However, homogenous landscapes that have been transformed through historical farming practices and infrastructural development contain minimal diversity and endemism.

The mining rights boundary and surface areas location is situated in an area that is largely natural, rural and utilised for livestock farming. The site is considered heterogenous with

river floodplains, seepage areas and rocky outcrops, kloof areas, slope grassland sand plateau areas. It must be noted that depending on the extent of the drawdown cone from groundwater abstraction, wetland habitats beyond this area may also be affected.

The Threatened Plant Species Programme (TSP) is currently revising all threatened plant species assessments made by Craig Hilton-Taylor (1996), using IUCN Red Listing Criteria modified from Davis *et al.* (1986). According to the TSP interim Red Data list of South African plant taxa (updated February 2009), there are 273 Red Data listed species (**Table 3-9**) within Mpumalanga Province (including Data Deficient species) of which 11 species are Critically Endangered (CR), 29 Endangered (EN) and 75 are Vulnerable (VU).

Table 3-9	Numbers of conservation important plant species per Red Data category within
South Africa a	ind Mpumalanga

Threat Status	South Africa	Mpumalanga
EX (Extinct)	28	1
EW (Extinct in the wild)	7	
CR PE (Critically Endangered, Possibly Extinct)	57	1
CR (Critically Endangered)	332	11
EN (Endangered)	716	29
VU (Vulnerable)	1 217	75
NT (Near Threatened)	402	35
Critically Rare (known to occur only at a single site)	153	2
Rare (Limited population but not exposed to any direct or potential threat)	1 212	43
Declining (not threatened but processes are causing a continuing decline in the population)	47	22
LC (Least Concern)	13 856	3 799
DDD (Data Deficient - Insufficient Information)	348	20
DDT (Data Deficient - Taxonomically Problematic)	904	34
Total spp (including those not evaluated)	23 399	5 226

**Date accessed - May 2013

From the POSA website (QDS 2730AB) and the data supplied by MTPA for the surrounding farms, 19 CI species have been recorded in the region (examples of some of these species are illustrated in **Figure 3-6**). Species such as the VU *Aspidonepsis shebae* is known from four locations to the north of the study area, and is potentially threatened by afforestation and alien plant invasion. The possibility of this species occurring on site is relatively small. The EN *Gerbera aurantiaca* typically occurs in rocky grassland between 900 and 1 500 m, on warm slopes in well-drained, shallow soils associated with doleritic formations. This species has been recorded by NSS to the northwest of the study area, close to Heyshope Dam. For most species, habitat loss and alien plant invasion are the main threats. For species such as *Protea subvestita*, over-harvesting for firewood, too-frequent fire, over-harvesting for carving and curios are the main threats. Regeneration from the serotinous

seed occurs after fire. However, adults are killed by fire and seedlings require up to five years to establish before flowering, consequently confined to infrequently burned habitats, often associated with gulleys, scarps and forest margins (Rebelo *et al*, 2009). Other species that have not yet been evaluated or re-evaluated in the QDS 2730AB included:

- Dioscorea sylvatica Eckl. var. sylvatica
- Nesaea sagittifolia (Sond.) Koehne var. ericiformis Koehne forma swaziensis Immelman
- Rhoicissus tridentata (L.f.) Wild & R.B.Drumm. subsp. cuneifolia (Eckl. & Zeyh.) Urton

The conservation status of species, their habitat preferences and the possibility of occurring on site has also been provided in **Table 3.10** below.

Family	Scientific Name	Flowering Time RSA		МТРА	Farm name	Possibility of occurring		
APOCYNACEAE	Aspidonepsis shebae			VU		QDG 2730AB		
APIACEAE	Alepidea peduncularis	Montane grassland	Dec-Mar	DDT	DDT	QDG 2730AB	Yes – located or site	
	Aloe kniphofioides #	Montane grassland	Nov-Jan	VU	VU	CHANCE 106 HT	Possible	
	Albe kilipilolioldes #				VU	NAUWGEVONDEN 131 HT		
		Montane grassland,				CHANCE 106 HT	Yes, Rarely	
ASPHODELACEAE	Aloe modesta #	1600-2000 m	Feb - Mar	VU	VU	RUST-FONTEIN 129 HT	recorded mainly because it is inconspicuous unless in flower and the flowering season is very short	
		Dry and rocky				YZERMYN 96 HT		
AMARYLLIDACEAE	Boophone disticha	Grassland	Jul-Oct	Declining	Declining	ZANDKRAAL 99 HT	Yes – located on site	
						LOSKOP 105 HT		
SCROPHULARIACEAE	Bowkeria citrina#	Found along streambanks and forest margins in mountainous areas	Nov-Jun	Rare	Rare	SCHOONDERZIGT 68 HT	Possible	
	Eucomis autumnalis	Damp Grassland	Dec-Feb	NE	D	GOUD-HOEK 124 HT	Yes – located on site	
					Declining	TAFELKOP 126 HT		
			Jan-Mar	Declining		MORESON 89 HT		
HYACINTHACEAE						NAUWGEVONDEN 131 HT	Possible	
	Eucomis montana	Rocky montane grassland.			Declining	RUST-FONTEIN 129 HT		
		grassiana.				TAFELKOP 126 HT		
						TWEEHOEK 128 HT		
ORCHIDACEAE	Eulophia meleagris	Found in shade of thickets such as Leucosidea		LC	Rare	access Rd from Wakkerstroom to Luneburg(Horst	Highly possible	
ASTERACEAE	Gerbera aurantiaca	rocky grassland between 900 & 1500 m, on warm slopes in well-drained, shallow soils associated with	Sep-Nov	EN	EN	QDG 2730AB NSS fieldwork confirmed further north	Possible	

Table 3-10Species recorded in the surrounding farms (supplied by MTPA, 2013) and QDG (PRECIS Data)

NSS

Family	Scientific Name		Flowering Time	RSA	МТРА	Farm name	Possibility of occurring	
		doleritic formations						
IRIDACEAE	<i>Gladiolus appendiculatus</i> (Wakkerstroom Form)	Grassland – Mountain Slopes	Feb - Mar	VU	VU	TAFELKOP 126 HT	Highly Possible, missed flowering time	
			Our Eak	Declining	Deelisise	MORESON 89 HT		
GUNNERACEAE	Cuppore porpopo	Seep zones and along riparian areas				RUST-FONTEIN 129 HT	Yes, located on site	
GUNNERACEAE	Gunnera perpensa	within grasslands	Sep-Feb	Declining	Declining	TAFELKOP 126 HT	res, localed on sile	
						TWEEHOEK 128 HT		
ASTERACEAE	Helichrysum aureum var. argenteum	Montane grassland, 1800-2000 m.		VU	VU	TWEEHOEK 128 HT	Highly possible	
FABACEAE	Indigofera hybrida	Dry Highveld Grassland		VU	VU	QDG 2730AB	Possible	
		Montane mistbelt				LOSKOP 105 HT		
HYACINTHACEAE	NTHACEAE Merwilla plumbea (=Scilla natalensis)# and Ngongoni grassland, rocky areas on steep, well drained slopes. 300- 2500 m.	NT	MORESON 89 HT	Yes, located within the steep slopes				
PROTEACEAE	Protea subvestita#	Grassland - Confined to infrequently burned habitats, often associated with gullies, scarps and forest margins	Dec-Mar	VU	VU	SE CORNER OF FARM GOEDGEVONDEN	Possible	
PROTEACEAE	Protea parvula	Montane Grassland	Dec-Mar	NT	NT	QDG 2730AB	Possible	
COLCHICACEAE	Sandersonia aurantiaca	Cool, moist slopes with minimal herbivory and fire, 200-1800 m	Nov-Jan	Declining	Declining	QDG 2730AB	Highly possible	
		Open montane				CHANCE 106 HT		
	Watsonia latifolia	grassland in rocky	r around the s of granite Dec-Feb	LC	Rare	MORESON 89 HT		
IRIDACEAE		bases of granite				NAUWGEVONDEN 131 HT	Possible	
		outcrops				RUST-FONTEIN 129 HT		
						TAFELKOP 126 HT		

Highlighted in green - found on site; # also recorded for the QDS; NE = Not Yet Evaluated; LC = Least Concern; VU = Vulnerable; NT = Near Threatened; EN = Endangered

Bowkeria citrina (Ref: www.plantzafrica.com)

Gerbera aurantiaca (Ref: www.plantzafrica.com)

Eucomis montana(Ref: www.ispot.co.za ; Gerhard Diedericks)Figure 3-6Species to look out for in the study area

Six floral CIS species that are TSP (Threatened Species Programme) listed were located during the surveys. In addition to this, according to the schedule of Protected Species [Mpumalanga Conservation Act, 1998 (Act 10 of 1998)], which was adapted from the Old Transvaal Nature Conservation Ordinance (1983) **30 species** were identified during the surveys. Those found during the field visit are represented in **Table 3-11** and **Figure 3-7** and displayed in **Figure 3-8**.

Table 3-11	CI Species found during the surveys on site and in the underground mining
area	

SPECIES	FLOWERING TIME	PROTECTED STATUS	НАВІТАТ
Agapanthus inapertus (Drakensberg Agapanthus)	Jan-Mar	Prote3cted ³	Open Grassland and on Forest Margins
Alepidea peduncularis	Dec-Mar	DDT	Montane Grassland
Aloe ecklonis (Grass Aloe)	Nov-Jan	Protected ³	Spongy Wetland
Aloe maculata		Protected ³	Rocky Grasslands
Bonatea boltoni	Jan-Feb	Protected ³	Rocky sunny grassland
Boophone disticha (Tumbleweed/Gifbol)	Jul-Oct	Declining ² Protected ^{3,}	Short Montane Grassland
Brunsvigia radulosa (Candelabra Flower)	Dec-Feb	Protected ³	Short Montane Grassland; Spongy Wetland
Crinum bulbispermum (Orange River Lily)		Declining² Protected ³	Seasonally flooded habitats
Cussonia spicata (Common Cabbage Tree)	Apr-Jun	Protected ¹	Forest Area & Bushclumps
Cyrtanthus tuckii (Fire lily)		Protected ³	
Dioscorea sylvatica (Elephants Foot)	May-Jun	TSP – NE Protected ³	Forest Area & Bushclumps
Dierama erectum	April	Protected ³	Wet grassland near streams
Eucomis autumnallis (Pineapple Flower)	Dec-Feb	Protected ³	Grasslands
Eulophia hians var.nutans (Ground Orchid)		Protected3	Grasslands
Eulophia ovalis (Oval Eulophia)		Protected ³	Dry or marshy grassland and bushveld
Eulophia welwitschii	Nov-Jan	Protected ³	Dry or seasonally flooded grassland and marshes
<i>Gladiolus dalenii</i> (African Gladiolus)	Dec-Feb	Protected ³	Open grassland, woodland and scrub and in rocky areas, often among rocks along streams.
Gladiolus permeabilis (Patrysuintjie)	Aug-Sep	Protected ³	Shale slopes and stony ground.
Gunnera perpensa (Wild Rhubarb)	Sep-Feb	Declining² Protected ³	Edge of pools in marshy areas or along streams.
Habenaria dives		Protected ³	Well drained grasslands
Habenaria epipactidea	Jan-Mar	Protected ³	Grassland and open woodland
Habenaria filicornis	Dec-Apr	Protected ³	Grassland, often poorly drained marshy ground, peat on gravel
Habenaria pseudociliosa	Jan-Mar	Protected ³	Well drained montane grassland
Haemanthus humilis (Rabbit's Ears)	Nov-Dec; Sep-Feb	Protected ³	Forest Area & Bushclumps
Hesperantha coccinea (River Lily)	Dec-April	Protected ³	Wetlands
Kniphofia sp.		Protected ³	Wetlands/ moist rocky grasslands
<i>Merwilla plumbea</i> (= <i>Scilla natalensis</i>) (Wild Squill)	Oct-Dec	NT ²	Sunny slopes, rocky hills, cliffs and ledges, to damp

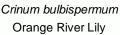
SPECIES	FLOWERING TIME	PROTECTED STATUS	НАВІТАТ
			cliff faces, near waterfalls, in moist depressions, on the edges of streams and vleis (wetlands) to coastal areas.
Pittosporum viridifolium	Nov-Dec	DWA Protected	tall forest and in scrub on the forest margin, kloofs and on stream banks
Satyrium cristatum (Crested Satyrium)	Jan-May	Protected ³	Moist grassy flats
Scadoxus puniceus (Paintbrush)	Oct-Nov	Protected ³	Shady areas in coastal bush, ravines and forest.
Watsonia pulchra	Jul-Sep	Protected ³	Open grassland or light woodland
Zantedeschia aethiopica (White or Common Arum Lily)	Aug-Jan	Protected ³	Stream banks, damp areas.
Source: ¹ Old Transvaal Ordinance; ² PRECIS database; ³ Schedule 11: Protected Plants.			

Agapanthus inapertus Drakensberg Agapanthus

Aloe ecklonis Grass Aloe

Boophone disticha Tumbleweed/Gifbol

Brunsvigia radulosa Candelabra Flower



Cussonia spicata Common Cabbage Tree

Dioscorea cf. sylvatica Elephants Foot

Eucomis autumnallis Pineapple Flower

Hesperantha coccinea River Lily

*Eulophia ovali*s Oval Eulophia

Eulophia welwitschii

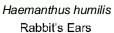
Gladiolus dalenii African Gladiolus

Gladiolus permeabilis Patrysuintjie

Gunnera perpensa Wild Rhubarb

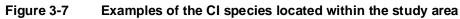
Habenaria dives

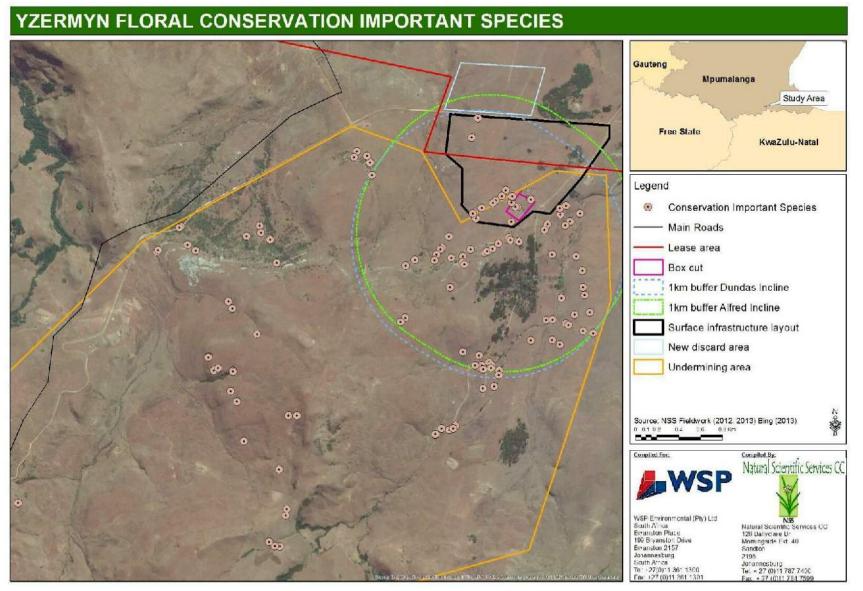
Habenaria epipactidea



Habenaria filicornis

Merwilla plumbea (=Scilla natalensis) Wild Squill


Satyrium cristatum Crested Satyrium


Scadoxus puniceus Paintbrush

Watsonia pulchra

NSS

3.3. Alien Invasives within the Vegetation Units

Alien species, especially invasive species, are a major threat to the ecological functioning of natural systems and to the productive use of land. These plants can have the following negative impacts on our natural systems:

- A loss of biodiversity and ecosystem resilience as alien species out-compete indigenous flora and in doing so reduce complex ecosystems to mono-cultures therefore destroying habitats for both plant and animals;
- Through increased evaporative transpiration rates 'alien thickets', reduce the amount of groundwater thus reducing the volume of water entering our river systems;
- Alien invasive species dry out wetlands and riparian areas thereby increasing the potential for erosion in these areas;
- The loss of potentially productive land, and the loss of grazing potential and livestock production;
- Poisoning of humans and livestock;
- An increase in the cost of fire protection and damage in wildfires due to alien invasive stands being denser than natural vegetation and the wood more resinous, creating hotter fires;
- An increased level of erosion, following fires in heavily invaded areas, as well as the siltation of dams.

Two main pieces of legislation are applicable to this section:

- Conservation of Agriculture Resources Act, 1983 (Act No. 43 of 1983) (CARA)
- National Environmental Management: Biodiversity Act, 2004 (Act 10 of 2004) (NEM:BA)
 - Draft NEM:BA Regulations April 2009 -Government Gazette Vol 526, No. 32090

In terms of the amendments to the regulations under CARA, landowners are legally responsible for the control of alien species on their properties. Declared weeds and invasive species had been divided into three categories in accordance with the Act.

These categories are as follows:

- Category 1: Declared weeds that are prohibited on any land or water surface in South Africa. These species must be controlled, or eradicated where possible.
- Category 2: Declared invader species that are only allowed in demarcated areas under controlled conditions and prohibited within 30m of the 1:50 year flood line of any watercourse or wetland.
- Category 3: Declared invader species that may remain, but must be prevented from spreading. No further planting of these species are allowed.

The protection of our natural systems from invasive species is further strengthened within Sections 70-77 of NEM:BA. Chapter 5 of this Act specifically deals with Species and

Organisms Posing Potential Threats to Biodiversity. To summarise, the purpose of Chapter 5 is to:

- Prevent the unauthorised introduction and spread of alien species and invasive species to ecosystems and habitats where they do not naturally occur.
- To manage and control alien species and invasive species to prevent or minimise harm to the environment and to biodiversity in particular.
- To eradicate alien species and invasive species from ecosystems and habitats where they may harm such ecosystems or habitats.

Furthermore Section 73 (2) states that a person who is the owner of land on which a listed invasive species occurs must:

- Notify any relevant competent authority, in writing, of the listed invasive species occurring on that land;
- Take steps to control and eradicate the listed invasive species and to prevent it from spreading; and
- Take all the required steps to prevent or minimise negative impacts to biodiversity.

The regulations for this Act were issued for public comment on 3 April, 2009 (Government Gazette Vol 526, No. 32090). The regulations and lists are not yet promulgated into law, however, it is relevant to point out that Section 21 of the regulations lists the categories for alien and listed invasive species. These are:

- Exempted species being alien species listed in List 1 of the Notice
- Prohibited species being alien species listed in List 2 of the Notice
- Listed invasive species being invasive species listed in List 3 of the Notice as -
- Species requiring compulsory control (1a):
- Invasive species controlled by an invasive species management programme (1b);
- Invasive species controlled by area (2); and
- Invasive species controlled by activity (3)
- A species may be listed in different categories for different parts of the country

The 1km radial surface infrastructural zone is generally in good condition with limited alien species present. Alien bushclumps did, however, dominate certain areas to the east of the proposed adit area constituting almost 8% of the 1km boundary. Within the undergrowth, weedy species such as *Bidens pilosa* and *Tagetes minuta* were prevalent. For the entire area surveyed, the majority of alien species identified were weedy species (**Table 3-12**, examples provided in **Figure 3-9**). However, the presence of a number of Category 1 and 2 species was detected. The proposed NEMBA Category 1 species *Acacia melanoxylon*, was located within the kloof and headwaters of the river systems as well as along the river to the east of the adits.

FAMILY	SPECIES	COMMON NAME	CARA	NEM:BA
AMARANTHACEAE	Achyranthes aspera	Bur weed	1	1b
APIACEAE	Centella asiatica	Marsh Pennywort	Weed	Weed
ASTERACEAE	Bidens pilosa	Black Jacks	Weed	Weed
ASTERACEAE	Tagetes minuta	Khakibos	Weed	Weed
CACTACEAE	Opuntia ficus-indica	Prickly Pear	1	1b
CONVOLVULACEAE	Cuscuta sp.	Dodder	1	1b
CONVULVULACEAE	lpomoea purpurea	Morning Glory	3	1b
CYPERACEAE	Cyperus esculentus	Yellow Nutsedge	Naturalised	Naturalised
EUPHORBIACEAE	Ricinus communis	Castor Oil Plant	2	1b
FABACEAE	Acacia mearnsii	Wattle Tree	2	2
FABACEAE	Acacia melanoxylon	Black Ironwood	2	1b
ONAGRACEAE	Oenothera rosea	Rose Evening Primrose	3	-
PLANTAGINACEAE	Plantago major	Broadleaved Ribwort	Weed	Weed
SOLANACEAE	Datura stramonium	Common Thornapple	1	1b
SOLANACEAE	Physalis viscosa	Wild Gooseberry	Weed	Weed
SOLANACEAE	Solanum sisymbriifolium	Dense-thorn Bitter Apple	1	1b
ASTERACEAE	Schkuhria pinnata	Dwarf Marigold	Weed	Weed
ASPARAGACEAE	Agave americana L.	American Agave	Weed	Weed
ASTERACEAE	Cosmos bipinnatus Cav.	Cosmos	Weed	Weed
MYRTACEAE	Eucalyptus camaldulensis Dehnh.	Red River Gum	2	1b (rivers)
POACEAE	Paspalum dilatatum	Dallis Grass	Weed	Weed
POACEAE	Paspalum scrobiculatum L.	Rice Grass	Weed	Weed
POACEAE	Pennisetum clandestinum Hochst. ex Chiov.	Kikuyu	Weed	Weed
SALICACEAE	ex Chiov. Populus deltoides Bartram ex Marshall	Match Poplar	Weed	Weed
SALICACEAE	Marshall Populus x canescens (Aiton) Sm	Grey Poplar	2	2
SALICACEAE	Salix babylonica L.	Weeping Willow	2	-
VERBENACEAE	Verbena bonariensis L.	Tall Verbena	Weed	1b
VERBENACEAE	Verbena rigida Spreng.	Coarse Verbena	Weed	Weed

Table 3-12 Main Alien Invasive Species found within the Study Area

* Highlights in orange represent category species

Acacia melanoxylon

Tagetes minuta

Ipomoea purpurea

Acacia mearnsii - Eucalyptus clumps

Eucalyptus and Populus x canescens

Opuntia ficus-indica

Figure 3-9 Evidence of Alien species found within the study area

4. Areas of Conservation Importance

These areas are discussed in further details within **Section F**, however, a summary is provided below (**Table 4-1**).

UNIT	HABITAT & VEGETATION COMMUNITIES	CONDITION	CI SPECIES	AOCI
	Wooded / Open Thicket Areas			
A	<i>Leucosidea – Merxmuellera</i> Riverine Community	Natural State and Restricted Habitat, Some Alien Invasives along the systems, particularly in the eastern component. Limited erosion evident, mainly at cattle crossings	A number of TSP and MTPA listed species (both floral and faunal)	Very High
В	<i>Searsia – Diospyros – Athrixia</i> Protected Outcrops & Kloof Community	Natural State and unique / restricted habitat. High diversity, Some Alien Invasives present.	The highest number of TSP and MTPA listed species (floral species, including NT spp)	Very High
	Upper Slope / Plateau Grasslands			
С	<i>Hyparrhenia – Microchloa – Helichrysum</i> Plateau	Relatively in a natural state. Impacted upon by grazing, some areas harvested for thatching grass. Medium Diversity	A number of MTPA listed species and potential National listed species (both floral and faunal)	Medium
D	Hyparrhenia – Cymbopogon – Monocymbium Slope Community	Relatively in a natural state Grassland – Impacted upon by grazing. Medium-High Diversity. Rocky areas scattered in between yielding a small change in species composition	A number of MTPA and National listed species (both floral and faunal)	Medium-High
	Hydromorphic Grasslands			
E	<i>Andropogon – Hyparrhenia</i> temporary seeps	Relatively in a natural state, Alien Invasives – heavy within the eastern section as well as past farming activities but limited in other areas. Moderate diversity	TSP and MTPA listed species (floral species) and CI Faunal species recorded (VU; NT)	High
F	Andropogon – Helichrysum- Bulbostylis seasonal seeps	Complete change in species diversity from unit A-D Relatively in a natural state, Alien Invasives – heavy within the eastern section, but limited in others	High number of TSP and MTPA listed species (floral species). CI Faunal species	Very High

Table 4-1 Summary of the different vegetation communities within the 1km surface infrastructure zone

UNIT	HABITAT & VEGETATION COMMUNITIES	CONDITION	CI SPECIES	AOCI
			recorded (VU; NT)	
	Transformed			
	Settlement Areas & Alien Bushclumps	Transformed habitats with limited diversity	None to date	Low

AOCI: Areas of Conservation Importance

5. Appendices

5.1. Appendix 1 Twinspan

0	
0	
	terrere de construction de la const
	111
	+ + 11 2
0	
0	2+2 ++ ++ 2+2 ++++11 ++++11
	++++++++++++++++++++++++++++++++++++++
ŏ	++++
0	a sha shi a tthe a sa a sa a la sa a sa a sa
0	
0	
	· · · · · · · · · · · · · · · · · · ·
	+++1
	1++++11 +++ + +++ + 1+11+2 1
ŏ	
0	++
0	

	++++++++++++++++++++++++++++++++++++++
	+ +++ +
	+.+
0	+11
0	+11
0	المستقيب ومستعد والمتارك والمرارك
	++
	· · · · · · · · · · · · · · · · · · ·
	·····+·+
ŏ	
0	
0	11.
	++++ +++ +++ +++ +++ +++ +++ ++++ ++++ ++++
	11 222222122221222222
	2
0	11
0	
	22
	22
	+ ++ ++++
ŏ	22
0	+++.++++++1212
0	++++++++++++++++++++++++++++++++++++++
	المحاصد والمحاصب والمحالي والمح
	······································
	++

Pas dis	0	
Pas ser	0	a de la determinación de la defensión de la de la dela de la dela de la dela de
Pen cla	0	******
Fla lan	0	
Pog squ	0	
Fop del	0	
Pop x c	0	+
Psa nyr	0	
Rha pri	0	#11
Rho tri	0	
Sal bab	0	
Sch cra	0	[+ + + + + + .].
Sea den	0	11,112
Seb gra	0	
Sel dre	0	
Sen sp.	0	· · · · · · · · · · · · · · · · · · ·
Set sph	0	· · · · · · · · · · · · · · · · · · ·
Spo afr	0	
Tag min	0	
The tri	Ď	· · · · · · · · · · · · · · · · · · ·
Tri mon	ŏ	++
Tri leu	0	+++++++.+++++++++++++++++++++++++++++++
Ure agr	ő	
Ver bon	ő	
Ver rig	0	
	0	
Ziz muc	0	the second s

5.2. Appendix 2 PRECIS List for 2730AB

Family	Species	Threat status
ACANTHACEAE	Justicia anagalloides (Nees) T.Anderson	LC
ACANTHACEAE	Thunbergia atriplicifolia E.Mey. ex Nees	LC
AMARYLLIDACEAE	Cyrtanthus tuckii Baker var. transvaalensis I.Verd.	LC
ANACARDIACEAE	Searsia dentata (Thunb.) F.A.Barkley	LC
ANACARDIACEAE	Searsia discolor (E.Mey. ex Sond.) Moffett	LC
ANACARDIACEAE	Searsia pyroides (Burch.) Moffett var. pyroides	LC
ANACARDIACEAE	Searsia tomentosa (L.) F.A.Barkley	LC
ANEMIACEAE	Mohria vestita Baker	LC
APIACEAE	Alepidea peduncularis A.Rich.	DDT
APOCYNACEAE	Asclepias aurea (Schltr.) Schltr.	LC
APOCYNACEAE	Asclepias brevicuspis (E.Mey.) Schltr.	LC
APOCYNACEAE	Asclepias cucullata (Schltr.) Schltr. subsp. cucullata	LC
APOCYNACEAE	Asclepias cultriformis (Harv. ex Schltr.) Schltr.	LC
APOCYNACEAE	Asclepias eminens (Harv.) Schltr.	LC
APOCYNACEAE	Asclepias multicaulis (E.Mey.) Schltr.	LC
APOCYNACEAE	Aspidoglossum dissimile (N.E.Br.) Kupicha	LC
APOCYNACEAE	Aspidoglossum ovalifolium (Schltr.) Kupicha	LC
APOCYNACEAE	Aspidonepsis diploglossa (Turcz.) Nicholas & Goyder	LC
APOCYNACEAE	Aspidonepsis shebae Nicholas & Goyder	VU
	Pachycarpus campanulatus (Harv.) N.E.Br. var.	
APOCYNACEAE	campanulatus	LC
APOCYNACEAE	Pachycarpus scaber (Harv.) N.E.Br.	LC
	Schizoglossum atropurpureum E.Mey. subsp.	
APOCYNACEAE	atropurpureum	LC
APOCYNACEAE	Sisyranthus huttoniae (S.Moore) S.Moore	LC
APOCYNACEAE	Sisyranthus imberbis Harv.	LC
APOCYNACEAE	Xysmalobium involucratum (E.Mey.) Decne.	LC
APOCYNACEAE	Xysmalobium parviflorum Harv. ex Scott-Elliot	LC
ASPARAGACEAE	Asparagus buchananii Baker	LC
ASPARAGACEAE	Asparagus cooperi Baker	LC
ASPARAGACEAE	Asparagus virgatus Baker	LC
ASPHODELACEAE	Aloe ecklonis Salm-Dyck	LC
ASPHODELACEAE	Kniphofia albescens Codd	LC
ASPHODELACEAE	Kniphofia laxiflora Kunth	LC
ASPHODELACEAE	Kniphofia linearifolia Baker	LC
ASPLENIACEAE	Asplenium adiantum-nigrum L. var. adiantum-nigrum Asplenium varians Wall. ex Hook. & Grev. subsp.	LC
ASPLENIACEAE	fimbriatum (Kunze) Schelpe	LC
ASTERACEAE	Acanthospermum australe (Loefl.) Kuntze*	Not Evaluated
ASTERACEAE	Adenanthellum osmitoides (Harv.) B.Nord.	LC
ASTERACEAE	Aster bakerianus Burtt Davy ex C.A.Sm.	LC
ASTERACEAE	Aster harveyanus Kuntze	LC
AGTERAGEAE	Berkheya echinacea (Harv.) O.Hoffm. ex Burtt Davy	LO
ASTERACEAE	subsp. echinacea	LC
ASTERACEAE	Berkheya insignis (Harv.) Thell.	LC
ASTERACEAE	Berkheya radula (Harv.) De Wild.	LC
	Berkheya rhapontica (DC.) Hutch. & Burtt Davy subsp.	20
ASTERACEAE	rhapontica	LC
ASTERACEAE	Berkheya setifera DC.	LC
	Berkheya speciosa (DC.) O.Hoffm. subsp. lanceolata	
ASTERACEAE	Roessler	LC
ASTERACEAE	Conyza scabrida DC.	LC
ASTERACEAE	Crassocephalum x picridifolium (DC.) S.Moore	Not Evaluated
ASTERACEAE	Euryops gilfillanii Bolus	LC
ASTERACEAE	Garuleum woodii Schinz	LC
ASTERACEAE	Gerbera aurantiaca Sch.Bip.	EN
ASTERACEAE	Helichrysum adenocarpum DC. subsp. adenocarpum	LC
ASTERACEAE	Helichrysum athrixiifolium (Kuntze) Moeser	LC

Family	Species	Threat status
ASTERACEAE	Helichrysum aureonitens Sch.Bip.	LC
ASTERACEAE	Helichrysum callicomum Harv.	LC
ASTERACEAE	Helichrysum herbaceum (Andrews) Sweet	LC
ASTERACEAE	Helichrysum melanacme DC.	LC
ASTERACEAE	Helichrysum mixtum (Kuntze) Moeser var. mixtum	LC
ASTERACEAE	Helichrysum monticola Hilliard	LC
ASTERACEAE	Helichrysum nudifolium (L.) Less. var. nudifolium	LC
ASTERACEAE	Helichrysum opacum Klatt	LC
ASTERACEAE	Hilliardiella aristata (DC.) H.Rob.	LC
ASTERACEAE	Hilliardiella hirsuta (DC.) H.Rob.	LC
ASTERACEAE	Hypochaeris radicata L.*	Not Evaluated
ASTERACEAE	Lopholaena segmentata (Oliv.) S.Moore	LC
ASTERACEAE	Macledium zeyheri (Sond.) S.Ortíz subsp. zeyheri	LC
ASTERACEAE	Nidorella anomala Steetz	LC
ASTERACEAE	Senecio affinis DC.	LC
ASTERACEAE	Senecio barbatus DC.	LC
ASTERACEAE	Senecio deltoideus Less.	LC
ASTERACEAE		LC
ASTERACEAE	Senecio glaberrimus DC. Senecio glanduloso-pilosus Volkens & Muschl.	LC
		LC
ASTERACEAE	Senecio inaequidens DC.	
ASTERACEAE	Senecio lydenburgensis Hutch. & Burtt Davy	LC
ASTERACEAE	Senecio oxyriifolius DC. subsp. oxyriifolius	LC
ASTERACEAE	Senecio polyodon DC. var. polyodon	LC
ASTERACEAE	Senecio scitus Hutch. & Burtt Davy	LC
ASTERACEAE	Sonchus nanus Sond. ex Harv.	LC
ASTERACEAE	Ursinia alpina N.E.Br.	LC
ASTERACEAE	Vemonia galpinii Klatt	LC
ASTERACEAE	Vernonia thodei E.Phillips	LC Not Evoluted
ASTERACEAE	Xanthium strumarium L.*	Not Evaluated
BLECHNACEAE	Blechnum australe L. subsp. australe	LC
BORAGINACEAE	Cynoglossum lanceolatum Forssk.	LC
BUDDLEJACEAE	Buddleja auriculata Benth.	LC
BUDDLEJACEAE	Nuxia congesta R.Br. ex Fresen.	LC
CAMPANULACEAE	Craterocapsa tarsodes Hilliard & B.L.Burtt	LC
CAMPANULACEAE	Wahlenbergia huttonii (Sond.) Thulin	LC
CAPPARACEAE	Cleome monophylla L.	LC
	Dianthus basuticus Burtt Davy subsp. basuticus var.	
CARYOPHYLLACEAE	basuticus	LC
CARYOPHYLLACEAE	Dianthus transvaalensis Burtt Davy	LC
CARYOPHYLLACEAE	Pollichia campestris Aiton	LC
CELASTRACEAE	Gymnosporia buxifolia (L.) Szyszyl.	LC
CELASTRACEAE	Maytenus acuminata (L.f.) Loes. var. acuminata	LC
CELASTRACEAE	Maytenus undata (Thunb.) Blakelock	LC
CELASTRACEAE	Pterocelastrus echinatus N.E.Br.	LC
	Colchicum melanthoides (Willd.) J.C.Manning & Vinn.	
	subsp. transvaalense (U.& D.MüllDoblies) J.C.Manning	
COLCHICACEAE	& Vinn.	LC
COLCHICACEAE	Gloriosa modesta (Hook.) J.C.Manning & Vinn.	LC
COLCHICACEAE COMBRETACEAE	Sandersonia aurantiaca Hook. Combretum kraussii Hochst.	Declining LC
		LC
COMMELINACEAE COMMELINACEAE	Commelina africana L. var. krebsiana (Kunth) C.B.Clarke	LC
CONVOLVULACEAE	Cyanotis lapidosa E.Phillips Ipomoea crassipes Hook. var. crassipes	LC
CONVOLVULACEAE	Ipomoea classipes nook. var. classipes Ipomoea oblongata E.Mey. ex Choisy	LC
CUCURBITACEAE	Cucumis hirsutus Sond.	LC
CYPERACEAE	Cyperus obtusiflorus Vahl var. obtusiflorus	LC
CYPERACEAE		LC
CYPERACEAE	Fimbristylis complanata (Retz.) Link Isolepis sepulcralis Steud.	LC
CYPERACEAE	• •	LC
OTFLINAGEAE	Kyllinga erecta Schumach. var. erecta	

Family	Species	Threat status
CYPERACEAE	Pycreus nitidus (Lam.) J.Raynal	LC
		LC
CYPERACEAE	Rhynchospora brownii Roem. & Schult.	
CYPERACEAE	Schoenoplectus brachyceras (Hochst. ex A.Rich.) Lye	LC
DIOSCOREACEAE	Dioscorea sylvatica Eckl. var. sylvatica	Not Evaluated
DIPSACACEAE	Cephalaria zeyheriana Szabó	LC
DIPSACACEAE	Scabiosa columbaria L.	LC
DRYOPTERIDACEAE	Dryopteris athamantica (Kunze) Kuntze	LC
DRYOPTERIDACEAE	Dryopteris pentheri (Krasser) C.Chr.	LC
ERICACEAE	Erica caffrorum Bolus var. caffrorum	LC
ERICACEAE	Erica reenensis Zahlbr.	LC
ERIOCAULACEAE	Eriocaulon sonderianum Körn.	LC
EUPHORBIACEAE	Acalypha depressinerva (Kuntze) K.Schum.	LC
EUPHORBIACEAE		LC
	Acalypha wilmsii Pax ex Prain & Hutch.	
EUPHORBIACEAE	Clutia affinis Sond.	LC
EUPHORBIACEAE	Clutia hirsuta (Sond.) Müll.Arg. var. hirsuta	LC
EUPHORBIACEAE	Clutia monticola S.Moore var. monticola	LC
EUPHORBIACEAE	Euphorbia epicyparissias E.Mey. ex Boiss.	LC
FABACEAE	Acacia dealbata Link*	Not Evaluated
FABACEAE	Eriosema distinctum N.E.Br.	LC
FABACEAE	Eriosema kraussianum Meisn.	LC
FABACEAE	Indigofera hybrida N.E.Br.	VU
FABACEAE	Melilotus albus Medik.*	Not Evaluated
FABACEAE	Otholobium nigricans C.H.Stirt.	LC
FABACEAE	Rhynchosia monophylla Schltr.	LC
FABACEAE	Zornia milneana Mohlenbr.	LC
GENTIANACEAE	Enicostema axillare (Lam.) A.Raynal subsp. axillare	LC
GENTIANACEAE	Sebaea leiostyla Gilg	LC
GENTIANACEAE	Sebaea natalensis Schinz	LC
GERANIACEAE	Pelargonium luridum (Andrews) Sweet	LC
GESNERIACEAE	Streptocarpus pentherianus Fritsch	LC
GREYIACEAE	Greyia radlkoferi Szyszyl.	LC
GREYIACEAE	Greyia sutherlandii Hook. & Harv.	LC
HYACINTHACEAE	Ledebouria cooperi (Hook.f.) Jessop	LC
HYACINTHACEAE	Ledebouria marginata (Baker) Jessop	LC
HYACINTHACEAE	Ledebouria revoluta (L.f.) Jessop	LC
HYACINTHACEAE	Merwilla plumbea (Lindl.) Speta	NT
HYPERICACEAE	Hypericum aethiopicum Thunb. subsp. aethiopicum	LC
	Hypericum aethiopicum Thunb. subsp. sonderi (Bredell)	
HYPERICACEAE	N.Robson	LC
HYPOXIDACEAE	Hypoxis filiformis Baker	LC
HYPOXIDACEAE	Hypoxis rigidula Baker var. rigidula	LC
HYPOXIDACEAE		LC
	Rhodohypoxis baurii (Baker) Nel var. baurii Aristaa tarulasa Klatt	
	Aristea torulosa Klatt	LC
IRIDACEAE	Dierama insigne N.E.Br.	LC
IRIDACEAE	Dierama pauciflorum N.E.Br.	LC
	Freesia laxa (Thunb.) Goldblatt & J.C.Manning subsp.	
IRIDACEAE	laxa	LC
IRIDACEAE	Gladiolus appendiculatus G.J.Lewis	LC
IRIDACEAE	Gladiolus crassifolius Baker	LC
	Hesperantha coccinea (Backh. & Harv.) Goldblatt &	
IRIDACEAE	J.C.Manning	LC
	Tritonia disticha (Klatt) Baker subsp. rubrolucens	
IRIDACEAE	(R.C.Foster) M.P.de Vos	LC
		LC
	Watsonia pulchra N.E.Br. ex Goldblatt	
	Watsonia watsonioides (Baker) Oberm.	LC
JUNCACEAE	Juncus dregeanus Kunth subsp. dregeanus	LC
JUNCAGINACEAE	Triglochin bulbosa L.	LC
LAMIACEAE	Acrotome hispida Benth.	LC
LAMIACEAE	Ajuga ophrydis Burch. ex Benth.	LC

Family	Species	Threat status
LAMIACEAE	Pycnostachys reticulata (E.Mey.) Benth.	LC
LAMIACEAE	Syncolostemon concinnus N.E.Br.	LC
LAMIACEAE	Syncolostemon parviflorus E.Mey. ex Benth. var.	LU
LAMIACEAE	parviflorus	LC
LOBELIACEAE	Cyphia elata Harv. var. glabra Harv.	LC
LOBELINGENE	Nesaea sagittifolia (Sond.) Koehne var. ericiformis	LO
LYTHRACEAE	Koehne forma swaziensis Immelman	Not Evaluated
LYTHRACEAE	Nesaea sagittifolia (Sond.) Koehne var. sagittifolia	LC
MALVACEAE	Corchorus junodii (Schinz) N.E.Br.	LC
MALVACEAE	Hermannia cristata Bolus	LC
MALVACEAE	Hibiscus aethiopicus L. var. ovatus Harv.	LC
MALVACEAE	Pavonia columella Cav.	LC
MALVACEAE	Sida dregei Burtt Davy	LC
	Sparrmannia ricinocarpa (Eckl. & Zeyh.) Kuntze var.	
MALVACEAE	ricinocarpa	LC
	Melianthus dregeanus Sond. subsp. insignis (Kuntze)	
MELIANTHACEAE	S.A.Tansley	LC
OCHNACEAE	Ochna serrulata (Hochst.) Walp.	LC
ONAGRACEAE	Oenothera rosea L'Hér. ex Aiton*	Not Evaluated
ORCHIDACEAE	Corycium dracomontanum Parkman & Schelpe	LC
ORCHIDACEAE	Eulophia hians Spreng. var. nutans (Sond.) S.Thomas	LC
ORCHIDACEAE	Eulophia welwitschii (Rchb.f.) Rolfe	LC
ORCHIDACEAE	Habenaria dregeana Lindl.	LC
ORCHIDACEAE	Habenaria epipactidea Rchb.f.	LC
ORCHIDACEAE	Satyrium cristatum Sond. var. longilabiatum A.V.Hall	LC
	Satyrium hallackii Bolus subsp. ocellatum (Bolus)	
ORCHIDACEAE	A.V.Hall	LC
	Satyrium neglectum Schltr. subsp. neglectum var.	
ORCHIDACEAE	neglectum	LC
OXALIDACEAE	Oxalis corniculata L.*	Not Evaluated
OXALIDACEAE	Oxalis obliquifolia Steud. ex A.Rich.	LC
PHYLLANTHACEAE	Phyllanthus glaucophyllus Sond.	LC
POACEAE	Brachiaria brizantha (A.Rich.) Stapf	LC
POACEAE	Ctenium concinnum Nees	LC
POACEAE	Eragrostis capensis (Thunb.) Trin.	LC
POACEAE	Eragrostis curvula (Schrad.) Nees	LC
POACEAE	Eragrostis racemosa (Thunb.) Steud.	LC
POACEAE	Eulalia villosa (Thunb.) Nees	LC
POACEAE	Festuca scabra Vahl	LC
POACEAE	Helictotrichon longifolium (Nees) Schweick.	LC
POACEAE	Hyparrhenia filipendula (Hochst.) Stapf var. filipendula	LC
POACEAE	Koeleria capensis (Steud.) Nees	LC
	Lophacme digitata Stapf Miscanthus junceus (Stapf) Pilg.	LC LC
POACEAE POACEAE	Panicum aequinerve Nees	LC
POACEAE	Panicum acquinerve Nees	LC
POACEAE	Rendlia altera (Rendle) Chiov.	LC
POACEAE	Rottboellia cochinchinensis (Lour.) Clayton	LC
PODOCARPACEAE	Podocarpus latifolius (Thunb.) R.Br. ex Mirb.	LC
POLYGALACEAE	Polygala gracilenta Burtt Davy	LC
POLYGONACEAE	Rumex woodii N.E.Br.	LC
PROTEACEAE	Protea parvula Beard	NT
PROTEACEAE	Protea subvestita N.E.Br.	VU
PTERIDACEAE	Pteris cretica L.	LC
RANUNCULACEAE	Ranunculus multifidus Forssk.*	
ROSACEAE	Rubus rigidus Sm.	LC
RUBIACEAE	Cephalanthus natalensis Oliv.	LC
RUBIACEAE	Pachystigma macrocalyx (Sond.) Robyns	LC
RUBIACEAE	Pachystigma thamnus Robyns	LC

Family	Species	Threat status
RUBIACEAE	Pavetta gardeniifolia A.Rich. var. gardeniifolia	LC
RUBIACEAE	Psydrax obovata (Eckl. & Zeyh.) Bridson subsp. obovata	LC
SANTALACEAE	Thesium costatum A.W.Hill var. costatum	LC
SANTALACEAE	Thesium spartioides A.W.Hill	LC
SCROPHULARIACEAE	Bowkeria citrina Thode	Rare
SCROPHULARIACEAE	Nemesia caerulea Hiern	LC
SELAGINELLACEAE	Selaginella mittenii Baker	LC
SINOPTERIDACEAE	Cheilanthes pentagona Schelpe & N.C.Anthony	LC
SINOPTERIDACEAE	Cheilanthes quadripinnata (Forssk.) Kuhn	LC
SINOPTERIDACEAE	Cheilanthes viridis (Forssk.) Sw. var. viridis	LC
SOLANACEAE	Solanum rigescens Jacq.	Not Evaluated
THYMELAEACEAE	Dais cotinifolia L.	LC
THYMELAEACEAE	Gnidia burchellii (Meisn.) Gilg	LC
THYMELAEACEAE	Gnidia microcephala Meisn.	LC
VALERIANACEAE	Valeriana capensis Thunb. var. capensis	LC
VERBENACEAE	Verbena bonariensis L.*	Not Evaluated
VERBENACEAE	Verbena brasiliensis Vell.*	Not Evaluated
VERBENACEAE	Verbena rigida Spreng.	Not Evaluated
VITACEAE	Cissus diversilobata C.A.Sm.	LC
	Rhoicissus tridentata (L.f.) Wild & R.B.Drumm. subsp.	
VITACEAE	cuneifolia (Eckl. & Zeyh.) Urton	Not Evaluated
WOODSIACEAE	Woodsia angolensis Schelpe	LC
XYRIDACEAE	Xyris obscura N.E.Br.	LC

Section C: Faunal Assessment

NATURAL SCIENTIFIC SERVICES

SECTION C: TABLE OF CONTENTS

1.	Intro	duction	73
2.	Meth	nodology	73
	2.1.	Desktop Research	73
	2.2.	Fieldwork	75
	2.3.	Data Analysis	80
	2.4.	Study Limitations	
3.	Resu	ılts	83
	3.1.	Mammals	83
	3.2.	Birds	
	3.3.	Reptiles	
	3.4.	Frogs	
	3.5.	Butterflies & Other Terrestrial Macro-invertebrates	92
4.	Con	servation Important Species	95
	4.1.	Mammals	96
	4.2.	Birds	
	4.3.	Reptiles	104
	4.4.	Frogs	105
	4.5.	Terrestrial Macro-invertebrates	107
5.	Арре	endices	111
	5.1.	Appendix 1 Mammal list for the study area	111
	5.2.	Appendix 2 Examples of recorded bat calls displayed in BatSound Pro	116
	5.3.	Appendix 3 Bird list for the study area	119
	5.4.	Appendix 4 Reptile list for the study area	127
	5.5.	Appendix 5 Frog list for the study area	130
	5.6.	Appendix 6 Butterfly list for the study area	132
	5.7.	Appendix 7 Macro-invertebrates found opportunisitically on site	138
	5.8.	Appendix 8 Specialist avifaunal assessment by DEC (next page)	139

SECTION C: LIST OF TABLES

Table 2-1	Camera-trapping locations	76
Table 2-2	Live-trapping locations	79
Table 3-1	Summary of faunal diversity in the study area	83
Table 3-2	Mammal diversity in the study area	84
Table 3-3	Newman's (2002) modified bird categories	87

ii

Natural Scientific Services CC

Table 3-4	Reptile diversity in the study area	89
Table 3-5	Frog diversity in the study area	92
Table 3-6	Butterfly diversity in the study area	93
Table 4-1	Potentially occurring and observed CI mammal species in the study area	98
Table 4-2	CI bird species recorded in or near the study area	100
Table 4-3	Potentially occurring and observed CI reptile species in the study area	104
Table 4-4	Potentially occurring CI frog species in the study area	106
Table 4-5	Potentially occurring CI terrestrial macro-invertebrate taxa in the study area	107
Table 4-6	Legend for Figure 4-2	109

SECTION C: LIST OF FIGURES

Figure 2-1	Pentads wherein the study site is situated74
Figure 2-2	Examples of camera-trapping locations76
Figure 2-3	Schematic layout of an array trap including drift fences, pitfall and funnel traps78
Figure 2-4	Components of a live-trapping site
Figure 2-5	Examples of live-trapping sites
Figure 2-6	Investigating adits and sampling bats in the study are
Figure 2-7	Faunal trapping localities in the study area82
Figure 3-1	Examples of mammal species identified in the study area85
Figure 3-2	Examples of bat species captured in the study area
Figure 3-3	Evidence of bird species in the study area87
Figure 3-4	Percentage of bird species with different feeding habits (modified from Newman,
	2002), observed in the AYCP study area by DEC and NSS, or in the region during
	the SABAP 2
Figure 3-5	Examples of reptile species encountered in the study area90
Figure 3-6	Examples of frog species encountered in the study area91
Figure 3-7	Examples of terrestrial macro-invertebrates in the study area94
Figure 4-1	IUCN Red List categories95
Figure 4-2	Locations of Conservation Important faunal species detected by NSS and DEC in
	the study area (legend in Table 4-6)108
Figure 4-3	Farms in the study area with records of Conservation Important faunal species
	supplied by the MTPA (pers. comm. 2013)110

SECTION C: FAUNAL ASSESSMENT

1. Introduction

Natural Scientific Services CC (NSS) was contracted by WSP Environmental (Pty) Ltd (WSP) to perform Biodiversity Scoping, Baseline and Impact Assessments for selected aspects of the proposed ATHA Yzermyn Coal Project (AYCP). This report **Section C** details the Baseline Faunal Assessment, which involved desktop- and field-based investigation of mammals, birds, reptiles, frogs and butterflies. For the AYCP faunal assessment, specialist avifaunal (bird) and bat input was received from Delta Environmental Consultants (DEC) and the Gauteng & Northern Regions Bat Interest Group (GNorBIG), respectively. GNorBIG assisted voluntarily but DEC was formally subcontracted by NSS, and the Specialist Baseline Avifaunal Assessment Report is appended to this **Section C**. Potential impacts on fauna of the AYCP and recommended measures to mitigate these impacts are discussed in **Section G**.

2. Methodology

2.1. Desktop Research

The Likelihood of Occurrence (LoO) of faunal species in the four quarter degree squares (QDSs) 2730AA, AB, AC and AD wherein the AYCP is situated, was evaluated for:

- Mammals using the published species distribution maps in Friedmann & Daly (2004) and Monadjem *et al.* (2010).
- Birds using online records from the second Southern African Bird Atlas Project (SABAP 2) of all species recorded during the past five years in the nine pentads (5' x 5' atlassing grid-cells; **Figure 2-1**) wherein the AYCP site is situated.
- Reptiles using the online species distribution maps of the Southern African Reptile Conservation Assessment (SARCA, 2010).
- Amphibians using the published species distribution maps in Minter *et al.* (2004), with species names updated using Du Preez & Carruthers (2009).
- Butterflies using the online species distribution maps of the Southern African Butterfly Conservation Atlas (SABCA, 2010).

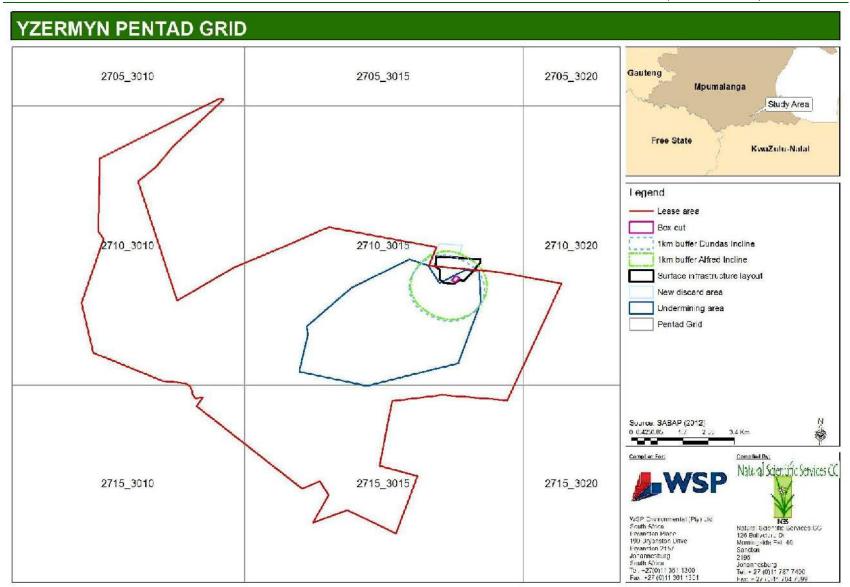


Figure 2-1 Pentads wherein the study site is situated

The LoO of each mammal, reptile, frog, and butterfly species was rated using the following scale:

- 1 Present
- 2 High LoO (High Likelihood of Occurrence)
- 3 Moderate LoO (May occur)
- 4 Low LoO (Low Likelihood of Occurrence)
- 5 May occur as a managed population

The faunal species lists and the LoO of different taxa were refined with observations by NSS and DEC during field surveys of species, signs of their presence, and available habitat in the study area. The lists were further supplemented with records of CI bird species observed by DEC in the general study area prior to the start of the SABAP 2, and with records from the MTPA (pers. comm. 2013) of CI animal species found by other specialists on farms in and around the AYCP.

2.2. Fieldwork

As explained in **Section A**, no detailed information on the AYCP was available until recently, and the boundaries of the lease, underground mining and surface infrastructure areas changed during the course of this Assessment. Consequently, field surveys for fauna were performed in the original (old) proposed undermining area during 2012 and in the current undermining area during 2013 (**Section A: Figure 2-1**). Surveys were performed during 26-30 March 2012, 14-18 January 2013, 13-14 April 2013 and 15-17 July 2013, and involved visual observation, grab-sampling, camera- and live-trapping of fauna, as well as mist-netting, harp-trapping and acoustic surveys for bats.

Visual observations & grab-sampling

Faunal observations were made while driving and walking in and around the study area, particularly, when visiting camera-trapping sites, vegetation plots and wetland areas. During the day, micro-habitats such as under rocks and logs were investigated, and a hand net was used to sample butterflies. At night, a spotlight and torches were used to detect nocturnal fauna. Taxa were identified based on observations of dead or live animals and their spoor, droppings, burrows and any other evidence of their presence.

Camera-trapping

Heat- and motion-sensitive cameras were installed at 18 locations in the study area where vertebrate activity seemed likely, and the risk of camera theft seemed low (**Figure 2-2**). Cameras were baited with assorted-flavoured cat food to specifically attract secretive, nocturnal, carnivorous mammals. When a camera did not record significant animal activity it was moved to a new location. Each camera location is described in **Table 2-1** and mapped in **Figure 2-7**.

Figure 2-2 Examples of camera-trapping locations

Table 2-1 Camera-trapping locations

CAMERA	CO-ORDINATES*	DATES	LOCATION DESCRIPTION
1-NSS1	27°13'30.90"S 30°18'25.63"E	26-27/03/2012	Burrow in grassland
1-NSS1b	27°14'5.14"S 30°18'26.16"E	27-29/03/2012	Stream in grassland
1-NSS2	27°13'34.96"S 30°18'12.96"E	26-27/03/2012	Burrow in grassland
1-NSS2b	27°14'7.13"S 30°18'23.78"E	27-29/03/2012	Animal path & stream in grassland
1-NSS3	27°13'2.01"S 30°17'23.06"E	26-29/03/2012	Animal path in savanna
1-NSS4	27°12'59.61"S 30°17'29.92"E	26-29/03/2012	Animal path in savanna
2-HC01	27°13'16.80"S 30°17'34.84"E	14-18/01/2013	Animal path & stream in savanna
2-HC02	27°13'47.78"S 30°16'55.85"E	14-18/01/2013	Stream in grassland
2-HC03	27°13'47.37"S 30°18'31.50"E	14-18/01/2013	Stream in grassland
2-HC04	27°13'3.02"S 30°17'28.85"E	14-18/01/2013	Animal path & stream in savanna

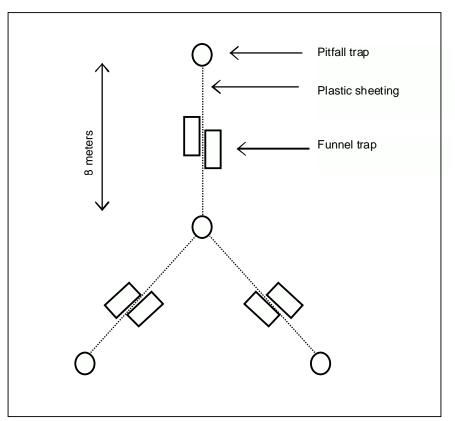
Natural Scientific Services CC

CAMERA	CO-ORDINATES*	DATES	LOCATION DESCRIPTION
2-MC1	27°13'5.10"S 30°17'31.45"E	14-18/01/2013	Animal path in savanna
2-MC2	27°12'58.01"S 30°17'30.85"E	14-15/01/2013	Animal path & stream in savanna
2-MC2b	27°13'26.26"S 30°18'51.05"E	15-18/01/2013	Alien bushclump
2-NSS1	27°13'2.86"S 30°19'3.14"E	15-18/01/2013	Alien bushclump
2-NSS2	27°13'44.33"S 30°18'37.33"E	15-18/01/2013	Alien bushclump
2-NSS3	27°13'5.56"S 30°19'5.95"E	15-18/01/2013	Stream in grassland
2-NSS4	27°14'5.16"S 30°18'26.25"E	15-18/01/2013	Stream in grassland
3-HC01	27°13'22.36"S 30°18'36.88"E	15-17/07/2013	Alien bushclump

*Datum: WGS 84

Live-trapping

Eight live-trapping sites were installed in the study area in representative habitats including: high altitude, moist grassland; high altitude, dry grassland; low altitude, moist grassland; and savanna.


At each trap site an array trap (Campbell & Christman, 1982) was used to sample herpeto-fauna (reptiles and amphibians) and invertebrates. A schematic layout of an array trap is presented in **Figure 2-3**. An array trap consisted of three arms of plastic drift fencing (30 cm high and 8 m long). Pitfall traps (5 litre buckets sunken to ground level) were placed at the centre of the array and at the end of each drift fence. Each pitfall trap was provisioned with a stone, wet cotton wool and a raised, wooden cover board to provide shelter, moisture and shade for trapped animals. A plastic, mesh funnel trap was placed on either side of each drift fence and covered with a wooden board for shade (**Figure 2-4**). Photographs of the array trap at each trap site are shown in **Figure 2-5**.

In addition, a series of nine pairs of metal mammal traps spaced at approximately 2-4m intervals was placed to live-capture rodents in the vicinity of each array trap. Each series included one pair of multi-entry traps and eight pairs of Sherman traps (**Figure 2-4**), which were baited daily, if necessary, with peanut butter, rolled oats, raisins, sunflower oil and seeds. Each mammal trap was supplied with cotton wool and a wooden cover board to provide warmth and shade for trapped animals.

NSS surveys in a diversity of habitats have revealed that the pitfall traps are most effective at trapping small lizards, frogs, spiders, scorpions and ground-dwelling insects. The plastic mesh funnel traps are effective at trapping snakes, lizards, frogs, scorpions, solifuges (sun spiders), large beetles and millipedes. The Sherman traps are most effective at trapping small mice and shrews. Rodents are sometimes caught in the funnel traps but they often escape by chewing their way out.

Each live-trapping site was operated for five days and four nights, and checked once or twice daily (**Figure 2-5**). The location of each trap site is described in **Table 2-2** and mapped in **Figure 2-7**.

Sherman trap

Pitfall trap Figure 2-4 Components of a live-trapping site

Natural Scientific Services CC

Trap site 1-1 in high, moist grassland

Trap site 2-3 in low, moist grassland Figure 2-5 Examples of live-trapping sites

Trap site 1-4 in savanna

Trap site 2-4 in high, dry grassland

Table 2-2	Live-trapping locations	
TRAP SITE	CO-ORDINATES*	LOCATION DESCRIPTION
1-1	27°13'32.08"S 30°18'22.61"E	High, moist grassland
1-2	27°13'41.60"S 30°17'59.06"E	High, dry grassland
1-3	27°13'53.64"S 30°16'51.57"E	Low, moist grassland
1-4	27°13'2.57"S 30°17'24.15"E	Savanna
2-1	27°13'47.11"S 30°18'31.20"E	High, moist grassland
2-2	27°13'3.27"S 30°17'29.10"E	Savanna
2-3	27°13'44.65"S 30°16'53.99"E	Low, moist grassland
2-4	27°13'3.41"S 30°18'54.96"E	High, dry grassland

*Datum: WGS 84

Mist-netting and acoustic surveys for bats

Several old mine adits/shafts in the AYCP study area, which were likely to provide shelter for bats and other animals, were investigated by day on foot using torches. Mist-netting, harp-trapping and an ultra-sonic Echo Meter 3 (EM3) detector (Wildlife Acoustics, Inc., USA) were used to sample bats at selected adits by night (**Figure 2-6**). Mist-netting and acoustic surveys were performed on 15 and 16 January 2013. Harp-trapping and acoustic surveys were performed on 13 April 2013.

Trapped bats were identified to species level based on photographs of their head, fur, and wings, measurements of their body mass and forearm length, and recordings of calls made during their sampling and/or release.

Wildlife Acoustics Compressed (.wac) files of bat calls recorded by the EM3 detector were converted to wave (.wav) and zero crossing (.zc) files using the WAC2WAV and Kaleidoscope programmes (Wildlife Acoustics Inc., USA). The converted data were subsequently processed using the BatSound Pro (Pettersson Elektronik, Sweden) programme to identify bat taxa from detailed examination of the peak frequency, duration and band width of calls.

2.3. Data Analysis

Records of detected faunal species were assigned to seven major habitat types including:

- Adits (AD) or shafts from previous mining in the area;
- Alien (AL) Bushclumps;
- Dry Grassland (DG);
- Scarp Forest (SF);
- Savanna (SV);
- Rocky Grassland (RG); and
- Wetlands (WT).

This enabled rough comparisons of faunal (i.e. terrestrial vertebrate and butterfly) diversity between different habitats in the AYCP underground mining area.

2.4. Study Limitations

- Survey work was limited to the original and current proposed underground mining areas, and was not performed in remaining parts of the AYCP lease area.
- NO survey work was performed for roads, pipelines, power lines, conveyer systems or any other infrastructure or listed activity (e.g. water extraction) beyond the boundaries of the current proposed underground mining area.
- The second site visit for faunal survey work was planned for early summer after the study area had received significant rain (i.e. November 2012). Unfortunately, due to delayed finalization of the current surface infrastructure layout the survey was delayed to January 2013 (mid-summer).

- Accumulatively less than three weeks were spent surveying fauna in the current proposed underground mining area.
- Some species, which are uncommon, migratory, inconspicuous, secretive or otherwise difficult to detect may not have been detected even though they were potentially present on site.

Mist netHarp trapFigure 2-6Investigating adits and sampling bats in the study are

Measuring a bat

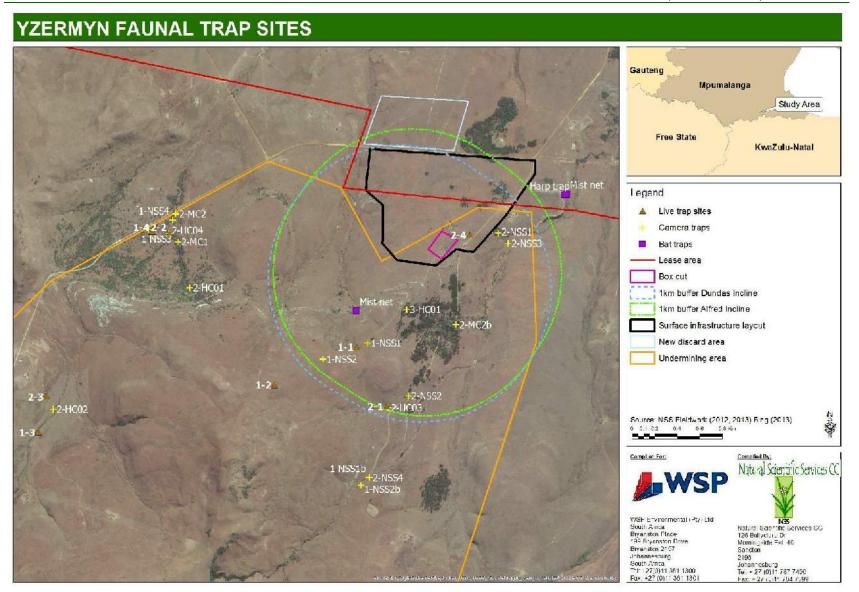


Figure 2-7 Faunal trapping localities in the study area

NSS

3. Results

Presented in **Table 3-1** is a summary for the QDSs 2730AA, AB, AC and AD wherein the AYCP is situated, of the total numbers of potentially occurring and observed species belonging to different faunal taxonomic groups. The appended faunal species lists indicate, more specifically, the LoO of each mammal, bird, reptile, frog and butterfly species within the AYCP lease area, and the habitat types wherein detected species were found. Conservation Important (CI) faunal species are discussed further on in this report **Section C**. Although the surface infrastructure is only 5% of the proposed target mining area, the LoO of fauna was assessed at a QDS level because the proposed underground mining could potentially affect faunal habitat and populations beyond the lease boundaries due to impacts associated with the de-watering activities (**Section G**).

	SPECIES RICHNESS				
FAUNAL GROUP	POTENTIAL	OBSERVED	PROPORTION (%)		
Mammals	108	27	25		
Birds	195	104	53		
Reptiles	68	17	25		
Frogs	29	10	34		
Butterflies	151	23	15		

Table 3-1 Summary of faunal diversity in the study area

Approximately half of all potentially occurring bird species, one third of potentially occurring frog species, and a quarter of all potentially occurring mammal and reptile species was observed by NSS and DEC in the study area. Only 15% of potentially occurring butterfly species were observed. Although it appears that many faunal species were not detected during field surveys, the lists of potentially occurring species apply to the four QDSs or nine pentads wherein the AYCP is situated. Certain habitats that occur in the larger study region may not be present on site, and for this and other reasons (e.g. human persecution), actual numbers of faunal species in the AYCP lease area are likely to be lower than the numbers of potentially occurring taxa shown in **Table 3-1**.

3.1. Mammals

The complete list of potentially occurring and observed mammal species for the study area is provided in **Appendix 1**. Of 81 potentially occurring mammal species that were not detected, 43 are highly likely to occur on site. The remaining species have a moderate to low LoO given their marginal distributions, specific habitat requirements and/or extirpation by humans (Friedmann & Daly, 2004).

Numbers of potentially occurring and observed species per mammalian order are summarised in **Table 3-2** using Stuart & Stuart's (1998) classification. Within the AYCP lease area 27 mammal species were detected, which represents 25% of 108 potentially occurring species. Examples of detected mammal species on site are shown in **Figure 3-1**.

ORDER & COMMON NAMES	SPECIES RICHNESS		PROPORTION (%)
	POTENTIAL	OBSERVED	
MACROSCELIDEA (Elephant-shrews)	1	0	0
TUBILIDENTATA (Aardvark)	1	1	100
HYRACOIDEA (Dassies)	1	1	100
LAGOMORPHA (Hares & rabbits)	4	1	25
RODENTIA (Rodents)	24	4	17
PRIMATES (Bushbabies, monkeys & baboon)	3	0	0
INSECTOVORA (Insectivores)	14	2	14
CHIROPTERA (Bats)	17	7	41
PHOLIDOTA (Pangolin)	1	0	0
CARNIVORA (Carnivores)	24	6	25
PERISSODACTYLA (Odd-toed ungulates)	1	0	0
ARTIODACTYLA (Even-toed ungulates)	17	4	24
TOTAL	108	27	25
Sources : Stuart & Stuart (1998); Friedmann & Daly (2004); Monadjem et al. (2010)			

Table 3-2	Mammal diversity in the study area
-----------	------------------------------------

Mammal species that are highly likely to occur in the study area, but which were not observed during field surveys, are mainly those that are secretive (e.g. small carnivores), nocturnal (e.g. bats) and inconspicuous (e.g. shrews, rats and mice). Additional camera-trapping could have increased the probability of recording more carnivore species, while live-trapping for longer periods and at more localities could have increased the probability of recording more rodents, insectivores and other small, terrestrial mammal species (spp.).

Appendix 1 shows that Wetlands supported the highest number (8 spp.) of mammals, followed by Rocky Grasslands (7 spp.) and Dry Grasslands (7 spp.). Alien Bushclumps yielded the lowest mammal diversity (4 spp.). Mammal species characteristic of Wetlands included the African Clawless Otter (*Aonyx capensis*), Marsh Mongoose (*Atilax paludinosus*), Near Threatened Serval (*Leptailurus serval*), Pygmy Mouse (*Mus minutoides*), Reddish-grey Musk Shrew (*Crocidura cyanea*) and Swamp Musk Shrew (*Crocidura mariquensis*). Rocky Grasslands supported small herds of Mountain Reedbuck (*Redunca fulvorufula*) and in Dry Grasslands Aardvark (*Orycteropus afer*) burrows were most common. Populations of Rock Dassie (*Procavia capensis*) occurred on sandstone cliffs, and camera-trapping revealed a healthy breeding population of Bushpigs (*Potamochoerus larvatus*) in Scarp Forest.

Large-spotted Genet (Genetta tigrina)

Aardvark (Orycteropus afer)

Serval (Leptailurus Serval)

African Clawless Otter (Aonyx capensis)

Common Duiker (Sylvicapra grimmia)

Bushpig (Potamochoerus larvatus)

Reddish-grey Musk Shrew (Crocidura cyanea)

Yellow Mongoose (Cynictis penicillata)

Pygmy Mouse (*Mus minutoides*)

Figure 3-1 Examples of mammal species identified in the study area

Visual observations, trapping and acoustic monitoring with an EM3 detector revealed the presence of seven bat species in the current proposed surface infrastructure area. Mist-netting and harp-trapping at the entrances of several disused horizontal mine shafts or adits resulted in the live-capture of Geoffroy's Horseshoe Bat (Rhinolophus clivosus), Swinny's Horseshoe Bat (Rhinolophus swinnyi), Temminck's Hairy Bat (Myotis tricolor) and the Natal Clinging (or Longfingered) Bat (Miniopterus natalensis). All of these bat species are Conservation Important and are discussed further on in greater detail. Examples of live-captured bats and their recorded calls are shown, respectively, in Figure 3-2 and Appendix 2. Analysis of bat calls recorded on the EM3 detector at the mist-netting locations also revealed the presence of the Cape Serotine Bat (Neoromicia capensis), Egyptian Free-tailed Bat (Tadarida aegyptiaca) and Rusty Pipistrelle (Pipistrellus rusticus).

Geoffroy's Horseshoe Bat Temminck's Hairy Bat Swinny's Horseshoe Bat (Rhinolophus swinnyi) (Rhinolophus clivosus) (Myotis tricolor)

Natal Clinging Bat (Miniopterus natalensis)

Figure 3-2 Examples of bat species captured in the study area

3.2. Birds

Data from the SABAP 2 indicated that 195 bird species have been previously recorded during surveys in the nine pentads wherein the AYCP is situated. Of these 195 species, 104 species (53%) were detected by DEC and NSS in the study area.

Local habitats support a wide spectrum of bird species including wetland, grassland, savanna, forest and rupicolous species (Figure 3-3). The Vulnerable African Grass-owl (Tyto capensis) was detected in Wetland habitat, and the Vulnerable White-bellied Korhaan (Eupodotis senegalensis), Near Threatened Black-bellied Bustard (Lissotis melanogaster), Near Threatened Secretarybird and endemic Pied Starling (Spreo bicolor) were encountered in Dry Grassland. Hillslope Rocky Grasslands supported rupicolous species such as Mountain Wheatear (Oenanthe monticola) and Buff-streaked Chat (Oenanthe bifasciata). A wealth of bird species was found in the Savanna and Scarp Forest habitat including the Near Threatened Bush Blackcap (Lioptilus nigricapillus).

Bush BlackcapSecretarybird(Lioptilus nigricapillus)(Sagittarius serpentarius)Figure 3-3Evidence of bird species in the study area

African Grass-owl (*Tyto capensis*) nest

The relative abundance of bird species, which were classified according to a modified version of Newman's (2002) 12 bird categories (**Table 3-3**), is shown in **Figure 3-4**. The data provide a comparison of all bird species observed by DEC and NSS during field surveys in the study area, with all bird species recorded in local pentads by other observers for the SABAP 2.

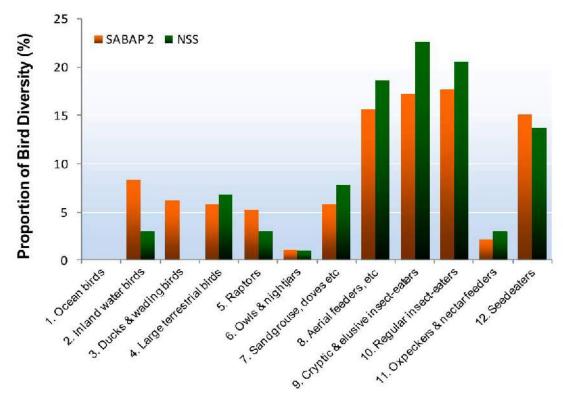

Similar percentages of birds in different categories were observed by DEC and NSS in the AYCP study area, compared with that observed during surveys in the greater study region for the SABAP 2 with one main exception. Considerably smaller percentages of ducks and waders, and inland water birds (categories 2 and 3) were observed by DEC and NSS in the AYCP study area. This was because the SABAP 2 data included records of various water bird species at the nearby Heyshope Dam (pentad 2705_3020).

Table 3-3 Newman's	(2002) modified bird categories
CATEGORY	DESCRIPTION
1. Ocean birds	Albatrosses, gannets/boobies, gulls, penguins, petrels, prions,
	shearwaters, skimmer, skuas, subAntartctic birds, terns, & tropic-
	/frigatebirds.
2. Inland water birds	Pelicans, cormorants, herons, egrets, storks, hamerkop, flamingos,
	spoonbill, ibises & finfoot.
3. Ducks & wading birds	Ducks, geese, grebes, coot, gallinules, crakes, flufftails, snipes, plovers,
	lapwings, waders, jacanas, oystercatchers, curlews, avocet & stilts.
4. Large terrestrial birds	Thicknees, pratincoles, coursers, korhaans, bustards, cranes, quail,
	francolins, spurfowl, buttonquail, guineafowl, ostrich & secretarybird.
5. Raptors	Vultures, kites, eagles, buzzards, sparrowhawks, hawks, harriers, falcons

Table 3-3	Newman's	(2002) modified	bird categories
-----------	----------	-----------------	-----------------

CATEGORY	DESCRIPTION
	& kestrels.
6. Sandgrouse, doves, etc	Sandgrouse, doves, pigeons, parrots, lovebirds, trogon, turacos & go-
	away birds (louries), cuckoos & coucals.
7. Owls & nightjars	Owls & nightjars.
8. Aerial feeders, etc	Swallows, martins, swifts, mousebirds, bee-eaters, kingfishers, rollers,
	hoopoes, hornbills, barbets, woodpeckers, wryneck & honeyguides.
9. Cryptic & elusive insect-	Larks, finchlarks, pipits, wagtails, drongos, black flycatcher,
eaters	cuckooshrikes, crows, orioles, bulbuls, tits, babblers, thrushes, chats &
	robins.
10. Regular insect-eaters	Warblers, apalises, titbabblers, eremomelas, carmoropteras, grassbird,
	cisticolas, prinias, flycatchers, batises, shrikes, boubous, tchagras,
	helmetshrikes & starlings.
11. Oxpeckers & nectar	Sunbirds, oxpeckers, white-eyes & queleas.
feeders	
12. Seedeaters	Sparrows, weavers, widow birds, bishops, finches, firefinches, waxbills,
	manikins, whydahs, canaries, siskins & buntings.

Bird Group

Figure 3-4 Percentage of bird species with different feeding habits (modified from Newman, 2002), observed in the AYCP study area by DEC and NSS, or in the region during the SABAP 2.

Natural Scientific Services CC

3.3. Reptiles

The complete list of 68 potentially occurring reptile species for the study area is provided in **Appendix 4**. Of the 68 species, 47 have a high LoO, 15 species have a moderate LoO, and six species are considered unlikely to occur in the study area based on their marginal distribution and/or lack of suitable habitat. Seventeen reptile species were detected on site by NSS through active searching and live-trapping. Examples of specimens are shown in **Figure 3-5**. Numbers of potentially occurring and observed species in different reptile families are summarised in **Table 3-4** using Branch's (1998) classification.

	SPECIES RICHNESS		
FAMILY & COMMON NAMES	POTENTIAL	OBSERVED	PROPORTION (%)
TYPHLOPIDAE (Blind snakes)	1	1	100
LEPTOTYPHLOPIDAE (Thread snakes)	1	1	100
ATRACTASPIDIDAE (Burrowing snakes)	4	1	25
COLUBRIDAE (Typical snakes)	24	5	21
ELAPIDAE (Mambas, cobras & relatives)	4	0	0
VIPERIDAE (Adders & vipers)	2	1	50
AGAMIDAE (Agamas)	3	1	33
CHAMAELEONIDAE (Chameleons)	1	1	100
VARANIDAE (Monitors)	2	0	0
LACERTIDAE (Lacertids)	3	0	0
SCINCIDAE (Skinks)	9	2	22
CORDYLIDAE (Girdled lizards & grass lizards)	2	1	50
GERRHOSAURIDAE (Plated lizards)	5	2	40
GEKKONIDAE (Geckos)	5	1	20
PELOMEDUSIDAE (Terrapins)	1	0	0
TESTUDINIDAE (Tortoises)	1	0	0
TOTAL	68	17	25
Sources: Branch (1998); SARCA website (2010)			

Table 3-4 Reptile diversity in the study area

The most reptile species (10 spp.) were found in Rocky Grassland, followed by Dry Grassland (5 spp.) and Savanna (4 spp.). Rocky Grasslands provided suitable habitat for rupicolous species such as Spotted Rock Snake (*Lamprophis guttatus*), Southern Rock Agama (*Agama atra*) and Transvaal Girdled Lizard (*Cordylus vittifer*), among others. Spotted Rock Snake, in particular, is highly dependent on rocky habitats where it shelters in cracks between large, exfoliating rocks (Alexander & Marais, 2009). The gentle-sloping Dry and Rocky Grasslands provided ideal habitat for the South African endemic subspecies of Cape Grass Lizard (*Chamaesaura anguina anguina*). During our summer surveys this grassland specialist was frequently observed in undisturbed rocky areas near wetlands.

Spotted Rock Snake (Lamprophis guttatus)

Rhombic Egg-eater (Dasypeltis scabra)

Cape Centipede-eater (Aparallactus capensis)

Brown House Snake (Lamprophis capensis)

Peter's Thread Snake (Leptotyphlops scutifrons conjunctus)

Cape Grass LizardYellow-throated Plated LizardFlap-rel(Chamaesaura anguina)(Gerrhosaurus flavigularis)(ChFigure 3-5Examples of reptile species encountered in the study area

Flap-necked Chameleon (Chamaeleo dilepis)

Two reptile species that NSS detected in the study area have not yet been recorded in local QDSs. These included Common Night Adder (*Causus rhombeatus*), which was caught in a funnel trap in Dry Grassland, and Southern Rock Agama (*Agama atra*), which was frequently observed in rocky areas.

3.4. Frogs

The complete list of frog species for the study area is provided in **Appendix 5**. Of 23 potentially occurring frog species, 19 species have a high LoO, four have a moderate LoO, and six species species are unlikely to occur due to their marginal distribution ranges and/or lack of suitable habitat on site. Of the 23 potentially occurring frog species, 10 species (34%) were recorded on site by NSS. Examples of specimens are shown in **Figure 3-6**. A summary of the numbers of potentially occurring and observed species in different frog families is given in **Table 3-5**.

Common Platanna (Xenopus laevis)

Natal Sand FrogBronze CacoE(Tomopterna natalensis)(Cacosternum nanum)(AmFigure 3-6Examples of frog species encountered in the study area

Common River Frog (Amieta angolensis)

Eastern Olive Toad (Amietophrynus garmani)

FAMILY & COMMON NAMES	SPECIES POTENTIAL	RICHNESS OBSERVED	PROPORTION (%)
BREVICIPITIDAE (Rain frogs)	2	0	0
BUFONIDAE (Toads)	6	3	50
HELEOPHRYNIDAE (Ghost frogs & Cascade Frog)	1	0	0
HEMISOTIDAE (Shovel-nosed frogs)	1	0	0
HYPEROLIIDAE (Kassinas, Rattling Frog & reed frogs)	3	0	0
PHRYNOBATRACHIDAE (Puddle frogs)	2	0	0
PTYCHADENIDAE (Grass & Ornate frogs)	2	1	50
PIPIDAE (Platannas)	1	1	100
PYXICEPHALIDAE (African common frogs)	11	5	45
TOTAL	29	10	34
Sources: Minter et al. (2004); Du Preez & Carruthers (20	09)		

Table 3-5Frog diversity in the study area

The greatest diversity (6 spp.) of frogs was recorded in Wetlands (6 spp.) but a high diversity (5 spp.) of frogs was also recorded in surrounding Dry Grasslands. This revealed the importance of non-aquatic habitat for foraging, overwintering and dispersal between wetlands of frogs, especially those species that breed in seasonal or ephemeral water, or on land. More frog species may have been detected had surveys been performed in early summer after rain.

3.5. Butterflies & Other Terrestrial Macro-invertebrates

The complete list of 151 butterfly species for the study area is provided in **Appendix 6**. Of the 151 species, 89 have a high LoO and 53 have a moderate LoO. Numbers of potentially occurring and observed species per butterfly subfamily are summarised in **Table 3-6** using Migdoll's (1994) classification. Twenty-three (15%) of the 151 potentially occurring species were recorded by NSS in the AYCP study area. Examples of specimens are shown in **Figure 3-7**.

Wetlands and Dry Grasslands supported a variety of butterfly species including the conspicuous Gaudy Commodor (*Precis octavia sesamus*), which was frequently seen near streams and seeps in summer. Rocky Grassland and hilltops were characterized by species such as Wichgraf's Brown (*Stygionympha wichgrafi wichgrafi*), the Rainforest Brown (*Cassionympha cassius*), and Common Black-eye (*Leptomyrina gorgias gorgias*). In Savanna areas the Black Heart (*Uranothauma nubifer nubifer*), White Pie (*Tuxentius calice calice*), Babaults Blue (*Leptotes babult*), Long-tailed Blue (*Lampides boeticus*), Dotted Blue (*Tarucus sybaris sybaris*) and Common Meadow Blue (*Cupidopsis cissus cissus*) were common. Several subfamilies (e.g. LYCAENIDAE, SATYRINAE, HESPERIINAE and PYRGINAE) were undersampled due, in part, to the small size, inconspicuous colouration (e.g. and) and/or the fast and/or erratic flight of species in these taxa. Baited live-trapping and sweep-netting during different times of the year and at more localities could have increased the number of butterfly species recorded on site.

SUBFAMILY & COMMON NAMES	SPECIES	RICHNESS	PROPORTION (%)
SUBFAMILT & COMMON NAMES	POTENTIAL	OBSERVED	PROPORTION (76)
DANAINAE (Monarchs)	1	1	100
SATYRINAE (Browns, widows & ringlets)	13	2	15
PORITIINAE (Zulus, buffs, rocksitters)	2	0	0
HELICONIINAE (Acraeas)	10	2	20
BIBLIDINAE (Nymphs, jokers & pipers)	13	0	0
NYMPHALINAE (Diadems, commodores, pansies &			
admirals)	11	6	55
MILETINAE (Woolly legs & skollys)	2	0	0
LYCAENINAE (Saphires, playboys, coppers, opals,			
hairtails & blues)	62	8	13
PIERINAE (Vagrants, orange tips, whites & borders)	7	1	14
COLIADINAE (Yellows & migrants)	5	0	0
PAPILIONINAE (Swallowtails & swordtails)	4	1	25
COELIADINAE (Policemen)	2	0	0
PYRGINAE (Flats, skippers, elfins & sandmen)	10	2	20
HETEROPTERINAE (Sylphs)	3	0	0
HESPERIINAE (Rangers, darts, hoppers & swifts)	7	0	0
TOTAL	152	23	15
Sources: Migdoll (1994); Henning et al. (2009); SABCA	website (2010)		

Table 3-6Butterfly diversity in the study area

Apart for butterflies there is currently limited information on the geographic ranges and conservation status of other terrestrial macro-invertebrates. Moreover, comprehensive sampling and accurate identification of insects, arachnids, crustaceans, molluscs and other terrestrial macro-invertebrates taxa would require considerable sampling effort, time, specialist expertise and funding. The AYCP faunal assessment, therefore, involved opportunistic sampling of conspicuous terrestrial macro-invertebrates. Identified taxa are listed in **Appendix 7**, and examples of specimens are shown in **Figure 3-7**.

Apart from butterflies the most frequently encountered macro-invertebrates belonged to the insect orders Orthoptera (crickets, locusts and grasshopers) and Coleoptera (beetles). In summer, fruit chafer beetles were common on fruiting trees such as the Blue Bush (*Diospyros lycioides*).

Two scorpion species, *Chelectonus jonesii* and *Uroplectes olivaceus* (**Figure 3-7**), were frequently revealed with rock-turning. The former species (which represents a monotypic genus within Southern Africa) is large, docile and not threatening (i.e. venomous) to humans. The latter species, in contrast, is quick-moving and responsible for a high number of human stings, although the venom is not considered life-threatening (Leeming, 2003).

Black Heart (Uranothauma nubifer nubifer)

Green Milkweed Locust (*Phymateus viridpes*)

Scorpion (Chelectonus jonesii) Figure 3-7 Examples

Babaults Blue (Leptotes babulti)

Zig-zag Fruit Chafer (*Anisorrhina flavomaculata*)

bion Crab spider (*Runcinia* sp.) & Brownus jonesii) veined White (*Belenois aurota aurota*) (U Examples of terrestrial macro-invertebrates in the study area

Common Hottentot Skipper (Gegenes niso niso)

Damselfly (Ischnura senegalensis)

Scorpion (*Uroplectes olivaceus*)

4. Conservation Important Species

The IUCN (2012) Red List criteria and catgories, shown in **Figure 4-1**, were developed to provide a simple and effective system for rating the conservation status of species, mainly at global and regional levels. In South Africa, as in many other countries, the IUCN Red List criteria and categories have been adapted for evaluating the conservation status of species at national and provincial levels.

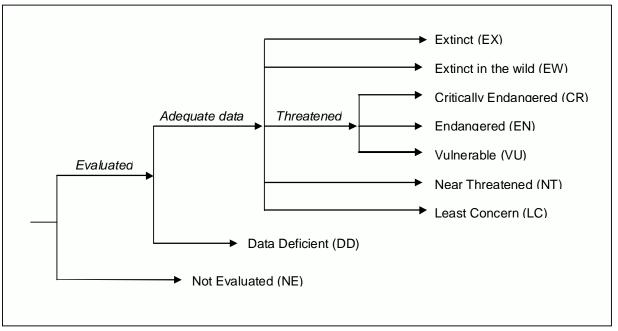


Figure 4-1 IUCN Red List categories

South African faunal atlases and Red Data books for mammals, birds, frogs and butterflies have been published, respectively, by Friedmann & Daly (2004), Barnes (2000), Minter *et al.* (2004) and Henning *et al.* (2009). The South African Red Data book for birds is currently being revised, and an update is expected soon. The Southern African Reptile Conservation Assessment (SARCA) is pending publication and, therefore, in this study, for reptiles the global IUCN conservation status is used.

A legally-binding national list of Threatened or Protected Species (ToPS) is provided in the NEM:BA (2007), and provincial-specific lists of Conservation Important (CI) species have been compiled in some provinces, e.g. Mpumalanga. As there is often spatio-temporal variation in human disturbances, the conservation status of some species differs between the IUCN global/regional, national and provincial Red Listings. Unless otherwise stated, the national Red Data status of a species is used by default.

The locations of detected CI faunal species in the AYCP study area are shown in **Figure 4-3**, and local farms with records of CI faunal species, which were supplied by the MTPA (pers. comm. 2013), are shown in **Figure 4-3**. Twelve CI animal species were found in, or adjacent to the proposed surface infrastructure area.

4.1. Mammals

A staggering 38 CI mammal species potentially occur in the study area (**Table 4-1**). Of these, 21 species have been recorded in the QDS's wherein the AYCP is situated (Friedmann & Daly, 2004; MTPA pers comm. 2013). NSS detected eight CI mammal species in the AYCP study area, including one Endangered, five Near Threatened and two Data Deficient species, discussed next. Seven of the 10 CI mammal species were recorded in, or adjacent to the proposed surface infrastructure area.

Swinny's Horseshoe Bat (Rhinolophus swinnyi) - Endangered

Calls of this species were recorded and a specimen was caught on 15 January 2013 outside an old mine adit approximately 1.24km north-east of the proposed Alfred decline, and 315-335m outside the proposed surface infrastructure layout, and 180-300m outside the proposed underground mining area. This small horseshoe bat is sparsely distributed across south-eastern Africa, and is considered near-endemic to Southern Africa (Csorba *et al.* 2003) and rare by Monadjem *et al.* (2010). Like most *Rhinolophus* bats, Swinny's Horseshoe Bat roosts in caves and other subterranean habitats such as abandoned mine adits (Friedmann & Daly, 2004). Individuals roost alone or in groups of <5 individuals. In the southern parts of its range this bat frequents temperate Afro-montane forest (Monadjem *et al.* 2001) and, therefore, may utilize Scarp Forest in the study area for foraging. The availability of suitable subterranean roost sites is considered to be more limiting to the distribution of this species than vegetation type (Monadjem *et al.* 2010). Therefore, destruction or disturbance of roosts poses the most significant threat to this species, followed by loss of foraging habitat (IUCN 2013).

Geoffroy's Horseshoe Bat (Rhinolophus clivosus) – Near Threatened

Over 290 individuals of this species were counted during visual observations in six old mine adits within the study area. The vast majority of this population (>200 individuals.) was found to be roosting in the same large adit where Swinny's Horseshoe Bat was detected, i.e. approximately 1.24km north-east of the proposed Alfred decline. Geoffroy's Horseshoe Bat is significantly larger than Swinny's Horseshoe Bat but also roosts in caves and old mine adits, where hundreds or thousands of individuals may congregate Monadjem *et al.* (2010). Although this species occurs in large numbers over a wide area including much of South Africa, it is potentially threatened because of its tendency to roost in very large numbers in limited sites. Destruction or disturbance of such roosts would have a considerable impact on this species.

Natal Clinging (Long-fingered) Bat (*Miniopterus natalensis*) – Near Threatened

Several individuals of this species were found roosting in the large adit where Swinny's Horseshoe Bat was detected. Like the afore-mentioned species, the Natal Clinging Bat is widely distributed in southern Africa (excluding the Kalahari), and is highly dependant on caves and old mine shafts, where hundreds or thousands of individuals may congregate. Adults migrate between summer maternity roosts and winter hibernacular (situated in cooler, higher altitude regions (Monadjem *et al.* 2010). Like Geoffroy's Horseshoe Bat, the Natal Clinging Bat is potentially threatened because of its tendency to roost in very large numbers in limited sites. The destruction or disturbance of summer or winter roosts has the potential to cause significant population declines in this species.

Temminck's Hairy Bat (Myotis tricolor) - Near Threatened

Temminck's Hairy Bat inhabits montainous areas in eastern sub-Saharan Africa where colonies of up to 1500 individuals may roost in suitable subterranean habitats such as caves and old mine shafts. Groups of up to 5 individuals of this species were found in two of the adits that were explored in the study area. Like the Natal Clinging Bat, Temminck's Hairy Bat migrates between summer maternity roosts and winter hibernacular (Monadjem *et al.* 2010) and, therefore, the destruction or disturbance of either of these has the potential to cause significant population declines in this species.

Rusty Pipistrelle (Pipistrellus rusticus) - Near Threatened

Calls of this species were recorded in the study area but unlike the afore-mentioned cavedwelling bats, the Rusty Pipistrelle roosts in crevices in trees. It is, therefore, predominant in savanna, and dependent on riverine and forest patches in grassland. Very little is known about the Rusty Pipistrelle, and the closest reported record for this species is north of Swaziland, >200km away (Friedmann & Daly, 2004). For some reason(s), populations of this species have disappeared and, consequently, it is regarded as Near Threatened.

Serval (Leptailurus serval) – Near Threatened

Camera traps photographed this species at two separate locations in the study area, including a stream surrounded by grassland, and a dirt road bisecting a stand of alien Blue Gum (*Eucalyptus*) trees in the proposed surface infrastructure area. Serval typically frequent dense, grassy habitat near water but may occur in other habitats e.g. savanna. The South African population is small (<10,000 individuals) and highly fragemented due to the destruction, degradation and fragmentation of wetland and grassland habitat (Friedmann & Daly, 2004).

Both the Data Deficient Swamp Musk Shrew (*Crocidura mariquensis*) and Reddish-grey Musk Shrew (*Crocidura cyanea*) were found in the proposed surface infrastructure area in hydromorphic grassland surrounding wetland habitat. As their conservation status implies, little is known about these small, inconspicuous insectivores. However, it is unlikely that the Reddish-grey Musk Shrew is threatened given its wide distribution across South Africa and broad habitat tolerance (Friedmann & Daly, 2004). The Swamp Musk Shrew, in contrast, has a smaller distribution and may be threatened by loss of wetland habitat.

Several other CI mammal species potentially occur in the study area but were not detected during field surveys (**Table 4-1**). Suitable habitat appears to be present in the proposed surface infrastructure and underground mining areas for most of these species including the Critically Endangered Rough-haired Golden Mole (*Chrysospalax villosus*), the Endangered White-tailed Mouse (*Mystromys albicaudatus*) and the Endangered Oribi (*Ourebia ourebi*).

			S	TATU	S	RECO	ORDS
ORDER & SPECIES	COMMON NAME	LoO	SA RED LIST	NEM:BA	МТРА	ATLAS: 2730 AA-AD	MTPA: 2730 AB & AD
RODENTIA (Rodents)							
Mystromys albicaudatus	White-tailed Mouse	2	EN			x	
Lemniscomys rosalia	Single-striped Grass Mouse	2	DD			х	
Dasymys incomtus	African Marsh Rat	3	NT				
Otomys sloggetti	Sloggett's Vlei Rat	2	DD			х	
INSECTOVORA (Insectivores)							
Chrysospalax villosus	Rough-haired Golden Mole	2	CR	CR		x	
Amblysomus septentrionalis	Highveld Golden Mole	2	NT			х	
Amblysomus hottentotus	Hottentot Golden Mole	4	DD				
Chlorotalpa sclateri	Sclater's Golden Mole	2	DD				
Myosorex cafer	Dark-footed Forest Shrew	2	DD			х	
Myosorex varius	Forest Shrew	2	DD			х	
Suncus varilla	Lesser Dwarf Shrew	3	DD				
Suncus infinitesimus	Least Dwarf Shrew	2	DD			х	
Crocidura mariquensis	Swamp Musk Shrew	1	DD			x	
Crocidura fuscomurina	Tiny Musk Shrew	3	DD				
Crocidura cyanea	Reddish-grey Musk Shrew	1	DD				
	Lesser Grey-brown Musk						
Crocidura silacea	Shrew	2	DD			x	
Crocidura flavescens	Greater Red Musk Shrew	2	DD			х	

 Table 4-1
 Potentially occurring and observed CI mammal species in the study area

			S	TATU	S	REC	ORDS
ORDER & SPECIES	COMMON NAME	LoO	SA RED LIST	NEM:BA	МТРА	ATLAS: 2730 AA-AD	ИТРА: 2730 AB & AD
Crocidura hirta	Lesser Red Musk Shrew	3	DD				
CHIROPTERA (Bats)							
Rhinolophus swinnyi	Swinny's Horseshoe Bat	1	EN				
Rhinolophus clivosus	Geoffroy's Horseshoe bat	1	NT			x	
Rhinolophus darlingi	Darling's Horseshoe Bat	3	NT	NT			
Rhinolophus landeri	Lander's Horseshoe Bat	3	NT				
Miniopterus fraterculus	Lesser Long-fingered Bat	2	NT			x	
Miniopterus natalensis	Natal Clinging Bat	1	NT				
Myotis welwitschii	Welwitsch's Hairy Bat	4	NT				
Pipistrellus rusticus	Rusty Pipistrelle	1	NT				
Myotis tricolor	Temminck's Hairy Bat	1	NT				
PHOLIDOTA (Pangolin)							
Manis temminckii	Ground Pangolin	4	VU	VU			
CARNIVORA (Carnivores)							
Parahyaena brunne	Brown Hyaena	2	NT	PS		х	
Panthera pardus	Leopard	3	LC	VU		х	
Felis nigripes	Black-footed Cat*	4	LC	PS			
Leptailurus serval	Serval	1	NT	PS			
Vulpes chama	Cape Fox	2	LC	PS		х	
Lutra maculicollis	Spotted-necked Otter	3	NT	PS		х	
Mellivora capensis	Honey Badger	3	NT	PS		х	
Poecilogale albinucha	African Striped Weasel	2	DD			х	
ARTIODACTYLA (Even-toed	ungulates)						
Connochaetes gnou	Black Wildebeest	5	LC	PS			
Redunca arundinum	Southern Reedbuck	5	LC	PS		х	
Ourebia ourebi	Oribi	3	EN	EN	EN		х
KEY							
LoO: 1=Present; 2=Highly like	ly; 3=Moderately likely; 4=Unlike	ly; 5= ľ	Manag	ed pop	oulatio	n	
	ered; EN=Endangered; VU=Vul	nerabl	le; PS	=Prote	ected S	Species; I	NT=Near
Threatened; DD=Data Deficier	·	ore er	omm (20121			
Sources: Friedmann & Daly (2	2004); NEM:BA (2007), MTPA (p		JUIII. 2	2013)			

4.2. Birds

Eighteen CI bird species have been recorded in or near the AYCP study area, which are listed in **Table 4-2**. Twelve CI bird species were recorded during surveys for the SABAP 2 in the nine pentads wherein the AYCP is located. DEC and NSS observed five CI bird species during surveys for the AYCP, and DEC previously also observed the Near Threatened Half-collared Kingfisher (*Alcedo semitorquata*) on a nearby tributary of the Assegaai River. Fourteen CI bird species have been recorded by other observers on farms in the QDSs 2730AB and AD according to the MTPA (pers. comm. 2013).

Table 4-2	CI bird species recorded in or near the study area
-----------	--

				STATU	S	RECORDS			
GROUP & SPECIES	COMMON NAME	LoO	SA RED LIST	VEM:BA 2007	ИТРА	SABAP 2: PENTADS	ИТРА: 2730 AB & AD		
Inland water birds									
Ciconia nigra	Black Stork	3	NT	VU	NT		х		
Geronticus calvus	Southern Bald Ibis	2	VU	VU	VU	x	х		
Large terrestrial birds				·					
Sagittarius serpentarius	Secretarybird	1	NT		NT	X	Х		
Eupodotis caerulescens	Blue Korhaan	2	NT	VU	VU	х	х		
Lissotis melanogaster	Black-bellied Bustard	1	NT			X			
Balearica regulorum	Grey-crowned Crane	2	VU	EN		х	х		
Anthropoides paradiseus	Blue Crane	2	VU	EN	VU	х	х		
Neotis denhami	Denham's Bustard	2	VU		VU	х	х		
Eupodotis senegalensis	White-bellied Korhaan	1	VU		VU	x	x		
Raptors									
Falco biarmicus	Lanner Falcon	2	NT	VU	VU	х	х		
Stephanoaetus coronatus	African Crowned Eagle	3	NT		NT	х			
Owls & nightjars									
Tyto capensis	African Grass-owl	1	VU	VU	VU		х		
Aerial feeders									
Alcedo semitorquata	Half-collared Kingfisher	1	NT						
Cryptic & elusive insect-eater	S								
Heteromirafra ruddi	Rudd's Lark	3	CR		CR		х		
Bugeranus carunculatus	Wattled Crane	3	CR	CR	CR		х		
Lioptilus nigricapillus	Bush Blackcap	1	NT		NT	X	X		
Schoenicola brevirostris	Fan-tailed Grassbird	2	NT		NT	х	х		
Anthus chloris Yellow-breasted Pipit		2	VU		VU		х		
KEY									
LoO: 1=Present; 2=Highly likely	; 3=Moderately likely; 4=Unlikel	у							
Status: CR=Critically Endanger	ed; EN=Endangered; VU=Vulne	erable;	NT=N	lear Tł	nreate	ned			
Sources: Barnes, 2000; MTPA	(pers. comm. 2013); SABAP 2 v	vebsite	e (201	3)					

Southern Bald Ibis (Geronticus calvus) - Vulnerable & Endemic

Estimated population in SA: \leq 10,000 birds

Although there were no sightings of this species during the field surveys, Bald Ibises have been recorded from seven of the nine buffer pentads including the AYCP pentad. This species feeds in sour grassland and harvested/ ploughed crop land, and as such, is expected to occur in the study area.

Blue Crane (Anthropoides paradiseus) – Vulnerable

Estimated population in SA: 15,000 - 25,000 birds

Blue Cranes have been recorded from the pentads to the north, south, and south-east of the AYCP pentad. This species regularly frequents drier areas than the other two crane species and often forages in grassland habitats. Suitable habitat for this species is present on site.

Grey-crowned Crane (Balearica regulorum) - Vulnerable

Estimated population in SA: 2,500 - 4,300 birds

This species has only been recorded in the pentad to the south-west of the AYCP pentad. Greycrowned Cranes forage mainly in wetland areas such as sponges, pans etc. They also visit newly ploughed or harvested cropland and may occur within the study area on occasion.

Denham's Bustard (Neotis denhami) – Vulnerable

Estimated population in SA: <1,500 birds

This species has been recorded from the AYCP pentad, and also from the pentad immediately to the south. Denham's Bustards feed in sour grassland and suitable habitat for the species was identified on site.

White-bellied Korhaan (Eupodotis senegalensis) - Vulnerable

Estimated population in SA: <5,000 birds

This species has been recorded from four of the eight pentads surrounding the site. It favours longer grass, often with scattered trees or bushes and suitable habitat for the species was identified in the project area. The species is highly cryptic in its behaviour and is best detected by call. This species was regularly heard calling in the proposed surface infrastructure area during the field survey in July 2013. Current taxonomy treats the South African population of this korhaan as an endemic race – *E. s. barrowii,* but it has been suggested that it is in fact distinct from the species found in Namibia through to East Africa. If this is confirmed, an estimated world population of <5,000 birds would mean that the threat status would be raised to a higher category.

African Grass-owl (Tyto capensis) - Vulnerable

Estimated population in SA: 1,000 - 5,000 birds

The African Grass-owl inhabits wetlands and tall grassland where adults utilize tunnels and nests on the ground. During the July 2013 field survey, a Grass-owl nest was found in the proposed surface infrastructure area. This suggests that there is a local breeding population of this species in the study area. African Grass-owls have been extirpated in south-western South Africa and Lesotho, and the combined pressure from development, fire mismanagement, land clearing for agriculture, overgrazing, afforestation and roadkill are of serious concern for the species.

Secretarybird (Sagittarius serpentarius) - Near Threatened

Estimated population in SA: ~1500 pairs

Secretarybirds feed primarily in grassland, and extensive areas of suitable foraging habitat were identified in the project area. This species was recorded almost daily during field surveys and an analysis of SABAP 2 data for the nine buffer pentad area revealed that three of the six records for the species in the atlas database are from the AYCP pentad. This suggests that the proposed surface infrastructure and underground mining areas fall within the focal foraging area of a local population. Nesting of this species occurs year-round with most (70%) of the records for north-eastern South Africa falling between July and November. Field surveys may have, therefore, missed any breeding on site.

Lanner Falcon (Falco biarmicus) - Near Threatened

Estimated population in SA: 9,000 - 18,000 pairs

This species has been recorded from the AYCP pentad and also from the pentad immediately to the north. Lanners nest between May and September and could potentially nest on the sandstone ledges in the amphitheatre on the north-western boundary of the site. However, there were no indications – (such as "white-wash" faecal sprays below suitable ledges) of this during the field surveys. The species is, however, likely to hunt over the AYCP study area.

Blue Korhaan (Eupodotis caerulescens) – Near Threatened

Estimated population in SA: >10,000 birds

This species has only been recorded from the pentad to the west of AYCP pentad. Blue Korhaans typically feed and nest in areas with shorter grass, compared to White-bellied Korhaans, and are thus slightly easier to locate. Potentially suitable habitat for this species was identified on site.

Black-bellied Bustard (Lissotis melanogaster) - Near Threatened

Estimated population in SA: <5,000 birds

This bustard has been recorded from the AYCP pentad, and also from the one immediately to the west. During the January 2013 site visit, two calling males were located in the proposed surface infrastructure area, indicating that Black-bellied Bustards are breeding on site. Female bustards visit these calling males to mate and then move off into areas of tall grass were one or two eggs are laid in a shallow scrape in the ground. Nests are well hidden and this, together with the cryptic behaviour of the nesting females, makes the location of active nests difficult. All incubation and care of young is undertaken by the female.

Half-collared Kingfisher (Alcedo semitorquata) – Near Threatened

Estimated population in SA: Unknown

Half-collared Kingfishers favour quiet, wooded stretches of clear-flowing rivers and streams and are dependent on healthy river systems. Prior to field surveys for the present assessment, DEC observed Half-collared Kingfisher on a nearby tributary of the Assegaai River. Pollution, increased silt loads, noise and other forms of disturbance negatively affect this species.

Bush Blackcap (Lioptilus nigricapillus) - Near Threatened

Estimated population in SA: <5,000 birds

A single bird was located in a patch of Scarp Forest during the March 2013 site visit. Several other areas of optimal habitat were identified in the study area, and it is likely that several pairs of this endemic species breed on site.

Fan-tailed Grassbird (Schoenicola brevirostris) – Near Threatened

Estimated population in SA: Unknown

This species has ONLY been recorded from the AYCP pentad within the complete nine pentad buffer area. The species favours areas of long, rank grassland – often in damp areas. Suitable habitat exists in the lower-lying sections of the study area and the possibility that Fan-tailed Grassbirds will be found breeding on the site cannot be ruled out. Displaying males give characteristic, metallic-sounding *"Tswink tswink..."* calls during November, but the delay in finalising the mine layout meant that the planned early-summer survey occurred too late to confirm the status of this species on site.

CI bird species that were not recorded in local pentads during the SABAP 2, but which were recorded on nearby farms by other observers according to the MTPA (pers. comm. 2013), include the Critically Endangered Wattled Crane (*Bugeranus carunculatus*), Critically Endangered Rudd's Lark (*Heteromirafra ruddi*), Vulnerable Yellow-breasted Pipit (*Anthus chloris*), Near Threatened African Crowned Eagle (*Stephanoaetus coronatus*) and Near Threatened Black Stork (*Ciconia nigra*). Suitable habitat for all these CI bird species was present in the AYCP study area, including the proposed underground mining and surface infrastructure areas.

4.3. Reptiles

Online (2010) reptile species distribution maps of the unpublished Southern African Reptile Conservation Assessment (SARCA), and CI reptile species records supplied by the MTPA (pers. comm. 2013) indicate that at least seven CI reptile species may occur in the AYCP study area (**Table 4-3**). These include one provincially Vulnerable and six globally or provincially Near Threatened species. One of these CI species was detected during fieldwork in the proposed surface infrastructure area, i.e. the provincially Near Threatened and South African endemic sub-species of the Cape Grass Lizard (*Chamaesaura anguina anguina*).

			SI	ATU	S	RECO	RDS
FAMILY & SPECIES	COMMON NAME	LoO	IUCN RED LIST	NEM:BA 2007	МТРА	ATLAS: 2730 AA-AD	2730 AB & AD
ATRACTASPIDIDAE (Burrowing s	nakes)						
Homoroselaps dorsalis							
COLUBRIDAE (Typical Snakes)							
Lamprophis aurora	Aurora House Snake	3	LC**	-			
Lamprophis fuscus	Yellow-bellied House Snake	3	NT	-			
SCINCIDAE (Skinks)							
Acontias breviceps	Short-headed Legless Skink	2	NT	-	VU	х	х
CORDYLIDAE (Girdled lizards)							
Cordylus warreni warreni	Warren's Girdled Lizard	3	LC	-	NT		х
Chamaesaura aenea	Transvaal Grass Lizard	2	LC***	-	NT	х	
Chamaesaura anguina anguina	Cape Grass Lizard	1	-	-	NT	х	x
KEY							
LoO: 1=Present; 2=Highly likely; 3=N	Moderately likely						
Status: VU=Vulnerable; NT=Near Th	nreatened; LC=Least Concern						
* Globally NT (IUCN, 2013)							
** Declining (IUCN, 2013)							
*** Provisionally listed as VU - SARC	CA (in press)						
Sources: NEM:BA (2007); SARCA	vebsite (2010), IUCN (2013); M	ΓPA (pers. co	mm.,	, 2013)		

 Table 4-3
 Potentially occurring and observed CI reptile species in the study area

Cape Grass Lizard (Chamaesaura anguina anguina) – Near Threatened

Like most grass lizards, Cape Grass Lizards are extreme grassland specialists. They possess significantly reduced limbs and long slender bodies, enabling them to move swiftly through their habitat. During field surveys several individuals were caught at various locations throughout the study area (including the proposed surface infrastructure area), and always in rocky hill-slopes

with dense grass cover. As with the Transvaal Grassl Lizard (*Chamaesaura aenea*), this species is likely threatened by loss of grassland habitat.

Transvaal Grass Lizard (*Chamaesaura aenea*) have a marginal distribution in the study area and if present, will likely be restricted to natural grassland areas in proximity to rocks, which provide important shelter for these lizards during veld fires. These endemic grassland specialists are provisionally listed as Vulnerable by the SARCA (Alexander, 2009). They are patchily distributed, and threatened by loss and fragmentation of their grassland habitat.

Striped Harlequin Snakes (*Homoroselaps dorsalis*) are endemic to South Africa and are listed as globally Near Threatened (IUCN, 2013). The species is illusive and very sparsely distributed, particularly outside Gauteng. They feed exclusively on Thread Snakes (*Leptotyphlops* spp.) and are highly threatened by transformation of their Highveld grassland habitat due to agriculture and other forms of land-use (Branch, 1998; Alexander, 2009).

Although listed as Least Concern, the Aurora House Snake (*Lamprophis aurora*) is reportedly experiencing rapid local population declines (Patterson, 1987; IUCN, 2013). Although widely distributed, Aurora House Snakes are uncommon throughout their range (Branch, 1998). Threats to this species include habitat loss, harvesting for the pet trade, and their associated mortality caused by road traffic (IUCN, 2013).

The Near Threatened Yellow-bellied House Snake (*Lamprophis fuscus*) is a rare snake that is usually found in old termite nests in grassland and fynbos. This species is threatened by loss of its grassland and fynbos habitats, and the destruction of old termite mounds by people who use them, for example, like ovens to cook food.

4.4. Frogs

Five CI frog species may occur in the AYCP study area (**Table 4-4**) based on the published frog species distribution maps in Minter *et al.* (2004). None of these CI frog species were detected possibly because no survey work was performed in early summer after heavy rain. Two of the species have, however, been recorded by other observers on nearby farms according to the MTPA (pers. comm. 2013). These include the Karoo Toad (*Vandijkophrynus gariepensis*) and Natal Cascade Frog (*Hadromophryne natalensis*).

The Natal Cascade Frog, although listed nationally as Least Concern, is threatened by introduced trout and destruction of its clear, fast-flowing, montane stream habitat (Du Preez & Curruthers, 2009) and, therefore, is recognised as a Vulnerable in Mpumalanga. Suitable habitat for this species is present on site.

The Karoo Toad, which is listed as provincially Vulnerable, is highly likely to occur on site particularly in the higher altitude moist grasslands.

The AYCP study area falls within the distribution range of the nationally Near Threatened Plain Stream Frog (*Strongylopus wageri*) and suitable habitat for this species (fast-flowing montane streams in Scarp Forest) exists on site.

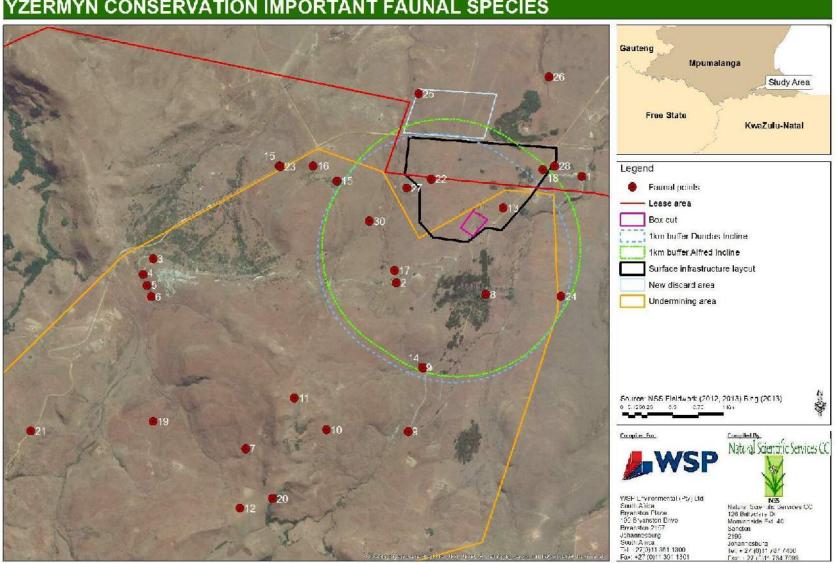
The Spotted Shovel-nosed Frog (*Hemisus guttatus*) is listed as nationally Vulnerable due to its small extent of occurrence. It occupies a variety of habitats (Du Preez & Curruthers, 2009), in close proximity to wetlands or emphemeral pools where the surrounding substrate is conducive to its burrowing lifestyle. Habitat in the AYCP study area is considered suitable for this species.

The Near Threatened Giant Bullfrog (*Pyxicephalus adsperus*) is listed as nationally Near Threatened and provincially Vulnerable in Mpumalanga, where very few breeding populations of this species are known. Giant Bullfrogs use shallow, still-standing seasonal water with emergent grassy vegetation for breeding, and spend most of their lives buried underground in grassland surrounding their breeding sites. Based on ecological niche modelling by Yetman *et al.* (2012), this species may occur in the AYCP area.

			S	TATU	S	REC	ORDS
SPECIES	COMMON NAME	۲٥O	SA RED LIST	NEM:BA 2007	ИТРА	ATLAS: 2730 AA-AD	ИТРА: 2730 AB & AD
BUFONIDAE (Toads)							
Vandijkophrynus gariepensis	Karoo Toad	2	LC		VU	х	х
HELEOPHRYNIDAE (Ghost	Frogs and Cascade Frog)						
Hadromophryne natalensis	Natal Cascade Frog	3	LC		VU	х	x
HEMISOTIDAE (Shovel-nose	d Frogs)						
Hemisus guttatus	Spotted Shovel-nosed Frog	2	VU*				
PYXICEPHALIDAE (African C	Common Frogs)						
Strongylopus wager	Plain Stream Frog	2	NT			х	
Pyxicephalus adspersus	Giant Bullfrog	3	NT		VU		
KEY							
LoO: 2=Highly likely; 3=Moder	ately likely; 4=Unlikely						
Status: VU=Vulnerable, NT=N	lear Threatened, LC=Least Cor	ncern					
* Listed as globally VU (IUCN	2013)						
Sources: Minter et al. (2004)	; NEM:BA (2007); Du Preez	& Car	ruthers	(2009	9); IUC	CN (2013); MTPA
(pers. comm. 2013)							

Table 4-4 Potentially occurring CI frog species in the study area

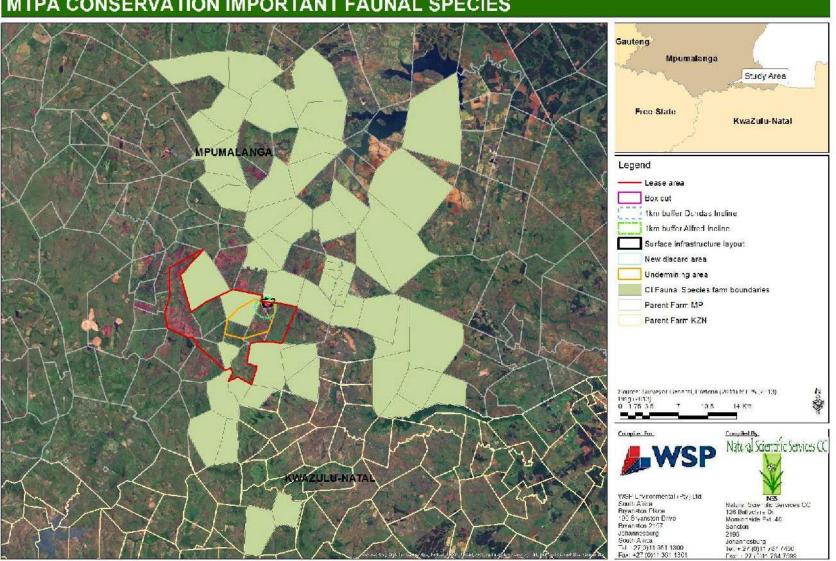
4.5. Terrestrial Macro-invertebrates


Although no CI terrestrial macro-invertebrate species were found (**Table 4-5**), there is suitable habitat for several of these species within the AYCP study area, including the Vulnerable Marsh Sylph (*Metisella meninx*) and five nationally Protected Species of scorpion and baboon spider.

The small, cryptic, Marsh Sylph butterfly occurs exclusively at altitudes of 1400-1700m a.s.l. in marshy wetlands that support its larval food plant called Rice Grass (*Leersia hexandra*). Like most of the afore-mentioned CI faunal species, the Marsh Sylph is threatened by loss of its wetland and grassland habitat due to agriculture, mining, afforestation and urbanisation.

			STA	TUS
ТАХА	COMMON NAME	LoO	SA RED LIST	NEM:BA 2007
Insects				
Metisella meninx	Marsh Sylph	2	VU	PS
Manticora spp.	Monster Tiger Beetles	2	-	PS
Arachnids				
Opisthacanthus spp.	Creeping Scorpions	2	-	PS
Opistophthalmus spp.	Burrowing Scorpions	2	-	PS
Ceratogyrus sp.	Horned Baboon Spiders	3	-	PS
Harpactira sp.	Common Baboon Spiders	2	-	PS
Pterinochilus sp.	Golden Brown Baboon Spiders	3	-	PS
Key:				
LoO: =Highly likely; 3=Moderate	ely likely			
Source: Henning et al. (2004); N	NEM:BA (2007)			

 Table 4-5
 Potentially occurring CI terrestrial macro-invertebrate taxa in the study area


YZERMYN CONSERVATION IMPORTANT FAUNAL SPECIES

Tabl	e 4-6 Legend for Figure	4-2			enne & impace	1.000001110111
LOCALITY	COMMON NAME	SPECIES	STATUS	CO-ORDINATES	PENTAD	QDS
1	Swinny's Horseshoe Bat	Rhinolophus swinnyi	EN	S27.21464 E30.32268	2710_3015	2730AB
1	Geoffroy's Horseshoe Bat	Rhinolophus clivosus	NT			
1	Temminck's Hairy Bat	Myotis tricolor	NT			
1	Natal Clinging Bat	Miniopterus natalensis	NT			
2	Geoffroy's Horseshoe Bat	Rhinolophus clivosus	NT	S27.22301 E30.30625	2710_3015	2730AB
3	Geoffroy's Horseshoe Bat	Rhinolophus clivosus	NT	S27.22111 E30.28468	2710_3015	2730AB
4	Geoffroy's Horseshoe Bat	Rhinolophus clivosus	NT	S27.22236 E30.28379	2710_3015	2730AB
5	Geoffroy's Horseshoe Bat	Rhinolophus clivosus	NT	S27.22322 E30.28414	2710_3015	2730AB
6	Geoffroy's Horseshoe Bat	Rhinolophus clivosus	NT	S27.22411 E30.28452	2710_3015	2730AB
6	Temminck's Hairy Bat	Myotis tricolor	NT			
7	Secretarybird	Sagittarius serpentarius	NT	S27.23610 E30.29290	2710_3015	2730AB
8	Serval	Leptailurus serval	NT	S27.22393 E30.31418	2710_3015	2730AB
9	Cape Grass Lizard	Chamaesaura anguina	NT	S27.22969 E30.30854	2710_3015	2730AB
10	Cape Grass Lizard	Chamaesaura anguina	NT	S27.23461 E30.30003	2710_3015	2730AB
11	Cape Grass Lizard	Chamaesaura anguina	NT	S27.23211 E30.29720	2710_3015	2730AB
12	Cape Grass Lizard	Chamaesaura anguina	NT	S27.24079 E30.29236	2710_3015	2730AB
13	Reddish-grey Musk Shrew	Crocidura cyanea	DD	S27.21711 E30.31569	2710_3015	2730AB
14	Swamp Musk Shrew	Crocidura mariquensis	DD	S27.22976 E30.30867	2710_3015	2730AB
15	Secretarybird	Sagittarius serpentarius	NT	S27.21381 E30.29588	2710_3015	2730AB
15	Secretarybird	Sagittarius serpentarius	NT	S27.21498 E30.30097	2710_3015	2730AB
16	Secretarybird	Sagittarius serpentarius	NT	S27.21381 E30.29886	2710_3015	2730AB
17	Black-bellied Bustard	Lissotis melanogaster	NT	S27.22203 E30.30606	2710_3015	2730AB
18	Secretarybird	Sagittarius serpentarius	NT	S27.21408 E30.31922	2710_3015	2730AB
19	Secretarybird	Sagittarius serpentarius	NT	S27.23394 E30.28467	2710_3015	2730AB
20	Bush Blackcap	Lioptilus nigricapillus	NT	S27.24003 E30.29525	2710_3015	2730AB
21	Secretarybird	Sagittarius serpentarius	NT	S27.23469 E30.27383	2710_3015	2730AB
22	Secretarybird	Sagittarius serpentarius	NT	S27.21483 E30.30933	2710_3015	2730AB
23	Secretarybird	Sagittarius serpentarius	NT	S27.21385 E30.29593	2710_3015	2730AB
24	Black-bellied Bustard	Lissotis melanogaster	NT	S27.22408 E30.32083	2710_3015	2730AB
25	White-bellied Korhaan	Eupodotis senegalensis	VU	S27.20815 E30.30820	2710_3015	2730AB
26	White-bellied Korhaan	Eupodotis senegalensis	VU	S27.20682 E30.31977	2710_3015	2730AB
27	White-bellied Korhaan	Eupodotis senegalensis	VU	S27.21554 E30.30714	2710_3015	2730AB
28	Secretarybird	Sagittarius serpentarius	NT	S27.21381 E30.32026	2710_3015	2730AB
29	Serval	Leptailurus serval	NT	S27.23475 E30.30728	2710_3015	2730AB
30	African Grass-owl	Tyto capensis	VU	S27.21816 E30.30386	2710_3015	2730AB

MTPA CONSERVATION IMPORTANT FAUNAL SPECIES

5. Appendices

5.1. Appendix 1 Mammal list for the study area

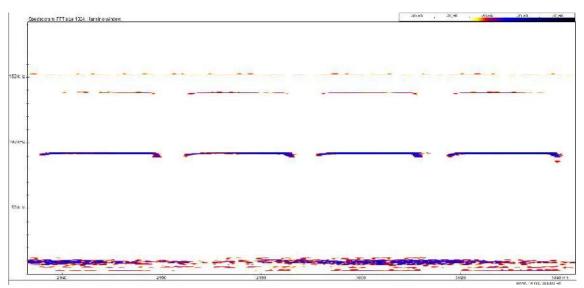
					Q	DS		HABITAT								
ORDER & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	WT	AL	AD		
MACROSCELIDEA (Elephant	-shrews)															
Elephantulus myurus	Eastern Rock Elephant-shrew	LC	2													
TUBILIDENTATA (Aardvark)						_										
Orycteropus afer	Aardvark	LC	1						x	x						
HYRACOIDEA (Dassies)					1		1	1	1	1	1	1				
Procavia capensis	Rock Dassie	LC	1				х	x								
LAGOMORPHA (Hares & rab	obits)				1		1	1	1	1	1	1				
Lepus capensis	Cape Hare	LC	3													
Lepus saxatilis	Scrub Hare	LC	1			x	х		x	x			х			
Pronolagus saundersiae	Hewitt's Red Rock Rabbit	LC	2													
Pronolagus crassicaudatus	Natal Red Rock Rabbit	LC	2													
RODENTIA (Rodents)						_										
Cryptomys hottentotus	African Mole-rat	LC	1			x			x	x						
Georychus capensis	Ape Mole-rat	LC	2			x	x									
Hystrix africaeaustralis	Porcupine	LC	1		x		x		x	x		х				
Pedetes capensis	Springhare	LC	4													
Thryonomus swinderianus	Greater Canerat	LC	3													
Graphiurus murinus	Woodland Dormouse	LC	2	х												
Mystromys albicaudatus	White-tailed Mouse	EN	2				x									
Lemniscomys rosalia	Single-striped Grass Mouse	DD	2			x										
Rhabdomys pumilio	Four-striped Grass Mouse	LC	1_	x		x	x									
Dasymys incomtus	African Marsh Rat	NT	3													

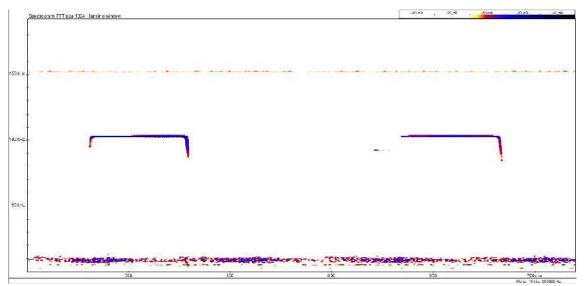
		QDS							ŀ	IABIT	AT.			
ORDER &SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
Mus minutoides	Pygmy Mouse	LC	1									x		
Mastomys natalensis	Natal Multimammate Mouse	LC	2	x		x	x							
Thallomys paedulcus	Acacia Rat	LC	2											
Aethomys namaguensis	Namagua Rock Mouse	LC	2			x	x							
Aethomys ineptus	Tete Veld Rat	LC	2			x								
Otomys angoniensis	Angoni Vlei Rat	LC	3											
Otomys irroratus	Vlei Rat	LC	2	x		x	x							
Otomys sloggetti	Sloggett's Vlei Rat		2	~		x	~							
Tatera brantsii	Highveld Gerbil	LC	2	x		x								
Saccostomus campestris	Pouched Mouse	LC	2	x										
Dendromus melanotis	Grey Climbing Mouse	LC	2	~										
Dendromus mesomelas	Brants' Climbing Mouse	LC	3											
Dendromus mystacalis	Chestnut Climbing Mouse	LC	3											
Steatomys krebsii**ac	Krebs's Fat Mouse	LC	2			x								
PRIMATES (Bushbabies, moi	nkeys & baboon)													
Otolemur crassicaudatus	Greater Galago	LC	3			x	х							
Papio hamadryas	Chacma Baboon	LC	2	x			х							
Cercopithecus pygerythrus	Vervet Monkey	LC	3											
INSECTOVORA (Insectivores				1						1	1			
Chrysospalax villosus	Rough-haired Golden Mole	CR	2			x								
Amblysomus septentrionalis	Highveld Golden Mole	NT	2			x	x							
Amblysomus hottentotus	Hottentot Golden Mole	DD	4											
Chlorotalpa sclateri	Sclater's Golden Mole	DD	2											
Myosorex cafer	Dark-footed Forest Shrew	DD	2			x	x							
Myosorex varius	Forest Shrew	DD	2	x		x	x							
Suncus varilla	Lesser Dwarf Shrew	DD	3											
Suncus infinitesimus	Least Dwarf Shrew	DD	2	х										
Crocidura mariquensis	Swamp Musk Shrew	DD	1	х		x	x					x		

V

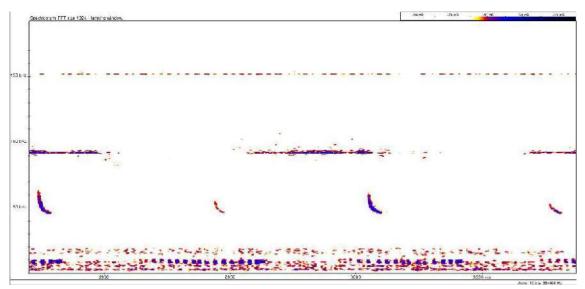
					Q	DS				H	ABIT	AT.		
ORDER & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
Crocidura fuscomurina	Tiny Musk Shrew	DD	3											
Crocidura cyanea	Reddish-grey Musk Shrew	DD	1									х		
Crocidura silacea	Lesser Grey-brown Musk Shrew	DD	2			x								
Crocidura flavescens	Greater Red Musk Shrew	DD	2			x	x							
Crocidura hirta	Lesser Red Musk Shrew	DD	3											
CHIROPTERA (Bats)														
Epomophorus wahlbergi	Wahlberg's Epauletted Fruit Bat	LC	2			x								
Rhinolophus clivosus	Geoffroy's Horseshoe Bat	NT	1				x							х
Rhinolophus darlingi	Darling's Horseshoe Bat	NT	3											
Rhinolophus landeri	Lander's Horseshoe Bat	NT	3											
Rhinolophus swinnyi	Swinny's Horseshoe Bat	EN	1											х
Chaerephon pumilus	Little Free-tailed Bat	LC	4											
Cistugo leseuri	Leseur's Hairy Bat	NT	3											
Tadarida aegyptiaca	Egyptian Free-tailed Bat	LC	1											х
Miniopterus fraterculus	Lesser Long-fingered Bat	NT	2			x								
Miniopterus natalensis	Natal Clinging Bat	NT	1											х
Pipistrellus hesperidus	African Pipistrelle	LC	3											
Pipistrellus rusticus	Rusty Pipistrelle	NT	1											х
Neoromicia capensis	Cape Serotine Bat	LC	1			x								х
Myotis welwitschii	Welwitsch's Hairy Bat	NT	4											
Myotis tricolor	Temminck's Hairy Bat	NT	1											х
Scotophilus dinganii	African Yellow Bat	LC	2			x								
Nycteris thebaica	Egyptian Slit-faced Bat	LC	2			x								
PHOLIDOTA (Pangolin)														
Manis temminckii	Ground Pangolin	VU	4											
CARNIVORA (Carnivores)														
Proteles cristatus	Aardwolf	LC	2	x		x								
Parahyaena brunne	Brown Hyaena	NT	2			x								
Panthera pardus	Leopard	LC	3			x	x							
Caracal caracal	Caracal	LC	2			x	x							

V

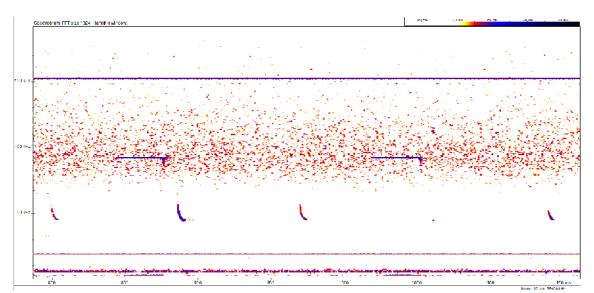

					Q	DS				H	ABIT/	٩T		
ORDER & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
Felis silvestris	African Wild Cat	LC	2			x	х							
Felis nigripes	Black-footed Cat	LC	4											
Leptailurus Serval	Serval	NT	1									x	x	
Genetta genetta	Small-spotted Genet	LC	2			x	x							
Genetta tigrina	South African Large-spotted Genet	LC	1	х			x		x					
Suricata suricatta	Meerkat	LC	2	x										
Cynictis penicillata	Yellow Mongoose	LC	1										х	
Galerella sanguinea	Slender Mongoose	LC	1	х						x				
Galerella pulverulenta	Cape Grey Mongoose	LC	3				x							
Ichneumia albicauda	White-tailed Mongoose	LC	2	х			х							
Atilax paludinosus	Marsh Mongoose	LC	1									х		
Mungos mungo	Banded Mongoose	LC	3											
Helogale parvula	Dwarf Mongoose	LC	4											
Vulpes chama	Cape Fox	LC	2	х			х							
Canis mesomelas	Black-backed Jackal	LC	2	х		x	х							
Aonyx capensis	African Clawless Otter	LC	1	х			x					х		
Lutra maculicollis	Spotted-necked Otter	NT	3				x							
Mellivora capensis	Honey Badger	NT	3	х										
Poecilogale albinucha	African Striped Weasel	DD	2			x								
lctonyx striatus	Striped Polecat	LC	2	х		x	х							
PERISSODACTYLA (Odd-toed														
Equus quagga	Plains Zebra	LC	5											
ARTIODACTYLA (Even-toed u	ingulates)													
Potamochoerus larvatus	Bushpig	LC	1					x						
Phacochoerus africanus	Common Warthog	LC	3											
Tragelaphus scriptus	Bushbuck	LC	2				х							
Tragelaphus oryx	Eland	LC	5											
Connochaetes gnou	Black Wildebeest	LC	5											
Connochaetes taurinus	Blue Wildebeest	LC	5											
Alcelaphus buselaphus	Red Hartebeest	LC	5											


					Q	DS				H	ABIT	AT .		
ORDER & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
Damaliscus pygargus phillipsi	Blesbok	LC	5			x	x							
Sylvicapra grimmia	Common Duiker	LC	1	x		x	x		x	x			x	
Redunca arundinum	Southern Reedbuck	LC	5			x	x							
Redunca fulvorufula	Mountain Reedbuck	LC	1	х		x	x				x			
Pelea capreolus	Grey Rhebok	LC	5	x		x	x							
Antidorcas marsupialis	Springbok	LC	5											
Ourebia ourebi	Oribi	EN	3											
Raphicerus campestris	Steenbok	LC	1	х			x			х				
Aepyceros melampus	Impala	LC	5											
Oreotragus oreotragus	Klipspringer	LC	2			x								
KEY														
LoO: 1=Present, 2=Highly likely, 3=Mod	lerately likely, 4=Unlikely, 5=Managed population	ons												
Status (SA Red List): EN=Endangered	; VU=Vulnerable; NT=Near Threatened; LC=Le	ast Conc	ern; D[D=Data	Deficie	ent								
Habitat: AD=Adit; AL=Alien Bushclump	DG=Dry Grassland; SF=Scarp Forest; SV=Sa	vanna; R	G=Roc	ky Gra	ssland;	WT=N	/etland							
Sources: Friedmann & Daly (2004); NE	M:BA (2007); Monadjem et al. (2010); MTPA pe	ers.comr	n. (201	3)										

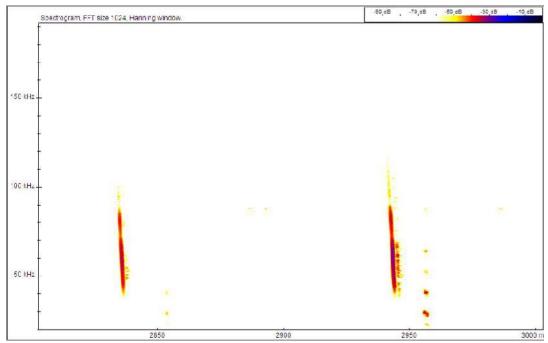
5.2. Appendix 2 Examples of recorded bat calls displayed in BatSound Pro.



Geoffroy's Horseshoe Bat (*Rhinolophus clivosus*)



Swinny's Horseshoe Bat (Rhinolophus swinnyi)



Natal Clinging Bat (Miniopterus natalensis)

Rusty Pipistrelle (*Pipistrellus rusticus*)

Temminck's Hairy Bat (Myotis tricolor)

5.3. Appendix 3 Bird list for the study area

					Pentad			Pentad			entad		Pent			Penta			Pentad			Pentad			Pentad	-		Pentad	
					05_301 Atlas car			05_3015 tlas card			5 <u>3020</u> las card		2710_3 2 Atlas o			2710_3 Atlas c			10_302 tlas carc			15_301 tlas car		27 5 A	15_301 tlas card	5 ds		15_3020	
GROUP & No.	SPECIES	COMMON NAME	STATUS	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records		cords	Full protocol records	Reporting rate (%)			keporting rate (%) Ad hoc/ incidental records			ntal records	Full protocol records		cords	Full protocol records		Ad hoc/ incidental records	Full protocol records		Ad hoc/ incidental records	Full protocol records		Ad hoc/ incidental records SITE (DEC & NSS)
2. In	land water birds																												
50	Phalacrocorax africanus	Reed Cormorant	LC			1															2	29	1						
54	Ardea cinerea	Grev Heron	LC																					1	20				
55	Ardea melanocephala	Black-headed Heron	LC			2	1	33	1									1	50	1	5	71		3	60	1	1	25	
56	Ardea goliath	Goliath Heron	LC															1	50										
57	Ardea purpurea	Purple Heron	LC															1	50										
58	Egretta alba	Great Egret	LC																							1			
59	Egretta garzetta	Little Egret	LC																		1	14							
60	Egretta intermedia	Yellow-billed Egret	LC			1																							
61	Bubulcus ibis	Cattle Egret	LC	1	100		1	33										1	50	1	3	43							
72	Scopus umbretta	Hamerkop	LC	1	50		1	33													3	43							x
80	Ciconia ciconia	White Stork	LC				1	33							1	17					1	14		1	20	1	1	25	x
81	Threskiornis aethiopicus	African Sacred Ibis	LC	1	100													1	50										
82	Geronticus calvus	Southern Bald Ibis	VU	1	100	1	2	67	2			1	50	5	1	17		1	50	1	3	43	2	3	60	1			
84	Bostrychia haqedash	Hadeda Ibis	LC	1	100		2	67	1	1	100	1 1	50)	1 4	67	1	2	100	1	6	86	1	5	100	1	2	50	x
85	Platalea alba	African Spoonbill	LC			2																							
305	Chlidonias hybrida	Whiskered Tern	LC			1															1	14							
3. Di	ucks & wading birds																												
6	Tachybaptus ruficollis	Little Grebe	LC			1															3	43	1	1	20	3			
88	Plectropterus gambensis	Spur-winged Goose	LC	1	100	1	1	33	1			1	50		2	33		1	50	2	1	14	1	2	40				
89	Alopochen aegyptiacus	Eqyptian Goose	LC	1	100	2	2	67	1	1	100	1			1	17	1	2	100		5	71	2	1	20	1			
95	Anas sparsa	African Black Duck	LC												1	17								1	20				
96	Anas undulata	Yellow-billed Duck	LC			1	1	33		1	100				1	17		1	50		3	43	1	1	20				
97	Anas erythrorhyncha	Red-billed Teal	LC			2																							
210	Gallinula chloropus	Common Moorhen	LC																					1	20				
212	Fulica cristata	Red-knobbed Coot	LC				1	33										1	50		4	57		3	60				

					Pentad			Pentad			Pentad			Pentad			Pentad		Pe	ntad	1	Penta		1	Pentad			Pentad	iment
				27	05_30 [.]	10	27	<u>05_301</u>	5	27	05_302	0	27	10_301		27	<u>10_3015</u>		2710	0_3020	2	715_30	10	27	15_30 ⁻	15	27	15 <u>302</u>	
				1/	Atlas ca		<u>3 A</u>	tlas car	ds	<u> </u>	Atlas car		<u>2</u> A	tlas carc	ls	<u>6 A</u>	tlas cards		2 Atla	as cards	7.	Atlas ca	rds	5 /	tlas car	ds	<u>4 A</u>	tlas card	<u>s</u>
GROUP & No.	SPECIES	COMMON NAME	STATUS	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%) Ad hood incidental records			Reporting rate (%) Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records SITE (DEC & NSS)
242	Vanellus coronatus	Crowned Lapwing	LC			1										1	17				1	14							
245	Vanellus armatus	Blacksmith Lapwing	LC	1	100							1	1	50	1						3	43	1						
247	Vanellus senegallus	African Wattled Lapwing	LC			1							1	50		1	17				3	43		1	20				
270	Himantopus himantopus	Black-winged Stilt	LC			2																							
4. La	arge terrestrial birds																												
105	Sagittarius serpentarius	Secretarybird	NT													3	50				1	14					2	50	x
178	Scleroptila levaillantii	Red-winged Francolin	LC									1				2	33		1	50				1	20	1	1	25	x
185	Pternistis swainsonii	Swainson's Spurfowl	LC	1	100		1	33					1	50		3	50		1	50	3	43							x
189	Coturnix coturnix	Common Quail	LC													1	17		1	50	2	29		1	20				x
192	Numida meleagris	Helmeted Guineafowl	LC	1	100		1	33		1	100	1	2	100	2	4	67				3	43	3	1	20	1	2	50	x
214	Balearica regulorum	Grey Crowned Crane	VU																		2	29							
216	Anthropoides paradiseus	Blue Crane	VU						1															1	20	1	1	25	
219	Neotis denhami	Denham's Bustard	VU													2	33							1	20				
222	Eupodotis senegalensis	White-bellied Korhaan	VU				1	33		1	100		1	50													1	25	x
223	Eupodotis caerulescens	Blue Korhaan	NT										1	50															
227	Lissotis melanogaster	Black-bellied Bustard	NT										1	50		2	33	1											x
114	Falco biarmicus	Lanner Falcon	NT				1	33								1	17				1	14							
5. Ra	aptors																												
119	Falco amurensis	Amur Falcon	LC				1	33								3	50		1	50	1	14	1	1	20				x
123	Falco rupicolus	Rock Kestrel	LC																								1	25	
129	Milvus aegyptius	Yellow-billed Kite	LC										1	50												1			
130	Elanus caeruleus	Black-shouldered Kite	LC	1	100						0	1	1	50	1	1	17			1	2	29	2	2	40	1			
143	Stephanoaetus coronatus	African Crowned Eagle	NT						1																				
145	Circaetus cinereus	Brown Snake-Eagle	LC																				1						
149	African Fish-eagle	Haliaeetus vocifer	LC																										x
152	Buteo rufofuscus	Jackal Buzzard	LC				1	33		1	100		2	100		4	67	1	1	50 1	6	86		4	80	1	4	10 0	x
154	Buteo vulpinus	Steppe Buzzard	LC			2			1	1	100		2	100	1	2	33			1	3	43	1	3	60	1			1 x

				27	Pentad 05_301		270	entad 5_3015	27	Pentad		27	Pentad 10_301		271	Pentad 10_301		27	Pentad 10_3020		Pen 2715_	tad _3010		Pent 2715_3	ad 3015	27	A55e Pentao 715_30	1 20
GROUP & No.	SPECIES	COMMON NAME	STATUS	Full protocol records	Reporting rate (%)	ords	Full protocol records	명 Reporting rate (%) Ad hoc/ incidental records		Reporting rate (%)	Ad hoc/ incidental records ⁿ	Full protocol records		Ad hoc/ incidental records 🧧	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records 🛱	Full protocol records	편 Reporting rate (%) 여 전 hoc/ incidental records 6			Reporting rate (%)		i Atlas d	керогилg гаке (%) Zd hoc/ incidental records ⁶	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records ^B
171	Polyboroides typus	African Harrier-Hawk	LC				1	33	1											1	1	4						
6. Ov	vls & nightjars									_				_										_			_	
360	Tyto capensis	African Grass-owl	VU																									
368	Bubo africanus	Spotted Eagle-owl	LC									1	50															
373	Caprimulqus pectoralis	Fierv-necked Nightiar	LC												1	17												
7. Sa	ndgrouse, doves etc																											
311	Columba quinea	Speckled Pigeon	LC									1	50	1	2	33	1			3	4	3				1	25	
312	Columba arquatrix	African Olive Pigeon	LC												1	17												
314	Streptopelia semitorquata	Red-eyed Dove	LC				1	33			1				2	33				5	7	'1	1 1	20)	2	50	
316	Streptopelia capicola	Cape Turtle Dove	LC	1	100		2	67	1	100	1	1	50	2	5	83	1	2	100	5	7	'1	4	. 80) 1	3	75	
317	Streptopelia senecalensis	Lauahina Dove	LC	1	100		1	33			1				1	17		1	50	3	4	3				1	25	
318	Oena capensis	Namagua Dove	LC				1	33			_													_				
322	Aplopelia larvata	Lemon Dove	LC																					_		1	25	
343	Cuculus solitarius	Red-chested Cuckoo	LC				1	33 2	2			1	50		2	33	1			3	4	3	4	8) 1	2	50	
344	Cuculus clamosus	Black Cuckoo	LC					:	2			1	50	1	2	33	2						2	4) 1	2	50	
351	Chrysococcyx klaas	Klaas's Cuckoo	LC																				1	20	b			
352	Chrysococcyx caprius	Diderick Cuckoo	LC									1	50		4	67	3	1	50	1	1	4	1	20) 1	2	50	1
8. Ae	rial feeders, etc							,																				
380	Apus barbatus	African Black Swift	LC				1	33				1	50		2	33							1	2				1
383	Apus caffer	White-rumped Swift	LC									1	50		3	50		1	50	2	2	9	3	6	b	3	75	1
384	Apus horus	Horus Swift	LC	1	100										2	33												
385	Apus affinis	Little Swift	LC						1	100					1	17		1	50									
386	Tachymarptis melba	Alpine Swift	LC									1	50													1	25	
387	Cypsiurus parvus	African Palm-Swift	LC												1	17												
390	Colius striatus	Speckled Mousebird	LC									1	50		3	50	1						2	: 40) 1			
395	Megaceryle maximus	Giant Kingfisher	LC												2	33												
397	Alcedo cristata	Malachite Kingfisher	LC								1				2	33												
551	Halcyon albiventris	Brown-hooded Kingfisher	LC						1	100		1	50		ī	17										1		

					Dented			Dented			Dented			Jamén d			Jantad			Dented			antad							
					Pentad '05_301			Pentad '05_301			Pentad '05_30			Pentad 10_301	0		Pentad 10_301			Pentad 10_3020			entad 5_3010			entad 5_301			Pentad 15_302	D I
				1,	Atlas cai	rd	3 A	tlas car	ds	1.	Atlas ca	rd	2 A	tlas caro	ds	6 A	tlas car	ds		tlas card		7 Atl	las cards	5	5 At	las caro	ds	4 At	tlas card	s
GROUP & No.	SPECIES	COMMON NAME	STATUS	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records		Ad hoc/ incidental records	Full protocol records	Reporting rate (%)			Reporting rate (%)	Ad noc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records		Ad hoc/ incidental records SITE (DEC & NSS)
418	Upupa africana	African Hoopoe	LC															1							1	20	2			
419	Phoeniculus purpureus	Green Wood-hoopoe	LC													2	33													
431	Lybius torguatus	Black-collared Barbet	LC				1	33								3	50	1	1	50					1	20	1	2	50	x
440	Indicator indicator	Greater Honeyguide	LC													1	17	1												x
442	Indicator minor	Lesser Honevquide	LC													1	17													x
443	Prodotiscus requlus	Brown-backed Honeybird	LC																						1	20	2			
445	Geocolaptes olivaceus	Ground Woodpecker	LC										1	50		2	33											1	25	x
447	Campethera abingoni	Golden-tailed Woodpecker	LC																								1			
452	Dendropicos griseocephalus	Olive Woodpecker	LC													1	17											1	25	x
453	Jynx ruficollis	Red-throated Wryneck	LC													1	17	1	1	50				_	1	20	1	$ \rightarrow $		X
493	Hirundo rustica	Bam Swallow	LC	1	100	2	3	100	1	1	100		2	100	2	5	83	3	2	100		4	57	\rightarrow	3	60	3	2	50	x
495	Hirundo albiqularis	White-throated Swallow	LC	1	100		1	33					_2	100	1	3	50	1	2	100		4	57	1	3	60	\vdash	2	50 10	x
502	Hirundo cucullata	Greater Striped Swallow	LC	1	100	1	3	100	2				2	100	1	4	67	2	2	100	1	3	43	\perp	3	60	4	4	0	x
503	Hirundo abyssinica	Lesser Striped Swallow	LC																									1	25	
504	Hirundo spilodera	South African Cliff-swallow	LC				2	67		1	100		1	50		1	17	2	1	50					1	20				
506	Hirundo fuligula	Rock Martin	LC													2	33		1	50								2	50	x
507	Delichon urbicum	Common House Martin	LC				3	100								2	33													x
509	Riparia paludicola	Brown-throated Martin	LC			1	1	33			0	1																		
510	Riparia cincta	Banded Martin	LC	1	100	1	2	67	1	1	100	1	2	100	2	6	100	2	2	100		2	29		3	60	3	2	50	x
511	Psalidoprocne holomelaena	Black Saw-wing	LC													2	33	1				1	14		1	20		1	25	x
9. Cr	yptic & elusive insect-eate	ers	1	1			1		_		1																	L.,		
458	Mirafra africana	Rufous-naped Lark	LC	1	100					1	100		1	50		4	67	1	1	50				\rightarrow	\rightarrow		1			x
474	Chersomanes albofasciata	Spike-heeled Lark	LC																					_						x
488	Calandrella cinerea	Red-capped Lark	LC				1	33		<u> </u>									1	50				\downarrow	2	40				
542	Lioptilus nigricapillus	Bush Blackcap	NT										1	50		1	17							\perp	2	40	2	1	25	x
545	Pycnonotus tricolor	Dark-capped Bulbul	LC				3	100	1			1	2	100	1	6	100	1	1	50		6	86	1	4	80	3	4	10 0	x
546	Phyllastrephus terrestris	Terrestrial Brownbul	LC																									1	25	

					Pentad			Pentad			Pentad			Pentad			Pentad			Pentad			Pentad			Pentad			Assess Pentad	
				27	05_301	0	27	05_301	5	27	05_302	20	27	<u>10_301</u>		27	10_301		27	10_302		27	5_30 1	10	27	15_30 ⁻	15	27	15_3020	
				1/	Atlas ca	rd I	<u>3 A</u>	tlas car	ds	1/	Atlascar	rd	2 A	tlas car	ds	6 A	tlas car	ds	2 A	tlas card	s	<u>7 A</u>	lascar	ds	<u>5 A</u>	tlas car	ds	4 A	tlas cards	<u>s</u>
GROUP & No.	SPECIES	COMMON NAME	STATUS	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records SITE (DEC & NSS)
551	Andropadus importunus	Sombre Greenbul	LC																						1	20		1	25	
599	Phylloscopus trochilus	Willow Warbler	LC				1	33					2	100		1	17								1	20				x
609	Bradypterus baboecala	Little Rush-warbler	LC																			2	29							
610	Bradypterus barratti	Barratt's Warbler	LC										1	50								2	29		3	60	1	1	25	
616	Schoenicola brevirostris	Fan-tailed Grassbird	NT													1	17													
618	Sphenoeacus a fer	Cape Grassbird	LC				2	67	1	1	100		1	50		4	67					3	43	1	2	40	2	1	25	x
622	Apalis thoracica	Bar-throated Apalis	LC				1	33								3	50					2	29		2	40	4	1	25	x
629	Cisticola juncidis	Zitting Cisticola	LC				2	67		1	100		2	100		4	67		2	100	1	6	86	1	3	60		3	75	x
631	Cisticola textrix	Cloud Cisticola	LC													1	17								2	40		1	25	
634	Cisticola ayresii	Wing-snapping Cisticola	LC				1	33		1	100		1	50		4	67	1	2	100					3	60		1	25	x
635	Cisticola cinnamomeus	Pale-crowned Cisticola	LC													2	33	1				1	14		1	20				x
637	Cisticola fulvicapilla	Neddicky	LC										2	100		3	50		1	50								1	25	x
639	Cisticola lais	Wailing Cisticola	LC				1	33								4	67					2	29		2	40		1	25	x
646	Cisticola tinniens	Levaillant's Cisticola	LC	1	100	2	3	100	1	1	1 00		1	50	1	5	83	2	1	50		5	71		2	40		2	50	x
648	Cisticola a berra ns	Lazy Cisticola	LC				1	33								2	33					1	14				1	1	25	x
649	Prinia subflava	Tawny-flanked Prinia	LC			1		0	1													1	14							
650	Prinia flavicans	Black-chested Prinia	LC													1	17													x
666	Chloropeta natalensis	Dark-capped Yellow Warbler	LC				1	33					1	50		4	67	1				2	29		1	20	1			x
671	Phylloscopus ruficapilla	Yellow-throated Woodland Warbler	LC																									1	25	
686	Motacilla capensis	Cape Wagtail	LC			1	2	67	1	1	100	1	1	50	1	4	67	2	1	50		3	43	1	2	40	2			x
692	Anthus cinnamomeus	African Pipit	LC	1	100		1	33		1	100	1	1	50	2	5	83	2	2	100		4	57	1	2	40	1	2	50	x
693	Anthus similis	Long-billed Pipit	LC				2	67								5	83								2	40		2	50	x
694	Anthus leucophrys	Plain-backed Pipit	LC				1	33		1	100		1	50											1	20				
695	Anthus vaalensis	Buffy Pipit	LC													1	17													x
696	Anthus lineiventris	Striped Pipit	LC																											x
703	Macronyx capensis	Cape Longclaw	LC			1	2	67	1	1	100	1				5	83	1	2	100		3	43		5	100	2	1	25	x
104	Prinia hypoxantha	Drakensberg Prinia	LC				1	33					2	100		3	50					3	43		2	40		1	25	×

				27	Pentad 05_301 Atlas car		27	Pentad 05_301 tlas car		27	Pentad 05_302 Atlas ca	20	27	Pentad 10_301		27	Pentad 10_301 tlas card		271	entad 0_3020 las cards		Penta 2715_3 Atlas c	nd 010	2	Pentad 715_30 Atlas car	15	F 27	Pentad 15_302 tlas caro	
GROUP & No.	SPECIES	COMMON NAME	STATUS	Full protocol records		Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records		Ad hoc/ incidental records	Full protocol records	Reporting rate (%) Ad hoc/incidental records			records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records		Ad hoc/ incidental records is SITE (DEC & NSS)
118 3	Mirafra fasciolata	Eastern Clapper Lark	LC									1				1	17												
412 6	Certhilauda semitorquata	Eastern Long-billed Lark	LC				1	33											1	50									
10. R	egular insect-eaters	1	1	1	_																_	_			1				
513	Campephaga flava	Black Cuckooshrike	LC													1	17										1	25	
517	Dicrurus adsimilis	Fork-tailed Drongo	LC										1	50		5	83				2	29		1	20		1	25	x
521	Oriolus larva tus	Black-headed Oriole	LC										1	50		4	67	2						2	40		1	25	x
523	Corvus capensis	Cape Crow	LC				3	100	1	1	100					2	33		1	50	5	71	5	5 4	80	2			x
527	Parus niger	Southern Black Tit	LC													1	17												
552	Turdus libonyanus	Kurrichane Thrush	LC													2	33												x
557	Psophocichla litsipsirupa	Groundscraper Thrush	LC																								1	25	
559	Monticola rupestris	Cape Rock-Thrush	LC																								2	50	1
560	Montico la explorator	Sentinel Rock-Thrush	LC																1	50	1	14				1			
564	Oenanthe monticola	Mountain Wheatear	LC													2	33				1	14							x
569	Oenanthe bifasciata	Buff-streaked Chat	LC			1	1	33				1				5	83	1	1	50	4	57	1				1	25	x
570	Cercomela familiaris	Familiar Chat	LC															1											
573	Thamnolaea cinnamomeiventris	Mocking Cliff-Chat	LC													5	83												x
575	Myrmecocichla formicivora	Anteating Chat	LC	1	100	2	3	100	1	1	100		2	100	2	6	100	3	1	50	1 2	29	1	3	60	2	3	75	x
576	Saxicola torquatus	African Stonechat	LC				3	100	1		100	1		100	3		100	2		100	7				80	3		75	x
578	Cossypha dichroa	Chorister Robin-chat	LC						† İ							1	17		_					1			1	25	x
581	Cossypha caffra	Cape Robin-chat	LC				2	67	1		0	1	2	100		4	67	1			5	71	1	5	100	4	2	50	x
589	Pogonocichla stellata	White-starred Robin	LC				-	5.	† İ		Ű	· ·	_										1	Ŭ			1	25	
655	Muscicapa adusta	African Dusky Flycatcher	LC						\square							2	33												x
665	Sigelus silens	Fiscal Flycatcher	LC						\square				1	50		3	50							1	20				x
672	Batis capensis	Cape Batis	LC													2	33							4	80	1	1	25	x
682	Terosiohone viridis	African Paradise-flvcatcher	LC				1	33	2				2	100		4	67	2	1	50	1	14		3	60	1	1	25	x
707	Lanius collaris	Common Fiscal	LC	1	100	2	2	67	1			1	2	100	2	6	100	2	1	50	1 6	86	2	2 5	100	1	3	75	x
709	Laniarius ferrugineus	Southern Boubou	LC				1	33					1	50		3	50	1			2	29		3	60	1	2	50	x

				27	Pentad 05_3010 Atlas carc		27	Pentad 05_301 tlas care		27	Pentad 05_302 Atlas ca	20	27	Pentad 10_301 tlas caro		27	Pentad 10_301 tlas car	5	27	Pentad 10_3020 tlas cards	2	Penta 715_3 Atlas ca	d 010	27	Pentad 15_30	15	ا 27	Pentad 15_302 Itlas card) s
GROUP & No.	SPECIES	COMMON NAME	STATUS	Full protocol records		Ad noc/ incidental records	Full protocol records		Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records		Ad hoc/ incidental records	Full protocol records		Ad hoc/ incidental records	Full protocol records	Reporting rate (%) Ad hoc/ incidental records			records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records		Ad hoc/ incidental records SITE (DEC & NSS)
712	Dryoscopus cubla	Black-backed Puffback	LC			_										3	50				_		_						x
715	Tchaqra senegalus	Black-crowned Tchagra	LC													2	33					_	_						x
717	Telophorus olivaceus	Olive Bush-Shrike	LC																					3	60	2	1	25	
722	Telophorus zeylonus	Bokmakierie	LC	1	100		1	33				1	2	100	2	4	67		1	50	7	100	,	5	100	2	1	25	x
731	Nilaus afer	Brubru	LC													1	17	1											
736	Cinnyricinclus leucogaster	Violet-backed Starling	LC										1	50		1	17						_					10	
745	Onvchoanathus morio	Red-winged Starling	LC						1				1	50		1	17	2	1	50	2	29		4	80		4	0	
746	Spreo bicolor	Pied Starling	LC				3	100	1			1	1	50		3	50	1	2	100	1 6	86	1	2	40	1	2	50	1 x
110 4	Turdus smithi	Karoo Thrush	LC																					2	40				
110 5	Turdus olivaceus	Olive Thrush	LC																					1	20	1			
	kpeckers & nectar feeders		LU	1																		1			20				
751	Nectarinia famosa	Malachite Sunbird Greater Double-collared Sunbird	LC LC				1	33								3 2	50 33				1	14	+	4	80 40	3	1	25	X
	Chalcomitra															2	- 00					14	+			- '			
772 117	amethystina Zosterops virens	Amethyst Sunbird Cape White-eye	LC LC				1	<u>33</u> 33					1	50		3	50	2			2	29	+	4	20 80		2	50	
2		Cape white-eye					1	33						50		3	50	2				29	Ċ.	4	00		Z	50	
784	Passer domesticus	House Sparrow	AL																1	50									
		Cape Sparrow	LC				1	33	\square	1	100				1	1	17		2		3 1	14	+						
786	Passer melanurus Ploceus cucullatus	Village Weaver	LC			\neg	-	33	\square	1	100					1	17		2	100	<u>5 </u>	14	+						
797			LC	1	100	\neg	2	67	\square							5	83		1	50		E 7	+	1	20				
799	Ploceus capensis	Cape Weaver				1	2		1	1	1.00	1	1	50	_					50	4			1	1	2	2	50	1 x
803	Ploceus velatus	Southern Masked Weaver	LC	1	100	1	2	67	\vdash	1	100	1	1	50	2	2	33		1	50	3				20	2	2	50	
805	Quelea quelea	Red-billed Quelea	LC LC	1	100	2	2	10.0	1	4	100		2	100	2	1	17	1	1	50 100	$\frac{3}{2}$			2	60		1	25	x
808	Euplectes orix	Southern Red Bishop	LC		100	2	3	<u> 100 </u> 33	\vdash	1	100		2	100	3	3	50		2	100	2 7	100) 2	3	00	1	1	25	X
810	Euplectes capensis	Yellow Bishop		4	100		1				1.00			50			47			50	-	7.4	+	-					
812	Euplectes afer	Yellow-crowned Bishop	LC	1	100	1	1	33	1	1	100		1	50		1	17	1	1	50	5			1	20			05	X
813	Euplectes ardens	Red-collared Widowbird	LC				3	100				1	2	100		4	67	2	1	50	2			2	40	2	1	25	X
816	Euplectes axillaris	Fan-tailed Widowbird	LC			2	2	67	1	1	100		1	50	1	4	67	1			1 4	57	_ 1	1		1			X

Yzermyn Baseline & Impact Assessment

				27	Pentad 05_301		27	Pentad 05_301		27	Pentad 05_302	20	27	Pentad 10_301		27	Pentad 10_301	5	27	Pentad 10_302		27	Pentad 15_30 ⁻	10	27	Pentad 15_301		27	Pentad 15_3020	
				1/	Atlas car	b	3 A	tlas care	ds	1/	Atlasca	rd	2 A	tlas care	ds	6 A	tlas car	ds	2 A	tlas car	ds	<u>7 A</u>	tlas car	ds	<u>5</u> A	tlas care	ds	4 A	tlas cards	
GROUP & No.	SPECIES	COMMON NAME	STATUS	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%)	Ad hoc/ incidental records	Full protocol records	Reporting rate (%) Ad hoc/ incidental records	SITE (DEC & NSS)
818	Euplectes progne	Long-tailed Widowbird	LC	1	100	2	3	100	1	1	1 00		1	50	2				2	100	1	7	100	2	4	80	1	2	50	x
825	Coccopygia melanotis	Swee Waxbill	LC																						1	20				
833	Lagonosticta rubricata	African Firefinch	LC										1	50														1	25	
838	Amandava subflava	Orange-breasted Waxbill	LC				1	33																						
839	Uraeginthus angolensis	Blue Waxbill	LC																									1	25	
843	Estrilda astrild	Common Waxbill	LC	1	100		3	100		1	100		2	100		5	83					1	14		1	20	2	1	25	x
844	Ortvaospiza atricollis	African Quailfinch	LC				1	33			0		1	50		2	33													x
846	Vidua macroura	Pin-tailed Whydah	LC	1	100		2	67		1	100		2	100	2	6	100	2	1	50		3	43		2	40	2	2	50	x
849	Vidua funerea	Dusky Indigobird	LC										1	50																
857	Serinus canicollis	Cape Canary	LC	1	100		2	67					2	100	2	4	67					6	86	1	5	100	2	2	50	x
858	Crithagra scotops	Forest Canary	LC																						1	20				
859	Crithagra mozambicus	Yellow-fronted Canary	LC				1	33					1	50		2	33								1	20		1	25	x
860	Crithagra atrogularis	Black-throated Canary	LC	1	100		1	33	1																					
867	Crithagra gularis	Streaky-headed Seedeater	LC										1	50		1	17					1	14				1			x
872	Emberiza tahapisi	Cinnamon-breasted Bunting	LC				1	33								1	17													
873	Emberiza capensis	Cape Bunting	LC									1				2	33					1	14							
874	Emberiza flaviventris	Golden-breasted Bunting	LC										1	50	1															
4142	Passer diffusus	Southern Grey-headed	LC	1	100		1	33		1	100		2	100	3	5	83	1	1	50		1	14		3	60	1	1	25	x
Key:																														
	(SA Red List): VU=Vulnerable;	NT=Near Threatened; LC=Least Co	ncern																											
Source	s: NEM:BA (2007); MTPA pers.	comm (2013); SABAP 2 website (2	2013)																											

5.4. Appendix 4 Reptile list for the study area

					Q	DS				Н	ABIT	٩T		
FAMILY & SPECIES	COMMON NAME	STATUS	۲٥O	2730AA	2730AB	2730AC	2730AD	SF	SV	DG	RG	wт	AL	AD
TYPHLOPIDAE (Blind snakes)														
Afrotyphlops bibronii	Bibron's Blind Snake		1			x	x				х			
LEPTOTY PHLOPIDAE (Thread Snal	(es)													
Leptotyphlops scutifrons conjunctus	Peter's Thread Snake	_	1	х		x	x				х			
ATRACTASPIDIDAE (Burrowing sna	akes)													
Atractaspis bibronii	Bibron's Burrowing Asp	-	2				x							
Aparallactus capensis	Cape Centipede-eater	LC	1	х			x			x				
Homoroselaps dorsalis	Striped Harlequin Snake	NT	3											
Homoroselaps lacteus	Spotted Harlequin Snake	-	3	x			x							
COLUBRIDAE (Typical snakes)														
Lycodonomorphus laevissimus	Dusky-bellied Water Snake	-	2				x							
Lycodonomorphus rufulus	Common Water Snake	-	1			x	x					х		
Lamprophis aurora	Aurora House Snake	LC*	3											
Lamprophis capensis	Brown House Snake	-	1				x		x			х		
Lamprophis fuscus	Yellow-bellied House Snake	NT	3											
Lamprophis guttatus	Spotted Rock Snake	-	1			x	x				х			
Lamprophis inornatus	Olive House Snake	-	3			x								
Lycophidion capense	Common Wolf Snake	-	2		х		х							
Duberria lutrix	Common Slug-eater	LC	2											
Pseudaspis cana	Mole Snake	-	2			x	x							
Amplorhinus multimaculatus	Many-Spotted Snake	-	2			x								
Prosymna bivittata	Two-striped Shovel-snout	-	3				x							
Psammophylax rhombeatus	Spotted Skaapsteker	-	1	х	x	x	x			x	х			
Psammophylax tritaeniatus	Striped Skaapsteker	LC	3			x								
Psammophis mossambicus	Olive Grass Snake	-	2		х		х							
Psammophis brevirostris	Short-snouted Grass Snake	-	2		х		х							
Psammophis crucifer	Cross-marked Grass Snake	-	2			x	х							
Philothamnus hoplogaster	Green Water Snake	-	2											
Philothamnus natalensis occidentalis	Eastern Green Snake	-	2											

					Q	DS				Н	ABIT	AT		
FAMILY & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
Philothamnus semivariegatus	Spotted Bush Snake	-	2	х			х							
Dasypeltis inornata	Southern Brown Egg-eater	-	2											
Dasypeltis scabra	Rhombic Egg-eater	LC	1			x	х				x			
Crotaphopeltis hotamboeia	Red-lipped Herald Snake	-	2		x	x								
Dispholidus typus	Boomslang	-	2											
ELAPIDAE (Mambas, cobras & rela														
Elapsoidea sundevallii sundevalli	Sundevall's Garter Snake	-	3											
Naja annulifera	Snouted Cobra	-	3											
Naja mossambica	Mozambigue Spitting Cobra	-	2				х							
Hemachatus haemachatus	Rinkhals	LC	2											
VIPERIDAE (Adders & vipers)														
Causus rhombeatus	Common Night Adder	-	1							x				
Bitis arietans	Puff Adder	-	2				х							
AGAMIDAE (Agamas)														
Acanthocercus atricollis	Tree Agama	-	2			x	х							
Agama aculeata distanti	Ground Agama	-	2		x		х							
Agama atra	Southern Rock Agama	-	1								х			
CHAMAELEONIDAE (Chameleons														
Chamaeleo dilepis	Flap-necked Chameleon	LC	1			x	х		x	x				
VARANIDAE (Monitors)														
Varanus albigularis	Rock Leguaan	-	2				х							
Varanus niloticus	Water Leguaan / Nile Monitor Lizard	-	2											
LACERTIDAE (Lacertids)														
Nucras lalandii	Delalande's Sandveld Lizard	-	2	x		x	х							
Nucras ornate	Ornate Sandveld Lizard	-	3				х							
Pedioplanis burchelli	Burchell'S Sand Lizard	-	2	х	x									
SCINCIDAE (Skinks)														
Acontias breviceps	Short-headed Legless Skink	-	2		x	x	х							
Acontias gracilicauda gracilicauda	Thin-tailed Legless Skink	-	2				x							
Acontias plumbeus	Giant Legless Skink	-	4											

					Q	DS				Н	ABIT	٩T		
FAMILY & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
Panaspis walbergii	Wahlberg's Snake-eyed Skink	-	3											
Scelotes mirus	Montane Dwarf Burrowing Skink	-	3				х							
Trachylepis capensis	Cape Skink	-	1	х	x	x	х		x					
Trachylepis margaritifera	Rainbow Skink	-	3				х							
Trachylepis punctatissima	Montane Speckled Skink	LC	2	x	x	x	х							
Trachylepis varia	Variable Skink	-	1	х	x		х				x			
GERRHOSAURIDAE (Plated lizard	s)													
Gerrhosaurus flavigularis	Yellow-throated Plated Lizard	-	1	х			х		x					
CORDYLIDAE (Girdled lizards & g	rass lizards)													
Cordylus vittifer	Transvaal Girdled Lizard	-	1	х	x	x	х				х			
Cordylus warreni warreni	Warren's Girdled Lizard	LC	3											
Pseudocordylus melanotis	Drakensberg Crag Lizard	-	2	x	x	x	х							
Pseudocordylus microlepidotus	Cape Crag Lizard	-	4			x								
Chamaesaura aenea	Transvaal Grass Lizard	-	2			x								
Chamaesaura anguina	Cape Grass Lizard	-	1		x					х	х			
GEKKONIDAE (Geckos)														
Hemidactylus mabouia	Moreau's Tropical House Gecko	-	3				х							
Lygodactylus capensis	Cape Dwarf Gecko	-	3				х							
Lygodactylus ocellatus	Spotted Dwarf Gecko	-	1		x		х				x			
Pachydactylus vansoni	Van Son's Gecko	-	2	x	x	x	х							
Pachydactylus maculates	Spotted Thick-toed Gecko	-	2				х							
PELOMEDUSIDAE (Terrapins)														
Pelomedusa subrufa	Marsh Terrapin	-	3				х							
TESTUDINIDAE (Tortoises)														
Kinixys spekii	Speke's Hinged Tortoise	-	3			x								
KEY														
LoO: 1=Present; 2=Highly likely; 3=Moderate	ly likely; 4=Unlikely													
Status (SA Red List): NT=Near-threatened;	LC=Least Concern; *Provisional listing, pendin	g on the	public	ation o	f the S	outher	n Afric	an Rep	otile Co	nserva	tion Ass	essmer	nt (SAF	₹CA)
	Dry Grassland; SF=Scarp Forest; SV=Savanna													
Sources: NEM: BA (2007); SARCA website (2007														

5.5. Appendix 5 Frog list for the study area

					Q	DS				Н	ABIT	٩T		
FAMILY & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
BREVICIPITIDAE (Rain frogs)														
Breviceps adspersus adspersus	Bushveld Rain Frog	LC	3											
Breviceps mossambicus	Mozambique Rain Frog	LC	2	х		x	x							
BUFONIDAE (Toads)														
Amietophrynus garmani	Eastern Olive Toad	LC	1											х
Amietophrynus gutturalis	Guttural Toad	LC	1	х	x	x	x	х		x				
Amietophrynus maculatus	Flat-backed Toad	LC	4											
Amietophrynus rangeri	Raucous Toad	LC	1	х	x	x		х		x	х			
Vandijkophrynus gariepensis	Karoo Toad	LC	2			x	x							
Schismaderma carens	Red Toad	LC	2											
HELEOPHRYNIDAE (Ghost fro		20	_											
Hadromophryne natalensis	Natal Cascade Frog	LC	3				x							
Hemisus guttatus	Spotted Shovel-nosed Frog	VU	4				~							
HYPEROLIIDAE (Kassinas, Rat														
Hyperolius marmoratus														
taeniatus	Painted Reed Frog	LC	3		х		x							ļ
Kassina senegalensis	Bubbling Kassina	LC	2	х	x	x	x							
Semnodactylus wealii	Rattling Frog	LC	2	Х		Х	Х							
PHRYNOBATRACHIDAE (Pudd		1			1	1	1			1				
Phrynobatrachus mababiensis	Dwarf Puddle Frog	LC	4											
Phrynobatrachus natalensis	Snoring Puddle Frog	LC	3											
PTYCHADENIDAE (Grass & Or					1	1	1	1		1				
Ptychadena oxyrhynchus	Sharp-nosed Grass Frog	LC	4											
Ptychadena porosissima	Striped Grass Frog	LC	1	Х	X	X				X				
PIPIDAE (Platannas)														
Xenopus laevis	Common Platanna	LC	1	Х								Х		
PYXICEPHALIDAE (African cor			4-											
Cacosternum boettgeri	Boettger's Caco		_ 1	X	X	X	X			X		Х		

					Q	DS				H	ABIT	AT		
FAMILY & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	WТ	AL	AD
Cacosternum nanum	Bronze Caco		1	х		x	x			x		х		
Amieta angolensis	Common River Frog		1	х	x	x	x		х			х		
Amietia fuscigula	Cape River Frog		2	х	х	х	х							
Strongylopus fasciatus	Striped Stream Frog		1		x	x	x					х		
Strongylopus grayii	Clicking Stream Frog		2	x	x	x	x							
Strongylopus wager	Plain Stream Frog	NT	2			x								
Tomopterna cryptotis	Tremolo Sand Frog		2											
Tomopterna natalensis	Natal Sand Frog		1	х	х	х	х					х		
Tomopterna tandyi	Tandy's Sand Frog		4											
Pyxicephalus adspersus	Giant Bullfrog	NT	4											
КЕҮ														
LoO: 1=Present; 2=Highly likely; 3=M	loderately likely; 4=Unlikely													
Status (SA Red List): NT=Near-three	eatened; LC=Least Concern													
Habitat: AD=Adit; AL=Alien Bushclur	np; DG=Dry Grassland; SF=Scarp Fo	orest; SV=	Savan	na; RG	G=Rock	ky Gra	ssland	; WT=\	Vetland	ł				
Sources: Minter et al. (2004); NEM:E	BA (2007); Du Preez & Carruthers (20	009); MTP	A pers	. comm	n. (201	3)								

5.6. Appendix 6 Butterfly list for the study area

						DS				Н	ABIT	AT		
SUBFAMILY & SPECIES		STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
DANAINAE (Monarchs)														
Danaus chrysippus orientis	African Monarch	LC	1			х			x	x		x		
SATYRINAE (Browns, widows & ri	nglets)													
Bicyclus safitza safitza	Common Bush Brown	LC	2			х								
Aeropetes tulbaghia	Table Mountain Beauty (Mountain Pride)	LC	3											
Dingana alticola	Red-banded Widow	LC	2			х								
Coenyra hebe	Zulu Shadefly	LC	3				x							
Coenyra aurantiaca	Pondo Shadefly	LC	3				x							
Physcaeneura panda	Dark-webbed Ringlet	LC	2											
Cassionympha cassius	Rainforest Brown	LC	1			х	х				х			
Pseudonympha poetula	Drakensberg brown	LC	3											
Pseudonympha magoides	False Silver-bottom Brown	LC	2			х	x							
Stygionympha scotina scotina	Eastern Hillside Brown	LC	3				x							
Stygionympha wichgrafi wichgrafi	Wichgraf's Brown	LC	1			х	x				x			
Stygionympha wichgrafi williami	William's Brown	LC	2				x							
Ypthima asterope hereroica	African Ringlet	LC	4											
HELICONIINAE (Acraeas)														
Acraea horta	Garden Acraea	LC	1			х	x		x					
Acraea neobule neobule	Wandering Donkey Acraea	LC	2				x							
Acraea algaonice	Clear-spotted Acraea	LC	3				x							
Acraea violarum	Speckled Red Acraea	LC	2				х							
Telchinia rahira rahira	Marsh Acraea	LC	2											
Telchinia Anacreon	Orange Acraea	LC	1			х	x		x	x				
Telchinia alalonga	Long-winged Orange Acraea	LC	3			х								
Telchinia esebria esebria	Dusky Acraea	LC	4											
Telchinia encedon encedon	White-barred Acraea	LC	4											
Telchinia serena	Dancing (Small Orange) Acraea	LC	3											
BIBLIDINAE (Nymphs, jokers & pi	pers)													
Pardopsis punctatissima	Polka Dot	LC	4											

					Q	DS				Н	ABIT	AT		
SUBFAMILY & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
Phalanta phalantha aethiopica	African (Common) Leopard	LC	2											
Charaxes varanes varanes	Pearl Emperor	LC	2			x								
Charaxes jasius saturnus	Foxy Emperor	LC	2											
Charaxes brutus natalensis	White-barred Emperor	LC	4											
Charaxes druceanus moerens	Marieps Silver-barred Emperor	LC	3											
Charaxes xiphares penningtoni	Pennington's Forest King Emperor	LC	4											
Cymothoe alcimeda trimeni	Trimen's Glider	LC	2				x							
Neptis laeta	Common Sailor	LC	3											
Byblia anvatara acheloia	Common Joker	LC	3											
Byblia ilithyia	Spotted Joker	LC	2											
Eurytela hiarbas angustata	Pied Piper	LC	2											
Eurytela dryope angulata	Golden Piper	LC	3											
NYMPHALINAE (Diadems, commo	lores, pansies & admirals)													
Hypolimnas misippus	Common Diadem	LC	1							x				
Hypolimnas anthedon wahlbergi	Variable Diadem	LC	3											
Catacroptera cloanthe cloanthe	Pirate	LC	1						x	x		x		
Precis octavia sesamus	Gaudy Commodore	LC	1			x	x	x			х	x		
Precis ceryne ceryne	Marsh Commodore	LC	2											
Precis archesia archesia	Garden Inspector (Commodore)	LC	2				x							
Junonia natalica natalica	Brown Pansy	LC	3											
Junonia hierta cebrene	Yellow Pansy	LC	1	х		x	x		x	x	x	х		
Junonia oenone oenone	Blue Pansy	LC	2											
Junonia orithya madagascariensis	Eyed Pansy	LC	1			x			x	х	х	x		
Vanessa cardui	Painted Lady	LC	1			x	x		x	х				
PORITIINAE (Zulus, buffs, rocksitte														
Alaena amazoula amazoula	Southern Yellow Zulu	LC	3											
Durbania amakosa ayres	Northern Rocksitter	LC	3				x							
MILETINAE (Woolly legs & skollys)			-											
Lachnocnema bibulus	Common Woolly Legs	LC	2											
Thestor basutus	Basuto Skolly (Magpie)	LC	2											
LYCAENINAE (Saphires, playboys,			2		I	1	1	1	1	I	I	I		

					Q	DS				Н	ABIT	AT		
SUBFAMILY & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
Stugeta bowkeri tearei	Teare's Sapphire	LC	3											
Leptomyrina henningi	Henning's Black-eye	LC	2			х								
Leptomyrina gorgias gorgias	Common Black-eye	LC	1				x				х			
Capys alphaeus extentus	Eastern Orange-banded Protea- butterfly	LC	2				x							
Deodorix antalus	Brown Playboy	LC	3											
Myrina silenus ficendula	Common Fig-tree Blue	LC	3											
Cigaritis natalensis	Natal Bar	LC	2											
Cigaritis mozambica	Mozambique Bar	LC	3											
Cigaritis phanes	Silvery Bar	LC	4											
Cigaritis ella	Ella's Bar	LC	3											
Axiocerses tjoane tjoane	Common Scarlet	LC	3											
Axiocerses amanga amanga	Bush Scarlet	LC	3											
Aloeides merces	Wakkerstroom Copper	LC	2		x		x							
Aloeides pallida pallida	Giant Copper	LC	2			х	x							
Aloeides tite	Tite's Copper	LC	2			х	x							
Aloeides aranda	Aranda Copper	LC	2											
Aloeides henningi	Henning's Copper	LC	3											
Aloeides swanepoeli	Swanepoel's Copper	LC	2			х								
Aloeides trimeni trimeni	Trimen's Copper	LC	3											
Aloeides taikosama	Dusky Copper	LC	3											
Chrysoritis aethon	Lydenburg Opal	LC	2			х	x							
Chrysoritis lycegenes	Mooi River Opal	LC	2											
Chrysoritis aureus	Heidelberg Copper (Golden Opal)	VU	3			x								
Chrysoritis pan pan	Pan Opal	LC	3											
Chrysoritis swanepoeli swanepoeli	Swanepoel's Opal	LC	3											
Chrysoritis beaufortius tearei	Teare's Opal	LC	3											
Crudaria leroma	Silver-spotted Grey	LC	3											
Lycaena clarki	Eastern Sorrel Copper	LC	2			х	x							
Anthene amarah amarah	Black-striped Hairtail	LC	3											
Anthene butleri livida	Pale Hairtail	LC	3											

					Q	DS				Н	ABIT	AT		
SUBFAMILY & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
Uranothauma nubifer nubifer	Black Heart	LC	1						x					
Cacyreus marshalli	Geranium Bronze	LC	2				x							
Cacyreus fracta fracta	-		2				x							
Zintha hintza hintza	Hintza Blue	LC	2			х								
Tuxentius calice calice	White Pie	LC	1						x					
Tuxentius melaena melaena	Black Pie	LC	3											
Leptotes pirithous pirithous	Common Blue	LC	2											
Leptotes babulti	Babaults Blue	LC	1						x					
Lampides boeticus	Long-tailed Blue	LC	1						x					
Tarucus sybaris sybaris	Dotted Blue	LC	1						x					
Harpendyreus noquasa	Marsh Blue	LC	2			х	x							
Lepidochrysops variabilis	Variable Blue	LC	3				x							
Lepidochrysops ketsi ketsi	Ketsi Blue	LC	3			х								
Lepidochrysops ignota	Zulu Blue	LC	3											
Lepidochrysops plebeia plebeia	Twin-spot Blue	LC	3											
Lepidochrysops patricia	Patrician Blue	LC	2											
Orachrysops subravus	Grizzled Blue	LC	4			х								
Euchrysops malathana	Common Smokey Blue	LC	3											
Euchrysops dolorosa	Sabi Smokey Blue	LC	4											
Eicochrysops messapus mahallakoanea	Northern Cupreous Blue	LC	3											
Cupidopsis cissus cissus	Common Meadow Blue	LC	1						x					
Cupidopsis jobates jobates	Tailed Meadow Blue	LC	3											
Actizera lucida	Rayed Blue	LC	2			х								
Zizeeria knvsna	Sooty Blue	LC	2											
Zizina otis antanossa	Clover Blue	LC	2				х							
Azanus ubaldus	Velvet-spotted Blue	LC	2				х							
Azanus jesous jesous	Topaz-spotted Blue	LC	2				x							
Azanus natalensis	Natal Spotted Blue	LC	1						x	х				
Azanus moriqua	Thorn-tree Blue	LC	2											
Chilades trochylus	Grass Jewel Blue	LC	3											

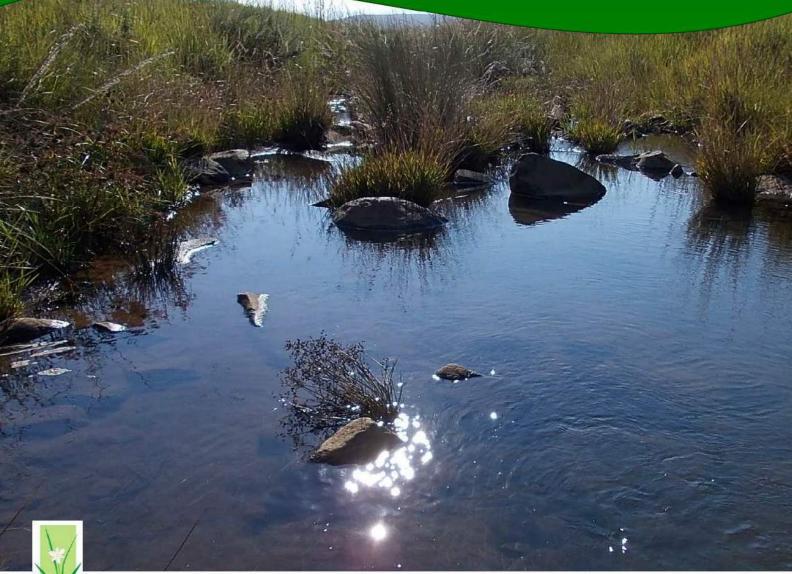
V

					Q	DS				Н	ABIT	AT		
SUBFAMILY & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
Zizula hylax	Gaika Blue	LC	2				x							
PIERINAE (Vagrants, orange tips, v	whites & borders)													
Colotis vesta argillaceus	Veined Orange (Tip)	LC	4											
Colotis euippe omphale	Smokey Orange Tip	LC	3											
Belenois aurota aurota	Brown-veined White	LC	1			х	x		х	x				
Belenois creona severina	African Common White	LC	2			х	х							
Pontia helice helice	Meadow White	LC	2			х	x							
Leptosia alcesta inalcesta	African Wood White	LC	2				x							
Mylothris agathina agathina	Common Dotted Border	LC	3											
COLIADINAE (Yellows & migrants)														
	African Clouded Yellow (Lucerne													
Colias electo electo	Butterfly)	LC	2			X	х							
Catopsilia florella	African Migrant (Common Vagrant)	LC	2				X							
Eurema hecabe solifera	Common Grass Yellow	LC	2											
Eurema brigitta brigitta	Broad-bordered Grass Yellow	LC	2				X							
Eurema desjardinsii marshalli	Angled Grass Yellow	LC	2											
PAPILIONINAE (Swallowtails & sw	ordtails)													
Papilio demodocus demodocus	Citrus Swallowtail	LC	1			х			х	х				
Papilio euphranor	Bush Kite (Forest Swallowtail)	LC	3				х							
Papilio nireus lyaeus	Green-banded Swallowtail	LC	2				х							
Papilio ophidicephalus ayresi	Mariep's Emperor Swallowtail	LC	2				х							
COELIADINAE (Policemen)														
Coeliades forestan forestan	Striped Policeman	LC	3											
Coeliades pisistratus	Two-tip Policeman	LC	2											
PYRGINAE (Flats, skippers, elfins	& sandmen)													
Celaenorrhinus mokeezi mokeezi	Western Large Flat	LC	3											
Eretis djaelaelae	Marbled Efl	LC	2			х								
Eretis umbra umbra	Small Marbled Elf	LC	2											
Spialia asterodia	Star Sandman	LC	2				x							
Spialia mafa mafa	Mafa Sandman	LC	2											
Spialia dromus	Forest Sandman (Large Grizzled	LC	3											

					Q	DS				Н	ABIT	AT		
SUBFAMILY & SPECIES	COMMON NAME	STATUS	LoO	2730AA	2730AB	2730AC	2730AD	SF	sv	DG	RG	wт	AL	AD
	Skipper)													
Spialia diomus ferax	Common Sandman	LC	1			x	x					х		
Spialia spio	Mountain Sandman	LC	2											
Gromalia elma elma	Green-marbled Sandman	LC	2											
HETEROPTERINAE (Sylphs)														
Metisella malgacha malgacha	Grassveld Sylph	LC	2				х							
Metisella meninx	Marsh Sylph	VU	2											
Tsitana tsita	Dismal Sylph	LC	2											
HESPERIINAE (Rangers, darts, hop	opers & swifts)													
Kedestes mohozutza	Fulvous Ranger (Harlequin Skipper)	LC	2			х								
Kedestes barberae barberae	Barber's Ranger	LC	3											
Platylesches ayresii	Peppered Hopper	LC	3											
Platylesches moritili	Honey Hopper	LC	3											
Zenonia zeno	Orange-spotted Hopper (Skipper)	LC	3											
Pelopidas mathias	Black-banded Swift	LC	2											
Pelopidas thrax inconspicua	White-banded Swift	LC	2											
PYRGINAE (Flats, skippers, elfins a	& sandmen)													
Gegenes niso niso	Common Hottentot Skipper	LC	1									х		
KEY														
LoO: 1=Present; 2=Highly likely; 3=Moderately	likely; 4=Unlikely													
Status (SA Red List): EN=Endangered; VU=\	/ulnerable; LC=Least Concern													
Habitat: AD=Adit; AL=Alien Bushclump; DG=E	Dry Grassland; SF=Scarp Forest; SV=Savanna; R	G=Rock	y Gras	sland;	WT=V	Vetland	b							
Source: Migdoll (1994); NEM:BA (2007); Henr	ning <i>et a</i> l. (2009); SABCA website (2010); MTPA p	ers. co	mm. (2	013)										

HIGHER TAXON & FAMILY	SPECIES			
ODONATA (Dragonflies & damsel				
COENAGRIONIDAE	Ischnura senegalensis			
ISOPTERA (Termites)	Iseninara seriegalensis			
TERMITIDAE	Macrotermes natalensis			
ORTHOPTERA (Crickets & grass				
ACRIDIDAE				
PYRGOMORPHIDAE	Zonocerus elegans	Elegant Grasshopper		
PYRGOMORPHIDAE	Phymateus viridpes	Green Milkweed Locust		
GRYLLIDAE		Cricket		
TETTIGONIIDAE	Conocephalus caudalis	Meadow Katydid		
HEMIPTERA (Bugs)				
CICADIDAE		Cicada		
NEUROPTERA (Antlions)				
MYRMELIONTIDAE	Palpares sobtinus	Dotted Veld Antlion		
COLEOPTERA (Beetles)				
LYCIDAE		Net-Winged Beetle		
MELOIDAE	Mylabris oculata	CMR Bean Beetle		
MELOIDAE		Blister Beetle		
MELOIDAE	Decaptoma lunata	Lunate Blister Beetle		
SCARABAEIDAE	Anisorrhina flavomaculata	Zig-zag Fruit Chafer		
SCARABAEIDAE	Porphyronota hebreae	Marbled Fruit Chafer		
SCARABAEIDAE	Pachnoda sinuata	Garden Fruit Chafer		
CARABIDAE		Carabid beetles		
CURCULIONIDAE		Weevils		
LEPIDOPTERA (Moths only)				
NOCTUIDAE	Cyligramma latona	Cream-striped Owl		
NOCTUNIDAE	Sphingomorpha chlorea	Subdowner Moth		
HYMENOPTERA (Ants, Bees and	Wasps)			
FORMICIDAE		Ants		
MANTODEA (Mantids)				
THESPIDAE	Haplocoryphela grandis			
SCARABAEIDAE	Plaesiorhnella plana			
COCCINELLIDAE	Cheilomenes lunata			
ARANEAE (Spiders)				
THOMISIDAE	Runcinia sp.	Crab Spider		
CLUBIONIDAE		Sac Spider		
AGELENIDAE	(Olorunia)	Grass Funnel-web Spider		
SCORPIONES (Scorpions)				
ISCHNURIDAE	Chelectonus jonesii			
BUTHIDAE	Uroplectes olivaceus	Stinger Scorpion		
DECAPODA (Crabs)				
POTAMONAUTIDAE		Freshwater Crab		
IXODIDA				
IXODIDAE		Ticks		
DIPLOPODA (Millipedes)				
		Giant Millipede		

5.7. Appendix 7 Macro-invertebrates found opportunisitically on site


HIGHER TAXON & FAMILY	SPECIES	COMMON NAME				
HAPLOTAXIDA (Earth worms)						
LUMBRICIDAE		Earth worms				
Sources: Filmer (1991): Picker et al. (2002): Leeming (2003)						

5.8. Appendix 8 Specialist avifaunal assessment by DEC (next page)

Section D: Aquatic Assessment

A DAMAGE AND A DAMAGE AND A DAMAGE AND A DAMAGE AND A DAMAGE AND A DAMAGE AND A DAMAGE AND A DAMAGE AND A DAMAG

SECTION D: TABLE OF CONTENTS

1.	Intro	duction	140		
2.	Methodology				
	2.1.	Ecological Integrity / Present Ecological State (PES)	144		
	2.2.	Water Quality			
	2.3.	Habitat Integrity			
	2.4.	Macro-invertebrates			
	2.5.	Ichthyofauna			
	2.6.	Study Limitations	151		
3.	Resi	ults	152		
	3.1.	General Information for the Sampled Sites			
	3.2.	Water Quality			
	3.3.	Habitat Integrity			
	3.4.	Macro-invertebrates			
	3.5.	Ichthyofauna			
4.	Арр	endices	176		
	4.1.	Appendix 1 High and low flow (2012) SASS5 data			

SECTION D: LIST OF TABLES

Table 2-1	Photographs of the aquatic sampling sites142
Table 2-2	Catchment locations of the aquatic sampling sites144
Table 2-3	Present Ecological State categories and descriptions with standardised colour-
	coding (adapted from Kleynhans & Louw, 2008)145
Table 2-4	The IHI scoring of each criterion to describe the extent of each impact (from
	Kleynhans, 1996)147
Table 2-5	Criteria and weightings used to assess Instream Habitat and Riparian Habitat
	Integrity (Kleynhans, 1996)147
Table 3-1	General results and associated information for YZ1153
Table 3-2	General results and associated information for YZ2154
Table 3-3	General results and associated information for YZ3155
Table 3-4	General results and associated information for YZ4156
Table 3-5	General results and associated information for YZ5157
Table 3-6	The constituents analysed at each site during high flow and low flow 2012 and the
	Target Water Quality Range (TWQR)160
Table 3-7	A description of the water constituents that were present above WQ guidelines
	defined by DWAF (1996)162

Table 3-8	The instream and riparian habitat integrities for each aquatic sampling site	164
Table 3-9	The dominant biotope diversities for each site by means of Dallas (2005)	166
Table 3-10	Macro-invertebrate integrity assessments using SASS, ASPT and MIRAI s	cores
	for reference, historical and current assemblages	167
Table 3-11	The velocity depth classes for each site by means of Dallas (2005)	169
Table 3-12	Expected and sampled fish species in the AYCP study area	170
Table 3-13	Reference and current fish frequency of occurrence	172
Table 4-1	Macro-invertebrates sampled in high flow 2012	176
Table 4-2	Macro-invertebrates sampled in low flow 2012	178

SECTION D: LIST OF FIGURES

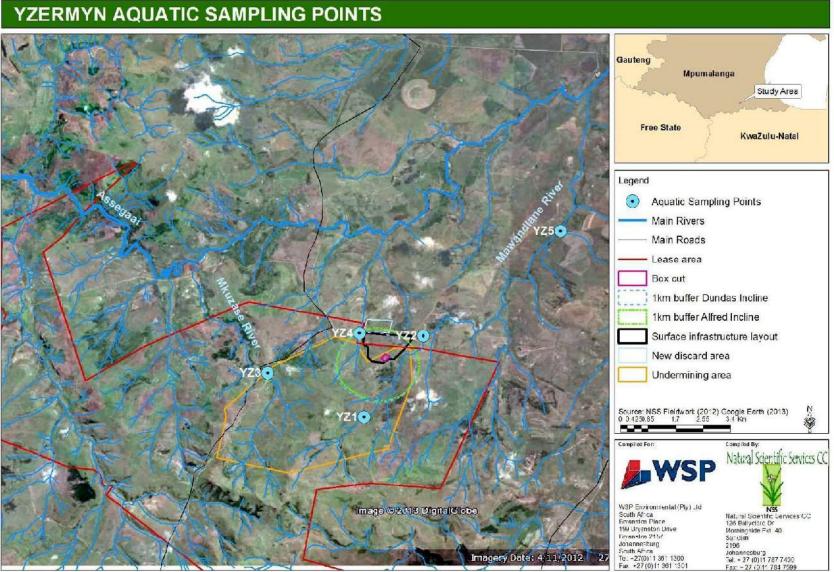
Figure 2-1	Locations of the aquatic sampling sites141
Figure 2-2	The continuum of Ecological Categories as presented by Kleynhans & Louv
	(2008)
Figure 2-3	Ecological Categories for the Eastern Escarpment Mountains - upper zone
	calculated using percentiles (Dallas, 2007)149
Figure 3-1	Current impacts observed at the sites throughout the study area165
Figure 3-2	Photographs of indigenous fish species that were caught in the study area171
Figure 3-3	Farms in the study area where Conservation Important fish species have been
	recorded174

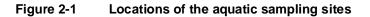
SECTION D: AQUATIC ASSESSMENT

1. Introduction

Natural Scientific Services CC (NSS) was contracted by WSP Environmental (Pty) Ltd (WSP) to perform Biodiversity Scoping, Baseline and Impact Assessments for selected aspects of the proposed ATHA Yzermyn Coal Project (AYCP). This report **Section D** details the Baseline Aquatic Assessment, which involved the assessment of ecological conditions at four aquatic sampling sites near the proposed mine surface infrastructure area. Potential impacts on aquatic ecosystems of the AYCP and recommended measures to mitigate these impacts are discussed in **Section G**.

2. Methodology


There are numerous streams and rivers that drain from the AYCP lease and underground mining areas. Many of these are small headwater and mountain streams, which flow into larger streams that ultimately drain into the Assegaai River. The selected sampling sites for this aquatic assessment represented the diversity of aquatic habitat near the original (old) proposed surface infrastructure area. As explained in **Section A**, no detailed information on the AYCP was available until recently, and the boundaries of the lease, underground mining and surface infrastructure areas changed during the course of this Assessment. Fortuitously, the selected aquatic sampling sites were located also in close proximity to the current (new) proposed surface infrastructure area.


Five aquatic sampling sites (referred to as YZ1-YZ5) were selected based on the following broad criteria:

- Habitat that was representative of local aquatic ecosystems.
- Accessibility and safety.
- Proximity to anthropogenic activities in the catchment.
- Proximity to river confluences.

The locations of the selected sampling sites are mapped in **Figure 2-1**. Photographs of the sampling sites are shown in **Table 2-1**, and the locations of the sampling sites in local catchments are described in **Table 2-2**. High and low flow aquatic surveys were, respectively, performed during 27-28 March and 4-5 September 2012, and involved assessment of the Present Ecological State (PES) of the sampled aquatic sites.

NSS

	High flow:	March 2012	Low flow: September 2012				
	Upstream	Downstream	Upstream	Downstream			
YZ1 Mawandlane River							
YZ2 Mawandlane River							
YZ3 Mkusaze River							

Table 2-1 Photographs of the aquatic sampling sites

NSS

	High flow	: March 2012	Low flow: September 2012				
	Upstream	Downstream	Upstream	Downstream			
YZ4 Tributary of the Assegaai River							
YZ5 Mawandlane River							

NSS

SITE	RIVER	POSITION RELATIVE TO PROPOSED SURFACE INFRASTRUCTURE CO-ORDINATES				
YZ1	Mawandlane River	Upstream of infrastructure	S27.23479°	E30.30729°		
YZ2	Mawandlane River	Downstream of infrastructure	S27.21234°	E30.32375°		
YZ3	Mkusaze River	Upstream of infrastructure	S27.22263°	E30.28059°		
YZ4	Non-perennial tributary of the Assegaai River	Downstream of infrastructure	S27.21161°	E30.30601°		
YZ5	Mawandlane River	Downstream of infrastructure	S27.18332°	E30.36187°		

Table 2-2Catchment locations of the aquatic sampling sites

2.1. Ecological Integrity / Present Ecological State (PES)

The PES of the Mkusaze and Mawandlane tributaries of the Assegaai River was evaluated in terms of water quality, habitat integrity, aquatic macro-invertebrate, and fish community ecological integrity.

Ecological Categories (EC) were used to assist in the interpretation of this data because they define the ecological condition of a river in terms of the deviation of biophysical components from the natural Reference condition (Kleynhans & Louw 2008). These categories range over a continuum of impacts from natural (Category A) to critically modified (Category F), and are represented by characteristic colours defined by Kleynhans & Louw (2008) in **Table 2-3**.

For the present assessment the ECs were assigned to the results obtained from the index scores of the Index of Habitat Integrity (IHI) measuring habitat and the Fish Response Assessment Index (FRAI; Kleynhans 2008) scores measuring fish integrity. The South African Scoring System (SASS5) for monitoring aquatic macro-invertebrates (Dickens & Graham 2002) and the Average Score per Taxon (ASPT) were assigned ECs based on the Eastern Escarpment Mountains – upper zone defined by Dallas (2007) and is discussed further on.

In some cases, there is an uncertainty as to which category a particular entity belongs. This situation falls within the concept of a "fuzzy" boundary, where a particular entity may potentially have membership of both classes. For practical purposes these situations are referred to as boundary categories and are denoted as for example B/C as depicted in **Figure 2-2**.

Table 2-3	Present Ecological State categories and descriptions with standardised colour-coding
(adapted from	Kleynhans & Louw, 2008)

CATEGORY	MIRAI, FRAI & IHI (%)	SASS5	ASPT	DESCRIPTION
A	90 - 100	>/=187	>/=7.0	Natural – Unmodified state with no impacts; conditions natural
В	80 — 89	>/=141<187	>/=6.2<7.0	Largely natural – Largely natural with few modifications. A small change in natural habitats and biota may have taken place but the ecosystem functions are essentially unchanged
с	60 — 79	>/=109<141	>/=5.6<6.2	Moderately modified –Loss and change of natural habitat and biota have occurred, but basic ecosystem functions are still predominantly unchanged
D	40 — 59	>/=86<109	>=4.9<5.6	Largely modified – A large loss of natural habitat, biota and basic ecosystem functions has occurred
E	20 — 39	<86	<4.9	Seriously modified – The loss of natural habitat, biota and basic ecosystem functions is extensive
F	< 20	<86	<4.9	Critically/Extremely modified – Modifications have reached a critical level, with an almost complete loss of natural habitat and biota. In the worst instances, basic ecosystem functions have been destroyed and the changes are irreversible

Figure 2-2 The continuum of Ecological Categories as presented by Kleynhans & Louw (2008)

2.2. Water Quality

Water quality is used to describe the aesthetic, biological, chemical and physical properties of water, which determine its condition for a variety of uses and for the protection of the health and integrity of aquatic ecosystems. These dissolved or suspended constituents, in the water, could influence or control the water quality properties. For example, in some cases anthropogenic activities can cause the physico-chemical constituents that occur naturally in the water to become toxic under certain conditions. Each aquatic ecosystem possesses natural limits or thresholds to the extent and frequency of change it can tolerate without being permanently modified (DWAF, 1996). If these aquatic ecosystems cross these thresholds, it will be difficult to recover or regain their functional capacity without mitigation. It must also be taken into consideration that determining the effects of changes in water quality on aquatic ecosystems is considered complex, as water fluctuates with time and space. Therefore, interpretation of WQ constituents should be done in combination with additional indicators such as biological indices.

Physical & Chemical Water Quality Parameters

Five physical water quality parameters were measured in-situ in the aquatic water resources assessed: temperature, pH, dissolved oxygen (DO) concentration and saturation (%), total dissolved solids (TDS) and electrical conductivity (EC). The variables were measured in the field by using a HI 9828 Multi-parameter with pH/ORP/EC/TDS/DO multi-sensor probe (Hanna Instruments^{*}). A minimum of three readings were taken for each site and the average of the readings is represented in the results.

Water samples were also collected in 500ml polyethylene bottles to determine the additional chemical constituents (nutrients, trace metals, ions, organic enrichment and turbidity). The analysis of the water samples was done by Aquatico (Pty) Ltd¹ (a SANAS-accredited laboratory). The following variables were assessed: chloride (Cl), sulphate (SO₄), nitrate (NO₃), nitrite (NO₂), ammonium (NH₄), chemical oxygen demand (COD), suspended solids (SS), turbidity (NTU), total alkalinity, and metals including aluminium (AI), cadmium (Cd), calcium (Ca), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), magnesium (Mg), nickel (Ni), potassium (K), sodium (Na), total chromium (Cr) and zinc (Zn). In addition, low flow samples were analysed for fluoride (F), orthophosphate (PO₄) and total hardness.

Field measurements and chemical constituents were compared against the Target Water Quality Range (TWQR). The TWQR is a management objective for aquatic ecosystems that was developed by DWAF (1996), and is used to specify the desired or ideal concentration range and/or water quality requirements of a particular constituent. Regular measuring of these constituents is required for long-term impact monitoring.

2.3. Habitat Integrity

Habitat availability and diversity are major determinants in the overall community structure of aquatic macro-invertebrates and fish, therefore, it is of the utmost importance to evaluate habitat quality when applying bio-monitoring methodologies and assessing river health. The Index of Habitat Integrity (IHI) assessment protocol designed by Kleynhans (1996), was used to assess impacts on aquatic and surrounding habitat at each sampling site. Instream and riparian habitats (IH and RH) were analysed based on a set of 12 weighted disturbances in the index. These disturbances represent some of the important and easily quantifiable anthropogenically induced impacts, including bank erosion, bed-, channel- and flow modification; alien aquatic fauna, macrophytes sand vegetation encroachment; indigenous vegetation removal; inundation; solid waste disposal, and water abstraction. The respective impacts for IH and RH were calculated, and each disturbance was assigned an impact rating (**Table 2-4**) and a confidence score. These values were used to calculate an impact score using the formula: (impact rating/25) x (the weight of that

^{*}Previously known as Cleanstream Scientific Services (Pty) Ltd

impact defined in **Table 2-5**). The estimated impacts of all criteria were summed, expressed as a percentage, and subtracted from 100 to obtain a habitat integrity value for IH and RH. The final IHI was calculated and characterised into one of six categories defined by Kleynhans & Louw (2008), and shown in **Table 2-4**.

Table 2-4	The IHI	scoring	of	each	criterion	to	describe	the	extent	of	each	impact	(from
Kleynhans, ²	1996)												

IMPACT CLASS	DESCRIPTION	SCORE
None	No discernible impact or the modification is located in	0
	such a way that it has no impact on habitat quality,	
	diversity, size and variability	
Small	The modification is limited to very few localities and the	1-5
	impact on habitat quality, diversity, size and variability is	
	limited.	
Moderate	The modifications are present at a small number of	6-10
	localities and the impact on habitat quality, diversity, size	
	and variability are fairly limited.	
Large	The modification is generally present with a clearly	11-15
	detrimental impact on habitat quality, diversity, size and	
	variability. Large areas are, however, not affected	
Serious	The modification is frequently present and the habitat	16-20
	quality, diversity, size and variability in almost the whole	
	of the defined area are affected. Only small areas are not	
	influenced.	
Critical	The modification is present overall with a high intensity.	21-25
	The habitat quality, diversity, size and variability in almost	
	the whole of the defined section are influenced	
	detrimentally.	

Table 2-5	Criteria and weightings used to assess Instream Habitat and Riparian Habitat Integrity
(Kleynhans, 1	996)

INSTREAM CRITERIA	WEIGHT
Water abstraction	14
Water quality	13
Flow modification	13
Bed modification	13
Channel modification	14
Inundation	10
Alien macrophytes	9
Alien fauna	8
Rubbish dumping	6

RIPARIAN CRITERIA	WEIGHT
Vegetation removal	13
Alien vegetation	12
Bank erosion	14
Channel modification	12
Water abstraction	13
Inundation	11
Flow modification	12
Water quality	13

2.4. Macro-invertebrates

Macro-invertebrate Habitat Availability

Macro-invertebrate communities, like most aquatic fauna, are largely influenced by the habitat diversity within an aquatic ecosystem. Therefore, different biotope diversities were evaluated i.e. stones in current (bedrock, cascade, chute, boulder rapid, riffle and run), stones out of current (bedrock, backwater, slackwater and pool), instream vegetation, marginal vegetation and GSM (gravel, sand and mud). Each of these biotopes was rated on a scale from 0 to 5 according to the presence of biotopes, namely absent (0), rare (1), sparse (2), common (3), abundant (4) or entire (5) (Dallas, 2005). The Invertebrate Habitat Assessment System (IHAS) index was not incorporated into the present study as it still requires validation according to Dallas (2005). However, some of the categories from the IHAS were identified, including algal presence, biotopes and dominant vegetation types.

SASS5

The assessment of macro-invertebrate communities in a river system is a recognised means of determining river "health" (Dickens & Graham, 2002). Macro-invertebrates are good indicators because they are visible, easy to identify and have rapid life cycles. Macro-invertebrate communities were assessed using the SASS5 (South African Scoring System, version 5) sampling method described by Dickens & Graham (2002). SASS5 is a rapid assessment method of macro-invertebrate status of a flowing in-stream system. SASS5 is an accredited protocol that has been tested and widely used in South Africa as a biological index of water quality. The index is based on the presence of aquatic macro-invertebrate families and the perceived sensitivity to water quality changes of these families. Highly tolerant families include e.g. the Muscidae and Psychodidae, whereas highly sensitive families include e.g.the Oligoneuridae.

Macro-invertebrates were collected using a standard SASS net in stones (in and out of current), vegetation and gravel, sand and mud (GSM) within specified time frames. Fifteen minutes were taken to identify the presence and approximate abundances of macro-invertebrate families in each of the habitats. The SASS5 score was calculated by the sum of the sensitivity scores of the present families. The Average Score Per Taxon (ASPT) was calculated by dividing the total SASS score by the total number of taxa. The results were interpreted using the SASS5 interpretation guidelines of Dallas (2007) and the Ecological Categories derived for the Eastern Escarpment Mountains – upper zone Eco-region, shown in **Figure 2-3**.

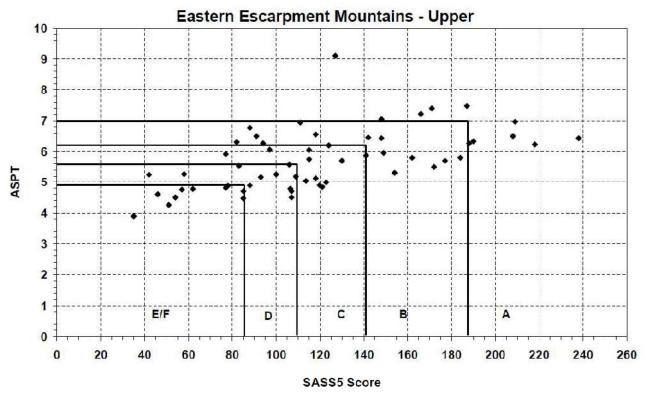


Figure 2-3 Ecological Categories for the Eastern Escarpment Mountains – upper zone, calculated using percentiles (Dallas, 2007)

MIRAI

MIRAI, the Macro-Invertebrate Response Assessment Index of Thirion (2008), was incorporated in this study as an alternative of the SASS5, for determining the PES of the macro-invertebrate community assemblage. The MIRAI integrates the ecological requirements of the invertebrate taxa in a community or assemblage, and their response to modified habitat conditions, whilst comparing the present assemblage with a Reference list (Thirion, 2007). The Reference list for this study was derived by NSS using numerous literature sources including historical data from the Rivers Database (2007), and past experience within this quaternary catchment. In addition, the functional feeding groups and river continuum were considered.

The MIRAI model makes a comparison between the expected macro-invertebrate families with the present assemblages obtained using SASS5 sampling protocol (Thirion, 2007). The habitat preferences for each of the macro-invertebrates were incorporated in terms of flow, habitat and water quality. Each component was rated within a metric in terms of how much the macro-invertebrate presence and abundances diverged from the Reference, and were done for each of the metrics. After all of the metrics were scored, the model generated a MIRAI score for each site and was characterised into an Ecological Category as shown in **Table 2-3**.

2.5. Ichthyofauna

The use of fish communities has been widely used to determine the overall condition of aquatic ecosystems. Fish communities have several advantages when used as indicators of ecosystem integrity (Kotze, 2001):

- Fish are present in most aquatic ecosystems except when the system is highly degraded.
- Fish can be easily identified and then returned to the aquatic ecosystem.
- Most fish species have background information available in terms of life-history and environmental response information.
- Fish are mobile and can integrate contaminant exposure or habitat degradation over a river reach.
- Fish are generally long-lived and as such, can provide long-term information regarding environmental stress.
- Fish communities are composed of various trophic levels and can indicate stressor responses at many trophic levels.
- Fishes often exhibit physiological, morphological, or behavioural responses to stresses, which have been grouped into chemical stressors, physical stressors, and perceived stressors.
- Due to the importance relating to the safe consumption of fish, and recreational, subsistence and commercial fishing activities, the Public is more likely to relate to information concerning fish communities than other biotic communities.

It is important to consider some disadvantages relating to the use of fish as bio-indicators. Some disadvantages include (Kotze, 2001):

- The select nature of sampling techniques and equipment for certain species, sizes and habitats of fishes.
- Sampling bias due to the seasonal migration and/or movement of fishes.
- A large sampling effort is often required to adequately characterise fish assemblages.
- Some fish species may be influenced by the sampling techniques.
- Being mobile, fish can avoid local disturbances and not be exposed to environmental impacts.
- Due to fishes often representing higher trophic levels, lower level organisms may provide an earlier indication of water quality pollution.

Fish Habitat Availability

A fish habitat assessment was done to provide a measure of the fish refuge potential associated with each of the sampling sites. This assessment characterises the fish habitats into four velocity-depth classes (including slow-deep, slow-shallow, fast-deep and fast-shallow habitat classes, where fast is greater than 0.3m/s, slow is less than 0.3m/s, deep is greater than 0.3m and shallow is less

than 0.3m) and associated cover present at each of the habitats (Dallas, 2005). All of these were quantified on a scale from 0 to 5, being absent (0), rare (1), sparse (2), common (3), abundant (4) or entire (5) (Dallas, 2005). Measuring these various habitat types are an essential component in the interpretation of the fish integrity because it can influence (by creating or restricting) the fish populations and communities present within each sampling site.

Fish Integrity

The RHP (Mangold, 2001) and FRAI (Kleynhans, 2008) sampling methodologies were used to assess the fish populations in Mkusaze and Mawandlane Rivers. These are both tributaries of the Assegaai River, and could potentially be impacted upon by the AYCP. The technique used to sample was electro-shocking (Meador *et al.* 1993; Barbour *et al.* 1999) together with fyke nets. Samus battery-operated electro-shocking equipment was used to sample fish in the available habitat at each site. The electro-shocking technique was implemented for a minimum of one hour, depending on the site and habitat availability. Fyke nets were left overnight in deeper pools.

Sampled fish were identified to species level using Skelton (2001), and documented into the separate segments and habitat types before being safely returned to their habitat. This raw data was then utilised to calculate the Fish Frequency of Occurrence (FROC) value for use within the FRAI model, as described by Kleynhans (2008). The FRAI model makes a comparison between the expected fish species list obtained from the FROC report by Kleynhans (2007) and the FROC of sampled fish species. It incorporates the habitat preferences in terms of velocity-depth, substrate, water quality, alteration in physical-chemical composition of the water, as well as migration requirements of each fish species.

The intolerances and preferences are divided into metric groups that relate to the requirements and preferences of individual species. This allows cause-effect relationships to be understood between drivers and responses of the fish assemblage to these drivers of change. Having compared the expected list to the actual sampled list, the model generates a FRAI score for each site, which can be characterised into an EC as defined in **Table 2-3**.

2.6. Study Limitations

- Survey work was limited to four aquatic sampling sites in the vicinity of the proposed mine surface infrastructure area, and was not performed in remaining parts of the AYCP lease area.
- NO survey work was performed for roads, pipelines, power lines, conveyer systems or any other infrastructure or listed activity (e.g. water extraction) beyond the boundaries of the current proposed underground mining area.
- The techniques used for assessing aquatic habitat integrity were subjective.
- Insufficient habitat types were available to fully represent the aquatic resource.

- Flow, along parts of the rivers, was very low during the low flow sampling regime.
- Some aquatic species, which are uncommon, migratory, secretive, inconspicuous or otherwise difficult to detect may not have been detected even though they were potentially present on site.
- Aquatic sampling site YZ4 was located on an unnamed tributary of the Assegaai River, and represented a non-perennial stream. Consequently, apart from water quality analysis, other bio-monitoring methods could not be applied to YZ4.
- A tributary of the Assegaai River that was situated to the west of YZ4 would have been a good representative sampling site. Unfortunately this system was dry during both the high and low flow sampling runs.

3. Results

3.1. General Information for the Sampled Sites

The results for the high flow (March 2012) and low flow (September 2012) sampling runs are presented in **Table 3-1** to **Table 3-5**, along with general descriptions of each sampling site. These tables are followed by the water quality, habitat, macro-invertebrate and fish integrity results.

3.2. Water Quality

It is important to analyse WQ variables because they are indicative of impacts in an ecosystem that may contribute toward changes in biotic integrity. The results of the WQ analyses are presented in **Table 3-6**. The TWQR for aquatic ecosystems is provided for comparison. **Table 3-7** highlights the constituents above TWQR, together with their plausible origin and impact source.

Most of the measured *in situ* variables at the five sampling sites were within the TWQR for aquatic ecosystems as specified by DWAF (1996). Only during low flow were the DO concentrations at YZ2 and YZ4 lower than the TWQR. At both these sites this was likely due to a natural seasonal drop in water levels and flow rates. Most of the metal concentrations at the five sampling sites were also within the TWQR of these variables, where this information was available.

Exceptions to this were the elevated levels of AI, Fe and total hardness during the high flow 2012.

Table 3-1	General results and associated information for YZ1									
	YZ1									
	High Flow 2012									
	UPS	TREAM				DOWNSTREAM				
OPSING DOWNSTREAM Image: Stream of the str										
River			Mawandlane				Lat a			
Site Description			The Mawandlane River situated within the proposed AYCP lease area. Mountain stream with numerous riffle / rapids sections present that are interspersed by pools. Two small waterfalls are present upstream that prevent fish migration. Some sedimentation evident below the track through the river. Marginal vegetation limited due to low flows. Marginal vegetation mostly grasses and shrubs. Long stretches of fast shallow riffles are located upstream at the site (approx. 400m).							
GPS co-ordinates	S		S27.23479° E30.30729°							
Altitude (m.a.s.l)			1549m							
Quaternary Catcl	hment		W51A							
WMA (Midgley et	<i>: al</i> . 1994)		WMA 6 Usutho	to Mhlatu	ze					
Ecoregion			15.05							
Ecoregion Name			Eastern Escarpment Mountains							
River Conservati (NFEPA, 2011)	on Status		Tributary of Na	tional Fr	eshwater Ecos	ystem Priority Ar	ea (NFEPA) Rive	r		
Riparian Vegetat			Grasslands; trees; shrubs							
Geomorphologic			Mountain stream							
(Rowntree & Wad	deson, 2000)		High Flow (March 2012) Low Flow (September 2012)							
Water Surface Di	monsione		· · · · · · · · · · · · · · · · · · ·			Width: 6 m; Depth: 0.6m				
Water Surface DI			Width: 5 m; Dep	ui. 0.5m						
Dominant Veloci			Clear Fact shallow			Clear Fact shallow				
		HF	Fast shallow T ($^{\circ}$ C) = 21.8: pl		C(mS/m) = 10	Fast shallow 5; DO (mg/l) = 7.2	(0/2) = 00.70	S(ma/l) = 52 F		
Water Quality Pa	rameters	LF			· /	$\frac{5}{7}$; DO (mg/l) = 7.2				
Algoo Brosser				т — 0.0, Е	- O (mo/m) = 10.		, DO(70) = 00, TD	O((119/1) = 03.2		
Algae Presence Dominant Biotop			Isolated			Isolated				
Other Biota	e Diversity		Riffles and pools	>		Riffles and pools Tadpoles				
Highly Sensitive	Taxa (Score)	11-15)	Frogs Bactidae > 2sp			Baetidae > 2sp				
			Baetidae > 2sp SASS5	ASDT	No of Tour	MIRAI	IHI	FRAI		
	DATE SAMPLER			ASPT	No of Taxa					
27/03/2012	W. Malherbe		142 (B)	5.5	26	80 (B)	95 (A)	79.5 (B/C)		
I	Malherbe / A.	Austin	105 (C/D)	5.5	19	72 (C)	92 (A)	77 (C)		
Existing Threats			Sedimentation;	overgrazi	ng					

Table 3-2	General results and associated information for YZ2									
	YZ2									
	High Flow 2012									
	UP	STREAM			DOWNSTREAM					
				Low F	low 2012					
River			Mawandlane							
Site Descrip	otion		Situated at a b mine lease are is impacted up dump is presen hydrated Iron (Situated at a bridge over the Mawandlane River just outside of downstream boundary of the mine lease area. Significant sedimentation present at the bridge crossing. Upstream system is impacted upon by an <i>Acacia mearnsii</i> forest that increases woody debris. An old discard dump is present within the immediate catchment approximately 400m upstream – signs of hydrated Iron (III) oxide (drainage channel contains red precipitated water) are present. Riffle and rapid sections are interspersed with deeper pools						
GPS co-ord	inates		S27.21234° E30.32375°							
Altitude (m.	a.s.l)		1430m							
Quaternary			W51A							
	ey <i>et al</i> . 1994)		WMA 6 Usutho	o to Mhlatu	IZE					
Ecoregion			15.05							
Ecoregion N	lame		Eastern Escar	oment Mou	untains					
River conse	rvation Status		Tributary of NFEPA River							
(NFEPA, 201 Riparian Ve	11) notation									
Geomorpho	logical Zonation		Grassland; Black wattle; Trees; Reeds Upper foothill							
(Rowntree &	Wadeson, 2000)		1.0040			(am h an 0040)			
			High Flow (Ma			Low Flow (September 2012)				
	ce Dimensions		Width: 5-10 m;	Deptn: Th	11	Width: 2-5 m; Depth: <1m				
	dity (Dallas, 2008		Silty			Silty				
Dominant V	elocity-depth Cla		Fast shallow $T (^{\circ}C) = 21.6^{\circ}$	0H - 6 0· 5	=C(mS/m) = 0.9	Slow shallow ; DO (mg/l) = 7.6; D	O(%) = 102. Tr	S(ma/l) = 40		
Water Quali	ty Parameters	HF LF			. ,					
Algae Prese	nce		T (°C) = 11.7; pH = 8.0; EC (mS/m) = 14.6; DO (mg/l) = 6.7; DO (%) = 74; TDS (mg/l) Algal bed Algal bed					(
	iotope Diversity		Riffles and pools Pools							
Other Biota			Frogs			Tadpoles				
	itive Taxa (Score	11-15)	None			None				
Highly Sensitive Taxa (Score 11-15)DATESAMPLERS			SASS5	ASPT	No of Taxa	MIRAI	IHI	FRAI		
27/03/2012	W. Malheri		119 (C)	5.4	22	73 (C)	87 (B)	79.5 (B/C)		
05/09/2012	W. Malherbe / A		61 (E)	4.6	13	56 (D)	85 (B)	77 (C)		
Existing Thr					etation; Livestoc					
			5.00.000	,	,, בודססוסס					

Table 3-3	General results and associated information for YZ3									
YZ3										
	High Flow 2012									
	UPST	TREAM	1		DOWNSTREAM					
				Low Flo	w 2012					
	and a second sec			LOW FIO	W 2012					
River			Mkuzase	I						
Site Descrip	cription Situated upstream in the Mkusaze River within the bound site is overgrown with marginal vegetation – canopy tota reach. Downstream site is situated on a road crossing with downstream side. Riffles and rapids present mostly down upstream. Marginal vegetation mostly grasses and reeds						osed at approxim	nately 70% of ep pool on the		
GPS co-ordi			S27.22263° E30	.28059°						
Altitude (m.a	-		1548m							
Quaternary			W51A							
	ey <i>et al.</i> 1994)		WMA 6 Usutho t	o Mhlatuze	9					
Ecoregion			15.05							
Ecoregion N			Eastern Escarpn	nent Moun	tains					
(NFEPA, 201	rvation Status 1) getation Type		Tributary of NF		•					
	logical Zonation			lees						
	Wadeson, 2000)		Upper foothills							
			High Flow (Mar	ch 2012)		Low Flow (Se	ptember 2012)			
Water Surfa	ce Dimensions		Width: 5m; Deptl	n: >1m		Width: 5m; De	pth: <1m			
	dity (Dallas, 2005)		Discoloured, opa	que and s	ilty	Discoloured, o	paque and silty			
Dominant V	elocity-depth Clas	ses	Slow deep		Slow shallow					
Water Qualit	ty Parameters	HF LF			C (mS/m) = 13.7; E C (mS/m) = 17.6; E					
Algae Prese	nce		Sparse	(, = 11.0, E	Sparse					
Algae Presence Sparse Dominant Biotope Diversity Riffles; rapids; pools						Riffles; rapids;	pools			
	Other Biota None observed					Tadpoles				
	ighly Sensitive Taxa (Score 11-15) Baetidae > 2sp					Baetidae > 2sp)			
DATE				ASPT	No of Taxa	MIRAI	IHI	FRAI		
28/03/2012				5.7	30	84 (B)	93 (A)	76 (C)		
04/09/2012				5.5	26	80 (B)	90 (A)	71 (C)		
	isting Threats	uoun	144 (B) Sedimentation in		nstream vegetatio					
EX	isting meats			icicased l	nstream vegetatio	n, allen vegetalle		10 10.		

Table 3-4	General results and associated information for YZ4								
	YZ4								
		Н	ligh Flow 2012						
	UPSTREAI	И		DOI	WNSTREAM				
		L	ow Flow 2012						
River		Non-perennial tribu	tary of the Assegaa	ai River					
Site Descrip		A non-perennial str was not flowing dur quite extensive whi interspersed trees.	ing sampling period le riparian vegetatio	d but small pools o	of water remained.	Sedimentation			
GPS co-ord		S27.21161° E30.30)601°						
Altitude (m.		1430m							
Quaternary		W51A							
Ecoregion	ley <i>et al</i> . 1994)	WMA 6 Usutho to N	/Ihlatuze						
Ecoregion N	Namo	15.05	+ Maximtaina						
	varme ervation Status	Eastern Escarpmer							
(NFEPA, 20 [°]		Tributary of NFEP	A River						
Riparian Ve	getation Type	Grassland							
	ological Zonation & Wadeson, 2000)	Upper foothill							
	- Huucson, 2000j	High Flow (March	2012)	Low F	low (September 2	2012)			
Water Surfa	ce Dimensions	Width: 3-4m; Depth			Width: 3-5m; Depth: <0.6m				
	dity (Dallas, 2005)	Silty		Silty					
	elocity-depth Classes	No flow (Deep and	shallow)		w (Deep and shall	ow)			
Water Quali	ty Parameters	T (°C) = 24.6; pH = T (°C) = 11.5; pH =	,						
	LF		0.1, EC (m3/m) =			9, 103 (mg/l) = 92			
	Algae Presence Common Common Dominant Biotope Diversity Pools Pools								
Other Biota		Pools Pools None None							
DATE	SAMPLER	WQ	IHI	SASS5	MIRAI	FRAI			
28/03/2012	W. Malherbe	V 	x	X	X	X			
05/09/2012	W. Malherbe / A. Austin	N N	x	X	x	X			
		Sedimentation, alie			^	^			
Existing Th	Teals	Seamentation, alle	n vegetation, now r						

Table 3-5 General res	General results and associated information for YZ5								
	YZ5								
High Flow 2012									
UP	STREAN	1			DOWNSTREAM				
	R								
			Low Flow	2012			_		
	-					S			
River		Mawandlane							
Site Description		Downstream of the proposed development and situated a few kilometres from Assegaai River. The receiving river for most of the proposed development. Bedrock present upstream and downstream. Pools form upstream due to wooden debris caught up within low water bridge. Downstream comprises of numerous small bedrock waterfalls and rapids making upstream movements difficult. Marginal vegetation mostly grass at the upstream area while lower down <i>Acacia mearnsii</i> are common.							
GPS co-ordinates		S27.18332° E30.36187°							
Altitude (m.a.s.l)		1353m							
Quaternary Catchment		W51A							
WMA (Midgley <i>et al</i> . 1994)		WMA 6 Usutho to	o Mhlatuze						
Ecoregion		11.02							
Ecoregion Name		Highveld							
River conservation Status (NFEPA, 2011)		Tributary of NFE							
Riparian Vegetation Type Geomorphological Zonation		Grassland; Trees							
(Rowntree & Wadeson, 2000		Upper foothill							
		High Flow (Marc	ch 2012)		Low Flow (S	September 20)12)		
Water Surface Dimensions		Width: 10-20m; D	Depth: 1m		Width: 5-10n	n; Depth: 1m			
Water Turbidity (Dallas, 200	<i>.</i>	Discoloured			Discoloured				
Dominant Velocity-depth Cla	asses	Fast shallow and			Fast and slov				
Water Quality Parameters	HF LF			(mS/m) = 11.1; DO (mS/m) = 17.2; DO					
Algae Presence		Common	.,(, , , , , , , , , , , , , , , , , , , ,	Common	(,,			
Dominant Biotope Diversity		Riffles and pools Riffles and pools							
Other Biota		None			Tadpoles				
Highly Sensitive Taxa (Score	Baetidae > 2sp; Heptageniidae			Baetidae > 2sp					
DATE SAMPLE		SASS5	ASPT	No of Taxa	MIRAI	IHI	FRAI		
28/03/2012 W. Malher	be	172 (B)	5.9	29	83 (B)	86 (B)	79.5 (B/C)		
05/09/2012 W. Malherbe / A		139 (B/C)	5.7	24	76 (C)	88 (B)	77 (C)		
Existing Threats		Litter							

According to DWAF (1996), AI is the third most abundant element in the earth's crust. It occurs primarily as alumina-silicate minerals which are too insoluble to participate readily in bio-geochemical reactions. AI is a strongly hydrolysing metal and is relatively insoluble in the neutral pH range. Under acidic (pH < 6.0) or alkaline (pH > 8.0) conditions, or in the presence of complexing ligands, elevated concentrations may be mobilised to the aquatic environment. The pH at the sites ranged between 6.2 and 8.2, indicating that the AI probably mobilised due to the presence of complexing ligands. In addition, AI can be mobilised from soils and sediments by both natural weathering and accelerated acidification processes, resulting in detectable concentrations in surface waters. The AI concentrations were mostly above the TWQR during high flow, indicating that this was due to weathering during the wet season. Given the high measured pH levels, the elevated levels of AI would have had limited toxicity.

The element Fe is naturally released into the environment from weathering of sulphide ores (pyrite, FeS₂) and igneous, sedimentary and metamorphic rocks. Leaching from sandstones releases iron oxides and iron hydroxides to the environment (DWAF, 1996). High concentrations of Fe were measured especially during high flow. This was possibly because Fe leached from the surrounding mountains and soils into the natural drainage channels that join the tributaries of the Assegaai River. This caused high concentrations of Fe in the surface water at all the sampling sites during high flow. Elevated Fe concentrations can lead to oxygen depletion in rivers and streams. However, the high Fe concentrations during high flow had limited effects on the DO levels at the sites.

However the increased alkalinity usually results from increased carbon dioxide in the water, which is directly related to the amount of plant life within the aquatic system that produces CO₂. The higher alkalinity concentrations at all the sampling sites indicated algal growth and aquatic plants (eutrophication) in the systems (**Figure 3-1**). Some signs of increased algal growth were observed at YZ2, YZ3 and YZ5. The alkalinity concentrations increased sharply during low flow when the flow and water levels were reduced in the systems.

The total hardness concentration at YZ4 was very close to the threshold of TWQR during low flow. Ca and Mg are the major components to total hardness and are naturally found in high levels. The accumulation of these constituents was probably as a result of the non-perennial characteristics of this site.

The turbidity variables indicated values within the TWQR for aquatic ecosystems except at YZ4 during low flow, which had a high turbidity as a result of a natural lack of flowing water at this site. The existing dirt roads and erosion could also lead to increased turbidity, but no increases in the levels where seen at any of the sites.

Other variables, which indicated values higher than the TWQR, were ammonium, nitrate and COD. These variables all relate to organic or nutrient enrichment. Ammonium concentrations were higher at sites YZ1, YZ2 and YZ3. Even though ammonium has little or no toxicity it does contribute to eutrophication and the production of excessive algae and nitrites in the systems.

Nitrate was slightly higher than the 1 mg/L TWQR at site YZ4. Nitrates are seldom abundant in natural surface water, because photosynthesis constantly converts them to organic nitrogen in plant cells (DWAF, 1996). At YZ4 there was a lack of aquatic plants to convert them and together with non-flowing water led to the high concentration observed at this site. However, these high concentrations of NO₃ are normally not toxic to aquatic life. COD is an indication of increased organic waste and the concentrations were higher than the TWQR at site YZ3, YZ4 and YZ5. These levels could be caused by manure and sewage entering the system due to livestock and rural settlements.

In addition to the impacts associated with the livestock and rural settlements, there are also discard dumps from previous coal mines in the area. These mining activities probably occurred at the end of the 19th century and these discard dumps have probably been there for more than 100 years. Therefore, the water quality results did not show any evidence of pollution from these old discard dumps situated upstream of site YZ2.

Overall, it was evident from the results that the baseline variable levels measured in the water were low and mostly un-impacted. There seemed to be higher levels of constituents at the sites during low flow. This indicates temporal changes in the WQ results. The naturally reduced flow and water levels therefore lead to slightly increased concentrations. However, unnatural changes in the water quality will directly affect the biological communities that include species sensitive to changes in water quality.

The species found in mountain streams are able to survive only within a very narrow range of environmental conditions. Therefore, changes to water quality in this region may have profound effects not only here but in the river ecosystem as a whole (Dallas & Day, 2004).

As such, the water quality will be an important component, especially considering the downstream NFEPA, in the management of impacts relating to the proposed development (discussed in **Section G**). No significant increases of any of these variables should be allowed due to proposed development activities.

		Y	Z1	Y	Z2	Y	Z3	Y	Z4	Y	Z5
	TWQR ^a	HF2012	LF2012	HF2012	LF2012	HF2012	LF2012	HF2012	LF2012	HF2012	LF2012
In situ physic-chemical variables											
рН	6-9	6.6	8.5	6.9	8.0	7.5	7.6	6.9	8.1	6.2	8.0
DO (mg/ℓ)	>8	7.2	7.5	7.6	6.7	7.8	8.2	6.3	4.4	6.9	7.6
DO (%)	80-120	99	83.2	102	73.6	110.6	93.9	89.4	47.9	90.9	83.1
Temp. (°C)	5-30	21.8	11.5	21.6	11.7	18.6	13.4	24.6	11.6	22.3	11.8
EC (mS/m)	70*	10.5	16.7	9.8	14.6	13.7	17.6	11.7	18.4	11.1	17.2
TDS (mg/ℓ)	450	52.5	83	49	73	68	88	59	92	55	86
Metals	Metals										
Al (mg/ <i>t</i>)	0.005	0.134	<0.006	0.182	<0.006	0.186	<0.006	0.716	<0.006	0.29	<0.006
Cd (mg/ <i>l</i>)	0.15	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Co (mg/ <i>t</i>)	0.25*	< 0.002	0.004	<0.002	0.003	<0.002	0.003	<0.002	0.002	<0.002	0.003
Cr (mg/ <i>l</i>)	0.007	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cu (mg/ℓ)	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fe (mg/ℓ)	0.1*	0.267	0.113	0.662	<0.006	0.545	0.080	1.46	<0.006	1.073	<0.006
Mn (mg/l)	0.18	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ni (mg/ℓ)	0.1*	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Pb (mg/ <i>l</i>)	0.0002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Zn (mg/ℓ)	0.002	< 0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Total alkalinity (mg/ℓ)	20*	57.7	87.47	52.7	70.22	77.3	103.04	61.5	91.80	56.2	72.71
Total hardness (mg/ℓ)	90	-	82	-	71	-	89	-	71	-	83
Ions/Salts											
Ca (mg/l)	150*	9.481	15.94	8.534	13.88	12.769	17.44	8.882	15.03	9.433	16.06
Cl (mg/ <i>t</i>)	50*	2.3	6.7	1.9	5.07	<1.408	5.54	2.3	7.79	2.7	3.8
F (mg/ℓ)	0.75	-	0.280	-	0.216	-	0.213	-	0.260	-	<0.183
K (mg/ <i>t</i>)	50	0.554	1.27	0.496	1.05	0.591	1.16	0.787	2.71	0.944	1.16

Table 3-6 The constituents analysed at each site during high flow and low flow 2012 and the Target Water Quality Range (TWQR)

		Y.	Z1	Y	Z2	Y.	Z3	YZ4		YZ5	
		HF2012	LF2012	HF2012	LF2012	HF2012	LF2012	HF2012	LF2012	HF2012	LF2012
Mg (mg/l)	70*	5.846	10.24	5.363	8.71	8.036	11.09	4.889	8.13	5.68	10.30
Na (mg/ł)	50*	4.41	6.81	4.39	6.27	6.01	7.19	7.52	13.51	4.95	6.66
Nutrients											
Ammonium (NH ₄) mg/ℓ	0.007	0.122	0.111	0.11	<0.015	0.152	0.030	<0.015	<0.015	<0.015	<0.015
Nitrate (NO ₃) mg/ł	1*	0.395	0.417	0.382	0.402	0.384	0.295	1.198	0.780	0.543	0.591
Nitrite (NO ₂) mg/ł	20*	0.175	0.066	0.173	0.063	0.174	0.065	0.197	0.069	0.196	0.062
Orthophosphate (PO ₄) mg/{	0.3*	-	<0.025	-	<0.025	-	<0.025	-	<0.025	-	<0.025
Sulphate (SO₄) mg/ℓ	80*	<0.321	4.25	<0.321	3.60	<0.132	0.91	<0.132	2.60	<0.132	13.07
Organic enrichment											
COD (mg/ℓ)	20*	7.9	32.08	13.1	32.04	33.49	7.40	42.25	39.64	23.04	12.04
Turbidity											
Suspended Solids (SS) (mg/l)	5*	1	7	5	1	4	3	12	22	<1	<1
Turbidity (NTU)	20	6.2	6.14	8.8	3.13	8.5	8.52	19.8	30.5	10.4	6.15
- Not available			()								
* No data available from DWA (1996)			. ,								
DO – Dissolved Oxygen, EC – Electric	cal Conductivity	/, Iemp. — Iei	mperature; IL	DS – Total Dis	solved Solids						
HF = High Flow; LF = Low Flow. Figures highlighted in blue are charac	toricod as avec	odina limita th	at would size	ificantly influe	neo tho ocupt						
The separative stabilization in blue		0	at would sign		nce me aquai	lie integrity.					

The constituents highlighted in **bold** are considered a concern.

WQ constituent	Sites of concern	Possible sources	Description and impacts
Aluminium (Al)	All the sites	Al was occurring naturally in the soils and sediment and mobilised by natural weathering through water seepage during high flow.	Aluminium is one of the more toxic metals within a water ecosystem and is associated with numerous biochemical effects on aquatic biota. For example AI is toxic and interferes with the ionic and osmotic balance in fish. This results in respiratory problems due to the coagulation of mucus on the gills. AI also hinder Ca metabolism and change the functioning of the Ca regulating protein, calmodulin. In addition, AI interferes with ion exchange sites, especially those involved with sodium homeostasis. This in turn may lead to neuromuscular dysfunction in fish (Colvin <i>et al.</i> 2011; DWAF, 1996). Effects on fish are usually evident at concentrations higher than 0.1 mg/I (Suter & Tsao, 1996; CCME, 1999). These concentrations were observed at YZ1, YZ2 and YZ3 but the high pH levels at the sites caused limited toxicity.
Iron (Fe)	All the sites	Fe is naturally released into the environment from weathering of sulphide ores and igneous, sedimentary and metamorphic rocks. This was probably the case at these sites, especially during high flow when there is an increase in water seepage.	Fe is an important micronutrient but toxic at high concentrations and inhibits various enzymes. Fe compounds easily oxidize and high concentrations can result in oxygen depletion in the rivers and streams. However, the high Fe concentrations at the sites during high flow did not seem to effect the dissolved oxygen concentrations.
Ammonium (NH₄)	YZ1, YZ2 and YZ3	Ammonium is generally formed from the decomposition of nitrogenous organic matter (Dallas & Day, 2004). In addition, atmospheric deposition of ammonia comes from the biological degradation of manure (DWAF, 1996). The NH ₄ concentrations were probably influenced by the presence and grazing of cattle at these sites.	Ammonia occurs in either the free, un-ionized form (NH ₃) or as ammonium ions (NH ₄ ⁺). The toxicity of ammonia is directly related to the concentration of the un-ionized form, which affects the respiratory system of many animals by either inhibiting cellular metabolism or by decreasing the oxygen permeability of the cell membrane (Gammeter & Frutiger, 1990). In fish, ammonia reduces hatching, growth rate and development. It also causes pathological changes in tissue of gills, liver and kidney (Hart <i>et al.</i> 1992). In contrast, the ammonium ion has little or no toxicity (Williams <i>et al.</i> 1986), though it does contribute to eutrophication and the production of excessive algae, toxic nitrites and poor oxygen levels (Dallas & Day, 2004). Ammonium usually results from decomposition of nitrogenous organic matter in the surface or ground water, and it is one of the constituents of the nitrogen cycle (McKee & Wolf, 1963). The non-toxic NH4 ⁺ is converted to the highly toxic NH ₃ at pH values greater than 8. Natural waters typically contain ammonia and ammonium compounds in concentrations below 0.1 mg/l (Dallas & Day, 2004).
Alkalinity	All the sites	Increased alkalinity, usually results from increased carbon	The alkalinity is a measure of the buffering capacity of the water

 Table 3-7
 A description of the water constituents that were present above WQ guidelines defined by DWAF (1996)

WQ constituent	Sites of concern	Possible sources	Description and impacts
		dioxide in the water, which is directly related to the amount of plant life within the aquatic system that produces CO ₂ . Therefore an increase in the algal content will influence this alkalinity. This can also be used as an indirect measure of farming activities and eutrophication.	and the amount of anions of weak acids including OH ⁻ , $CO_3^{2^-}$, and bicarbonate ions. Increases in this alkalinity generally results in waters that are able to maintain high pH, even in the presence of acidic conditions. Basically below a pH of 4 all the CO_2 is in the form of H_2CO_3 . At the values between 6.4 and 8.6 the proportion of rises to peak at 8.3, when CO_3^- begin to appear, while $CO_3^{2^-}$ significantly quantifies only at pH values approaching 10. Complex polyphenolic organics and their salts may form the major buffering system in naturally acid waters, while aluminium and its salts become effective buffering agents in waters subject to acid precipitation.
Nitrate (NO ₃)	YZ4	Even though not abundant in surface water, nitrates are often found in high levels in ground water. Topographical data indicates YZ4 is the lowest point, on the tributary of the Assegaai River, in the proposed surface infrastructure. Therefore, ground water might have influenced the concentration of NO_3 in the surface water. Another possible source might include the previous cultivated land in the area where runoff and fertilizers might have accumulated in this non-perennial site.	Nitrates are seldom abundant in natural surface water, because photographsynthesis constantly converts them to organic nitrogen in plant cells (DWAF, 1996). At YZ4 there was a lack of aquatic plants to convert them and together with non-flowing water led to the high concentration observed at this site. However, high concentrations of NO_3 are normally not toxic.
COD	YZ3, YZ4 and YZ5	Increased COD is an indication of increased organic waste, which is commonly associated with sewage and manure. The cows and cattle grazing at these sites could have influenced these concentrations.	The potential of organic wastes to deplete oxygen is commonly measured as COD. This is then used as an indirect measure of organic enrichment that changes the natural biotic assemblages within the aquatic eccsystems.
Turbidity	YZ4	Increased turbidity and siltation are caused by soil disturbances, erosion and drainage which cause sediment to enter the stream or river. These lead to an increase in suspended solids (SS) entering water bodies. The SS also increased due to non-flowing conditions at YZ4.	Turbidity is influenced by SS. Increased SS will affect light penetration. Decreased light penetration will lead to decreases in primary production and food availability will diminish for organisms in the food chain. Benthic invertebrates will be affected because it changes the suitability of the substrate for some taxa, increase drift, affects respiration and feeding activities. Fish can be affected by having physiological effects (impairment of gill function or reduced resistance to disease), reduction in spawning habitat development hindering, change in migration patterns, reduction in food and intervention with hunting (Dallas & Day, 2004).

NSS

3.3. Habitat Integrity

The habitat integrities for the selected sites on the Mawandlane and Mkusaze Rivers can be seen in **Table 3-8**. With very few impacts on the system the instream and riparian habitats were classified as being largely natural (B) to natural (A). The exceptions were YZ2 and YZ3, which had more impacted riparian habitats and were classified as moderately modified (C) during low flow.

The decreased habitat integrity at YZ2 was due to significant erosion, decrease in indigenous vegetation and an increase in alien vegetation in the form of *Acacia mearnsii* (Black Wattle) and *Acacia melanoxolon* (Australian Blackwood). A small cluster of these trees were present in the riparian zone which has resulted in increased woody debris at the site. There are also some signs of sedimentation and erosion at the site. At YZ3 the decrease in riparian habitat integrity was as a result of considerable erosion and moderate flow and channel modifications due to road crossing and increased aquatic vegetation. These modifications only slightly influenced the instream habitat, and the habitat integrity remained largely natural at this site.

In general, as shown in **Figure 3-1**, the impacts on habitat integrity at the sites were the following:

- Increase in alien vegetation and as a result a decrease in natural vegetation.
- Erosion of the banks.
- Impacts on water quality possibly due to poor land use and leaching of iron and aluminium from the surrounding mountains and soils, increasing the levels in the surface water especially during the rainy season.
- Channel and flow modifications due to roads within the instream channel and in the riparian zone.

	Y.	Z1	Y	Z2	Y	Z3	Y	Z5
	HF 2012	LF 2012	HF 2012	LF 2012	HF 2012	LF 2012	HF 2012	LF 2012
Instream H	abitat							
IH %	95	92	87	85	93	90	86	88
IH Class	Α	Α	В	В	A A		В	В
Impacts	Sedimentatio modification	n, bed	Alien macrophytes,WQ, Reduced flow,sedimentation, livestocksedimentation, increasedwateringinstream vegetation		WQ, rubbish dumping			
Riparian H	abitat							
RH %	93	91	77	62	82	72	90	93
RH Class	Α	Α	С	С	В	С	Α	Α
Impacts	Alien vegetat overgrazing,	-	Alien vegetat in indigenous bank erosion	0	Alien vegetati erosion	ion, bank	Alien vegetat	ion

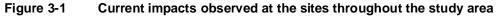
Table 3-8 The instream and riparian habitat integrities for each aquatic sampling site

Even though these habitat modifications were moderate, it indirectly changed the biotope availability, velocity-depth flow structures and water quality, which slightly influenced the biotic component of the ecosystem at these sites. Spatially, the sites had relatively similar instream and riparian integrity scores, probable due to the similarity of the sources of impacts. Temporal comparisons between high and low flow, showed only slight seasonal fluctuations.

Increased algae

WQ - Fe seeping into the rivers

Cows grazing and livestock watering



Alien vegetation in riparian zone – Black Wattle (*Acacia meamsii*)

Alien vegetation in riparian zone – Australian Blackwood (*Acacia melanoxolon*)

3.4. Macro-invertebrates

Macro-invertebrate Habitat Availability

The dominant biotope diversities for each site are presented in **Table 3-9**. The tributaries of the Assegaai i.e. Mkuzase and Mawandlane Rivers were typical mountain streams and foothill-cobbles beds, mostly dominated by 1st and 2nd stream order. Bedrock was occasionally present, but the rivers were dominated by cobbles/pebbles with boulders and GSM. The shallow water habitat was mostly cobble, riffle and bedrock rapids. All three biotopes-groups were present. The most common was with stones (in and out of current), then marginal vegetation (in and out of current) but GSM was sparse.

	YZ1	YZ2	YZ3	YZ5
Invertebrate habitat				
Stones in current	3 (run)	1 (run)	1	1 (run)
(SIC)	5 (1011)	r (run)	I	r (run)
Stones out of current	3 (pools)	3 (pools)	4 (pools)	2 (pools)
(SOOC)	5 (pools)	5 (pools)	4 (pools)	2 (p0015)
Bedrock	2	0	1	3
Aquatic Vegetation	1 (algae)	0	0	1 (algae)
Marginal Vegetation in	2 (grasses)	1 (grasses)	3 (grasses)	1 (grasses)
Current	2 (9183363)	r (grasses)	5 (grasses)	r (grasses)
Marginal Vegetation	3 (grasses)	3 (grasses)	2 (grasses)	3 (grasses)
out of Current	5 (giasses)	5 (glasses)	2 (grasses)	5 (grasses)
Gravel, sand and mud	1 (in channel)	1 (in channel)	2 (in channel)	1 (in channel)
(GSM)		i (in channe)		
0=absent, 1=rare, 2=spa	arse, 3=moderate, 4=	abundant and 5=ver	y abundant	

 Table 3-9
 The dominant biotope diversities for each site by means of Dallas (2005)

SASS5

The macro-invertebrate assessments were completed using the SASS5 sampling methodology and interpreted using the interpretation guidelines as specified by Dallas (2007). The results of this assessment, for the selected bio-monitoring sites in the proposed AYCP, are provided in **Table 3-10**. The family assemblages are represented in **Appendix A**. The macro-invertebrate integrity varied from largely natural (B) to seriously modified (E) according to the SASS5 interpretation guidelines for the upper reaches of the Eastern Escarpment Mountains Ecoregion.

		Y	Z1	Y	Z2	Y	Z3	Y	Z5
		HF	LF	HF	LF	HF	LF	HF	LF
	Ref ^a	2012	2012	2012	2012	2012	2012	2012	2012
	23								
SASS5 Score	0	142	105	119	61	170	144	172	139
	5.								
ASPT	8	5.5	5.5	5.4	4.6	5.7	5.5	5.9	5.8
PES		В	C/D	С	E	В	В	В	С
No. of families	40	26	19	22	13	30	26	29	24
No. of airbreathers		8	5	7	3	12	10	8	7
% of airbreathers		31%	26%	32%	23%	40%	38%	28%	29%
Abundance of families	S		Baetid						
> 100		-	ae	-	-	-	-	-	-
MIRAI Score	-	80	72	73	56	84	80	83	76
			a, iuncioi		y groups		gion		
MIRALEC - B C D B B C - Not available -									

Table 3-10Macro-invertebrate integrity assessments using SASS, ASPT and MIRAI scores forreference, historical and current assemblages

The SASS5 and ASPT scores were used to interpret the impacts on the community assemblages in terms of spatial and temporal variations. During high flow, the sites YZ1, YZ3 and YZ5 were classified as largely natural while YZ2 was moderately modified. The highest SASS5 score and ASPT were calculated for site YZ5. The largely natural macro-invertebrate community at these sites are reflected in the presence of sensitive families like the Heptageniidae, Leptophlebiidae, Tricorythidae, Athericidae and Ecnomidae.

During low flow the SASS5 scores and ASPT decreased considerably, causing YZ1 and YZ5 to become moderately modified and YZ2 seriously modified. However the site YZ3 stayed largely natural. It is clear that these trends are related to seasonal variation. This was seen as most of sensitive taxa were still present although the amount of species decreased. This was caused by the reduced flow and water levels during low flow which influenced the habitat availability for these macro-invertebrates.

Site YZ1 was close to being classified as moderately modified but this can possibly be attributed to its river type, which is a mountain stream. Mountain streams often have a lower productivity which can result in a decrease biological community. However, the presence of the sensitive families including the Athericidae, Chlorocyphidae, Leptophlebiidae, Tricorythidae and Psephenidae, indicated that the water quality is largely natural.

Site YZ2 had the lowest SASS5 score and ASPT value within the study area and this can be related to the decreased habitat quality at the site. As mentioned before (**Table 3-8**), the decreased habitat was due to sedimentation and the impact of alien vegetation on the river reach. The extra debris in the system from the alien vegetation could influence the organic enrichment at this site. However, the increased COD levels are only observed during low flow. Therefore, the water quality at the site was still in a good condition as sensitive families including the Dixidae, Tricorythidae and Leptophlebiidae were still present at the site. In addition, the abundance of species that prefer organic enriched waters like earthworms, flatworms, leeches and biting midges were very low at this site and confirmed the good WQ.

MIRAI

MIRAI measures the response of the macro-invertebrates to certain drivers, namely flow, habitat and water quality. The MIRAI scores and associated EC scores for each sampling site are presented in **Table 3-10**. The scores of the sites ranged between largely natural (B) and largely modified (D). The Reference list derived for the MIRAI index had a maximum SASS5 and ASPT score of 240 and 5.8 respectively.

Three of the sites (YZ1, YZ3 and YZ5) were largely natural during high flow. These sites had a high number of families and sensitive taxa present and a low number of tolerant species. The site YZ2 was largely modified, during high flow, compared to reference conditions. These modifications were due to a lower number of families present (13 families) in comparison to the reference assemblage (40 families). However, the abundances of these families were also similar to the Reference list and most of the sensitive species i.e. Leptophlebiidae and Tricorythidae were still present at this site.

There was a slight decrease in the MIRAI scores during the low flow assessment at YZ1, YZ2 and YZ5. All three of these sites decreased to become moderately modified. YZ3, in contrast, remained largely natural. The drivers associated with these slight temporal changes were flow and habitat. There was a clear reduction in flow and water levels during the low flow field sampling. This caused slightly reduced habitat availabilities such as stones and vegetation in current, which led to a reduction in species that prefer these habitats.

These modifications were natural seasonal changes and should not be misinterpreted. The PES of the aquatic systems as a whole is still largely natural despite the decreased family diversity during low flow. It will return to the largely natural state during high flow again due to limited local impacts.

A further indication that these macro-invertebrate community structures were only slightly impacted on, was through the assessment of the abundances of present families. The majority of families were present in acceptable abundances (1-100) at all of the sampling sites.

However, a high abundance of more than two species of Baetidae (+/- 200) was noted at YZ1. These macro-invertebrates are strong swimmers and were mainly sampled in the stones in current biotope where oxygen levels were high (**Table 3-6**). This family of scrapers were most likely abundant due to the algae content in the Mawandlane River. Therefore, in addition to the ideal habitat condition there was no shortage of food supply for this family with the increased algae, detritus, diatoms, midge larvae, protozoans and rotifers (DeMoore *et al.* 2003) at this site. The presence and abundances of sensitive species also indicate good WQ and flow levels in these systems. The low percentage of air-breathers (26%-40%) also highlights sufficient DO concentrations at all of the sampling sites.

3.5. Ichthyofauna

Fish Habitat Availability

The location of the study area is within the upper reaches of the Usutu River catchment causing the Assegaai River and its tributaries to have a diverse number of habitats. Therefore, the sampling sites had abundant fast shallow, slow shallow and slow deep habitats (**Table 3-11**).

	YZ1	YZ2	YZ3	YZ5				
Fish habitat								
Slow-deep	2	3	3	2				
Fast-deep	0	0	0	0				
Slow-shallow	4	4	4	4				
Fast-shallow4223								
0=absent, 1=rare, 2=sparse, 3	3=moderate, 4=abund	dant and 5=very ab	undant					

 Table 3-11
 The velocity depth classes for each site by means of Dallas (2005).

Fish Reference List

The Reference list of expected fish species and their relative abundance at each site was compiled using FROC (Kleynhans *et al.* 2008) for the RHP site on the Assegaai River (RHP Code: W5ASSE-HEYSH), and other literature sources. According to this, ten fish species are expected to occur within the Assegaai River and its tributaries (**Table 3-12**), and include: species that should occur in quaternary catchment W51A included *Anguilla mossambica*, *Amphilius uranoscopus*, *Barbus anoplus*, *Barbus argenteus*, *Barbus brevipinnis*, *Chiloglanis emarginatus*, *Labeobarbus polylepis*, *Pseudocrenilabrus philander*, *Tilapia sparmanii* and *Varicorhinus nelspruitensis*.

FAMILY	SPECIES	COMMON NAME	STATUS	SAMPLED					
ANGUILLIDAE	Anguilla mossambica	Longfin eel	NE	No					
AMPHILIIDAE	Amphilius uranoscopus	Stargazer mountain catfish	LC	Yes					
CICHLIDAE	Pseudocrenilabrus philander	Southern mouthbrooder	LC	No					
CICHLIDAE	Tilapia sparrmanii	Banded tilapia	LC	No					
CYPRINIDAE	Barbus anoplus	Chubbyhead barb	LC	Yes					
CYPRINIDAE	Barbus argenteus	Rosefin barb	LC	No					
CYPRINIDAE	Barbus brevipinnis*	Shortfin barb	NT	No					
CYPRINIDAE	Labeobarbus polylepis	Bushveld Smallscale yellowfish	LC	Yes					
CYPRINIDAE	Varicorhinus nelspruitensis*	Incomati chiselmouth	NT	No					
MOCHOKIDAE	MOCHOKIDAE Chiloglanis emarginatus* Pongolo suckermouth NT No								
* - Sensitive spec	cies; LC = Least concern; NE =	Not evaluated; NT = Near threate	ened						

Table 3-12Expected and sampled fish species in the AYCP study area

Sampled Fish Species

The fish community was assessed using electro-shocking and fyke nets during the aquatic assessment. Three of the ten expected fish species were sampled in the current study and presented in **Table 3-13** and **Figure 3-2**. This included the indigenous species namely *A*. *uranoscopus*, *B. anoplus* and *L. polylepis*.

The Stargazer Mountain Catfish (*A. uranoscopus*) prefer clear fast-flowing deep and shallow water in rocky habitats. This species is intolerant to no-flow and modified WQ conditions. Their migrations are also very local, only within reaches of the river (Kleynhans *et al.* 2008; Skelton, 2001) and were sampled in the Mawandlane and Mkuzase Rivers.

The Bushveld Smallscale Yellowfish (*L. polylepis*) prefer good habitats with fast flowing water and deep pools (Kleynhans *et al.* 2008; Skelton, 2001; Scott *et al.* 2006) and based on this were sampled in the Mawandlane River where these habitats were permanently present and water quality was good.

The Chubbyhead Barb (*B. anoplus*) was sampled at all of the sites, especially in the slow flowing water and pools with marginal and aquatic vegetation which are their preferred habitat. They migrate between river reaches and their lack of sensitivity to flow further indicates why they occurred at all of the sites.

Chubbyhead Barb (Barbus anoplus)

Bushveld Smallscale Yellowfish (Labeobarbus polylepis)

Stargazer Mountain CatfishAmphilius uranoscopusFigure 3-2Photographs of indigenous fish species that were caught in the study area

Species not sampled


The Banded Tilapia (*T. sparmanil*) and Southern Mouthbrooder (*P. philander*) both prefer slow flowing, quiet and/or standing water with lots of vegetation. The fast flowing water in these systems could have been the reason why neither of these species was sampled at any of the sites. The Rosefin Barb (*B. argenteus*) was also not sampled at any of the sites, even though this species prefers riffles in clear rocky streams and inhabits pools. Therefore, the reason for the lack of these species was not clear

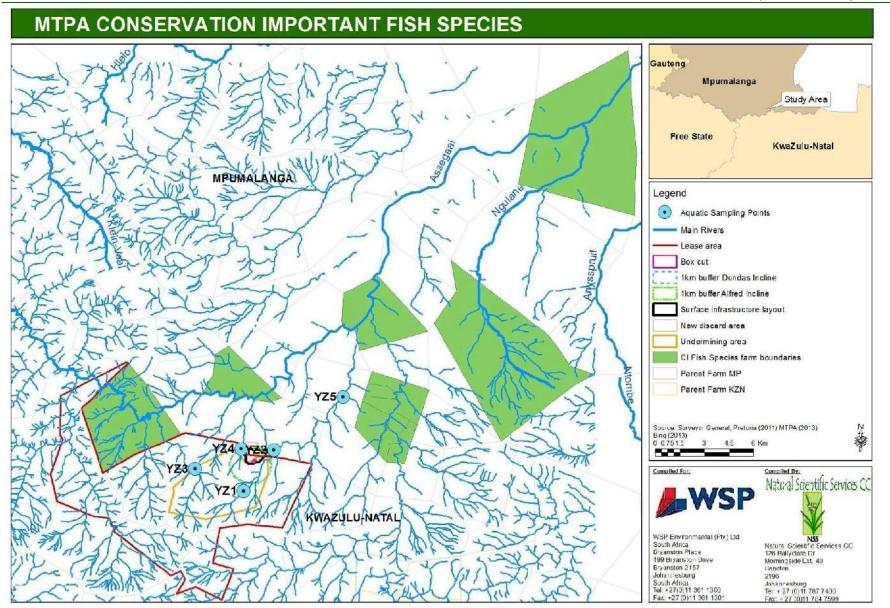
In addition, the Longfin Eel (*A. mossambica*) was not sampled during this study. Potential instream barriers i.e. waterfalls further downstream of these sites might have prevented migration of this species. Another possibility is that this species normally migrates during the summer season back to the ocean (Skelton, 2001), and because neither of the sampling runs occurred during summer, it might explain their absence in the study area during sampling.

		REF	ERENCE	Sampling sites – High Flow 2012				Sampling sites – Low Flow 2012			
FISH SPECIES		FROC	Abundance	YZ1	YZ2	YZ3	YZ5	YZ1	YZ2	YZ3	YZ5
# of indigenous species				2	3	1	2	2	2	2	3
FRAI score %				79.5	79.5	75.6	79.5	77.0	77.0	71.3	77.0
FRAI EC				B/C	B/C	С	B/C	С	С	С	С
Total min sampled				105	60	80	60	40	55	60	70
Anguilla mossambica	Longfin Eel	3	1	-	-	-	-	-	-	-	-
Amphilius uranoscopus	Stargazer	4	2	8	2	-	-	2	-	15	1
,	Mountain Catfish			-						_	
Barbus anoplus	Chubbyhead Barb	5	2	12	16	11	4	9	17	4	11
Barbus argenteus	Rosefin Barb	4	2	-	-	-	-	-	-	-	-
Barbus brevipinnis*	Shortfin Barb	3	3	-	-	-	-	-	-	-	-
Chiloglanis emarginatus*	Phongolo Suckermouth	2	4	-	-	-	-	-	-	-	-
Labeobarbus polylepis	Smallscale Yellowfish	5	5	-	13	-	37	-	5	-	6
Pseudocrenilabrus philander	Southern Mouthbrooder	5	3	-	-	-	-	-	-	-	-
Tilapia sparrmanii	Banded Tilapia	3	3	-	-	-	-	-	-	-	-
Varicorhinus nelspruitensis*	Incomati Chiselmouth	3	3	-	-	-	-	-	-	-	-
- Not sampled											
*Conservation Important spec	ies										

Table 3-13 Reference and current fish frequency of occurrence

NSS

Sensitive Fish Species


The ten potentially occurring fish species include three Conservation Important (CI) species, namely *C. emarginatus* (Phongolo Suckermouth), *B. brevipinnis* (Shortfin Barb) and *V. nelspruitensis* (Incomati Chiselmouth). Engelbrecht *et al.* (2007) classify *V. nelspruitensis and B. brevipinnis* as Near Threatened, and *C. emarginatus* is regarded as a CI species by the Mpumalanga Tourism and Parks Agency (MTPA) (**Figure 3-3**).

Varicorhinus nelspruitensis occurs in the headwaters of the Incomati and Phongolo Rivers in Mpumalanga and KwaZulu-Natal as well as in Swaziland. There are numerous populations located in the upper catchments, but these are generally small and impacted upon by sedimentation, agriculture, alien fish and illegal gill netting (Engelbrecht *et al.* 2007). These fish need larger escarpment streams with reliable water flow and rocky substrates to ensure continued population stability. During this study, *V. nelspruitensis* was not sampled at any of the smaller systems (YZ1 – YZ3) nor in the larger system at YZ5. This was indeed expected at YZ1 – YZ3, but not at the site YZ5 that fulfilled the good habitat requirements of this species. The RHP site on the Assegaai River is located approximately 4km downstream of the study area, and *V. nelspruitensis* has been sampled there in the past. It may, therefore, occur on site.

Barbus brevipinnis is classified as Near Threatened by the IUCN due to its small area of occupancy, as well as, the decline in habitat range and quality due to upstream activities (Engelbrecht *et al.* 2007). These upstream activities include sedimentation, water abstraction, effect of dams and predation by trout. *B. brevipinnis* generally occurs in the headwater streams of the Phongolo and Sabie Sand systems where it is typically associated with banks, root stocks and marginal vegetation. Although not sampled during the current survey it was recently sampled at the RHP site on the Assegaai River approximately 4km downstream of YZ4. The tributaries of the Assegaai River consist of numerous small waterfalls that might have hindered fish migrations and this species also migrates very locally between river reaches which might explain its absence at the sites.

Chiloglanis emarginatus is not classified as threatened by the IUCN (Engelbrecht *et al.* 2007), but it is listed as a CI species by the MTPA. This is due to the decrease in its abundance, as well as, its extinction in its type locality in the Lekkerloop stream (GPS coordinates: S25.98333° E30.65000° – approximately 140 km from the study site). This is due to excessive water extraction by farmers during the low flow seasons (Engelbrecht *et al.* 2007). Furthermore, *C. emarginatus* are also more abundant in Swaziland than in South Africa and as such was deemed a Least Concern by the IUCN. Although not sampled within the small streams in the specific study area it is expected to occur at the RHP site downstream in the Assegaai River, and any impacts on its tributaries could potentially affect the Assegaai River (**Figure 3-3**).

NSS

FRAI

FRAI scores were calculated to determine the frequency of occurrence of potentially occurring fish species in the Mkusaze and Mawandlane Rivers. The FRAI results indicated that sites YZ1, YZ2 and YZ5 are largely natural/moderately modified, while the YZ3 site is modified. These slightly lower EC scores were due to the decreased frequency of occurrence of the potentially occurring fish species in these systems.

During low flow, all the FRAI scores decreased to moderately modified due to a decrease in abundances and number of species present. These modifications were as a result of decreased flow, velocity-depth and cover during low flow. This indicates natural seasonal changes in these systems. It must also be noted that the natural breeding period of fish in the area is during the summer season. Therefore, fish activity is usually much greater during high flow compared to the low flow periods. In addition, it is expected that all of the reference species still occur within these systems although they were not sampled during the two surveys.

The general fish habitat availability was good with numerous flow types, substrate size classes, velocity-depth classes as well as marginal vegetation present at each site. The fish species namely *B. argenteus, P. philander* and *T. sparmanii* that were not sampled are considered tolerant. These species are still expected to be present, as a result of the good habitat quality conditions, but possibly in a lesser abundance as seen at the RHP site on the Assegaai River.

4. Appendices

4.1. Appendix 1 High and low flow (2012) SASS5 data

ATTRIBUTES / MACRO-INVERTEBRATES	Sensitivity Score	REF	YZ1	YZ2	YZ3	YZ5
SASS5 Score		230	142	119	170	168
No of taxa		40	26	22	30	29
ASPT		5.8	5.5	5.4	5.7	5.8
No of airbreathers		14	8	7	12	8
% of airbreathers		35%	31%	32%	40%	28%
EC		Α	В	С	В	В
PORIFERA (Sponge)	5					
COELENTERATA (Cnidaria)	1					
TURBELLARIA (Flatworms)	3	1	А	А	A	
ANNELIDA						
Oligochaeta (Earthworms)	1	A	A	A		A
Hirudinea (Leeches)	3					
CRUSTACEA Amphipoda (Scuds)	13					
Potamonautidae* (Crabs)	3	А	В	А	В	A
Atyidae (Freshwater Shrimps)	8	A 1	D	A	D	A
Palaemonidae (Freshwater Prawns)	10	1				
HYDRACARINA (Mites)	8	1			1	В
PLECOPTERA (Stoneflies)	0					
Notonemouridae	14					
Perlidae	12					
EPHEMEROPTERA (Mayflies)						
Baetidae 1sp	4					
Baetidae 2spp	6					
Baetidae >2spp	12	В	В	В	В	В
Caenidae (Squaregills/Cainfles)	6	А	А	А	1	Α
Ephemeridae	15					
Heptageniidae (Flatheaded mayflies)	13	А				Α
Leptophlebiidae (Prongills)	9	А	В	А	1	А
Oligoneuridae (Brushlegged mayflies)	15					
Polymitarcyidae (Pale Burrowers)	10					
Prosopistomatidae (Water specs)	15					
Teloganodidae SWC (Spiny Crawlers)	12					
Tricorythidae (Stout Crawlers)	9	А	А	А	В	А
ODONATA (Dragonflies & Damselflies)						
Calopterygidae ST,T (Demoiselles)	10					
Chlorocyphidae (Jewels)	10	1				1
Synlestidae (Chlorolestidae)(Sylphs)	8	1			1	
Coenagrionidae (Sprites and blues)	4	Α	А	А	А	Α
Lestidae (Emerald Damselflies/Spreadwings)	8					
Platycnemidae (Stream Damselflies)	10					
Protoneuridae (Threadwings)	8					
Aeshnidae (Hawkers & Emperors)	8	А	В	А	А	A
Corduliidae (Cruisers)	8					
Gomphidae (Clubtails)	6	А	В	А	В	А

ATTRIBUTES / MACRO-INVERTEBRATES	Sensitivity Score	REF	YZ1	YZ2	YZ3	YZ5
Libellulidae (Darters/Skimmers)	4	А			А	1
LEPIDOPTERA (Aquatic Caterpillars/Moths)						
Crambidae (Pyralidae)	12					
HEMIPTERA (Bugs)						
Belostomatidae* (Giant water bugs)	3	1			1	1
Corixidae* (Water boatmen)	3	Α	В	A	В	A
Gerridae* (Pond skaters/Water striders)	5	Α	A	A	A	
Hydrometridae* (Water measurers)	6					
Naucoridae* (Creeping water bugs)	7	1		-	A	A
Nepidae* (Water scorpions)	3					
Notonectidae* (Backswimmers)	3	A	A	1	A	1
Pleidae* (Pygmy backswimmers)	4	1			1	
Veliidae/Mveliidae* (Ripple bugs)	5	А	A	1	A	А
MEGALOPTERA (Fishflies, Dobsonflies and Alderflies) Corydalidae (Fishflies & Dobsonflies)	8					
Sialidae (Alderflies)	6					
TRICHOPTERA (Caddisflies)						
Dipseudopsidae	10					
Ecnomidae	8					1
Hydropsychidae 1 sp	4				1	
Hydropsychidae 2 sp	6	А	В	A		Α
Hydropsychidae > 2 sp	12					
Philopotamidae	10					
Polycentropodidae	12					
Psychomyiidae/Xiphocentronidae	8					
Cased caddis: Barbarochthonidae SWC	13					
Calamoceratidae ST	11					
Glossosomatidae SWC	11					
Hydroptilidae	6					
Hydrosalpingidae SWC	15					
Lepidostomatidae	10					
Leptoceridae	6	1				А
Petrothrincidae SWC	11					
Pisuliidae	10					
Sericostomatidae SWC	13					
COLEOPTERA (Beetles)						
Dytiscidae/Noteridae* (Diving beetles)	5	А	1	1	В	А
Elmidae/Dryopidae* (Riffle beetles)	8	1		1	1	
Gyrinidae* (Whirligig beetles)	5	А	В		А	А
Haliplidae* (Crawling water beetles)	5				1	
Helodidae (Marsh beetles)	12					
Hydraenidae* (Minute moss beetles)	8					
Hydrophilidae* (Water scavenger beetles)	5	1				
Limnichidae (Marsh-Loving Beetles)	10					
Psephenidae (Water Pennies)	10	1	1		1	1
DIPTERA (Flies)	_					
Athericidae (Snipe flies)	10	1	1			
Blepharoceridae (Mountain midges)	15					
Ceratopogonidae (Biting midges)	5	А	1		А	А
Chironomidae (Midges)	2	А	А	А	А	А
						А
Culicidae* (Mosquitoes)	1	1	1	1		<u>A</u>
Culicidae* (Mosquitoes) Dixidae* (Dixid midge)	1 10	1	1	A		A

ATTRIBUTES / MACRO-INVERTEBRATES	Sensitivity Score	REF	YZ1	YZ2	YZ3	YZ5
Ephydridae (Shore flies)	3					
Muscidae (House flies, Stable flies)	1					
Psychodidae (Moth flies)	1	1	А	А		Α
Simuliidae (Blackflies)	5	1				
Syrphidae* (Rat tailed maggots)	1					
Tabanidae (Horse flies)	5	1	1			
Tipulidae (Crane flies)	5	1	А	1	А	А
GASTROPODA (Snails)						
Ancylidae (Limpets)	6	1	A		A	
Bulininae*	3					
Hydrobiidae*	3					
Lymnaeidae* (Pond snails)	3					
Physidae* (Pouch snails)	3					
Planorbinae* (Orb snails)	3	1				
Thiaridae* (=Melanidae)	3					
Viviparidae* ST	5					
PELECYPODA (Bivalves)						
Corbiculidae (Clams)	5					
Sphaeriidae (Pill clams)	3					
Unionidae (Perly mussels)	6					
* airbreathers; Abundances: 1 = 1; A = 2-10; B = 10-1 REF = Reference; SWC = South Western Cape; T = 7		opica.				

Table 4-2 Macro-invertebrates sampled in low flow 2012

	Sensitivity					
	Score	REF	YZ1	YZ2	YZ3	YZ5
SASS Score		230	105	61	144	139
No of Taxa		40	19	13	26	24
ASPT		5.8	5.5	4.6	5.5	5.7
No of airbreathers		14	5	3	10	7
% of airbreathers		35%	26%	23%	38%	29%
EC		Α	D	E	В	С
PORIFERA (Sponge)	5					
COELENTERATA (Cnidaria)	1					
TURBELLARIA (Flatworms)	3	1		1	А	1
ANNELIDA						
Oligochaeta (Earthworms)	1	A	1			1
Hirudinea (Leeches)	3					
CRUSTACEA						
Amphipoda (Scuds)	13					
Potamonautidae* (Crabs)	3	Α	1	1	1	1
Atyidae (Freshwater Shrimps)	8	1				
Palaemonidae (Freshwater Prawns)	10					
HYDRACARINA (Mites)	8	1				1
PLECOPTERA (Stoneflies)	14					
Notonemouridae						
Perlidae	12					
EPHEMEROPTERA (Mayflies)						
Baetidae 1sp	4 6					
Baetidae 2spp	12			В	٨	
Baetidae >2spp		B	C		<u>A</u>	B
Caenidae (Squaregills/Cainfles)	6	A	1	В	В	В
Ephemeridae	15					
Heptageniidae (Flatheaded mayflies)	13	Α				

	Sensitivity Score	REF	YZ1	YZ2	YZ3	YZ5
Leptophlebiidae (Prongills)	9	A	В	В	1	А
Oligoneuridae (Brushlegged mayflies)	15				•	
Polymitarcyidae (Pale Burrowers)	10					
Prosopistomatidae (Water specs)	15					
Teloganodidae SWC (Spiny Crawlers)	12					
Tricorythidae (Stout Crawlers)	9	А	1	В	В	В
ODONATA (Dragonflies & Damselflies)						
Calopterygidae ST,T (Demoiselles)	10					
Chlorocyphidae (Jewels)	10	1	1			
Synlestidae (Chlorolestidae)(Sylphs)	8	1			А	
Coenagrionidae (Sprites and blues)	4	А	А	Α	А	Α
Lestidae (Emerald Damselflies/Spreadwings)	8					
Platycnemidae (Stream Damselflies)	10					
Protoneuridae (Threadwings)	8					
Aeshnidae (Hawkers & Emperors)	8	А	А		А	Α
Corduliidae (Cruisers)	8					1
Gomphidae (Clubtails)	6	А	А	1	А	A
Libellulidae (Darters/Skimmers)	4	A			1	A
LEPIDOPTERA (Aquatic Caterpillars/Moths)					· ·	
Crambidae (Pyralidae)	12					
HEMIPTERA (Bugs)						
Belostomatidae* (Giant water bugs)	3	1				
Corixidae* (Water boatmen)	3	А		А	А	
Gerridae* (Pond skaters/Water striders)	5	А			1	
Hydrometridae* (Water measurers)	6					
Naucoridae* (Creeping water bugs)	7				1	
Nepidae* (Water scorpions)	3		1			
Notonectidae* (Backswimmers)	3	А	1			
Pleidae* (Pygmy backswimmers)	4	1			В	
Veliidae/Mveliidae* (Ripple bugs)	5	Α			А	A
MEGALOPTERA (Fishflies, Dobsonflies & Alderflies)						
Corydalidae (Fishflies & Dobsonflies)	8					
Sialidae (Alderflies)	6					
TRICHOPTERA (Caddisflies)	10					
	<u>10</u> 8					
	4		•	1		
Hydropsychidae 1 sp	6	٨	A	1	٨	^
Hydropsychidae 2 sp	-	A			A	A
Hydropsychidae > 2 sp	12					
Philopotamidae	10					
Polycentropodidae						
Psychomyiidae/Xiphocentronidae	8					
Cased caddis: Barbarochthonidae SWC	13					
Calamoceratidae ST	11					
Glossosomatidae SWC	11					
	6					
Hydroptilidae	15					
Hydrosalpingidae SWC	10					
	6	4				4
Leptoceridae	11	1				1
Petrothrincidae SWC	-					
Pisuliidae	10					
Sericostomatidae SWC	13					

	Sensitivity Score	REF	YZ1	YZ2	YZ3	YZ5
COLEOPTERA (Beetles)	00010					
Dytiscidae/Noteridae* (Diving beetles)	5	А	1		А	А
Elmidae/Dryopidae* (Riffle beetles)	8	1				1
Gyrinidae* (Whirligig beetles)	5	А	1			А
Haliplidae* (Crawling water beetles)	5					
Helodidae (Marsh beetles)	12					
Hydraenidae* (Minute moss beetles)	8					
Hydrophilidae* (Water scavenger beetles)	5	1			А	
Limnichidae (Marsh-Loving Beetles)	10					
Psephenidae (Water Pennies)	10	1				
DIPTERA (Flies)						
Athericidae (Snipe flies)	10	1			1	
Blepharoceridae (Mountain midges)	15					
Ceratopogonidae (Biting midges)	5	А	1	A	А	Α
Chironomidae (Midges)	2	А	Α	A	А	В
Culicidae* (Mosquitoes)	1	1		А	1	A
Dixidae* (Dixid midge)	10					1
Empididae (Dance flies)	6					
Ephydridae (Shore flies)	3					
Muscidae (House flies, Stable flies)	1					
Psychodidae (Moth flies)	1	1				
Simuliidae (Blackflies)	5	1	А			1
Syrphidae* (Rat tailed maggots)	1					
Tabanidae (Horse flies)	5	1				
Tipulidae (Crane flies)	5	1	1		1	
GASTROPODA (Snails)						
Ancylidae (Limpets)	6	1			A	
Bulininae*	3					
Hydrobiidae*	3					
Lymnaeidae* (Pond snails)	3					
Physidae* (Pouch snails)	3					
Planorbinae* (Orb snails)	3	1			1	
Thiaridae* (=Melanidae)	3					
Viviparidae* ST	5					
PELECYPODA (Bivalves)						
Corbiculidae (Clams)	5					
Sphaeriidae (Pill clams)	3					L
Unionidae (Perly mussels)						1

Section E: Wetland Assessment

NATURAL SCIENTIFIC SERVICES

SECTION E: TABLE OF CONTENTS

1.	Intro	Introduction181					
2.	Meth	nodology					
	2.1.	Desktop Research					
	2.2.	Fieldwork					
	2.3.	Study Limitations	185				
3.	Resu	ılts					
	3.1.	Wetland Classification					
	3.2.	Wetland Extent	191				
	3.3.	Ecological State of Wetlands					
	3.4.	Ecological Importance and Sensitivity	199				
	3.5.	Wetland Eco-Services	200				
4.	Appendices						
	4.1.	Appendix 1 Inland Wetland Classification System (Ollis et al, 2013)					

SECTION E: LIST OF TABLES

Table 2-1	Impact Scores and Present Ecological State categories
Table 2-2	Trajectory of change classes, scores and symbols
Table 2-3	Ecosystem services assessed using the WET-EcoServices model (Kotze et a
	2008)
Table 2-4	Scoring Guideline
Table 2-5	Ecological importance and sensitivity categories - Interpretation of median score
	for biotic and habitat determinants
Table 3-1	Wetland Extent per HGM Unit19
Table 3-2	Summary of the overall health of wetland System 1 based on impact and chang
	score
Table 3-3	Summary of the overall health of wetland System 2 based on impact and chang
	score
Table 3-4	Ecological Importance and Sensitivity

SECTION E: LIST OF FIGURES

Figure 2-1	Primary HGM types, highlighting dominant water inputs, throughputs & output	ıts
	(Ollis <i>et al.</i> 2013)	79
Figure 3-1	Wetland HGM Units18	38

Figure 3-2	Examples of River inland wetland systems identified on site
Figure 3-3	Examples of the Channelled Valley Bottom inland wetland systems identified on
	site
Figure 3-4	Examples of the Seep inland wetland systems identified on site190
Figure 3-5	Examples of Soil Wetness Indicators found within the study area192
Figure 3-6	Examples of vegetation indicators found within the study area193
Figure 3-7	Wetland Sampling Points and Extent within the Surface Infrastructure Footprint
Figure 3-8	Wetland Extent within Underground Mining Area and Surface Infrastructure
	Footprint
Figure 3-9	Evidence of a "Landslide" and associated erosion and deposition (2011) and the
	recovered system (2013)197
Figure 3-10	Examples of current impacts within the wetland systems identified on site199
Figure 3-11	Wetland Eco-Services
0	

SECTION E: WETLAND ASSESSMENT

1. Introduction

Natural Scientific Services CC (NSS) was contracted by WSP to perform Biodiversity Scoping, Baseline and Impact Assessments for selected aspects of the proposed ATHA Yzermyn Coal Project (AYCP). **Section E** of this report details the Baseline Wetland Assessment, which involved desktop- and field-based investigation (including delineation) of wetlands for selected aspects of the AYCP. Potential impacts on wetlands of the AYCP and recommended measures to mitigate these impacts are discussed in **Section G**.

The NWA (Act No. 36 of 1998) defines a wetland as:

"Land which is transitional between terrestrial and aquatic systems where the water table is usually at or near the surface, or the land is periodically covered with shallow water, and which land in normal circumstances supports or would support vegetation typically adapted to life in saturated soil".

Under the Convention on Wetlands (Ramsar, Iran, 1971) "wetlands" are defined by Articles 1.1 and 2.1 as shown below:

Article 1.1:

"For the purpose of this Convention wetlands are areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres."

Article 2.1 provides that wetlands:

"may incorporate riparian and coastal zones adjacent to the wetlands, and islands or bodies of marine water deeper than six metres at low tide lying within the wetlands".

2. Methodology

The wetland assessment was based on the SoW as outlined in the NSS proposals: 1877 (19 February 2013) and 1933 (11 July 2013). The assessment includes both a desktop and field based investigation of wetlands within the current (new) surface infrastructure area and proposed discard area (areas hereon referred to as the Study Area). A desktop wetland delineation was also undertaken for the wetlands within the greater undermining area.

2.1. Desktop Research

A desktop study and investigation of Google Earth aerial imagery was undertaken prior to the field investigation to identify potential wetland areas within the study area. In addition to Google Earth imagery, the following background information was taken into consideration:

- 20m Contour data (supplied by WSP);
- Geohydrological Impact Assessment (WSP, 2013a);
- Land Use, Soil and Land Capability Assessment (WSP, 2013b)

Based on the available information, a desktop delineation was also undertaken for the wetland areas in the greater underground mining area. Unfortunately the Land Use, Soil and Land Capability Assessment (WSP, 2013) did not provide a site specific soils map that could be used as part of the desktop mapping for the greater underground mining area.

2.2. Fieldwork

The wetland assessment was undertaken from 15-17 July 2013 for the current (new) surface infrastructure and proposed discard areas (**Section A: Figure 2-1**).

2.2.1 Wetland Classification

The recently published 'Classification system for Wetlands and other Aquatic Ecosystems in South Africa' (hereafter referred to as the 'Classification System') was used to define the wetland types identified within the Study Area (Ollis *et al*, 2013). The ecosystems included in the Classification System encompass all those that the Ramsar Convention defines as 'wetlands' and includes all aquatic ecosystems, including wetlands, although excludes marine systems. The Classification System has 3 broad inland systems: Rivers, Wetlands and Open Waterbodies. As with the Kotze *et al* (2007) classification of wetlands, using hydro-geomorphic (HGM) units, the revised Classification System identifies that hydrology and geomorphology are the two fundamental features that determine the way in which an inland aquatic ecosystem functions (Ollis *et al*, 2013). The inland component has a six-tiered structure which is provided in **Appendix 1**, with the classification of inland wetland systems into HGM Units (**Figure 2-1**) being the fundamental classification.

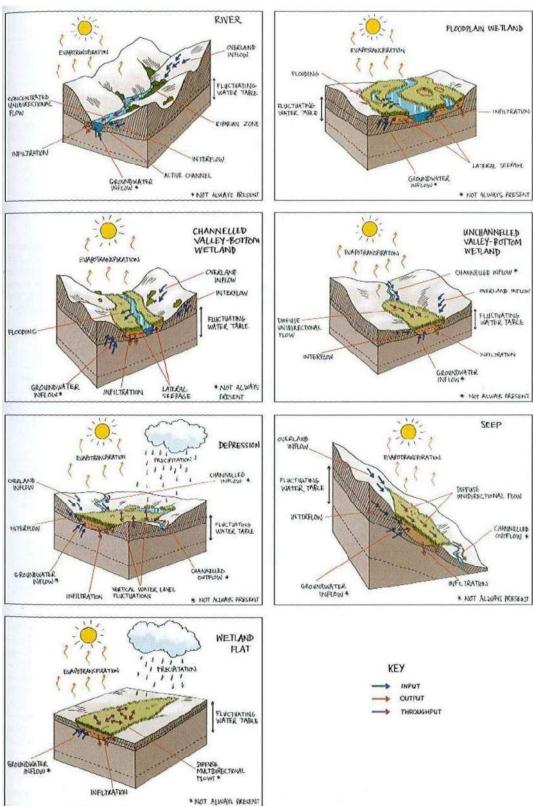


Figure 2-1 Primary HGM types, highlighting dominant water inputs, throughputs & outputs (Ollis *et al.* 2013)

2.2.2 Wetland Delineation

The wetland delineation methodology used was the same as the one outlined in the DWA Guideline "*A practical field procedure for identification and delineation of wetlands and riparian areas*" (DWAF, 2005). The following four indicators, as described by DWAF (2005), were considered:

- The Terrain Unit Indicator helps to identify those parts of the landscape where wetlands are more likely to occur;
- The Soil Form Indicator identifies the soil forms, as defined by the Soil Classification Working Group (1991), which are associated with prolonged and frequent saturation;
- The Soil Wetness Indicator identifies the morphological "signatures" developed in the soil profile as a result of prolonged and frequent saturation; and
- The Vegetation Indicator identifies hydrophilic vegetation associated with frequently saturated soils.

The study sites were traversed, on foot, with soil samples, within the top 50cm of the soil profile, taken using a hand auger along transects leading away from the wetlands. The soil samples were then assessed for the above wetland indicators. Each auger point sampled on site was marked with a handheld Global Positioning System (GPS) device (Geographic projection, WGS 84 Datum).

2.2.3 Habitat Integrity and Present Ecological State

The PES of the wetlands identified within the study area were assessed using the Level 1 WET-HEALTH tool, as described by Macfarlane *et al* (2008). The WET-HEALTH tool is designed to assess the health or integrity of a wetland. In assessing the health of the wetlands, the tool uses indicators based on the main wetland drivers: geomorphology, hydrology and vegetation. McFarlane *et al* (2008) describe the application and methodology of WET-HEALTH as follows:

The system uses:

- An impact-based approach for those activities that do not produce clearly visible responses in wetland structure and function. The impact of irrigation or aforestation in the catchment, for example, produces invisible impacts on water inputs. This is the main approach used in the hydrological assessment.
- An indicator-based approach for activities that produce clearly visible responses in wetland structure and function such as the presence of erosion gullies or alien plant species. This approach is mainly used in the assessment of geomorphological and vegetation health.

The wetland is first classified into hydrogeomorphic (HGM) units (as discussed above). Each HGM unit is then assessed separately for hydrological, geomorphological and vegetation health based on extent, intensity and magnitude of impact. This is translated into a health score. The approach, as defined by Macfarlane *et al* (2008) is as follows:

- The extent of impact is measured as the proportion of a wetland and/or its catchment that is affected by an activity. Extent is expressed as a percentage.
- The intensity of impact is estimated by evaluating the degree of alteration that results from a given activity.
- The magnitude of impact for individual activities is the product of extent and intensity.
- The magnitude of individual activities in each HGM unit is combined in a structured and transparent way to calculate the overall impact of all activities that affect hydrological, geomorphological or vegetation health. Present State health categories are scored on a scale of A-F (**Table 2-1**).

Using a combination of threat and/or vulnerability, an assessment is also made in each module on the likely Trajectory of Change within the wetland (**Table 2-2**). Overall health of the wetland is then presented for each module by jointly representing the Present State and likely Trajectory of Change. This approach not only provides an indication of hydrological, geomorphological and vegetation health, but also highlights the key causes of wetland degradation.

ECOLOGICAL CATEGORY	DESCRIPTION	COMBINED IMPACT SCORE
Α	Unmodified, natural	0-0.9
В	Largely natural with few modifications . A slight change in ecosystem processes is discernable and a small loss of natural habitats and biota may have taken place.	1-1.9
с	Moderately modified . A moderate change in ecosystem processes and loss of natural habitat has taken place but the natural habitat remains predominantly intact.	2-3.9
D	Largely modified . A large change in ecosystem processes and loss of natural habitat and biota has occurred.	4-5.9
E	Seriously modified. The change in ecosystem processes and loss of natural habitat and biota is great but some remaining natural habitat features are still recognizable.	6-7.9
F	Critically modified . Modifications have reached a critical level and the ecosystem processes have been modified completely with an almost complete loss of natural habitat and biota.	8-10
Source:	Modified from Macfarlane <i>et al</i> (2008)	

Table 2-1 Impact Scores and Present Ecological State categories

TRAJECTORY	DESCRIPTION	CHANGE	CLASS	SYMBOL			
CLASS		SCORE	RANGE*	STMDOL			
Improve	Condition is likely to improve substantially	2	1.1 to 2	ተተ			
markedly	over the next five years			,1.,1.			
Improve	Condition is likely to improve over the next	1	.3 to 1	$\mathbf{\Lambda}$			
inprove	five years			Υ.			
Remains stable	Condition is likely to remain stable over the	0	-0.2 to	\rightarrow			
Remains stable	next five years		+0.2				
Deterioration	Condition is likely to deteriorate slightly over	-1	-0.3 to -1	\checkmark			
slight	the next five years			¥			
Deterioration	Condition is likely to deteriorate substantially	-2	-1.1 to 2	$\downarrow \downarrow$			
substantial	over the next five years			ΨΨ			
Source:	Aodified from Macfarlane et al (2008)						

 Table 2-2
 Trajectory of change classes, scores and symbols

* Used when determining a trajectory score for a wetland comprising several HGM units

2.2.4 Wetland Functionality

The WET – EcoServices tool is a technique for rapidly assessing ecosystem services supplied by wetlands (Kotze *et al.* 2008). This tool has been designed for inland palustrine wetlands, i.e. marshes, floodplains, vleis and seeps and has been developed to help assess the goods and services that individual wetlands provide to support planning and decision-making.

The wetland benefits included in the WET-EcoServices model are selected based on their importance for South African wetlands, and how readily these can be assessed. Benefits such as groundwater recharge / discharge and biomass export may be important but are difficult to characterise at a rapid assessment level, and have thus been excluded. **Table 2-3** identifies and describes the ecosystem services assessed during the rapid field assessment.

)8).	•							
			its	Flood a	attenuation	The spreading out and slowing down of floodwaters in the wetland, thereby reducing the severity of floods downstream		
			Jef	Stream	flow regulation	Sustaining streamflow during low flow periods		
		iits	g bei		Sediment trapping	The trapping and retention in the wetland of sediment carried by runoff waters		
		enef	ortin	ality ents	Phosphate assimilation	Removal by the wetland of phosphates carried by runoff waters		
	S	Indirect Benefits	Regulating & supporting benefits	Water quality enhancements	Nitrate assimilation	Removal by the wetland of nitrates carried by runoff waters		
	land	ndire	ing &	Wate	Toxicant assimilation	Removal by the wetland of toxicants (e.g. metals, biocides and salts) carried by runoff water		
	Wet		gulati		Erosion control	Controlling of erosion at the wetland site, principally through the protection provided by vegetation		
	l by		Reç	Carbor	n storage	The trapping of carbon by the wetland, principally as soil organic matter		
	upplied		Bio	diversity	/ maintenance	Through the provision of habitat and maintenance of natural process by the wetland, a contribution is made to maintaining biodiversity		
	es si					t an ecosystem service as such, but encompasses attributes g potentially high value to society		
	Service	Direct Benefits	Provisioning benefits	sioning benefits	nefits	Provisi human	on of water for use	The provision of water extracted directly from the wetland for domestic, agriculture or other purposes
	Ecosystem Services supplied by Wetlands				Provisi harves	on of table resources	The provision of natural resources from the wetland, including livestock grazing, craft plants, fish, etc.	
	Eco	Direc	Provi	Provision of cultivated foods		The provision of areas in the wetland favourable for the cultivation of foods		
			nefits	Cultura	al heritage	Places of special cultural significance in the wetland, e.g., for baptisms or gathering of culturally significant plants		
			Cultural benefits	Touris	m and recreation	Sites of value for tourism and recreation in the wetland, often associated with scenic beauty and abundant birdlife		
			Cultu	Educat	tion and research	Sites of value in the wetland for education or research		
L			0					

Table 2-3Ecosystem services assessed using the WET-EcoServices model (Kotze et al.2008).

2.2.5 Ecological Importance and Sensitivity

The EIS assessment was conducted according to the DWAF (1999) guidelines. "Ecological importance" of a water resource is an expression of its importance to the maintenance of ecological diversity and functioning on local and wider scales. "Ecological sensitivity" refers to the system's ability to resist disturbance and its capability to recover from disturbance once it has occurred. The EIS provides a guideline for determination of the Ecological Management Class (EMC).

A series of 10 determinants for EIS are assessed on a scale of 0 to 4, where 0 indicates no importance and 4 indicates very high importance (**Table 2-4**). The median of the determinants is then used to assign the Ecological Management Class (EMC) for a wetland (**Table 2-5**).

The determinants assessed include:

PRIMARY DETERMINANTS

- Rare & Endangered Species (interpreted as Red Data species and other conservation important species)
- Populations of Unique Species
- Species / Taxon Richness
- Diversity of Habitat Types or Features
- Migration route/breeding and feeding site for wetland species
- Sensitivity to Changes in the Natural Hydrological Regime
- Sensitivity to Water Quality Changes
- Flood Storage, Energy Dissipation & Particulate/Element Removal

MODIFYING DETERMINANTS

- Protected Status
- Ecological Integrity

Table 2-4Scoring Guideline

U	
Score guideline:	Confidence rating:
Very high = 4;	Very high confidence = 4;
High = 3,	High confidence = 3 ;
Moderate = 2;	Moderate confidence = 2;
Marginal/Low = 1;	Marginal/low confidence = 1
None = 0	

Table 2-5Ecological importance and sensitivity categories - Interpretation of median scoresfor biotic and habitat determinants

gical Importance and Sensitivity Category (EIS)	Recommended EMC
al / international level. The biodiversity of these systems is usually	А
lerating the quantity and quality of water of major rivers.	
nds that are considered to be ecologically important and sensitive	
iodiversity of these floodplains may be sensitive to flow and modifications. They play a role in moderating the quantity and	В
ate	С
	igh nds that are considered ecologically important and sensitive on a al / international level. The biodiversity of these systems is usually ensitive to flow and habitat modifications. They play a major role lerating the quantity and quality of water of major rivers. Inds that are considered to be ecologically important and sensitive. iodiversity of these floodplains may be sensitive to flow and t modifications. They play a role in moderating the quantity and of water of major rivers. ate inds that are considered to be ecologically important and sensitive

Range of Median	Ecological Importance and Sensitivity Category (EIS)	Recommended EMC
>0 and <=1	on a provincial or local scale. The biodiversity of these floodplains is not usually sensitive to flow and habitat modifications. They play a small role in moderating the quantity and quality of water of major rivers. Low/marginal Wetlands that are not ecologically important and sensitive at any scale. The biodiversity of these floodplains is ubiquitous and not sensitive to flow and habitat modifications. They play an insignificant role in moderating the quantity and quality of water of major rivers.	D

2.3. Study Limitations

- Wetland assessment techniques used are subjective;
- No detailed wetland assessment was undertaken in the greater area to be impacted upon by the underground mining and associated cone of depression from the dewatering activities or the groundwater contamination plume (WSP, 2013a);
- No survey work was performed for roads, pipelines, power lines, conveyer systems or any other infrastructure beyond the boundaries of the current proposed surface infrastructure area (including the proposed discard area);
- No detailed information on the AYCP was available until recently, and the boundaries of the lease, underground mining and surface infrastructure areas changed during the course of this Assessment. Consequently, field surveys for the wetland investigation for the new surface infrastructure area and proposed coal discard area were undertaken in winter. The winter field investigation limited the use of vegetation indicators for the assessment;
- The source of water for the wetlands identified within the study area and within the greater cone of depression is unknown (WSP, 2013a).

3. Results

The results of the wetland assessment are discussed in detail in the sections below:

3.1. Wetland Classification

Three types of inland wetlands (HGM Units) were identified within the Study Area (Ollis *et al*, 2013);

- Rivers: A linear landform with clearly discernable bed and banks, which permanently or periodically carries a concentrated flow of water;
- Channelled Valley Bottom Systems associated with the above mentioned rivers: A valley-bottom wetland with a river channel running through it; and
- Seeps. A wetland area located on gently to steeply sloping land and dominated by colluvial (i.e. gravity driven), unidirectional movement of water and material down-slope. Both types of seeps were identified within the study area:
 - Seep without a channelled outflow: Water exits from the seep without channelled outflow by means of a combination of diffuse surface flow, interflow, evaporation and infiltration.
 - Seep with a channelled outflow: Water exits from a seep with channelled outflow mostly be means of concentrated surface flow.

The wetland HGM units identified within the Study Area are illustrated in **Figure 3-1** with examples shown in **Figure 3-2**, **Figure 3-3** and **Figure 3-4**.

The conceptual geohydrological model (WSP, 2013a) identifies three groundwater bodies within the study area:

- Perched Aquifer. Perched on low permeability material in the weathered zone or in colluvium;
- Shallow Aquifer. Perched on hard rock at the base of the weathered zone; and
- Deep Aquifer. Held in fractures and geological contacts.

According to WSP (2013a) all of the above mentioned water bodies may be a source of water for the wetlands within the study area. Groundwater perched on low permeability material in the weathered zone or in colluvium may be a source of water to hillside seeps and springs. The wetlands are also fed from springs and shallow groundwater from the higher topography to the south of the adit and plant site. Groundwater on horizontal and semi-horizontal contacts between different rock types may also be a source for springs. Springs appear to be associated with the dolerite sill that is present at higher altitudes in the project area. The springs are considered to be fed by water bodies perched on the dolerite.

The location of the springs identified during the groundwater investigation are highlighted in **Figure 3-8**). Additional springs, not included in the groundwater assessment, were identified by NSS during the wetland investigation. On the eastern bank of both main watercourses, flowing through the surface infrastructure area, within the plinthic catena's, large areas were identified that had a patchy mosaic of seep zones. These areas have been mapped on a broad scale as seep zones as opposed to mapping each individual seep patch. Although a patchy mosaic the wetlands act as a unit caused by subsurface discontinuities in geological units and a relatively impervious subsoil layer impeding the infiltration of rain derived water into the ground.

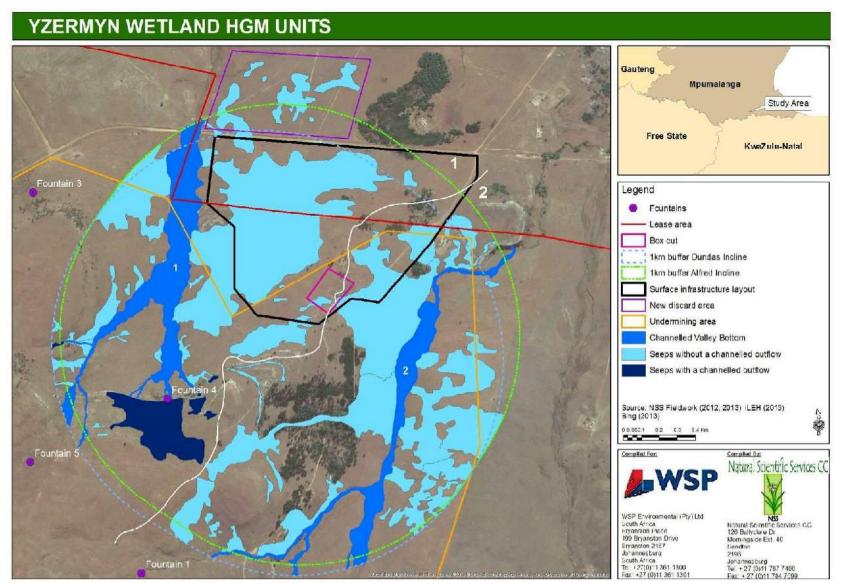


Figure 3-1 Wetland HGM Units

Natural Scientific Services CC

Figure 3-2 Examples of River inland wetland systems identified on site

Figure 3-3 Examples of the Channelled Valley Bottom inland wetland systems identified on site

Figure 3-4 Examples of the Seep inland wetland systems identified on site

3.2. Wetland Extent

The wetland extent within the Study Area was determined using a combination of the DWAF (2005) delineation guidelines and a desktop assessment. The extent of the wetlands, per HGM Unit identified, has been highlighted in **Table 3-1**. The river and associated channelled valley bottom wetlands have been combined into one HGM Unit. Examples of the wetland indicators used have been highlighted in **Figure 3-5** and **Figure 3-6**.

The wetland extent within the Study Area is approximately 180ha, which equates to approximately 42% of the study area being wetland. The extent of wetlands within the greater underground mining area were delineated from a desktop perspective only, with the overall wetland extent (underground mining area and surface infrastructure footprint) being approximately 668 ha in extent, 40% of the area.

Wetland ID No	Wetland HGM Unit	Wetland Area (ha)
System 1	River and associated Channelled Valley Bottom Wetland	19.8
	Seep without a channelled outflow	74.2
	Seep with a channelled outflow	9.2
Sub Total		103.3
System 2	River and associated Channelled Valley Bottom Wetland	12.6
	Seep without a channelled outflow – West Bank	42.4
	Seep without a channelled outflow – East Bank	22.8
Sub Total	Sub Total	
TOTAL	181.1	

Table 3-1Wetland Extent per HGM Unit

GPS Point 52

GPS Point 62

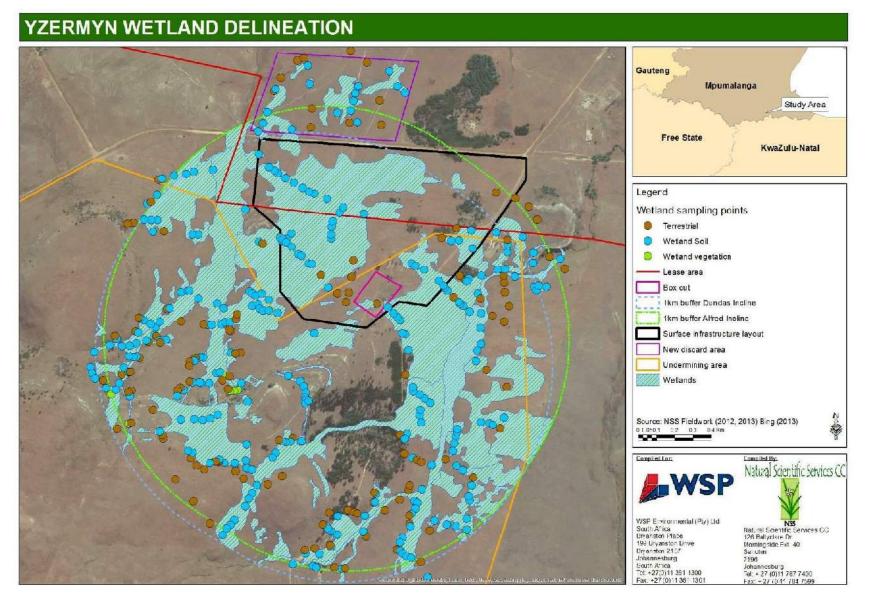
GPS Point 93GPS Point 126Figure 3-5Examples of Soil Wetness Indicators found within the study area

Stiburus alopecuroides (Pongwa Grass) – Facultative wetland species

Bulbostylis hispidula – Seasonally wet grassland

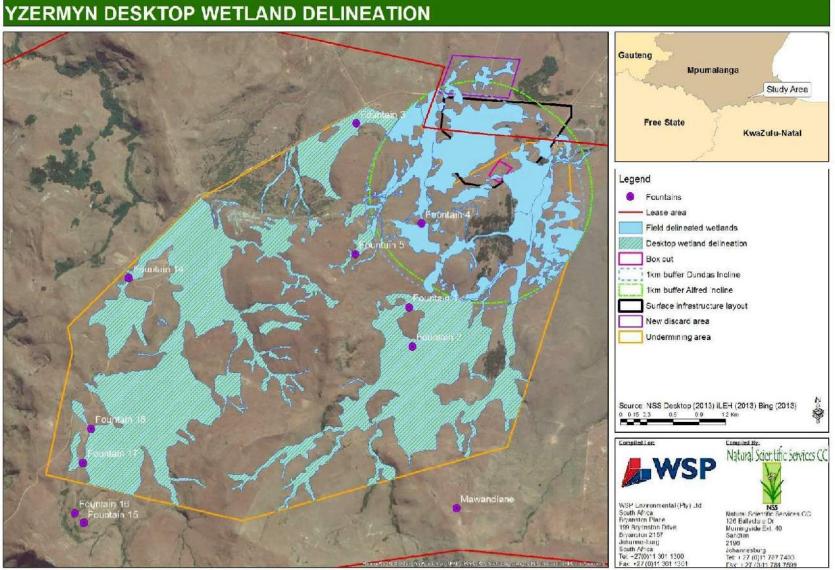
Lobelia flacida - Moist Grasslands

Helichrysum aureonitens (Golden Everlasting) Moist Grasslands


Gunnera perpensa – Occurs naturally in wet marshy soils

Xyris capensis – Wet places in mountain valleys and swamps

Figure 3-6 Examples of vegetation indicators found within the study area



Natural Scientific Services CC

3.3. Ecological State of Wetlands

The wetlands have been assessed as per the systems highlighted in **Table 3-1**. The current impacts, although *very* limited and minor in extent, have been discussed below, per main wetland driver, with examples shown in **Figure 3-9** and **Figure 3-10**. The impacts are similar between System 1 and System 2, with System 2 being slightly more impacted on due to extensive stands of alien invasive vegetation within the seep wetland on the western bank. **Table 3-2** and **Table 3-3** highlight the results of the WET-HEALTH assessment.

Table 3-2	Summary of the overall health of wetland System 1 based on impact and change
score	

		Extent (%)	Hydrology		Geomorphology		Vegetation	
HGM Unit	На		Impact Score	Change Score	Impact Score	Change Score	Impact Score	Change Score
Channelled Valley Bottom	20	19	0.0	-2	0.4	-2	0.2	-2
Seep without a Channelled Outflow	74	72	0.0	-2	0.1	-2	0.2	-2
Seep with a Channelled Outflow	9	9	0.0	-2	0.1	-2	0.4	-2
Area weighted impact scores*			0.0	-2.0	0.1	-2.0	0.2	-2.0
PES Category (Table 2-1)			Α	$\downarrow\downarrow$	Α	$\downarrow \downarrow$	Α	$\downarrow\downarrow$

Table 3-3	Summary of the overall health of wetland System 2 based on impact and change
score	

	Fr	Extent	Hydro	Hydrology		Geomorphology		Vegetation	
HGM Unit	На	(%)	Impact Score	Change Score	Impact Score	Change Score	Impact Score	Change Score	
Channelled Valley Bottom	13	16	1.0	-2	0.6	-2	0.9	-2	
Seep without a Channelled Outflow - West Bank	42	55	1.0	-2	0.1	-2	2.3	-2	
Seep without a Channelled Outflow - East Bank	23	29	0.0	-2	0.1	-2	0.3	-2	
Area weighted impact scores*			0.7	-2.0	0.1	-2.0	1.5	-2.0	
PES Category (Table 2-1)			Α	$\downarrow\downarrow$	Α	$\downarrow \downarrow$	В	$\downarrow\downarrow$	

3.3.1 Hydrological Impacts

Current hydrological impacts are summarised below and examples presented in Figure 3-10:

- Within the catchments:
 - Reduction in flow due to stands of alien invasive species, for example Acacia mearnsii (Black Wattle), Acacia melanoxolon (Australian Blackwood), two Populus spp (Poplar). These stands were greater in extent in System 2.
 - A small increase in flood peaks due to hardened surfaces, for example sand roads. The increase however has no discernable effect on flood peaks.
- Within HGM Units:
 - Erosion channels forming within heavily used cattle tracks;
 - Slight modification of channels at road crossings, with the roads acting as the only impeding features within the systems;
 - Infilling at road crossing;
 - Increased on site water use by stands of alien and invasive species (specifically on System 2).

3.3.2 Geomorphological Impacts

Current geomorphological impacts are listed below and examples shown in Figure 3-10:

- Evidence of sedimentation, particularly at aquatic sampling point YZ2, downstream of the undermining area on System 2 **Section D**;
- Erosion along existing cattle paths;
- The 2011 Google Earth imagery shows evidence of a "landslide" on System 1, the system had however recovered by the July 2013 field investigation with a healthy vegetation cover re-established (**Figure 3-9**).

2011

2013

Figure 3-9 Evidence of a "Landslide" and associated erosion and deposition (2011) and the recovered system (2013)

3.3.3 Vegetation Impacts

The main impacts on site were related to vegetation, with these still being very minor (**Figure 3-10**):

- Stands of Black Wattle, Australian Blackwood, Poplar and *Eucalyptus* Trees (particularly along System 2);
- Acacia melanoxolon within the riparian fringe of the headwater stream in System 1;
- Seep areas harvested for thatching grass;
- Google Earth imagery shows evidence of historical agricultural practices, however, the vegetation within these areas has recovered successfully, with only a few pioneer species present.

Road crossings within greater undermining area

Erosion channels starting to form along existing cattle tracks

Hardened surfaces due to access roads within the proposed discard area

Erosion within the greater undermining area

Sedimentation at Aquatic Sampling Site YZ2 – Section D (downstream of Study Area)

Large stands of Poplars - System 2

Large stands of Black Wattle and Australian Blackwood – System 2

Potential harvesting of thatching grass - System 1

Figure 3-10 Examples of current impacts within the wetland systems identified on site

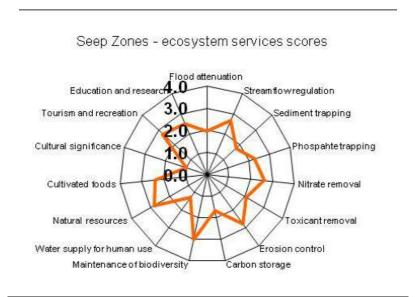
3.4. Ecological Importance and Sensitivity

Both the Seep wetlands (Wetland 1) and the Channelled Valley Bottom wetlands (Wetland 2) score a VERY HIGH in terms of Ecological Importance and Sensitivity (EIS), (**Table 3-4**). The reasons for the VERY HIGH rating are the protected areas proposed and within the vicinity of the site (**Section F**), the current integrity of the site and the numerous CI species identified (**Section B, C** and **D**).

DETERMINANT		Wetland	Wetland 2
PRIMARY DETERMINANTS			<u> </u>
1. Rare & Endangered Species		4	4
2. Populations of Unique Species		4	4
3. Species/taxon Richness		4	4
4. Diversity of Habitat Types or F	eatures	2	3
5. Migration route/breeding and f	eeding site for wetland species	1	2
6. Sensitivity to Changes in the N	atural Hydrological Regime	3	3
7. Sensitivity to Water Quality Ch	anges	3	3
8. Flood Storage, Energy Dissipa	tion & Particulate/Element Removal	3	2
MODIFYING DETERMINANTS			-
9. Protected Status		3	3
10. Ecological Integrity		4	4
			1
TOTAL		31	32
MEDIAN		3.1	3.2
Overall Ecological Sensitivity and	Importance	Very High	Very High
Ecological Management Class	A	Α	

Table 3-4 Ecological Importance and Sensitivity

* Wetland 1 – Seep Wetlands; Wetland 2 – Channelled Valley Bottom Wetlands


3.5. Wetland Eco-Services

The results of the Wet-Ecoservices assessment are illustrated in **Figure 3-11**. The maintenance of biodiversity scored HIGH in terms of integrity and noteworthiness for both the seep wetlands and the channelled valley bottom wetlands. The aspects contributing to this high rating are discussed in detail in **Section B**, **C** and **D**. Erosion control scored HIGH for both opportunity and effectiveness in supplying the service in the seeps and the channelled valley bottom systems. In accordance with Kotze *et al* (2008) seep wetlands are normally associated with groundwater discharges, although flow through them may be supplemented by surface water contribution. They are expected to contribute to some surface flow attenuation early in the season (until soils are saturated). This 'plugging' effect increases the storage capacity of the slope above the wetland, and prolongs the contribution of water to the stream system during low flow periods. As would be expected in this region, tourism and recreation also scored HIGH for the ecosystem services the wetlands provide, this is highlighted further in **Section F**, which highlights the various Protected Environments in the area.

Although the opportunity to provide some ecosystem services may not have been HIGH, the effectiveness in the wetland type in supplying the services is HIGH, for example phosphate trapping and nitrate removal in the seeps. Seepage wetlands are known to supply a number of water quality enhancement benefits, e.g.: removal of excess nutrients and organic pollutants, removal of nitrogen, etc (Kotze *et al*, 2008).

Due to the pristine nature of the area and the land capability, the opportunities to provide future additional benefits is very low, however the threats to future benefits are extremely high due to the proposed mining in the area. The impacts on the wetlands and the resultant loss or reduction in the supply of eco-services are discussed in detail in **Section G**.

Channelled Valley Bottom - ecosystem services scores

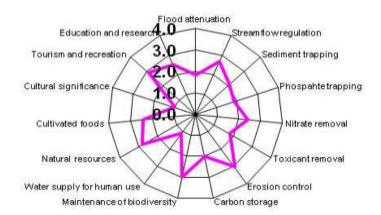


Figure 3-11 Wetland Eco-Services

4. Appendices

4.1. Appendix 1 Inland Wetland Classification System (Ollis et al, 2013)

ction 3	LEVEL 2: REGIONAL SETTING	LEVEL 3' LANDSCAPE UNIT	
	DWA Level I Ecoregions (p. 7)	Valley floor (p. 12)	
	OR OR W NFEPA WetVeg Groups (p. 7)	Slope (p. 12)	
	のR NFEPA WetVeg Groups (p. 7)	ت Plain (p. 12)	
-	Other spatial framework (p. 10)	Bench (p. 15) (Hilltop/Saddle/Shelf)	
1			
	FUNCTION		
	LEVEL 4: HYDROGEOMORPHIC (HGM) UNIT	LEVEL 5: HYDROLOGICAL REGIME	
	River (p. 20)	Perenniality (p. 40)	
	Floodplain wetland (p. 20)	Period and depth of inundation (p. 42, 43) Period of saturation (p. 43)	
	Channelled valley-bottom wetland (p. 23)		
Ī	Unchannelled valley-bottom wetland (p. 29)		
S HOLDER	Depression (p. 29)		
	Seep (p. 35)		

Natural Scientific Services CC

Natural vs. Artifical (p. 47)

Salinity (p. 49) pH (p. 49) Substratum type (p. 51) Vegetation cover type (p. 57) Geology (p. 63)

Section F: Sensitivity Assessment

NATURAL SCIENTIFIC SERVICES

SECTION F: TABLE OF CONTENTS

1.	Intro	duction	203
2.	Natio	onal Significance	203
	2.1.	National Water Act (NWA; Act 36 of 1998)	
	2.2.	Protected Areas	
	2.3.	Terrestrial Priority Areas & Threatened Ecosystems	
	2.4.	Freshwater Ecosystem Priority Areas (FEPAs)	
	2.5.	SANBI Grasslands Programme	211
	2.6.	Mining & Biodiversity Guideline	211
	2.7.	Enkangala Grasslands Project & IBA	213
	2.8.	Threatened Grassland Species & Other EWT Programmes	215
3.	Prov	/incial Significance	215
	3.1.	Mpumalanga Biodiversity Sector Plan (MBSP)	215
4.	Loca	al Habitat Sensitivity	217
	4.1.	VERY HIGH Sensitive Habitat	217
	4.2.	HIGH Sensitive Habitat	218
	4.3.	MEDIUM-HIGH Sensitive Habitat	218
	4.4.	MEDIUM Sensitive Habitat	218
	4.5.	LOW Sensitive Habitat	218
5.	Buff	er Zones	219
	5.1.	Buffer Zones for Wetlands & Other Aquatic Habitat	
	5.2.	Buffer Zones for Fauna	221
6.	Sens	sitivity Maps	223
7.	App	lication of Sensitivity Results	228

SECTION F: LIST OF TABLES

Table 2-1	Threatened bird species in the Enkangala Grassland Important Bird Area	213
-----------	--	-----

SECTION F: LIST OF FIGURES

Figure 2-1	Existing and proposed Protected Areas in the study area	205
Figure 2-2	Farms in AYCP study area that are included in the MTPA's (pers. comm.	2013)
	Section 49 application to the DMR	206
Figure 2-3	National Terrestrial Priority Areas in the study area	207

Natural Scientific Services CC

Figure 2-4	National Threatened Ecosystems in the study area	208
Figure 2-5	National Freshwater Ecosystem Priority Areas in the study area, with 1	km buffers
		210
Figure 2-6	Map showing that the AYCP study area has the Highest Biodiversity i	mportance
	and Highest risk for mining according to the Mining and Biodiversity	Guideline
	(DEA et al. 2013)	212
Figure 2-7	Enkangala Grassland Biosphere Reserve and Important Bird Area	214
Figure 3-1	Mpumalanga Biodiversity Sector Plan for the study area	216
Figure 6-1	Floral Sensitivity Map	224
Figure 6-2	Faunal Sensitivity Map	225
Figure 6-3	Aquatic & Wetland Sensitivity Map	226
Figure 6-4	Overall Biodiversity Sensitivity Map for the AYCP	

SECTION F: SENSITIVITY ASSESSMENT

1. Introduction

In South Africa 40%-60% of the Grassland Biome has been permanently transformed or severely degraded by cultivation, afforestation, urbanization, mining and erosion (Low & Rebelo 1996; Mucina & Rutherford 2006). In Mpumalanga, coal-mining has had extensive negative impacts on biodiversity, and remaining grasslands and wetlands are severely threatened by the accelerating demand for low-cost energy from coal (Tweddle *et al.* 2009). It was within this context that NSS performed the AYCP Biodiversity Assessment including the (Biodiversity) Sensitivity Assessment that is described in this report **Section F.** The Sensitivity Assessment was based on findings from the preceding floral, faunal, aquatic and wetland assessments, and takes cognisance of relevant national and provincial planning and other biodiversity conservation initiatives. Separate Sensitivity Maps were compiled for the different disciplines and combined to create an overall Sensitivity Map for Biodiversity in the study area. The sensitivity maps were used to rate the impacts and plan the mitigation measures discussed in **Section G**.

2. National Significance

2.1. National Water Act (NWA; Act 36 of 1998)

All wetlands are protected within South Africa, with their legal protection extended to include buffer zones (Ferrar & Lotter, 2007). As highlighted in **Section A**, South Africa has various pieces of legislation governing activities in and around wetlands under International, Regional and National legislation and Guidelines. The National Water Act, 1998, (Act 36 of 1998) (NWA) is the principle legal instrument relating to water resource management in South Africa. All wetlands are protected under the NWA. The NWA acknowledges:

"the National Government's overall responsibility for and authority over the nation's water resources and their use, including the equitable allocation of water for beneficial use, the redistribution of water, and international water matters."

As per Chapter 3 of the NWA: Protection of Water Resources:

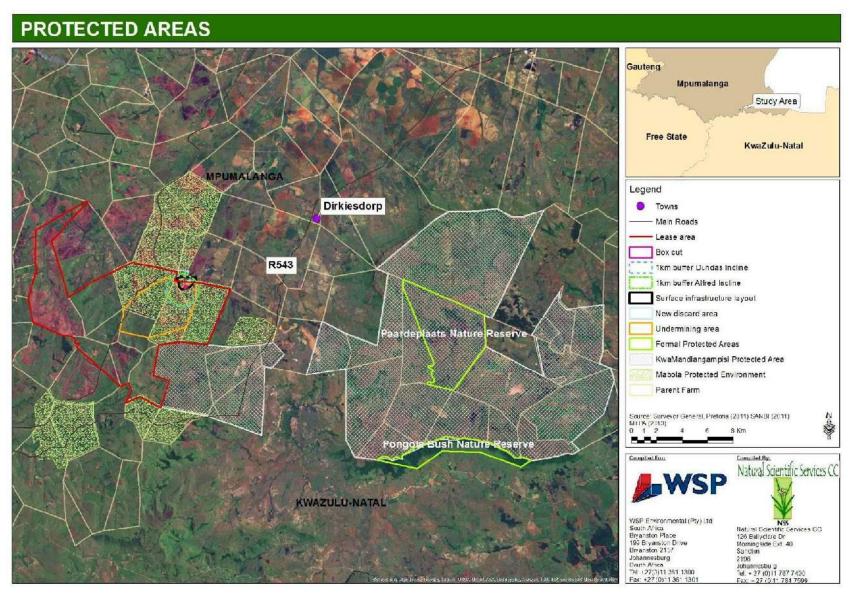
"The protection of water resources is fundamentally related to their use, development, conservation, management and control. Parts 1, 2 and 3 of this Chapter lay down a series of measures which are together intended to ensure the comprehensive protection of all water resources."

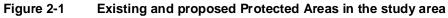
2.2. Protected Areas

The AYCP borders the Kwamandhlangampisi Protected Environment to the east, and the MTPA has recently gazetted an intention to proclaim the Mabola Protected Environment, which includes several farms within and around the AYCP lease area (**Figure 2-1**). The existing Paardeplaats and Pongola Nature Reserves are both situated <15km east of the AYCP lease area.

Given this and other considerations (e.g. FEPAs and the MBSP), the MTPA has applied to the Department of Mineral Resources (DMR) to have several farms, which are situated in and around the AYCP lease area, excluded from future mining or prospecting in terms of Section 49 of the MPRDA (**Figure 2-2**).

2.3. Terrestrial Priority Areas & Threatened Ecosystems


During the National Spatial Biodiversity Assessment (NSBA), nine terrestrial Priority Areas were identified for conservation in South Africa (Driver *et al.* 2004). These Priority Areas were allocated where broad-scale habitat remained unprotected, or was inadequately conserved. The AYCP site is situated within the South Eastern Escarpment Priority Area (**Figure 2-3**).


A list of Threatened Ecosystems within each Priority Area was gazetted on 9 December 2011 in the NEM:BA. The identified Threatened Ecosystems occupy 9.5% of South Africa and were selected according to six criteria including:

- Irreversible habitat loss;
- Ecosystem degradation;
- Rate of habitat loss;
- Limited habitat extent and imminent threat;
- Threatened plant species associations; and
- Threatened animal species associations.

The AYCP site is situated in the MP 11 Wakkerstroom/Luneburg Grasslands Threatened Ecosystem (**Figure 2-4**), which is listed as Endangered and is only 2% conserved.

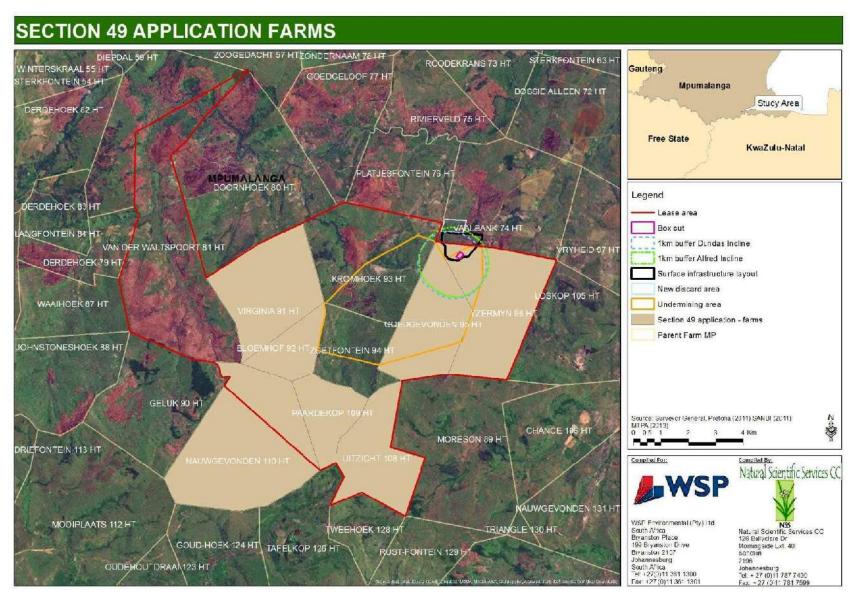


Figure 2-2 Farms in AYCP study area that are included in the MTPA's (pers. comm. 2013) Section 49 application to the DMR

Natural Scientific Services CC

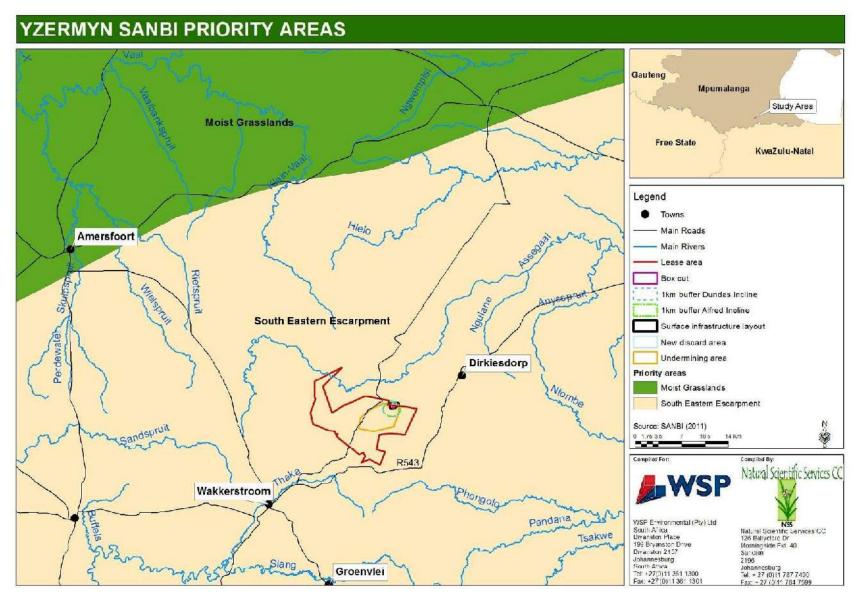


Figure 2-3 National Terrestrial Priority Areas in the study area

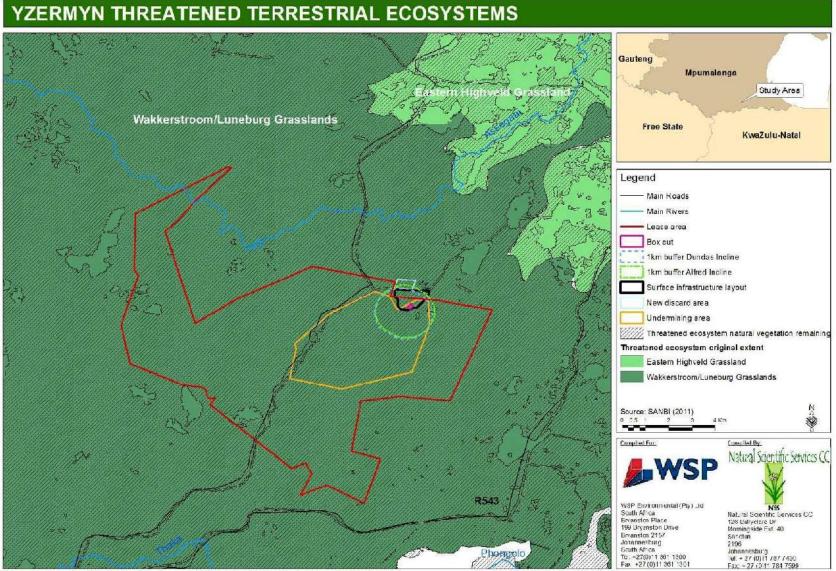


Figure 2-4 National Threatened Ecosystems in the study area

2.4. Freshwater Ecosystem Priority Areas (FEPAs)

The National Freshwater Ecosystem Priority Area (NFEPA) project (Driver *et al.* 2011) was a three-year partnership between SANBI, CSIR, WRC, DEA, DWA, WWF, the South African Institute of Aquatic Biodiversity (SAIAB) and South African National Parks (SANParks). "Freshwater ecosystems" refer to all inland water bodies whether fresh or saline, including rivers, lakes, wetlands, sub-surface waters and estuaries. Consistent with global trends, high levels of threat have been reported for South African freshwater ecosystems, with over half of the country's river and wetland ecosystem types considered threatened. The NFEPA provides strategic spatial priorities for conserving freshwater ecosystems and supporting sustainable use of water resources in South Africa.

Freshwater Ecosystem Priority Areas (FEPAs) were determined through a process of systematic biodiversity planning and involved collaboration of over 100 freshwater researchers and practitioners. FEPAs were identified based on a range of criteria dealing with the maintenance of key ecological processes and the conservation of ecosystem types and species associated with rivers, wetlands and estuaries. The AYCP lease area is situated in a FEPA river catchment, and includes several Category 1 Wetland FEPAs. Two FEPA Wetland Clusters are also situated near the eastern boundary of the lease area (**Figure 2-5**). The catchment supports the Near Threatened Incomati Chiselmouth (*Varicorhinus nelspruitensis*), Shortfin Barb (*Barbus brevipinnis*) and Phongolo Rock Catlet (*Chiloglanis emarginatus*) (Kleynhans, 1997; Engelbrecht *et al.* 2007).

The NFEPA guidelines indicate that FEPAs should be regarded as ecologically important and as generally sensitive to changes in water quality and quantity, owing to their role in protecting freshwater ecosystems and supporting sustainable use of water resources. FEPAs that are in a good condition, such as those identified within the study area, should remain so, and FEPAs that are not in a good condition should be rehabilitated to their best attainable ecological condition. Land-use practices or activities that will lead to deterioration in the current condition of a FEPA are considered unacceptable, and land-use practices or activities that will make rehabilitation of a FEPA difficult or impossible are also considered unacceptable.

"Applications for mining and prospecting in FEPAs and associated sub-quaternary catchments should be subject to rigorous environmental and water assessment and authorisation processes, as mining has a widespread and major negative impact on freshwater ecosystems" (Driver et al. 2011). Furthermore: Mining in any form should not be permitted in wetland FEPAs, or within 1km of a wetland/riverine FEPA buffer. No prospecting should occur in wetland FEPAs or within 1km of a wetland/riverine FEPA buffer. Care should be taken to reduce the risks of aquifer penetration when drilling, wherever this occurs. Although the planned surface infrastructure is >1.3km from the nearest FEPA, underground mining would infringe upon the 1km FEPA buffers. The greatest concern regarding the FEPA's is the potential impact of the mine on the water resources as a result of underground water reduction due to de-watering activities and groundwater contamination due to sulphate seepage from the mine workings and discard facility (WSP, 2013). Both the cone of depression and the groundwater contamination plume, extend to the wetland FEPA's in the near vicinity.

NSS

YZERMYN NFEPA WETLANDS AND WETLAND CLUSTERS

Figure 2-5 National Freshwater Ecosystem Priority Areas in the study area, with 1km buffers

NSS

2.5. SANBI Grasslands Programme

The South African National Biodiversity Institute (SANBI) established the Grasslands Programme as a partnerships-based approach to securing the biodiversity and ecosystem services of the Biome. The Programme has been implemented in part by the World Wildlife Fund (WWF) South Africa, through the Grasslands Steering Committee and the Wakkerstroom Agriculture and Conservation Demonstration Project. The initial phase of the Programme aims to ensure that major production sectors, including mining, are directly contributing to the achievement of Biodiversity conservation priorities in the Grassland Biome.

In the mining sector, the Programme and its partners are:

- Piloting biodiversity stewardship with mining companies.
- Developing tools for mainstreaming biodiversity into the mining sector, including the national Mining and Biodiversity Guideline and Atlas of Sensitive Areas for Mining, and Wetland Offset Guidelines.
- Enabling the use of biodiversity information by the DMR, DWA, DEA and mining companies in the assessment and decision-making processes for the prospecting or mining of coal, and for the authorisation of associated activities.

2.6. Mining & Biodiversity Guideline

Virtually the entire AYCP lease area comprises habitat that has been zoned by the national Mining and Biodiversity Guideline (DEA *et al.* 2013) as having the Highest Importance for Biodiversity and thus the Highest Risk for mining (**Figure 2-6**). Only small, isolated patches of habitat in the lease area have a non-important rating. As mentioned earlier, the lease area also borders a Legally Protected area, where "Mining is Prohibited."

The Mining and Biodiversity Guidelines stipulate that in areas of Highest Importance for Biodiversity:

"Environmental screening, EIAs and their associated specialist studies should focus on confirming the presence and significance of these biodiversity features, and to provide site-specific basis on which to apply the mitigation hierarchy to inform regulatory decision-making for mining, water use licences, and environmental authorisations."

If they are confirmed, the likelihood of a fatal flaw for new mining projects is very high because of the significance of the biodiversity features in these areas and the associated ecosystem services. These areas are viewed as necessary to ensure protection of biodiversity, environmental sustainability, and human well-being. Authorisations may well not be granted. If granted, the authorisation may set limits on allowed activities and impacts, and may specify biodiversity offsets that would be written into licence agreements and/or authorisations."

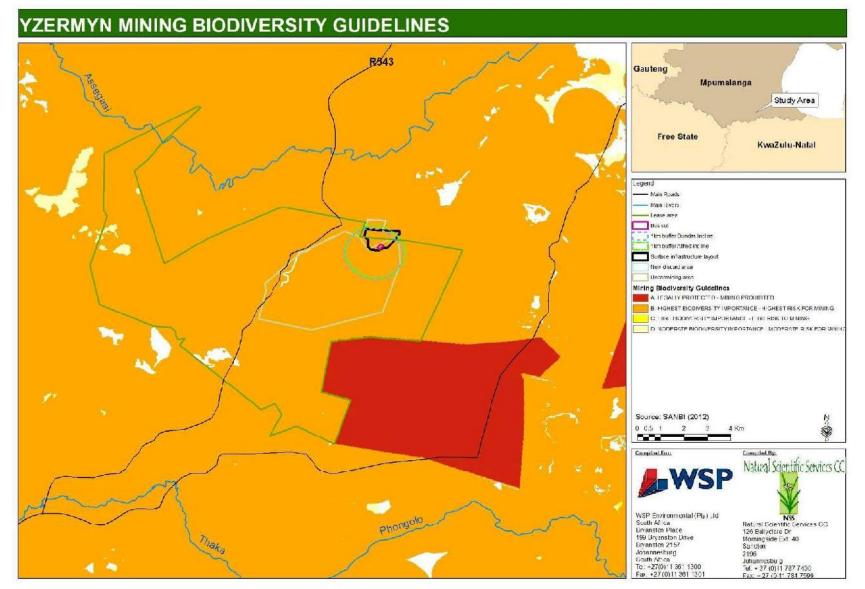


Figure 2-6 Map showing that the AYCP study area has the Highest Biodiversity importance and Highest risk for mining according to the Mining and Biodiversity Guideline (DEA *et al.* 2013)

2.7. Enkangala Grasslands Project & IBA

WWF has been supporting the Enkangala Grasslands Project for several years in partnership with the Botanical Society of South Africa. The Project is focussed on protecting biodiversity and water in the remote catchment areas of the Vaal, Pongola and Thugela Rivers from threats, including poorly planned mining. Initially, the Project was focused on piloting biodiversity stewardship approaches with private and communal / land reform landowners. Through a new partnership with BHP Billiton, WWF is also undertaking ecosystem services studies to determine, in more detail, the water and carbon value of high altitude moist grasslands. The long-term project vision is to secure the biodiversity and ecosystem services of this critical grasslands area, in partnership with the various landowners and the relevant conservation, agricultural and water authorities.

Over one hundred partner organisations of BirdLife International have used standard assessment criteria to identify global priority areas for bird conservation, called Important Bird Areas (IBAs). IBA status does not offer formal protection to an area, but any proposed changes to established land-use patterns within an IBA will be closely scrutinised by BirdLife South Africa and other conservation NGOs. The AYCP falls in the Enkangala Grassland Biosphere Reserve (EGBR) and Important Bird Area (IBA ZA016; **Figure 2-7**), which spans >800 farms, several conservancies and state-owned land. It is described by Barnes (1998) as one of the most important IBAs in Africa and is considered vital for the conservation of a number locally-, and globally-threatened bird species, as well as for the conservation of other fauna and flora. Conservation Important (CI) bird species that are known to occur in the Enkangala Grassland IBA are listed in **Table 2-1**.

Table 2-1 Threatened bird species in the Enkangala Grassland Important Bird Area				
COMMON NAME	COMMON NAME	COMMON NAME		
Little Bittern (LC)	Black Stork (NT)	Southern Bald Ibis (VU)		
Greater Flamingo (NT)	Secretarybird (NT)	Cape Vulture (VU)		
Peregrine falcon (NT)	Lanner Falcon (NT)	White-backed Vulture (VU)		
Martial Eagle (VU)	Bearded Vulture (EN)	Lesser Kestrel (VU)		
Pallid Harrier (NT)	Black Harrier (NT)	African Marsh-harrier (VU)		
White-winged Flufftail (CR)	Striped Flufftail (VU)	Corn Crake (VU)		
Wattled Crane (CR)	Blue Crane (VU)	Grey Crowned Crane (VU)		
White-bellied Korhaan (VU)	Blue Korhaan (NT)	Denham's Bustard (VU)		
Chestnut-banded Plover (NT)	Black-winged Lapwing (NT)	Greater Painted-snipe (NT)		
Caspian Tern (NT)	African Grass-owl (VU)	Black-winged Pratincole (NT)		
Botha's Lark (EN)	Rudd's Lark (CR)	Ground Woodpecker (LC)		
Buff-streaked Chat (LC)	Broad-tailed Warbler (NT)	Bush Blackcap (NT)		
Yellow-breasted Pipit (VU)	Blue Swallow (CR)	Short-tailed Pipit (VU)		
Conservation status: CR = Critica	lly Endangered; EN = Endangered; \	/U = Vulnerable; NT = Near Threatened		
Source: Barnes (1998)				

Figure 2-7 Enkangala Grassland Biosphere Reserve and Important Bird Area

2.8. Threatened Grassland Species & Other EWT Programmes

The Endangered Wildlife Trust's (EWT's) Threatened Grassland Species Programme is focussed on highly-threatened grassland faunal species as indicators of grassland health and conservation. These species include e.g. the Critically Endangered Blue Swallow (*Hirundo atrocaerulea*), Endangered Oribi (*Ourebia ourebi*), Vulnerable Giant Sungazer (*Cordylus giganteus*), Vulnerable Yellow-breasted Pipit (*Anthus chloris*), Near Threatened Giant Bullfrog and highly-threatened Golden Moles. The African Crane Conservation Programme is a collaborative programme between the International Crane Foundation and the EWT, which aims to improve the conservation of the Critically Endangered Wattled Crane (*Bugeranus carunculatus*), and the Vulnerable Blue Crane (*Anthropoides paradiseus*) and Grey-crowned Crane (*Balearica regulorum*). The EWT Birds of Prey Programme is focussed on the conservation of diurnal and nocturnal raptors, vultures and their habitats in southern Africa. EWT Field Workers for these programmes visit the AYCP study region on a regular basis.

3. Provincial Significance

3.1. Mpumalanga Biodiversity Sector Plan (MBSP)

The Mpumalanga Biodiversity Sector Plan (MBSP) is the outcome of recent systematic conservation planning by the Mpumalanga Tourism and Parks Agency (MTPA 2013) for improved conservation of biodiversity in this province. Significant portions of the AYCP lease area are recognized in the MBSP as Irreplaceable and Optimal Critical Biodiversity Areas (CBAs). Most remaining habitat has been ear-marked for Landscape Corridors, Local Corridors and Species Specific Ecological Support Areas (ESAs). Small, scattered patches of Modified Habitat in the lease area include mainly old agricultural lands (**Figure 3-1**).

"CBAs are areas of high biodiversity value which are usually at risk of being lost and usually identified as important in meeting biodiversity targets." Irreplaceable CBAs are "considered critical for meeting biodiversity targets and threshold... which are required to ensure the persistence of species and the functioning of ecosystems." Optimal CBAs have an irreplaceability of less than 80%, but collectively these areas incorporate the most biodiversity in the smallest area and, therefore, provide the most cost-effective options for biodiversity conservation.

ESAs "are not essential for meeting biodiversity targets but play an important role in supporting the ecological functioning of CBAs and/or in delivering ecosystem services." Landscape Corridors provide the best landscape connectivity to support and enable biodiversity to adapt to the impacts of climate change. Local corridors represent "fine scale connectivity pathways that contribute to connectivity between climate change focal areas." Species-specific ESAs are "required for the persistence of specific species" (MTPA 2013).

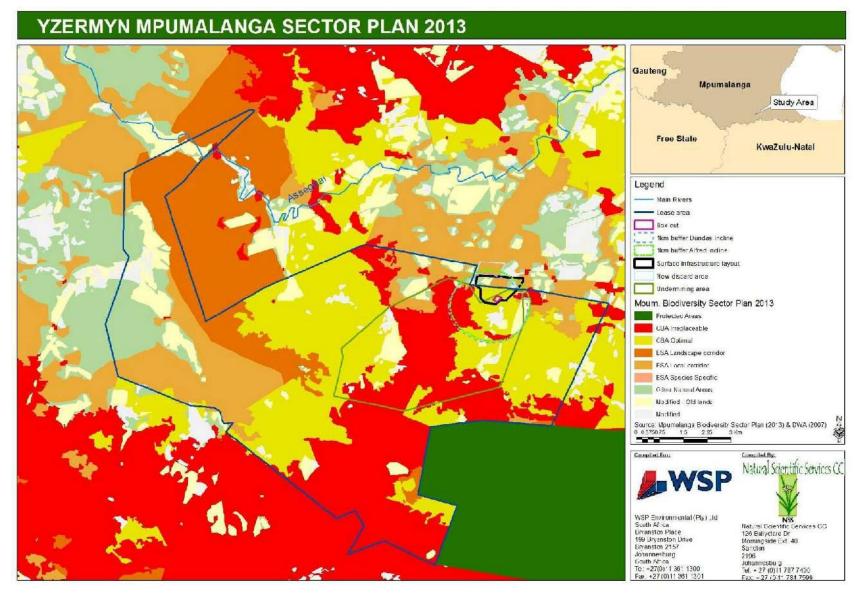


Figure 3-1 Mpumalanga Biodiversity Sector Plan for the study area

4. Local Habitat Sensitivity

Results from the desktop and field-based investigations of flora, fauna, aquatic ecology, and wetlands for the AYCP were used to designate the following sensitivity ratings to habitat within the current proposed AYCP underground mining and surface infrastructure areas. The sensitivity ratings of different floral communities are presented in **Section B: Table 4-1**. Since the floral, faunal, aquatic and wetland assessments focussed on the current proposed surface infrastructure area, the sensitivity rating of habitat in remaining parts of the underground mining area was performed at a courser resolution.

4.1. VERY HIGH Sensitive Habitat

Floral communities which are considered to have a Very High importance include the:

- Leucosidea Merxmuellera Riverine Community
- Searsia Diospyros Athrixia Protected Outcrops & Kloof Community
- Andropogon Helichrysum- Bulbostylis seasonal seeps

These are restricted intact habitats, diverse in floral species and contain a number of CI plant species including the Near Threatened *Merwilla plumbea*. This is a highly sought after species that has been exploited over most of its range for medicinal use. The seasonal seep vegetation communities ties in with discussions above on the sensitivity and protection of wetlands. These areas provide habitat for a number of Declining TSP-listed species as well as a broad range of Protected species under the provincial legislation.

All wetlands on site, including the Rivers, Channelled Valley Bottom systems and Seeps, are protected under the NWA, and are regarded as having Very High sensitivity. The assessed wetlands represented Natural to Largely Natural systems, and their main ecosystem service is Maintenance of Biodiversity (**Section E**). Wetlands on site are largely fed by groundwater from the perched, shallow weathered and deeper, fractured aquifers, and are, therefore, sensitive to changes in groundwater levels and water quality.

From a faunal perspective all wetlands and patches of Scarp Forest were assigned Very High conservation importance. Wetlands on site support many CI faunal species such as the Vulnerable African Grass-owl, Near Threatened Half-collared Kingfisher and Serval, and the potentially occurring Critically Endangered Rough-haired Golden Mole and Vulnerable Marsh Sylph butterfly. Patches of Scarp Forest provide important habitat for foraging bats, and several CI species such as the Near Threatened Rusty Pipistrelle, and Bush Blackcap, and the potentially occurring Near Threatened Plain Stream Frog and provincially Vulnerable Natal Cascade Frog.

In addition, two large adits from previous mining in the area have Very High conservation importance. This is because these adits provide roosting habitat for at least four CI bat species including the Endangered Swinny's Horseshoe Bat (*Rhinolophus swinnyi*), and the Near Threatened Geoffroy's Horseshoe Bat (*Rhinolophus clivosus*), Temminck's Hairy Bat (*Myotis tricolor*) and the Natal Clinging (or Long-fingered) Bat (*Miniopterus natalensis*). Moreover, the Geoffroy's Horseshoe Bat population comprised >270 individual bats.

4.2. HIGH Sensitive Habitat

Andropogon – Hyparrhenia temporary seeps were assigned a High sensitivity. This is because this habitat remained mostly in a relatively natural state, and supported TSP- and MTPA-listed floral species and several Vulnerable and Near Threatened CI faunal species.

Smaller adits from previous mining in the area have a High conservation importance. This is because these adits provide roosting habitat for small numbers of at least three CI bat species including the Near Threatened Geoffroy's Horseshoe Bat (*Rhinolophus clivosus*), Temminck's Hairy Bat (*Myotis tricolor*) and the Natal Clinging (or Long-fingered) Bat (*Miniopterus natalensis*).

4.3. MEDIUM-HIGH Sensitive Habitat

The *Hyparrhenia* – *Cymbopogon* – *Monocymbium* Slope Community was regarded as having Medium-High conservation importance. This community remains in a relatively natural state and supports a number of CI floral and faunal species. E.g. rocky patches within this community provided habitat for the Vulnerable White-bellied Korhaan and Near Threatened Cape Grass Lizard.

4.4. MEDIUM Sensitive Habitat

The *Hyparrhenia* – *Microchloa* – *Helichrysum* Plateau grassland was regarded as having a Medium sensitivity, as this community was characterized by comparatively less floral and faunal diversity and fewer CI species.

Savanna patches (such as the *Acacia - Ziziphus* Savanna community) were also assigned Medium conservation importance. This was because Savanna is widespread and well-conserved relative to other biomes in South Africa, and local patches of this habitat supported intermediate levels of Biodiversity including comparatively few CI species.

4.5. LOW Sensitive Habitat

Clumps of alien, invasive trees were considered to have Low sensitivity. Despite that some Cl faunal species (e.g. Serval and African Crowned Eagle) may frequent alien bushclumps, these habitat patches have limited indigenous floral species in the undergrowth, and low overall faunal diversity.

5. Buffer Zones

A buffer is a strip of land surrounding a sensitive area in which activities are controlled or restricted to reduce the impact of adjacent land uses on the sensitive area. Although well intended for conservation purposes, the issue of placing a standardised buffer on Conservation Important (CI) habitats, plant or animal localities is a controversial one. The controversy is sparked by the following challenges:

- Buffer distances are often based on educated guesses, and limited scientific research.
- The success of a buffer is dependent on the ecological requirements of various species and ecosystem functioning, but different species and ecosystems have different requirements.
- Buffers may be relaxed where there is high pressure for development.
- Radial buffers are generally prescribed for non-linear Conservation Important (CI) habitats even though these may not be uniformly suitable for selected species.
- The legal requirement, from a national and provincial perspective, for buffer zones is unclear, as demonstrated in the following discussion on wetland buffers:
 - The Mpumalanga Biodiversity Conservation Handbook (Ferrar & Lötter, 2007) requires a 20m buffer of natural vegetation to be left in an undisturbed state around the perimeter of all wetlands.
 - The Gauteng Department of Agriculture and Rural Development (GDARD) have produced their "Guidelines on the Requirements for Biodiversity Assessments" (GDARD, 2012). These guidelines are more specific in terms of buffer requirements: "The wetland and a protective buffer zone, beginning from the outer edge of the wetland temporary zone, must be designated as sensitive. Rules for buffer zone widths are as follows:
 - 30m for wetlands occurring inside the urban edge; and
 - 50m for wetlands occurring outside the urban edge.

Note that these buffer zones are essential to ensure healthy functioning and maintenance of wetland ecosystems. Larger buffer zones may be required for wetlands supporting sensitive species.

In addition, the catchment of all pan wetlands must be designated as sensitive."

- The draft Institute of Natural Resources' national wetland delineation guidelines (2010) stipulate that the aquatic impact buffers and biodiversity buffers and corridors are all to be taken into consideration when determining the buffer requirements for a specific wetland.
- The KZN / Ezemvelo Wildlife Department have issued draft guidelines (EKZN, 2010) for buffer determination for wetland systems, which state that all wetlands are to be designated sensitive and associated with a buffer. A minimum buffer of 30m must be

defined, but is to be increased at the discretion of an appropriately qualified specialist under the following circumstances:

- Steep slopes justify wider buffers.
- Wider buffers are required around high impact developments.
- Wider buffers are required where there is a greater pollution potential.
- Wetlands of high conservation value deserve wider buffers.
- Justification for wider buffers can be made by appropriate specialists.
- A minimum 20m buffer must be designated above the 1 in 100 year flood line of rivers and streams.
- A minimum 30m buffer must be designated beyond the edge of riparian zones.
- NEMA (1998) requires 32m from the edge of the wetland.
- National Freshwater Ecosystem Priority Areas (NFEPA) Buffers. In addition to the above mentioned guidelines the NFEPA require that "Mining in any form should not be permitted in wetland FEPAs, or within 1km of a wetland FEPA buffer" (Driver *et al.* 2011). A number of NFEPA wetlands were identified within the immediate vicinity of the study area (north and north-east) and these 1km buffers must be applied to these wetland systems.

Given these circumstances, it remains up to qualified Biodiversity specialists to prescribe sitespecific buffers for CI habitats and species using the best available information.

5.1. Buffer Zones for Wetlands & Other Aquatic Habitat

The wetland buffers applied are not uniform across the study area, with the following buffers required:

- A 1km buffer on all FEPA wetlands, wetland clusters and rivers. As specified by the NFEPA (Driver *et al.* 2011), mining in any form (including prospecting) should not be permitted in wetland FEPAs, or within 1km of a wetland/riverine FEPA buffer (including wetland clusters).
- The River and associated Channelled Valley Bottom wetland in System 1 (Section E) should be protected by a minimum 200m buffer measured from the outer edge of the wetland temporary zone or the outer edge of the riparian fringe. This 200m buffer is based on the Vulnerable Grass-owl breeding and foraging habitat identified within this system.
- A minimum 100m buffer should be retained around the River and Channelled Valley Bottom Wetland in System 2 and all Seeps identified within the study area. These systems were Natural to Largely Natural systems supporting a wide variety of CI floral and faunal species and have a Very High Ecological Importance and Sensitivity.

NOTE: The buffer zones for wetlands unfortunately only apply to the surface loss of wetland habitat. As discussed in detail in **Section G**, the loss of wetlands will be due to the decline in water input in

these systems. A buffer cannot be placed to protect the wetland habitat from this impact as it relates to the dewatering of the shallow and fractured deep aquifers. The mitigation measures relating to this impact are discussed in **Section G**.

5.2. Buffer Zones for Fauna

4.2.1. Mammals

Currently, the South African Bat Assessment Advisory Panel (SABAAP) recommends a minimum 200m buffer around all potentially important bat features including e.g., rocky ridges and outcrops, delineated watercourses, woody vegetation (aloes and trees including alien bush clumps) and built structures (e.g., mine adits, farm buildings, bridges and water towers). For confirmed or suspected (permanent or seasonal) bat roosts the following buffers apply:

- 1 50 Least Concern bats 500m
- 50 500 Least Concern bats 1km
- >500 High Risk Least Concern bats 2.5km
- 1-50 Low Risk Conservation Important bats 500m
- 1 50 Med-High Risk Conservation Important bats 1km
- 50 500 Low Risk Conservation Important bats 1km
- 50 500 Med-High Risk Conservation Important bats 2.5km
- 500 2000 Low Risk Conservation Important bats 2.5km
- 500 2000 Med-High Risk Conservation Important bats 10km
- >2000 Bats of any status or risk level 20km

These are minimum values and they do not exempt developers from implementing additional mitigation measures outside of these buffer zones where necessary.

For the large adits where four CI bat species were detected (including the Endangered Swinny's Horseshoe Bat, and >200 Near Threatened Geoffroy's Horseshoe Bats), a 1km aboveground and a 500m underground radial buffer are prescribed. For the smaller adits where much lower densities of CI bats were found, a 500m aboveground buffer is prescribed, which corresponds with the 500m cave buffer recommendation of GDARD (2012).

In addition, a 50m buffer around all forest patches is prescribed to protect the Near Threatened Rusty Pipistrelle, which roosts in tree crevices, and all five recorded CI bat species, which are expected to frequent local forest patches when foraging. This 50m buffer recommendation was based on international bat impact mitigation guidelines including the EUROBATS (http://www.eurobats.org) and Natural England (Mitchell-Jones & Carlin 2009) bat impact mitigation guidelines.

Based on the 50m riparian buffer recommendation of GDARD (2012), a minimum 50m buffer is recommended around all wetlands for the Data Deficient Swamp Musk Shrew and Reddish-Grey Musk Shrew. This recommendation would hopefully also protect small, potentially occurring CI wetland mammal species such as the Critically Endangered White-tailed Mouse and Near Threatened African Marsh Rat.

For the comparatively mobile Near Threatened Serval, buffer zones do not seem appropriate and emphasis is instead placed on maintaining connectivity between wetlands and undisturbed grassland areas.

4.2.1. Birds

GDARD (2012) recommends a minimum 170m buffer and DEC (pers. comm. 2013) recommends a minimum 200m buffer on any linear wetland system supporting the foraging and breeding habitat of the Vulnerable African Grass-owl.

For the Vulnerable White-bellied Korhaan, GDARD (2012) recommends the protection of contiguous habitat patches >100ha. Three patches of habitat in the vicinity of the current proposed surface infrastructure area were accordingly delineated for the protection of this species. These patches are separated by approximately 400m-1km and collectively exceed 100ha.

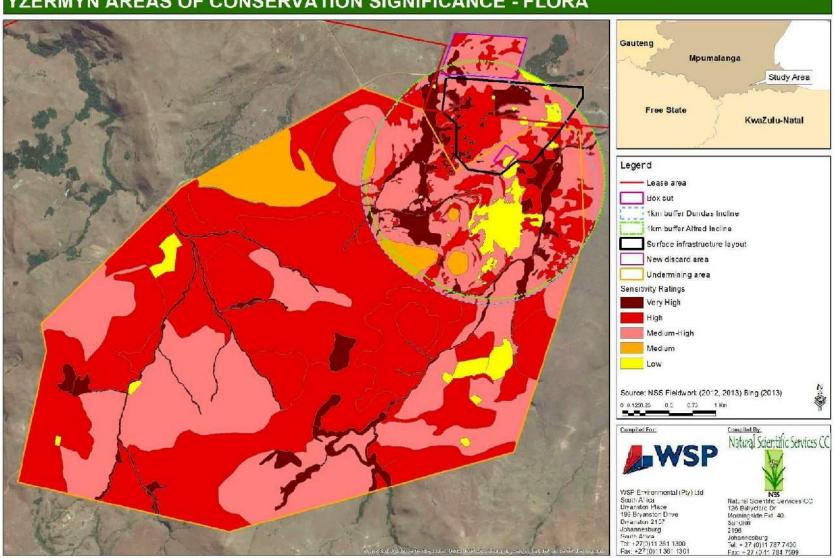
Patches of Scarp Forest should be preserved for forest-specialist CI bird species such as the Bush Blackcap. For wider-ranging, grassland-dependent CI bird species such as the Near Threatened Secretarybird and Black-bellied Bustard, the maintenance of connected grassland areas is most appropriate.

4.2.1. Reptiles

Observed and potentially occurring CI reptile species are mostly grassland specialists, such as the provincially Near Threatened Cape Grass Lizard (*Chamaesaura anguina*), and during field surveys the highest diversity of reptiles was recorded in Rocky Grasslands. Therefore, it would be most appropriate to conserve grassland habitat in the absence of information on specific buffer zones for these species.

4.2.1. Frogs

Protection of wetland, grassland and forest habitat would, respectively, benefit the potentially occurring Vulnerable Spotted Shovel-nosed Frog, provincially Vulnerable Karoo Toad and Giant Bullfrog, and the provincially Vulnerable Natal Cascade Frog.


6. Sensitivity Maps

Based on the afore-mentioned habitat sensitivity ratings and buffer zones, separate Sensitivity Maps were compiled for flora, fauna, wetland and other aquatic habitat, which are respectively shown in **Figure 6-1**, **Figure 6-2** and **Figure 6-3**. These were subsequently combined (overlaid) to create an overall Sensitivity Map for Biodiversity in the study area, shown in **Figure 6-4**, where:

- Very High sensitive areas include:
 - The Leucosidea Merxmuellera Riverine floral community.
 - c The Searsia Diospyros Athrixia Protected Outcrops & Kloof communities.
 - The Andropogon Helichrysum- Bulbostylis seasonal seeps.
 - All wetlands (Rivers, Channelled Valley Bottom systems and Seeps) and the buffers around these.
 - \circ $\;$ The two large, abandoned adits and the buffers around these.
- High sensitive areas include:
 - The Andropogon Hyparrhenia temporary seeps.
 - Smaller, abandoned adits and the buffers around these.
- Medium-High sensitive areas include:
 - The Hyparrhenia Cymbopogon Monocymbium Slope community.
- Medium sensitive areas include:
 - The Hyparrhenia Microchloa Helichrysum Plateau community.
 - The Acacia Ziziphus floral community and other savanna patches.
- Low sensitive areas include:
 - Alien bushclumps.

All four Sensitivity Maps indicate that the AYCP is situated in an extremely sensitive and conservation important area, and correspond with the MTPA's (2013) Mpumalanga Biodiversity Sector Plan (**Figure 3-1**), and the DEA *et al's* (2013) Atlas of Sensitive Areas for Mining (**Figure 2-6**). These combined findings suggest that the AYCP is fatally flawed.

YZERMYN AREAS OF CONSERVATION SIGNIFICANCE - FLORA

Figure 6-1 **Floral Sensitivity Map**

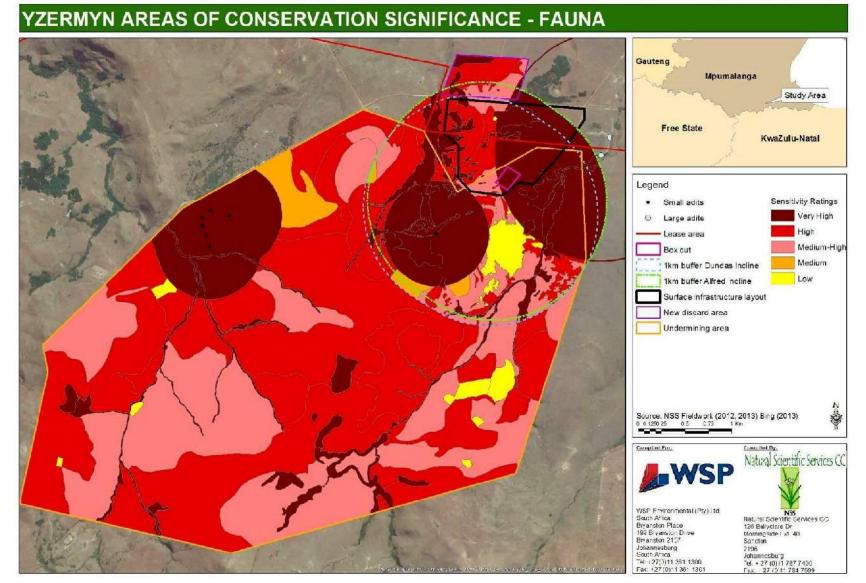
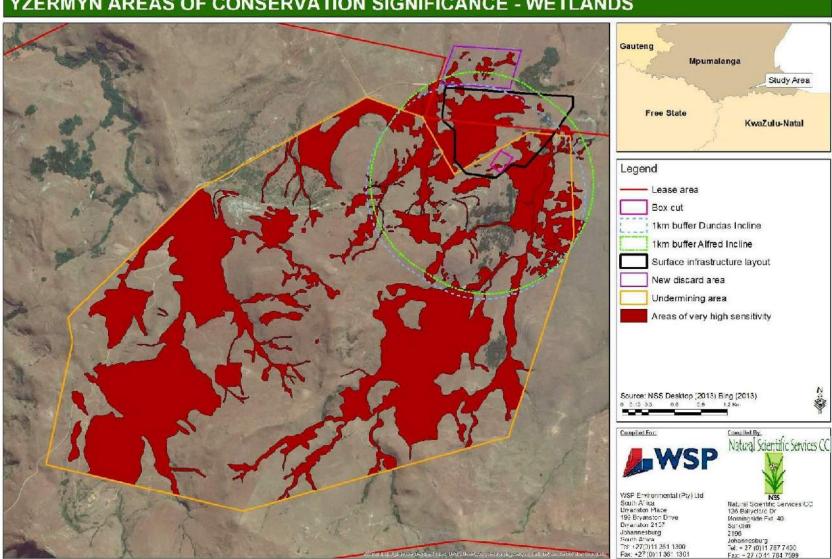
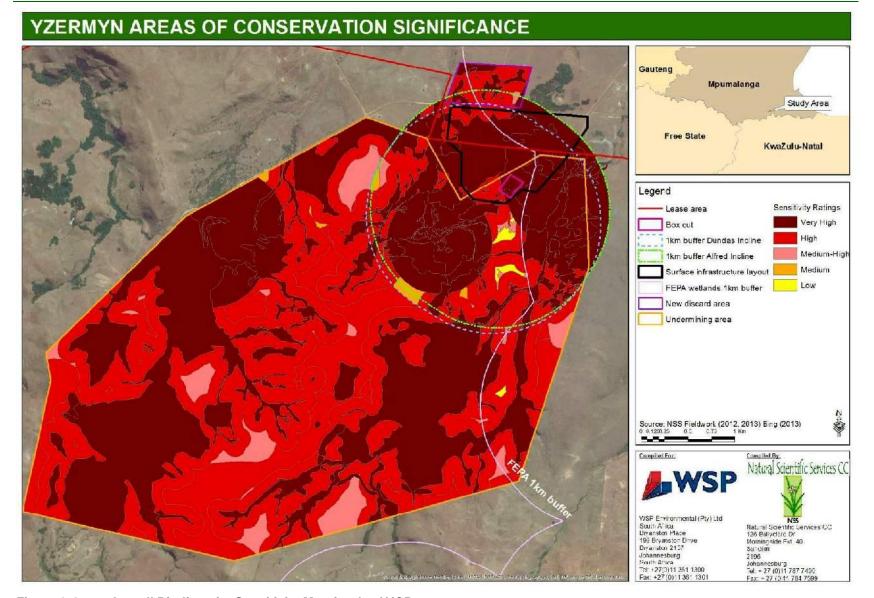




Figure 6-2 Faunal Sensitivity Map

YZERMYN AREAS OF CONSERVATION SIGNIFICANCE - WETLANDS

Figure 6-3 Aquatic & Wetland Sensitivity Map

Figure 6-4Overall Biodiversity Sensitivity Map for the AYCP

7. Application of Sensitivity Results

The Sensitivity Maps should guide the development of the AYCP, where:

- Disturbances should preferentially occur in Low sensitive areas.
- Very High sensitive areas must remain undisturbed.
- High sensitive areas should be subject to limited disturbance and rigorous mitigation.
- Medium sensitive areas may be disturbed if mitigation measures are implemented.
- Low sensitive areas may be disturbed with minimal mitigation.

A full Impact Assessment with recommended mitigation measures is presented in Section G.

Section G: Impact Assessment

NATURAL SCIENTIFIC SERVICES

SECTION G: TABLE OF CONTENTS

1.	Intro	duction	229
2.	Meth	nodology	229
	2.1.	Impact Rating	229
	2.2.	Assumptions, Limitations & Caveats	
3.	Curr	ent Impacts	235
	3.1.	Drilling for the AYCP	235
	3.2.	Livestock Grazing, Trampling & Eutrophication	235
	3.3.	Crop Cultivation	235
	3.4.	Alien Plant Invasion	235
	3.5.	Harvesting of Fauna & Flora	236
4.	Futu	re Potential Impacts	237
	4.1.	Construction of Infrastructure & Resultant Loss of Habitat & Species	239
	4.2.	Decline in Water Inputs & Resultant Deterioration in PES & Functionality	242
	4.3.	Decline in Water Quality & Resultant Deterioration in PES & Functionality	254
	4.4.	Alien Species Invasion & Resultant Impacts on Biodiversity	
	4.5.	Increased Erosion & Sedimentation & Resultant Impacts on Biodiversity	264
	4.6.	Sensory Disturbance of Fauna	265
5.	Cum	ulative Impacts	267
6.	Con	clusion	

SECTION G: LIST OF TABLES

Table 2-1	Rating of impact Severity (as stipulated by WSP)	230
Table 2-2	Rating of impact Duration (as stipulated by WSP)	230
Table 2-3	Rating of impact Extent (as stipulated by WSP)	230
Table 2-4	Determination of impact Consequence (as stipulated by WSP)	
Table 2-5	Rating of impact frequency (as stipulated by WSP)	230
Table 2-6	Rating of impact Frequency (as stipulated by WSP)	231
Table 2-7	Determination of impact Likelihood (as stipulated by WSP)	
Table 2-8	Determination of impact Significance (as stipulated by WSP)	231
Table 4-1	The potential impacts rated with and without mitigation (as stipulated by	v WSP) 238
Table 4-2	The sensitivity to flow of the present and expected fish species (Kleyr	hans et al.
	2007)	251
Table 4-3	Expected decant quality (iLEH, 2013)	
Table 4-4	Impacts of hydrocarbons on aquatic systems	

Natural Scientific Services CC

Table 4-5	Water quality constituents indicative of coal mining, and their impacts on a	quatic
	systems	257
Table 4-6	Impacts of sedimentation on aquatic systems	265

SECTION G: LIST OF FIGURES

The planned surface infrastructure footprint	234
Photographs of current impacts in the study area	237
Simulated drawdown in the shallow aquifer: 11-16 years (WSP, 2013a)	244
Simulated drawdown in deep aquifer: 11-16 years (WSP, 2013a)	245
Shallow and deep aquifer drawdown cones (at 11-16 years), and the na	tional
Mining and Biodiversity Guideline	247
Shallow and deep aquifer drawdown cones (at 11-16 years), and the Na	tional
Freshwater Ecosystem Priority Areas	248
Shallow and deep aquifer drawdown cones (at 11-16 years), and the Mpuma	langa
Biodiversity Sector Plan	249
Proposed aquatic bio-monitoring points	262
Farms included by mining applications in the study region	268
	Photographs of current impacts in the study area Simulated drawdown in the shallow aquifer: 11-16 years (WSP, 2013a) Simulated drawdown in deep aquifer: 11-16 years (WSP, 2013a) Shallow and deep aquifer drawdown cones (at 11-16 years), and the na Mining and Biodiversity Guideline Shallow and deep aquifer drawdown cones (at 11-16 years), and the Na Freshwater Ecosystem Priority Areas Shallow and deep aquifer drawdown cones (at 11-16 years), and the Mpuma Biodiversity Sector Plan Proposed aquatic bio-monitoring points

SECTION G: IMPACT ASSESSMENT

1. Introduction

This **Section G** presents the Phase 3 (Biodiversity) Impact Assessment for the proposed underground mining, surface infrastructure and discard areas (shown in **Section A: Figure 2-1**).

The Impact Assessment (IA) was completed (with recommended mitigation measures) in the context of:

- Relevant international, national and provincial legislation, policies and guidelines mentioned in **Section A**.
- Results from the desktop- and field-based investigations of flora, fauna, aquatic ecology and wetlands, including local observations of CI species, as described in Sections B, C, D and E, respectively.
- The national and provincial significance of local Biodiversity, and relevant national, provincial and local conservation initiatives mentioned in **Section F**.
- The habitat sensitivity ratings, buffer zones and Sensitivity Maps presented in Section F.

2. Methodology

Current impacts on Biodiversity in the study area are briefly mentioned. Future potential impacts of the proposed project, and recommended measures to mitigate these, were rated, and are discussed in detail. Cumulative impacts have also been considered.

2.1. Impact Rating

Using WSP's Impact Rating Methodology, the Severity, Duration, Extent, Consequence, Frequency, Probability and Likelihood of each potential impact was assessed, and used to calculate each impact's overall Significance (with and without mitigation), as shown in **Table 2-1** to **Table 2-8**.

Rating	Description	
1	Negligible/ non-harmful/ minimal deterioration (0 – 20%)	
2	Minor/ potentially harmful/ measurable deterioration (20 – 40%)	
3	Moderate/ harmful/ moderate deterioration (40 – 60%)	
4	Significant/ very harmful/ substantial deterioration (60 – 80%)	
5	Irreversible/ permanent/ death (80 – 100%)	

Table 2-1 Rating of impact Severity (as stipulated by WSP)

Table 2-2 Rating of impact Duration (as stipulated by WSP)

Rating	Description	
1	Less than 1 month/ quickly reversible	
2	Less than 1 year/ quickly reversible	
3	More than 1 year/ reversible over time	
4	More than 10 years/ reversible over time/ life of project or facility	
5	Beyond life of project of facility/ permanent	

Table 2-3 Rating of impact Extent (as stipulated by WSP)

Rating	Description
1	Within immediate area of activity
2	Surrounding area within project boundary
3	Beyond project boundary
4	Regional/ provincial
5	National/ international

Table 2-4Determination of impact Consequence (as stipulated by WSP)

Determination of Consequence (C) (Severity + Duration + Extent) / 3

Table 2-5Rating of impact frequency (as stipulated by WSP)

Rating	Description
1	Less than once a year
2	Once in a year
3	Quarterly
4	Weekly
5	Daily

Rating	Description
1	Almost impossible
2	Unlikely
3	Probable
4	Highly likely
5	Definite

Table 2-6Rating of impact Frequency (as stipulated by WSP)

Table 2-7 Determination of impact Likelihood (as stipulated by WSP)

Determination of Likelihood (L) =	(Frequency + Probability) / 2

Table 2-8Determination of impact Significance (as stipulated by WSP)

Environmental Significance (Impact) = C × L	Description
L (1 – 4.9)	Low environmental significance
LM (5 – 9.9)	Low to medium environmental significance
M (10 - 14.99)	Medium environmental significance
MH (15 – 19.9)	Medium to high environmental significance
H (20 – 25)	High environmental significance. Likely to be a fatal flaw.

2.2. Assumptions, Limitations & Caveats

The IA was based on the following main assumptions and limitations:

- If approved, the proposed surface infrastructure will be located within the footprint shown in **Figure 2-1** (which was supplied to NSS after field work was performed).
- Proposed mining areas beyond the assessed 15 years of mining, have not been assessed (Section A: Figure 2-2)
- Potential impacts associated with access roads, conveyor routes, pipelines, electricity supply routes etc have not been assessed as part of this assessment.
- The source of water for the wetlands identified within the study area and within the greater cone of depression is unknown (WSP, 2013a). A conservative approach has therefore been taken, assuming the following:
 - The shallow and deep aquifers are hydraulically connected. Recharge of the deeper aquifers is expected to occur along the few fracture systems which connect the deeper aquifer to shallow groundwater bodies or directly to the surface.
 - \circ $\,$ The wetlands may be fed by one or more of the following sources:

- the perched aquifer. Perched on low permeability material in the weathered zone or in colluviums;
- the shallow aquifer. Perched on hard rock at the base of the weathered zone; and
- the deeper aquifer in terms of springs. Groundwater on horizontal and semi-horizontal contacts between different rock types
- Based on the above uncertainties on the source of water for the wetlands in the study area, it has been assumed that the mine de-watering will impact all wetlands in the proposed underground mining and surface infrastructure areas, based on the dewatering cones supplied by WSP (2013a) for both the shallow and deep aquifers. The impact will also extend into and beyond the greater mine lease area.
- Groundwater will be used to augment water supply to the washing plant. Boreholes CBH2D, CBH3S and CBH7S will be pumped 12 hours a day.
- A cut-off trench will be constructed around the surface infrastructure footprint and the clean water collected in the cut-off trench will be returned to the receiving environment.
- The discard dump will not be lined, however, the base of the discard dump will be compacted to reduce infiltration.
- The coal stockpile area will not be lined, however, the base of the coal stock pile swill be compacted to reduce infiltration.
- The Pollution Control Dams (PCDs) will be lined.
- It is estimated that groundwater levels will recover within 20-50 years after mining stops.
- The plant area will be paved, which will limit seepage to the underlying aquifers.
- It is uncertain whether the drawdown cone extends into the quaternary catchments V31A and W42A (as the groundwater model did not extend into these catchments). For this assessment it has been assumed that it is unlikely. However, further investigations should be undertaken due to the sensitive nature of these catchments and associated watercourses (FEPA rivers and wetlands).
- Conventional board and pillar underground mining methods will be used. This will involve drill and blast, and continuous miner operations. The pillars will be 6m wide and to the mining height. No high extraction is planned. The dolerite sill intruded into the area is furthermore expected to increase the strength of the overburden material. The risk of subsidence is, therefore, considered to be low (WSP, 2013a).
- A modular sewage treatment plant will be constructed, which is contained. It is therefore assumed that no soak-aways or french drains will be implemented. A reputable contractor will empty septic tanks. For this reason, the sewage plant is not expected to pose a threat to groundwater contamination. Chemical toilets will be used during the construction phase of the project.

• In addition to the above, all the assumptions made in the groundwater report apply to this assessment as the results of the groundwater model are dependent on these (WSP, 2013a).

In terms of Offsets, no national or Mpumalanga provincial guidelines (MTPA pers. comm., 2013) currently exist for wetland offset projects. The MTPA does not readily entertain offsets as an option unless the long-term security of a site can be guaranteed. This project will impact on wetlands, fed by the shallow aquifer, within an area of approximately 5,398ha and wetlands, fed by springs sourced in the deeper aquifer, within an area of approximately 7,977ha. The possibilities for offsets, of this extent within the same catchment, are unlikely. As this proposed project is at the head of catchment W51A and will impact on water resources downstream and may also impact on catchments V31A and W42A, no wetland could be offset to the same value and ecological state (Natural to Largely Natural) as those that would be lost.

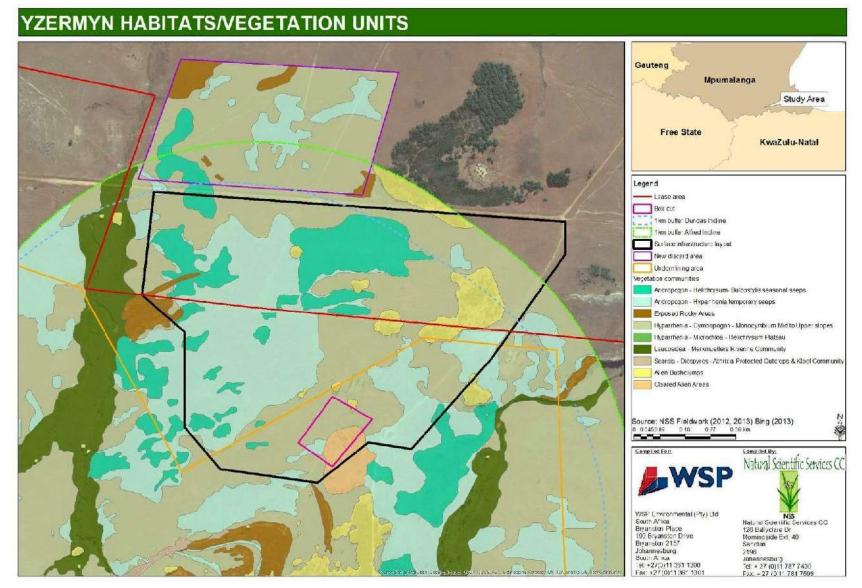


Figure 2-1The planned surface infrastructure footprint

3. Current Impacts

Photographs of current impacts on Biodiversity in the study area are presented in Figure 3-1.

3.1. Drilling for the AYCP

Contractors appointed by WSP to drill groundwater (NOT exploration) boreholes, have had a recent, localized impact on site. New roads/tracks have been made and sediment/silt has been left on the ground surface in the wake of borehole run-off. WSP has reportedly discussed this issue with the appointed contractor, and requested that in future, all run-off must be contained.

3.2. Livestock Grazing, Trampling & Eutrophication

African grass species are adapted to thrive under conditions of periodic defoliation caused by grazing or fire. The grass sward even requires periodic defoliation to remain healthy. Excessive levels of defoliation, however, can cause the grass sward to degenerate, allowing unpalatable grass species to dominate, which are referred to as Increaser 2 species (Van Wyk & Van Oudtshoorn, 2002). Cattle-grazing is widespread across the AYCP lease area, and in some areas the floral communities were dominated by Increaser 2 species. Cattle grazing and trampling were concentrated in a few small cattle camps. Trampled areas and paths are susceptible to erosion. At some aquatic sampling sites (**Section D**), slightly elevated measurements of ammonium (NH3), alkalinity, and Chemical Oxygen Demand (COD) were possibly due to eutrophication from cattle manure. Although not directly associated with the proposed mining operation, grazing activities in the lease area would need to be addressed as part of the Mine's social and environmental responsibility.

3.3. Crop Cultivation

Crop cultivation eliminates species from the land, fragments natural habitat, and provides refuge for numerous weedy and alien species (such as the Category 1 species *Datura stramonium*) to establish. Ephemeral and other wetlands are also susceptible to damage by cultivation because habitat integrity and water flow paths, flow rates and quality may be affected (Walters & Koopman, 2003). In eastern South Africa ~50% of wetlands/watercourses have been lost or degraded, most commonly as a result of commercial or subsistence crop cultivation and other forms of agriculture (Kotze *et al.*, 1995). Less than 2% of the total footprint area has been transformed by recent crop cultivation, mostly around homesteads. Some additional areas are fallow and may be re-worked. Some other areas show signs of historical cultivation.

3.4. Alien Plant Invasion


Alien plant species out-compete indigenous flora, reduce water inputs into wetland and riverine systems and, thereby, transform faunal habitat and impinge on local eco-system services.

Although alien bushclumps in the study area provide refuge for some large mammals and birds, bushclumps may reduce water inputs into systems especially seeps. Within the study area alien flora occur in isolated patches including weedy infestations in fallow and active crop fields, and bushclumps comprising *Acacia mearnsii*, *Eucalyptus* spp. and *Populus x canescens* (**Section B**). Scattered woody alien species exist in riparian areas and are generally dominated by the Category 1b species *Acacia melanoxylon*. If the AYCP is approved, the Mine will need to implement an Alien Invasive Management and Action Plan.

3.5. Harvesting of Fauna & Flora

Certain animals in the study area are hunted or otherwise persecuted by people, especially cattle herdsmen and their dogs. Plants of medicinal or cultural significance may also be harvested by local communities. A dead snake was found hooked to a fence near a local settlement, for example, and potential harvesting of *Hyparhennia* Thatching Grass was observed in some areas (**Section B**). These practices may be problematic if they are unsustainable or if CI species are targeted. If the AYCP is approved, the influx of labourers to the Mine may result in increased (and possibly unsustainable) harvesting of local flora and fauna, which would be difficult to control. If the AYCP is approved, the Mine will need to implement rigorous monitoring, management and enforcement systems to control unsustainable harvesting of biodiversity, especially CI taxa.

Silt from groundwater borehole run-off

Cattle camp

Alien invasive plantsPotential harvesting of Thatching GrassFigure 3-1Photographs of current impacts in the study area

4. Future Potential Impacts

The rating of each potential impact to determine its overall Significance, with and without mitigation, is shown in **Table 4-1**.

able 4-1 The potential impacts rated with and without mitigation (as stipulated by WSP)												
				Α	В	С	D	E	F	G	(DxG)	(DxG)
Ref.	Phase	Impact Description	Mitigation Measure	Severity	Duration	Extent	Consequence (A+B+C)/3	Frequency	Probability	Likelihood (E+F)/2	Environ men tal Significan ce (Mith out Mitigation)	Environmental Significance (With Mitigation)
			Biodiversity									
	Pre-construction		Obtain permits to translocate CI taxa; Locate, transplate & monitor CI plants; Translocate certain CI fauna; Include Biodiversity conservation in staff training & inductions; Prohibit disturbance of Biodiversity beyond the construction & operation footprints; Prohibit driving off the main access	5.0	5.0	2.0	4.0	5.0	5.0	5.0	20.0	
1	Construction Operation De-commission Post-closure	Construction of Infrastructure & Resultant Loss of Habitat & Species	road & develop a fining system; Avoid all Very High & High Sensitive areas; Shift the infrastructure layout to impact only one catchment; Rehabilitate existing alien-invaded wetlands; Fence-off the construction area; Purify trench water & carefully return to the environment; Control storm water & erosion along roads; Remove all waste post-construction; Install bridges & culverts over wetland crossings; Stockpile soil in small mounds for brief periods	5.0	4.0	2.0	3.7	5.0	5.0	5.0		18.3
	Pre-construction Construction Operation De-commission Post-closure	Decline in Water Inputs & Resultant Deterioration in PES & Functionality		5.0	5.0	5.0	5.0	5.0	5.0	5.0	25.0	
2				4.0	5.0	4.0	4.3	5.0	5.0	5.0		21.7*
	Pre-construction Construction Operation De-commission Post-closure De-construction Pes & Functionality	stocknile: Install atticient toe drains to remove seenade from entering	5.0	5.0	5.0	5.0	5.0	5.0	5.0	25.0		
3		aquirers; Do not durip waste in or near water resources; regularly check vehicles & machinery for leaks & spills; Only release sufficiently-purified water into the environment; Prevent dirty run-off; Pave the plant area; Adits must be sealed during decommissioning; Perform bio-monitoring of surface and groundwater	4.0	5.0	4.0	4.3	5.0	5.0	5.0		21.7*	
4	Pre-construction Construction Operation De-commission	Alien Species Invasion & Resultant Impacts on Biodiversity	Prohibit introductions of alien & domestic species; Only use indigenous flora & rehabilitation material certified to exclude potential weeds; Train the EO & staff to identify & remove alien taxa;	5.0	5.0	3.0	4.3	5.0	4.0	4.5	19.5	
	Post-closure	Diodiversity		2.0	3.0	2.0	2.3	5.0	3.0	4.0		9.3
5	Pre-construction Construction Operation De-commission	Increased Erosion & Sedimentation & Resultant Impacts on Biodiversity	t Compile & implement a Soil Management Plan; Implement appropriate dust control strategies; Vegetate exposed areas a.s.a.p. with indigenous flora	4.0	5.0	3.0	4.0	5.0	4.0	4.5	18.0	
	Post-closure			2.0	3.0	2.0	2.3	5.0	3.0	4.0		9.3
6	Construction Operation	Sensory Disturbance of Fauna	Maintain a minimum 500m underground buffer around the large bat roosts; Screen the infrastructure area with indigenous hedging; Minimize noise &	3.0	4.0	3.0	3.3	5.0	4.0	4.5	15.0	
	li		lighting as far as possible	2.0	3.0	2.0	2.3	5.0	3.0	4.0		9.3
	*N(OTE: The Significance of	of these impacts would ONLY be reduced if the recommended	ed mitiga	tion mea	sures in l	BOLD are E	FFECTIV	ELY imp	lemented	!!	

4.1. Construction of Infrastructure & Resultant Loss of Habitat & Species

Significance without mitigation: HIGH; Significance with mitigation: MEDIUM-HIGH.

4.1.1 Impact Assessment

Construction of the proposed surface infrastructure will result in complete removal of vegetation and levelling of the area. The plant area will be paved, a cut-off trench will be constructed around the surface infrastructure footprint, and shafts will be created through blasting. The impact will be long-term as it will continue from the construction phase until de-commissioning.

<u>Flora</u>

The proposed surface infrastructure footprint will result in direct loss of the following vegetation communities (**Figure 2-1**):

- Exposed Rocky Areas (0.65ha)
- Andropogon Helichrysum Bulbostylis seasonal seeps (12.36ha)
- Andropogon Hyparrhenia temporary seeps (28ha)
- Hyparrhenia Cymbopogon Monocymbium Mid- to Upper slopes (34.3ha)
- Alien bushclumps (4.62ha)
- Cleared Alien bushclumps (1.25ha)

A vegetation community represents a relatively uniform collection of plant species in a designated geographical area, which is distinguishable from other neighbouring communities. The components of each plant community are influenced by soil type, topography, climate and human disturbance. Of the vegetation communities listed above, the most significant include the Exposed Rocky areas; *Andropogon – Helichrysum – Bulbostylis* seasonal seeps; *Andropogon – Hyparrhenia* temporary seeps; and to a lesser extent the *Hyparrhenia – Cymbopogon – Monocymbium* slopes.

The loss of these communities will also result in a loss of CI plant specimens and small populations. Seventeen CI plant species were recorded within the vegetation communities to be directly lost by the surface infrastructure. Two of these are listed by the TSP as Declining due mainly to habitat destruction: *Boophone disticha* (Tumbleweed/Gifbol) and *Crinum bulbispermum* (Orange River Lily). Endangered, Vulnerable, Rare and other Declining plant species, which have been recorded on nearby farms (**Section B**), may also occur in the footprint and would increase the overall Significance of this impact. Some of the species are rarely recorded mainly because they are inconspicuous in nature, unless in flower. Flowering seasons are either very short or in times when NSS was not in the field.

Fauna

Removal of vegetation for proposed surface infrastructure will cause direct mortality of small, fossorial, and other, less mobile animals and, more importantly, loss of breeding and foraging habitat for various fauna including several CI species, in particular:

- Resident breeding pairs of the Vulnerable White-bellied Korhaan (*Eupodotis* senegalensis), Vulnerable African Grass-owl (*Tyto capensis*) and Near Threatened Secretary Bird (*Sagittarius serpentarius*). Adult birds could fly away from the surface infrastructure area, but chicks would be abandoned, and because of increasing habitat loss, displaced birds might not find suitable habitat that is unoccupied by conspecifics.
- The provincially Near Threatened Cape Grass Lizard (*Chamaesaura anguina anguina*), which was found on multiple occasions in the footprint area, and which is unable to move across cleared, compacted surfaces (Alexander, 2009). These present a significant barrier to individual lizards and, consequently, development of surface infrastructure will fragment the local population. Lizards, which are not killed when vegetation is cleared, would most likely be confined to remaining fragments of suitable rocky grassland habitat because of this species' poor movement capacity. Some displaced or dispersing individuals might not find suitable habitat that is unoccupied by conspecifics.

Wetlands & Aquatic Ecology

The direct loss of wetland seeps and paving of the plant area will cause:

- A change in the water distribution and retention patterns of downstream wetlands. A cutoff trench will be installed around the plant area. The cut-off trench will collect clean water, which will then be returned to the receiving environment. This collection and release of clean water will result in a change in the water distribution and retention patterns of the wetlands. The release of water into the catchment could result in an increase in flood peaks and potential erosion.
- A decline in water inputs into the adjacent river and associated channelled valley bottom wetlands. Presumably, water collected in the surface infrastructure footprint will be dirty, and not returned to the receiving environment. Major impacts associated with the decline in water inputs are discussed further on.
- A loss in the eco-system services provided by these seep wetlands, which include the maintenance of biodiversity, erosion control, and the provision of natural resources.
- An encroachment into the required 1km buffer around adjacent wetland FEPAs. In accordance with the FEPA guideline documents, no mining is to take place within a 1km buffer of any wetland/riverine FEPA (Driver *et al.* 2011).

4.1.2 Recommended Mitigation

The main recommended mitigation measure is to avoid all areas of Very High and High sensitivity. This would make the project a No Go as almost the entire undermining area is rated as having a Very High or High sensitivity. Should the project go ahead, the following mitigation measures regarding the layout of the surface infrastructure should be implemented:

- Protected floral and faunal species will require permits for destruction/translocation.
- The footprint area should be re-investigated by a qualified botanist with appropriate field experience so that the locations of all CI and transplantable plant species (e.g. *Eucomis autumnalis*) can be recorded and visually marked. The designated mine Environmental Officer (EO) should be included in the search. Transplanted specimens should be monitored to assess their success of establishment during the operational phase.
- A qualified zoologist with appropriate expertise should assess the success of translocating resident CI faunal species such as the Cape Grass Lizard.
- Biodiversity and conservation awareness should be incorporated into the training and induction programmes. Education of the EO on site through photographic references of species can be supplied.
- The current surface infrastructure layout impacts on the catchments of both System 1 and 2 as defined in the wetland assessment (**Section E**). The layout of the surface infrastructure should be re-aligned to impact on only one of these systems.
- Any topsoil that is to be stockpiled for future use must be stored at a minimum height to retain the viability of the seed bank.
 - Remove the top 100mm of topsoil and stockpile in small mounds, where possible. The recommended depth of removal is between 100–200 mm of topsoil as this contains the indigenous seed bank. Stockpiling should occur for the shortest possible time to minimize propagule death.
 - A study by Harris *et al.* (1989) states stockpiled soil exceeding a meter deep, results in chemical effects such as accumulation of ammonium and anaerobic conditions at the base of the pile. The suggested height of the stock pile is below 2m (1-1.5m preferably), (ARC pers. comm., 2006). Although this is highly recommended for successful rehabilitation, the trade-off between this, and the increase in footprint and impact of a greater area, needs to be considered.
 - The introduction of top soil supports the opportunity to support a higher diversity of plants than would have been the case had the top soil not been introduced.
- For the wetland systems lost by the surface infrastructure footprint, a Hectare Equivalent approach taking into consideration wetland integrity/functionality of the wetland lost should be conducted. Based on the outcome of what hectare equivalents are required, wetland areas identified for rehabilitation should therefore be secured in the same catchment. Due to the Natural to Largely Natural status of the wetlands in the region,

these rehabilitation options will be limited, and will mainly include the removal of alien and invasive bushclumps (specifically within System 2).

- Water collected in the cut-off trench should remain clean, and be returned to the receiving environment. The release of water into the receiving environment should be dissipated to prevent erosion, and to mimic the fluctuation in flow of the receiving environment.
- Roads passing along steep gradients (≥1 in 10) should include erosion control measures, as deemed appropriate by registered civil engineers. Effective storm water management measures should be implemented and maintained along these roads.
- The footprint area and construction lay down areas should be clearly demarcated and no entry in the surrounding areas should be allowed. Temporary barriers should be erected to protect surrounding habitats from construction activities and dumping of rubble and waste. Only the access road to each of the sites should be used. Off-road driving should be prohibited, and a fining system should be enforced. All surplus and waste materials should be removed from the site at the end of construction.
- Although the impact of linear infrastructure was not included in this assessment, crossings of any water resources should include effective implementation of drainage control, such as the building of bridges, placement of culverts or drifts, as deemed appropriate by registered civil engineers.

4.2. Decline in Water Inputs & Resultant Deterioration in PES & Functionality

Significance without mitigation: HIGH; Significance with mitigation: HIGH.

4.2.1 Impact Assessment

This impact was largely assessed using the findings of the groundwater assessment (WSP, 2013a). The decline in water inputs will be as a result of mine dewatering and the proposed abstraction of water from boreholes CBH2D, CBH3S and CBH7S to supplement the water supply needed for the washing plant. De-watering activities will take place during the construction and operational phases of the proposed mine, with the impacts associated with dewatering still occurring into the closure phase (until the underground mine voids have filled – 20-50 years). During the construction phase local de-watering of the aquifer will occur around the adit. The cone of depression is expected to be steep around the adit and will not extend more than 500m away. Limited groundwater will seep into the shaft and boreholes, but this flow will most probably be sealed off during construction of the adit walls. The construction phase is expected to be short-term and the impact is, therefore, assessed as moderate in comparison to the operational impact.

The main impact associated with the decline in water inputs will be due to the dewatering activities and will occur during the operational phase (approximately 15 years) and post-closure (20-50 years after mining ceases and the groundwater levels recover).

<u>Wetlands</u>

The groundwater model has indicated that during the operational phase the extent of the cone of depression on both the shallow weathered and deeper fractured rock aquifers will probably have a significant impact in the immediate vicinity of the mining operations, mainly due to the depth of mining. Groundwater levels in the shallow aquifer may be lowered by up to 10m in the southern section of the underground workings where mining will be deepest (**Figure 4-1**), whilst the deeper aquifer will be lowered up to 55m during years 11-16 of mining (WSP, 2013a) (**Figure 4-2**). This lowering in groundwater level will have a negative impact on all wetlands fed by the shallow aquifer and the springs within the cone of depression. These springs are one of the main sources of water for the wetlands in the area, supplying water during the drier winter months when the wetlands are not fed by rainfall. As the source of water supplying the wetlands is unknown, and the fact that the groundwater levels will be lowered in the shallow and deeper aquifers, one must assume that the wetlands within the cone of depression will be impacted upon and may possibly dry out. This impact will be seasonal, with the most significant effect on wetlands occurring during the dry season.

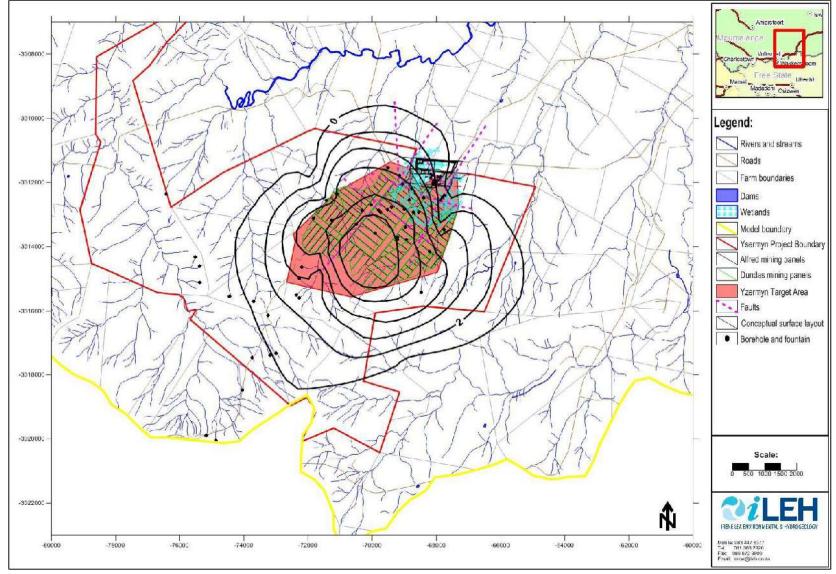
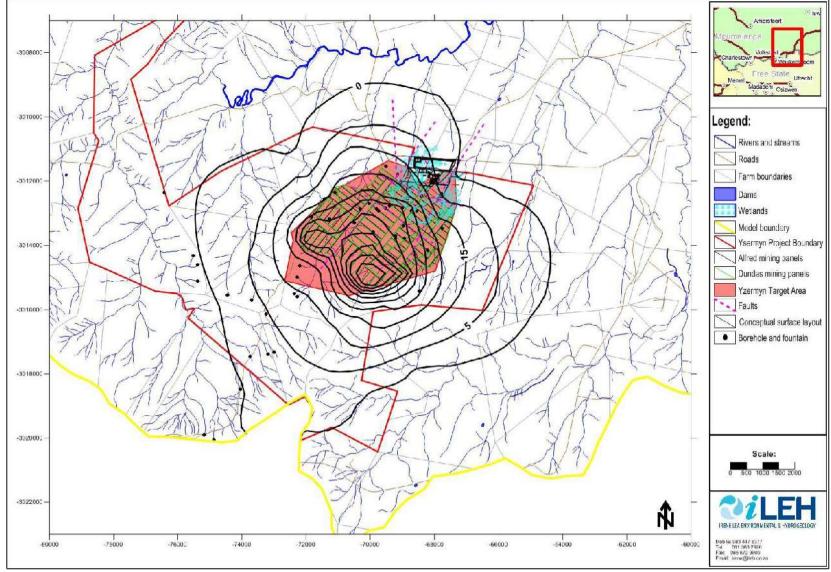
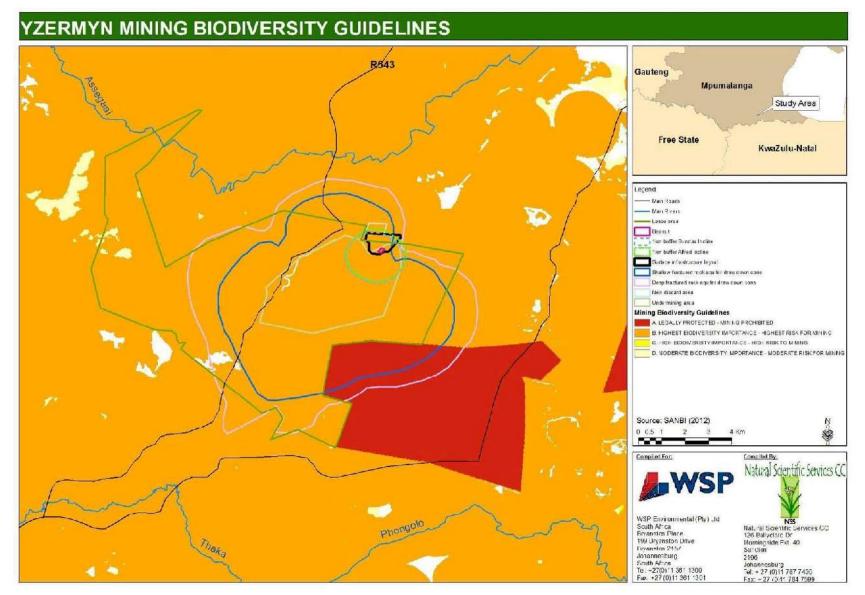


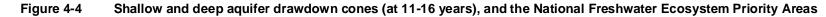
Figure 4-1 Simulated drawdown in the shallow aquifer: 11-16 years (WSP, 2013a)

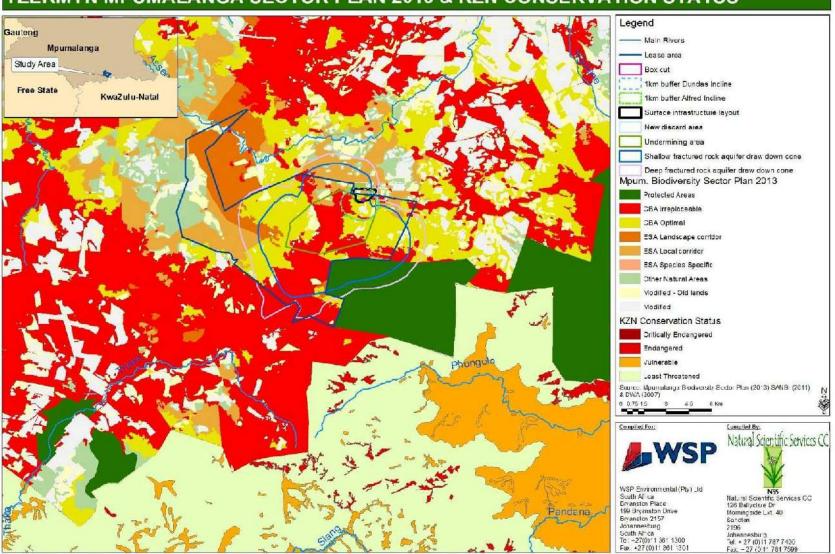



Figure 4-2 Simulated drawdown in deep aquifer: 11-16 years (WSP, 2013a)

The decrease in water input to the wetlands within the study area and surrounds, and the resultant reduction in flow, and potential drying up of wetlands will have a HIGH significance on Biodiversity as a minimum of 40% of the underground mining area and surface infrastructure footprint area constitutes wetland habitat. The impact will also extend into and beyond the greater mine lease area. If one uses the same approach of approximately 40% of the area being wetland, this will equate to the loss or deterioration of between 2,000 and 3,000 ha of wetland habitat. It is uncertain whether the drawdown cone also extends into the quaternary catchments V31A and W42A (as the groundwater model did not extend into these catchments). Further investigations should be undertaken to determine the groundwater impacts within these catchments. From a national and provincial perspective, this is HIGHLY significant as it will result in:

- The loss or deterioration of wetlands in areas that are formally Protected and of Highest Biodiversity Importance according to the Mining and Biodiversity Guideline (**Figure 4-3**).
- The loss or deterioration of the wetlands will extend beyond the study area and will
 extend into the wetland FEPAs within the mine lease area and the wetland FEPAs and
 Wetland Clusters in the immediate surrounds (Figure 4-4). These systems are also the
 start of the catchment that feeds the Assegaai River FEPA, and a decline in water input
 will, therefore, result in a decrease in flow of this river system.
- The drawdown cone will result in the loss or deterioration of wetlands within the Irreplaceable habitat (Mpumalanga Biodiversity Sector Plan) to the south of the underground mining and lease areas (**Figure 4-5**).
- The drawdown cone will result in the loss of fountains and the resultant decline in water input for wetlands in the Kwamandhlangampisi Protected Environment to the east, and the proposed Mabola Protected Environment (**Figure 4-5**).


Figure 4-3 Shallow and deep aquifer drawdown cones (at 11-16 years), and the national Mining and Biodiversity Guideline


Natural Scientific Services CC

YZERMYN NFEPA WETLANDS AND WETLAND CLUSTERS

YZERMYN MPUMALANGA SECTOR PLAN 2013 & KZN CONSERVATION STATUS

Figure 4-5 Shallow and deep aquifer drawdown cones (at 11-16 years), and the Mpumalanga Biodiversity Sector Plan

Aquatic Ecology

Flow regime is regarded as a key driver of aquatic ecosystems, and change in flow regimes is the most serious and continuing threat to the ecological sustainability of rivers. Firstly, flow determines the physical habitat in stream, which in turn determines the biotic composition. The shape and size of river channels, the distribution of riffle and pool habitats, and the stability of the substrate are all largely determined by the interaction between the flow regime and local geology and landform. Therefore, the flow and physical habitat is a major determinant of the distribution, abundance and diversity of aquatic plants, macro-invertebrates and fish.

Secondly, aquatic species have developed life history approaches in direct response to their natural flow regimes. Change in flow can lead to recruitment failure and loss of biodiversity.

Thirdly, preservation of the natural patterns of longitudinal and lateral connectivity is essential to the viability of populations of many riverine species. Loss of connectivity can lead to isolation of populations, failed recruitment and local extinction.

Finally, the invasion and success of exotic species in rivers is made easier by the change of flow regimes. The impacts of flow change are manifest across broad taxonomic groups including riverine plants, invertebrates and fish (Bunn & Arthington, 2002).

Even though local aquatic systems may be perennial in nature, water abstraction for the proposed mining operation has the potential to change the flow of these resources during the construction, operation and de-commissioning phases, with the impacts extending into the closure phase. If the flow rates of local water resources are lowered, this will lead to changes in channel shape, sedimentation, water quality (discussed further on), aquatic habitat integrity, and faunal communities. Reduced flow rates will also hinder fish migration.

Potentially the worst-affected macro-invertebrate taxa would be those that require moderate to fast-flowing water such as the Heptageniidae (flatheaded mayflies), Hydropsychidae (caseless caddisflies), Psephenidae (water pennies), Tricorythidae (stout crawlers) and Elmidae (riffle beetles). Six of the fish species, namely *A. uranoscopus*, *B. brevipinnis*, *B. argenteus*, *C. emarginatus*, *L. polylepis* and *V. nelspruitensis*, have preferences to clear fast-flowing shallow and deep water in rocky habitats. Four of these species, *A. uranoscopus*, *B. brevipinnis*, *B. argenteus*, *B. argenteus*, *argenteus*, are intolerant to no-flow conditions. While two of these species i.e. *L. polylepis* and *V. nelspruitensis* are moderately intolerant to no-flow conditions (**Table 4-2**). Therefore, if the flows in these systems change – these species will be lost in these rivers. This is a concern since three of these species are Near Threatened and the Mpumalanga Conservation authorities have indicated these species are of conservation importance in the area.

2007)				
	INTOLERANT	MODERATELY	MODERATELY	TOLERANT
	TO NO-FLOW	INTOLERANT	TOLERANT TO	TO NO-
		TO NO-FLOW	NO-FLOW	FLOW
Present fish species				
A. uranoscopus	\sim			
Stargazer Mountain Catfish				
L. polylepis		√		
Smallscale Yellowfish				
Barbus anoplus			\checkmark	
Chubbyhead Barb				
Expected fish species				
C. emarginatus*				
Phongolo Suckermouth				
B. brevipinnis*				
Shortfin Barb				
V. nelspruitensis*		\checkmark		
Incomati Chiselmouth				
B. argenteus				
Rosefin Barb				
T. sparmanii				\checkmark
Banded Tilapia				
P. philander				\checkmark
Southern Mouthbrooder				
A. mossambica			\checkmark	
Longfin Eel				
*Conservation Important fish species				

Table 4-2The sensitivity to flow of the present and expected fish species (Kleynhans *et al.*2007)

<u>Flora</u>

Approximately 42% of the vegetation communities identified within the surface infrastructure footprint and 40% within the mine lease area are moisture dependant (**Sections B** and **E**). If the dewatering activities have a major effect on the wetland systems identified, these vegetation communities and the potential CI species found within these habitats will be affected and may change in structure in the long term.

Along with the large number of Protected CI species, TSP-listed species that would be affected include:

- Gladiolus appendiculatus (Vulnerable)
- Alepidea peduncularis (DDT) located on site
- Bowkeria citrina (Rare)

- Eucomis montana (Declining)
- Gunnera perpensa (Declining) located on site
- Sandersonia aurantiaca (Declining)

The decline in water input may also result in the loss of riparian vegetation. Riparian vegetation is a source of energy and nutrients which provides the organic matter needed to drive the stream food web and it provides cover for macro-invertebrates and fish populations (Tabacchi *et al.* 1998). The four fish species that have a high preference for overhanging vegetation include *B. anoplus, B. brevipinnis, P. philander* and *T. sparmanii* (Kleynhans et al. 2007). For the aquatic sampling sites assessed, the main impacts associated with the removal of riparian vegetation will be that of increased risk of erosion, habitat loss of aquatic species, and an increase in alien and invasive plant species.

<u>Fauna</u>

Deterioration or loss of wetland, stream and hydromorphic grassland habitat will lead to changes in the species composition of terrestrial fauna and potential loss of wetland-dependant fauna species. Four CI animal species were observed on site, which would be significantly negatively affected by the predicted drop in ground water and resulting loss of wetland, stream and/or hydromorphic grassland habitat. These species include the Vulnerable African Grass Owl (*Tyto capensis*), the Near Threatened Half-collared Kingfisher (*Alcedo semitorquata*) and Serval (*Leptailurus serval*), and the Data Deficient Swamp Musk Shrew. Desktop research indicated that a large number of potentially occurring CI faunal species may be adversely affected by local loss of these habitats.

The Critically Endangered Rough-haired Golden Mole (*Chrysospalax villosus*) is found in four restricted localities in South Africa: three in Kwa-Zulu Natal and one in Mpumalanga (Bronner 2008). The mine lease area falls within the Mpumalanga population's known area of occurrence. This species, therefore, is highly likely to occur on site, and would be severely compromised by loss of its peripheral wetland habitat (Bronner, 2008). The Vulnerable Sclater's Golden Mole (*Chlorotalpa sclateri*) would be similarly threatened. The Endangered Oribi antelope (*Ourebia ourebi*) has been recorded on nearby farms (MTPA pers. comm. 2013), and is likely to occur near larger wetlands with suitable cover on site. The potentially occurring Near Threatened Highveld Golden Mole (*Amblysomus septentrionalis*), African Marsh Rat (*Dasymys incomtus*) and Data Deficient Sloggett's Vlei Rat (*Otomys sloggetti*) could also be adversely affected by local loss or deterioration of wetlands.

The Vulnerable Grey-crowned Crane (*Balearica regulorum*) has been recorded within the pentad to the south-west of the AYCP, and is likely to make temporary foraging bouts into the study area. The potentially occurring Vulnerable Spotted Shovel-nosed Frog (*Hemisus*

guttatus), the provincially Vulnerable Natal Cascade Frog (*Hadromophryne natalensis*), the Near Threatened Karoo Toad (*Vandijkophrynus gariepensis*), and the Rare Aurora House Snake (*Lamprophis aurora*) would also suffer from loss or deterioration of local wetlands, streams or hydromorphic grassland.

4.2.2 Recommended Mitigation

Due to the HIGH and long-term (if not irreversible) status of this impact in an area far exceeding the study area, the project should be a NO GO. Should the project go ahead, the following minimal mitigation measures are recommended:

- No water should be abstracted from boreholes CBH2D, CBH3S and CBH7S, or any other boreholes, for supplementing the water requirements of the washing plant. Dirty water collected from the plant area or from the de-watering activities should be treated and used for the water requirements of the washing plant.
- Water abstracted for de-watering should be returned to the receiving environment under the requirements of the Resource Quality Objectives or if these have not been set then the Target Water Quality Range for the protection of the receiving environment (Driver *et al.* 2011). The requirements of the Reserve Determination must also be taken into consideration in terms of volume and timing of releases. NOTE that although this recommended measure would reduce the impact of the dewatering activities on the Assegaai River, it is unlikely to reduce the impact of the de-watering activities on affected wetlands. Should it not be possible to discharge the water to the receiving environment it must be re-used in the underground workings.
- Annual monitoring of the PES and Eco-system services of the water resources on site and within all systems impacted on by the drawdown cone.
- Seal off water-bearing geological structures like faults and dykes as they are intersected in the underground workings to minimise groundwater seepage to the workings and to limit the impact of mine dewatering (WSP, 2013a).
- The guidelines for FEPAs state that FEPAs should be considered as priorities for reserve determination (Driver *et al.* 2011). It is recommended that a Rapid III Reserve Determination should be completed prior to new abstraction permits being considered for river FEPAs (Driver *et al.* 2011). A reserve determination is currently underway for the Mhlatuze River, which the Assegaai flows into. A reserve determination should therefore be undertaken for the main systems impacted on by the drawdown cone.
- It is uncertain whether the drawdown cone extends into the quaternary catchments V31A and W42A. Further investigations should be undertaken to determine the groundwater impacts within these catchments.
- The flow within the Assegaai and associated tributaries should be monitored prior to construction and during the operational phase of the mine (until the mine voids have

been filled). The minimum flow requirements, as per the above reserve determination, must be met.

- There is currently no information available on the flow rate of the fountains. It is recommended that the fountains are re-visited before mining commences to measure and record flow rates. This information is vital to determine the impact of mining on fountains in future.
- Riparian integrity of the Assegaai River and associated tributaries should be monitored by a vegetation ecologist to assess the health of the riparian vegetation and the survival of threatened and protected CI species.

4.3. Decline in Water Quality & Resultant Deterioration in PES & Functionality

Significance without mitigation: HIGH; Significance with mitigation: HIGH.

4.3.1 Impact Assessment

The main impact on water quality is associated with the groundwater contamination due the the underground workings and seepage from the discard dump. The information on water quality and potential contamination thereof has, therefore, been largely based on the iLEH (2013) and WSP (2013a) groundwater reports, and professional experience.

The contamination of water will occur during the construction, operation, decommissioning and closure phases of the mine and will occur due to both surface and groundwater contamination. Based on the assumptions listed at the start of the IA, the main source of surface water quality contamination is:

- The unlined discard dump and coal stockpile area;
- The occasional spill or leak from machinery used during construction (minor);
- Increase in sedimentation due to erosion and dust caused by the clearing of vegetation, increased traffic on the sand roads, etc.

Impacts on groundwater quality include:

- The occasional spill or leak from machinery used during construction (minor).
- Seepage from the discard dump during the operational phase of mining. The groundwater model indicates that the plume will move in a northerly and north easterly direction with some contamination moving in a southerly and westerly direction due to dispersion and the effect of increased recharge from the discard dump. During the operational phase, sulphate concentrations of up to 650mg/l may occur in the shallow weathered aquifer in the immediate vicinity of the discard dump. Sulphate concentrations are expected to increase to above 60mg/l in the vicinity of the Mawandlane River. Sulphate concentrations exceeding 100mg/l are, however, not

expected to extend more than 300m from the discard dump during the operational phase. Post-closure sulphate concentrations in baseflow to the Mawandlane River may rise to above 2,000mg/l in the long-term.

Potential acid mine drainage (AMD) once groundwater levels have recovered (20-50 years after mining ceases). Based on the findings of the groundwater model, possible decant points for this project, include the adit and the proposed ventilation borehole. As the position of the ventilation borehole is not yet available (WSP, 2013a) this groundwater assessment was undertaken for possible decant from the adit. If the ventilation shaft is located at a lower elevation than the adit, decant may take place from the shaft rather than the adit. AMD represents the most severe impact of coal mining on water resources. Coal is either in a sulphide form or associated with sulphide bearing strata that are linked to the formation of AMD. When sulphide minerals (especially pyrite, FeS) are exposed to water and oxygen, these oxidize to form sulphuric acid and iron. This in turn leaches other metals, and the process can lead to a high increase in salt concentrations and a decline in pH values. Oxygenated water (from rainfall or surface flow) will start the acidification process when it comes into contact with minerals, and reducing pH. This acidic water will flow in the groundwater resources and ultimately discharge into streams and rivers (Colvin et al. 2011). The elevated location of the mine will lead to drainage of contaminated water away from the mine. Since the proposed mine will be located in the headwaters of the Assegaai River (Usutu River Catchment) it will threaten more than one water resource and thus users located in the lower catchment. The severity of the AMD will depend on the geochemistry and mineral composition of the coal strata and the presence and abundance of sulphide-bearing materials within the location near the coal-bearing reserves. The wetter climate in the study area will also promote the mobility of the contaminants due to the fact that the water will be both the solvent and transport medium. The predicted quality of the decant is highlighted in Table 4-3.

Table 4-3	Expected decant quality (ILEH, 2013)	
PARAMETER	MOST LIKELY LONG-TERM SCENARIO	WORST CASE LONG-TERM SCENARIO
pН	>7	6 - 7
SO ₄	< 450 mg/l	< 2,500 mg/l

Exported decapt quality (il EU 2012) Table 1 2

In terms of biodiversity, both fauna and flora are exposed to ground and surface water contamination as the wetlands may be fed by both the shallow weathered aquifers and the deep fractured aquifers. Any contamination within these aquifers will therefore impact on the surface water quality downstream. This contamination will impact on the PES of the wetlands and the eco-services the wetland can provide, the main one of which is the maintenance of Biodiversity.

Aquatic Ecology

According to Dallas & Day (2004) great changes in water quality (WQ) will gradually change the constituent species of aquatic biotic communities until these are no longer recognisable. The changes include:

- A shift in the physical position of a community of aquatic organisms.
- The introduction or loss of key species.
- Reduction in diversity as a result of increases in the concentration of toxins.
- Reduced ecosystem functioning.

Severe deterioration in WQ can lead to a dramatic decrease in aquatic biota and ceased aquatic ecosystem functionality.

The macro-invertebrates families that are sensitive to WQ changes are Heptageniidae, Baetidae (>2sp), Athericidae, Psephenidae, Chlorocyphidae, Leptophlebiidae Tricorythidae, Chlorolestidae and Elmidae (Thirion, 2007). If WQ changes, there will be a decrease in these macro-invertebrate families which will lead to a decrease in food supply for the fish species in these rivers. In addition, four of the fish species, namely *A. uranoscopus*, *B. argenteus*, *B. brevipinnis*, *C. emarginatus*, prefer good WQ and are intolerant to modified WQ conditions. While *V. nelspruitensis* are moderately intolerant to modified WQ (Kleynhans *et al.* 2007). Therefore, if the WQ conditions in these systems are modified – these species will be lost in these rivers.

The impacts, of increased diesel, petrol and oil leaks from machinery used on site, on the aquatic environment are summarised in Table 4-4. The mining activities during the operational phase will also affect the WQ in terms of AMD, low pH and elevated levels of EC, TDS, salts and coal associated metals. The impact of these constituents on the aquatic environment are summarised in Table 4-5. According to iLEH (2013), the sulphate concentrations in baseflow to the Mawandlane River may rise to above 2,000mg/l in the long-term. First order groundwater baseflow calculations suggest a volume of around 27m³/d in the affected area. This will result in an annual salt load of approximately 20t/a to the Mawandlane River. Potentially contaminated baseflow may also enter the tributary of the Assegaai River to the north of the discard dump. The average sulphate concentration along the affected area is expected to be above 1,500mg/l in this river. Baseflow to the tributary is estimated to be around 19m³/d, which could result in a salt load of some 10t/a to the tributary of the Assegaai River (iLEH, 2013). According to Kotze (2001) the ideal sulphate concentration for aquatic organisms is below 80mg/l. When sulphate concentrations are higher than 200mg/l water becomes unacceptable for human consumption (DWAF, 1996). Therefore, if the concentrations increase to 1,500mg/l in the tributary of the Assegaai and 2,000mg/l in the Mawandlane River, water will become completely inhospitable and toxic for any aquatic organisms living in these rivers.

WQ CONSTITUENT	DESCRIPTION & IMPACT	SIGNIFICANCE WITHOUT MITIGATION
Hydrocarbons	Hydrocarbons are organic compounds that are present within the oil and grease. They can cause major toxic effects on the receiving environment at relatively low concentrations (Phillips & Rainbow, 1993). Due to its lipophilic nature, they concentrate in the sediment and bioaccumulate in high concentrations in aquatic organisms. The aquatic organisms are particularly susceptible to such exposure as hydrocarbons are generally difficult to metabolise.	Moderate

 Table 4-4
 Impacts of hydrocarbons on aquatic systems

Table 4-5	Water quality constituents indicative of coal mining, and their impacts on aquatic
systems	

WQ CONSTITUENT	DESCRIPTION & IMPACT	SIGNIFICANCE WITHOUT MITIGATION
Acid Mine	The host material for coal contains pyrite (FeS) and when this is	Major
Drainage (AMD)	uncovered and exposed to the oxidising action of air, water and	
	chemosynthetic bacteria it will convert the inorganic sulphur to sulphate	
	and sulphuric acid. The ferrous iron will be oxidized and when mine the	
	discharges it will result in acid conditions in rivers. When pH rises again,	
	ferric hydroxide will precipitate and cause "yellow boy" on stream bottoms	
	and any structures in the rivers. Iron can also precipitate as iron oxide and	
	oxyhydroxides. All of these precipitates can discolour water and smother	
	plant and animal life on the river bed. This will severely disrupt the river	
	ecosystem and can also completely annihilate the aquatic communities	
	(Dallas & Day, 2004; Colvin <i>et al.</i> 2011; Hedin, 2002).	
Low pH	AMD will cause a reduction in pH. Direct effects of pH changes consist of	Major
	changes in the ionic and osmotic balance of individual organisms,	
	especially in the rate and type of ion exchange across body surfaces. This	
	will result in slow growth and reduced fecundity. Impacts of indirect pH	
	changes include changes in the availability of toxic substances such as	
	aluminium and ammonia (Dallas & Day, 2004; DWAF, 1996).	
Sulphate (SO ₄)	Sulphates are not toxic. However, in excess sulphates form sulphuric acid	Major
	which reduces pH and affect the aquatic ecosystems negatively. SO_4 are	
	reduced to hydrogen sulphide in anoxic (oxygen-free) conditions.	
	Hydrogen sulphide ("bad egg gas") is an indicator of reducing conditions.	
	It is toxic and inhibits a number of enzymes important in cellular	
	metabolism. The effects of hydrogen sulphide have been proven toxic in	
	the laboratory but could not be quantified in the field (Dallas & Day, 2004).	
	In addition, the high sulphate content in the water has the capacity to	
	leach heavy metals should they come into contact with any of the minerals	
	or rock formations (Colvin et al. 2011) causing increased metal	
	concentrations.	
EC, TDS and	These increased sulphates caused by coal mining will lead to salinisation	Major

WQ CONSTITUENT	DESCRIPTION & IMPACT	SIGNIFICANCE WITHOUT MITIGATION
salinity	due to increased concentrations of the ions (Dallas & Day, 2004; Colvin <i>et al.</i> 2011; Rikard & Kunkle, 1990). Increased EC, TDS and salinity concentrations will be due to the increased concentrations of the ions and salts, namely Ca^{2^+} , Mg^{2^+} , Na^+ , NO_3^- and CI^- . Each species have a specific tolerance to these constituents and elevated levels will lead to a loss of sensitive species (Dallas & Day, 2004; James <i>et al.</i> 2003).	
Iron (Fe)	Fe is associated with AMD. Fe is toxic at high concentrations and inhibits various enzymes. Fe compounds are easily oxidizes and high concentrations can result in acidic conditions and oxygen depletion in the rivers and streams (DWAF, 1996).	Major
Aluminium (Al)	Al is one of the more toxic metals within a water ecosystem and is associated with numerous biochemical effects on aquatic biota. Al is toxic and interferes with the ionic and osmotic balance in fish. This results in respiratory problems due to the coagulation of mucus on the gills. Al also hinder Ca metabolism and change the functioning of the Ca regulating protein, calmodulin. In addition, Al interferes with ion exchange sites, especially those involved with sodium homeostasis. This in turn may lead to neuromuscular dysfunction in fish (Colvin <i>et al.</i> 2011; Dallas & Day, 2004; DWAF, 1996).	Major
Cadmium (Cd)	Cd normally accumulates in the plants and soil. Therefore, macroinvertebrates that live in and are associated with the sediment biotope i.e. earthworms and bivalves will be heavily affected. Cd can influence the whole soil process and may be a threat to the whole soil ecosystems. Cd can also accumulate in mussels, shrimps and fish (Lenntech, 2012). In addition, Cd inhibits aquatic plant growth which affects the whole will affect the whole food chain. Cd can also lead to skeletal deformities and impair function of kidneys in fish. In crustaceans, Cd causes cellular damage and affects both the digestive and metabolic functions (Solomon, 2008).	Moderate
Chromium (Cr)	In natural water, Cr occurs in three oxidation states of which Cr ⁶⁺ are the most toxic. Macroinvertebrates are usually more sensitive to Cr than fish. For example, Cr only temporary reduces growth in juvenile fish. In addition, water hardness and pH affects the toxicity of Cr. Therefore, when water hardness and pH increase the toxicity of Cr will decrease (DWAF, 1996; Dallas & Day, 2004).	Minor
Cobalt (Co)	Co is toxic in small quantities. The insoluble inorganic compounds are carcinogenic and the soluble compounds are toxic, inhibiting and stimulating different enzymes (Dallas & Day, 2004).	Moderate
Copper (Cu)	Cu is a micronutrient, forming an essential part of cytochrome oxidase and various other enzymes involved in redox reactions in the cell. It is toxic at low doses, but its toxicity is reduced in the presence of Zn, molybdenum and sulphate (SO ₄). It is mobile and soluble at low pH, but precipitates in alkaline conditions becoming non-toxic (DWAF 1996; Dallas and Day 2004).	Moderate

WQ CONSTITUENT	DESCRIPTION & IMPACT	SIGNIFICANCE WITHOUT MITIGATION
Manganese (Mn)	Mn is toxic in high concentrations that may lead to disturbances in various metabolic pathways, in particular disturbances of the central nervous system caused by the inhibition of the formation of the neurotransmitter dopamine (DWAF, 1996).	Major
Nickel (Ni)	Ni is toxic in small quantities. It inhibits cytochrome oxidase and various enzymes and can be carcinogenic in mammals (Dallas & Day, 2004).	Moderate
Lead (Pb)	Pb is a trace metal that accumulates in living tissues and bone. Pb interferes with haeme synthesis, an essential portion of the haemoglobin molecule (blood). It affects membrane permeability, displacing Ca and inhibits enzymes involve in energy metabolism. In addition, it reduces immune responses (DWAF, 1996; Dallas & Day, 2004).	Moderate
Zinc (Zn)	Zn is a trace metal which is also an essential micronutrient in all organisms. In aquatic ecosystems the Zn ²⁺ ion is dangerous to aquatic organisms and fish at relative low concentrations. Death can be caused by severe imbalances, while marginal imbalances contribute to reduced fitness. Sub-lethal concentrations at which toxic effects are evident depend on the concentration ratio of zinc to copper, because zinc interferes with copper absorption. Observed symptoms include depressed white blood cell-thrombocyte counts. The observed effects of prolonged exposure to sub-lethal concentrations of zinc in fish fry caused oedema and liver necrosis. The lethal effect of zinc on fish is considered to be from the formation of insoluble compounds in the mucus covering the gills (DWAF, 1996).	Moderate

<u>Flora</u>

A decline in water quality in the downstream water resources, including wetlands, may result in a change in vegetation structure and composition, as described for the previous impact.

<u>Fauna</u>

Terrestrial fauna may be exposed to contaminated surface water resources due to the unconfined nature of the deep fractured aquifer. Impacts of this contamination on faunal species can include aspects such as a decline in general health, reduction in fecundity rates and birth defects.

Two potentially occurring CI species in particular may be adversely affected by changes in water quality: the provincially Vulnerable Natal Cascade Frog (*Hadromophryne natalensis*) and the nationally Near Threatened Plain Stream Frog (*Strongylopus wageri*). Although the presence of either species could not be confirmed on site, suitable habitat exists and both have been recorded within the QDSs wherein the AYCP is situated. Both frog species are highly dependent on cool, clear, fast-flowing, rocky mountain streams.

The predicted increased sulphate and heavy metal concentrations as well as the increase in turbidity and sedimentation will adversely affect these and other frog species. Increased sulphate concentrations will result in the waters becoming more acidic while high metal concentrations often associated with coal mining are known to damage amphibian DNA resulting in deformations (Zocche *et al.* 2013). Increased TDS (a measure of turbidity) would decrease the clarity of water. These alterations in water quality would affect not only the two potentially occurring CI frog species, but a much wider spectrum of faunal taxa that utilize streams and wetlands, as described for the previous impact.

4.3.2 Recommended Mitigation

The current groundwater and surface quality within the region of the study area is good (iLEH, 2013). Based on the predicted groundwater plume, and the surface water resources, the receiving environment for any surface or groundwater contamination is the Assegaai River. This river is a FEPA river. The NFEPA guidelines state that water quality must support keeping wetland FEPAs in good condition (equivalent to an A or B ecological category) for those currently in a good condition, or best attainable ecological category for those not in good condition (equivalent to C or lower; Driver *et al.* 2011). Assuming the assumptions made at the start of the IA are correct, the following mitigation measures must be implemented as a minimum:

- Any activity impacting on a watercourse, or associated buffer, should only occur after authorisation by the relevant authorities.
- Construct an ENGINEERED lining for the base of the discard dump and coal stockpile to prohibit infiltration of contaminated water to the underlying aquifers during the operational phase. A less preferable alternative option would be to compact the base of the discard facility to minimize infiltration of poor quality water to the underlying aquifers during the operational phase. Toe drains should be installed to remove discard seepage and reduce the volume available for infiltration to the aquifers. Do not dump waste of any nature, or any foreign material into any watercourse or associated buffer.
- Regularly check vehicles, machinery and equipment operating on site to ensure that none have leaks or cause spills of oil, diesel, grease or hydraulic fluid.
- No untreated water should enter the receiving environment. Water released into the receiving environment must comply to the Resource Quality Objectives or if these have not been set then the Target Water Quality Range for the protection of the receiving environment (Driver *et al.* 2011).
- Prevent dirty water runoff from leaving the general mining area. This will be achieved with a cut-off trench around the adit, plant and discard facility.
- The plant area must be paved to prevent contaminated seepage from the stockpiles and coal washing areas to the underlying aquifers.

- The adit must be sealed during the decommissioning phase using sound engineering principles to prevent decant.
- A number of limitations were placed on the number of aquatic sampling points allocated for the baseline assessment. Additional sampling points for the future long-term monitoring of the area are therefore recommended. These monitoring points are highlighted in **Figure 4-6**, and have been based on the expected groundwater contamination plume as highlighted by WSP (2013). The following bio-monitoring programmes are recommended:
 - Water quality should be monitored monthly at the sampling sites highlighted in Figure 4-6. This ensures that water monitoring takes place downstream of any potential point of contamination. These water quality results should be compared against the baseline data and TWQR, annually incorporated and interpreted in order to determine trends and identify possible sources of acute and chronic contamination. It is highly recommended that the following water quality constituents should be monitored:
 - pH, EC, TDS, DO;
 - salts (SO4, Mg, Na and Cl);
 - As, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn (coal mining associated constituents); and
 - SS, turbidity, nutrients, organic enrichment, algal presence and eutrophication should be monitored.
 - If significant changes occur in water quality, the cause must be investigated and rectified immediately.
 - Diatoms are also a good indicator of water quality conditions and could be used in addition to water quality.
 - The bio-monitoring of the habitat, macro-invertebrate and fish communities should be determined bi-annually.
 - The habitat, diatoms and biodiversity of the macro-invertebrate and fish communities should be determined bi-annually at any non-flowing sites.
- Additional monitoring includes surface and groundwater monitoring. Refer to the specific specialist studies for these monitoring programmes.

YZERMYN PROPOSED AQUATIC BIOMONITORING POINTS

Figure 4-6 Proposed aquatic bio-monitoring points

4.4. Alien Species Invasion & Resultant Impacts on Biodiversity

Significance without mitigation: MEDIUM-HIGH; Significance with mitigation: LOW-MEDIUM.

4.4.1 Impact Assessment

Alien plant species were found in varying degrees within the proposed surface infrastructure area, and included *Acacia mearnsii* (Black Wattle), *Acacia melanoxylon, Eucalyptus* and *Populus* species. There was a predominance of alien flora in the seeps associated with System 2. It is possible that these clumps were intentionally planted to provide a source of fuel wood for local communities. The remainder of the site, however, is relatively free from alien invasive plants. No alien animal species such as the Common Myna (*Acridotheres tristis*) and House Sparrow (*Passer domesticus*), were detected within the AYCP study area

New and existing alien species invasions are likely to be facilitated, especially during the construction of infrastructure, when people, vehicles, and building materials are brought onto site, and vegetation and soils are disturbed. Increased vehicle traffic on the local road network will also contribute to the introduction and spread of alien invasive taxa. Invasive species can negatively impact Biodiversity by:

- Spreading disease and parasites (e.g. the Black Rat, *Rattus rattus*).
- Displacing indigenous, including CI, species.
- Transforming (i.e. degrading and fragmenting) terrestrial and aquatic habitat.
- Altering eco-system functioning and services.

4.4.2 Recommended Mitigation

An Alien and Invasive Management Plan should be developed for the proposed mining project. A detailed 'on-the-ground' assessment of alien species within the greater study area, their density and distributions should form the baseline. Furthermore, stakeholder engagement strategies should be included into the planning phase of the programme. By ensuring that effective consultation takes place with local communities and all affected parties, any potential misunderstandings (if communities are utilising species such as *Acacia mearnsii* for firewood etc.) and disagreements can be resolved or accommodated in advance.

Preventing the introduction of alien invasive species is the cheapest, most effective and most preferred option and warrants the highest priority. Furthermore the following is recommended:

- Rehabilitation materials should be sourced from reliable suppliers that can certify the absence of weed specimens in their materials.
- The EO and staff in general should be made aware of existing and potentially occurring alien species on site. If any alien species are seen emerging, the EO on site must be able to identify and remove these.

- The intentional introduction of an alien plant species should not be considered for any screening effects, landscaping etc. Indigenous alternatives should be considered suitable for the purposes for which the introduction is required.
- No alien plant species or domestic animals such as dogs and cats should be allowed into the construction camps.

4.5. Increased Erosion & Sedimentation & Resultant Impacts on Biodiversity

Significance without mitigation: MEDIUM-HIGH; Significance with mitigation: LOW-MEDIUM.

4.5.1 Impact Assessment

Erosion in the study area is currently limited to roads, cattle paths and some alien-infested areas (**Section E**), but sediment loads were low within the sampled aquatic systems. Increased traffic for the proposed mining project, especially at watercourse crossings on the dirt roads, is likely to cause significant erosion and increased sedimentation of aquatic systems. Dust, erosion and sedimentation are likely to be most severe during the construction phase when there is clearing of vegetation, sudden increased traffic on the roads, storage of topsoil, digging of foundations, blasting of shafts, etc.

Flora

Increased erosion will ultimately result in a change in plant species composition with a reduced water input into the wetland areas.

Fauna

Increased erosion could impact on terrestrial faunal communities through transformation (degradation) of grassland, wetland and riverine habitat.

Aquatic Ecology

According to Long *et al.* (1998), increased suspended sediment concentrations have the ability to impact on river size, flow volume, bed material and sedimentation rate. These can cause changes in in-stream conditions, loss of available habitat types downstream, and fragmentation of the general system. This in turn may result in population isolation, failed migration during flow events, increased crowding in available pools, increased competition, and local extinction of aquatic species. The impacts of increased sedimentation on aquatic systems are summarised in **Table 4-6**. Fish species that require clear water such as *A. uranoscopus*, *B. argenteus*, *B. brevipinnis*, *C. emarginatus* and *V. nelspruitensis*, would be severely negatively affected by increased sedimentation in local systems.

Table 4-6 Impacts of sedmentation on aquatic systems	
WQ CONSTITUENT	DESCRIPTION & IMPACT
Suspended Solids (SS) and Turbidity	The light penetration is affected by the increase in SS. When the light penetration is reduced it will lead to decreases in primary production and food availability will diminish for organisms in
	the food chain. Benthic invertebrates will be affected because it changes the suitability of the substrate for some taxa, increase drift, affects respiration and feeding activities. Fish can be affected by having physiological effects (impairment of gill function or reduced resistance to disease), reduction in spawning habitat development hindering, change in migration patterns, reduction in food and intervention with hunting (Dallas & Day, 2004).

 Table 4-6
 Impacts of sedimentation on aquatic systems

4.5.2 Recommended Mitigation

- Compile and implement a Soil Management Plan. The Plan should address the identification of high-risk erosion areas, the rehabilitation of areas (should erosion occur), and the monitoring of erosion throughout the life of the project. The Plan must also incorporate the use of indigenous vegetation suitable to the area for rehabilitation purposes.
- Adequate dust control strategies should be implemented to minimise dust, erosion, deposition and sedimentation. Measures include road-wetting, and vegetating exposed areas as soon as possible, etc.

4.6. Sensory Disturbance of Fauna

Significance without mitigation: MEDIUM-HIGH; Significance with mitigation: LOW-MEDIUM.

4.6.1 Impact Assessment

Increased traffic, human activity, noise, vibration and lighting from mining operations will disturb a wide spectrum of fauna and may eliminate certain CI animal species from the area. This is because animals generally have well-developed senses. Highly-sensitive animals may be frightened or disorientated by loud noises, bright lights, etc., and many animals feel threatened by humans. Some species may struggle to communicate if their calls or other behavioural displays cannot be seen or heard by conspecifics.

Of particular concern is the potential impact of noise and vibrations from surface and underground activities (such as blasting) on bats in the old mine adits. The two largest adits are situated 315-335m outside the proposed surface infrastructure layout, and 180-300m outside the proposed underground mining area. The old adits provide significant roosting habitat for the Endangered Swinny's Horseshoe Bat (*Rhinolophus swinnyi*), a large population of the Near Threatened Geoffroy's Horseshoe Bat (*Rhinolophus clivosus*), and the Near Threatened Temminck's Hairy Bat (*Myotis tricolor*) and Natal Clinging Bat (*Miniopterus natalensis*).

In the absence of information that might suggest otherwise, this should be treated as a valid concern given that:

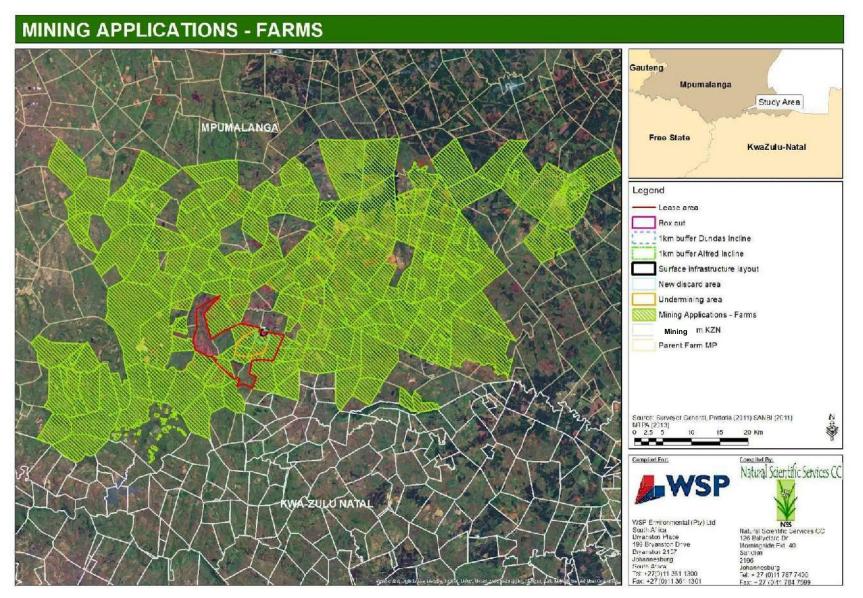
- Bats have exceptionally well-developed sensory systems, and cave-dwelling species are usually highly sensitive to disturbance of their normally dark and quiet roosting habitat (Monadjem *et al.* 2010).
- The Noise Assessment for the AYCP (Collett 2013) indicated that blasting will occur on a daily basis (Collett 2013), and certain operations will continue on a 24 hour basis. During construction and operation, "The highest noise levels are predicted at FH 04," which is 315-415m from the two largest old mine adits. Moreover, during operation, cumulative noise levels are predicted to exceed the SANS (South African National Standards) daytime and nightime guidelines at FH 04 and other locations in the study area.
- The old mine adits could cause vibrations and noise from surface and underground activities to resonate or amplify.

Several CI bird species, which have been recorded in the study area, are known to be intolerant of human and vehicle activity (DEC pers. comm., 2013). Due to noise and dust from the proposed mining surface activities and traffic, in particular, these species would likely avoid a wide radius of otherwise suitable habitat around the surface infrastructure footprint and road network for the life of the Mine. Confirmed species most likely to be impacted include the Vulnerable White-bellied Korhaan (*Eupodotis senegalensis*), and the Near Threatened Black-bellied Bustard (*Lissotis melanogaster*) and Secretary Bird (*Sagittarius serpentarius*). Other species not detected on site that could be affected include the Vulnerable Blue- and Grey-crowned Cranes (*Anthropoides paradiseus* and *Balearica regulorum*).

Lighting at night could negatively affect sensitive nocturnal fauna. Some species may return to the area after the mine has closed, but this is likely to be a slow process that may not see a return of the full spectrum of species once present.

4.6.2 Recommended Mitigation

- A minimum No Go 500m underground buffer must be maintained around the two large, old adits where at least four CI bat species are roosting.
- The site could be screened using indigenous plants to create hedging. Alien and invasive plants must not be used.
- Noise and lighting on site should be minimized as far as possible.




5. Cumulative Impacts

Within the greater southern Mpumalanga study region there are currently numerous applications for mining (**Figure 5-1**; MTPA pers. comm. 2013). If a significant portion of these applications are approved, the combined impacts of mining, afforestation and agriculture will have a massive deleterious impact on Biodiversity at provincial and national levels. Potential cumulative impacts of anthropogenic land use in the region would include:

- Water, air, noise and light pollution.
- Reduction and deterioration of regional groundwater.
- Deterioration and loss of wetland habitat, species, ecosystem functioning and services.
- Deterioration of aquatic habitat, species, ecosystem functioning and services.
- Increased erosion, sedimentation and invasion of alien species.
- Loss and deterioration of threatened terrestrial floral communities, vegetation types, ecosystem functioning, services and faunal habitats.
- Reduction in the richness and abundance of floral and faunal species, and extirpation of locally restricted populations or species.

6. Conclusion

The combined Baseline and Impact Assessments indicate that the AYCP is fatally flawed, and should be NO GO in terms of Biodiversity. This is largely because of the impact of the proposed underground mining on the supply of water to the surface water resources (due to the dewatering activities) and the potential groundwater contamination. These aspects will have a significant impact on aquatic and wetland ecosystem functioning and biodiversity in a far greater area than the underground mining area. These and other aspects of the mining project are in strong conflict with international, national and provincial legislation, policies and guidelines. A high number of CI species were detected, and most habitat in the proposed underground mining and surface infrastructure areas was assigned a Very High or High sensitivity. Most potential impacts of the mining operation had a HIGH overall significance rating, even with mitigation. Moreover, the cumulative impacts of numerous mining applications in the study region are of serious concern.

This is partly why large areas in the study region are currently, or are proposed to be, set aside for Biodiversity conservation under the:

- National Water Act (Act 36 of 1998);
- National Mining and Biodiversity Guideline;
- NSBA terrestrial Priority Areas and Threatened Ecosystems;
- NFEPA Freshwater Ecosystem Priority Areas;
- National Vegetation Unit Status Classifications;
- SANBI Grasslands Programme;
- Enkangala Grassland Biosphere Reserve and IBA;
- Mpumalanga Biodiversity Sector Plan;
- Wakkerstroom Section 49 application by the MTPA;
- Kwamandhlangampisi Protected Environment; and
- Proposed Mabola Protected Environment, among others.

Even though NSS recommends that the project is a NO GO from a Biodiversity perspective, mitigation measures have been discussed should the project go ahead.

SECTION H: REFERENCES

AGIS, 2010. <u>www.agis.agric.za</u>. Agricultural Geo-Referenced Information System – land type data.

- ALEXANDER, G., 2009. Assessment of the Herpetofauna of the Rietvlei and Bronberg areas and the Impact of the Proposed Water Pipeline.
- ALEXANDER, G., & MARAIS, J., 2009. A guide to the reptiles of southern Africa. Struik Publishers, Cape Town.
- BARBOUR, M.T., GERRITSEN, J., SNYDER, B.D., AND STRIBLING, J.B., 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, (Second Edition). EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington D.C.
- BARNES, K.N., (Ed). 1998. The Important Bird Areas of southern Africa. Birdlife South Africa, Johannesburg.
- BARNES, K.N., (Ed). 2000. The Eskom Red data Book of Birds of South Africa, Lesotho & Swaziland. Birdlife South Africa, Johannesburg.
- BIRDLIFE website: www.birdlife.org Accessed: 2012 & 2013.
- BRANCH, B., 1998. Field Guide to Snakes and Other Reptiles of Southern Africa. Struik Publishers, Cape Town.
- BRONNER, G. 2008. *Chrysospalax villosus*. In: IUCN 2013. The IUCN Red List of Threatened Species (2013.1). <u>www.iucnredlist.org</u>. Accessed August 2013.
- BUNN, S.E., & ARTHINGTON, A. H., 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. *Environmental Management*, 30(4):492–507.
- CAMPBELL, H.W., & CHRISTMAN, S.P., 1982. Field Techniques for Herpetofaunal Community Analysis. In SCOTT, N.J., Jr. (ed). Wildlife Research Report 13, US Dept. of the Interior and Wildlife Services.
- COLVIN, C., BURNS, A., SCHATSCHNEIDER, K., MAHERRY, A., CHARMIER, J., & DE WIT, M., 2011. WWF Report. www.wwf.org.za. Coal and Water Features in South Africa.
- COWLING, R.M., RICHARDSON, D.M., & PIERCE, S.M., (Eds). 1997. Vegetation of Southern Africa. Cambridge University Press, Cambridge.
- HILTON-TAYLOR C. 1996. Red Data List of southern African plants. Strelitzia 4. National Botanical Institute, Pretoria, South Africa.
- DALLAS, H.F., & DAY, J.A., 2004. The effect of water quality variables on Aquatic Ecosystems: A Review. WRC Report No. TT 224/04. Water Research Commission. Pretoria, South Africa.
- DALLAS, H.F., 2000. The derivation of ecological reference conditions for riverine macroinvertebrates. Institute for water quality studies. Department of Water Affairs and Forestry. Pretoria, South Africa.

- DALLAS, H.F., 2005. River Health Programme: Site characterisation field-manual and field-data sheets. Resource quality services. Department of Water Affairs and Forestry. Pretoria, South Africa.
- DALLAS, H.F., 2007. River Health Programme: South African Scoring System (SASS) Data Interpretation Guidelines. The Freshwater Consulting Group/Freshwater Research Unit. University of Cape Town. Prepared for Institute of Natural Resources and the Department of Water Affairs and Forestry.
- DAVIS, S.D., DROOP, S.J.M., GREGERSON, P., HENSON, L., LEON, C.J., VILA-LOBOS, J.L., SYNGE, H., & ZANTOVSKA, J., 1986. Plants in Danger: What do we know? IUCN, Gland.
- DE MOOR, I.J., DAY, J.A., & DE MOOR, F.C., 2003. Guides to the freshwater invertebrates of Southern Africa. *Insecta II*. Volume 8: WRC Report No. TT 214/03. Water Research Commission. Pretoria, South Africa.
- DEA, (DEPARTMENT OF ENVIRONMENTAL AFFAIRS), DMR (DEPARTMENT OF MINERAL RESOURCES), CoM (CHAMBER OF MINES), SAMBF (SOUTH AFRICAN MINING & BIODIVERSITY FORUM) & SANBI (SOUTH AFRICAN NATIONAL BIODIVERSITY INSTITUTE) 2013. Mining and Biodiversity Guideline: Mainstreaming biodiversity into the mining sector. Pretoria.
- DEAT, (DEPARTMENT OF ENVIRONMENTAL AFFAIRS AND TOURISM) 2005. South Africa's National Biodiversity Strategy and Action Plan. Department of Environmental Affairs and Tourism, Pretoria.
- DESMET, P., GOODMAN, P., HARRIS, J., JONAS, Z., REYERS, B., SINK, K., & STRAUSS, T., 2005. National Spatial Biodiversity Assessment 2004: Priorities for Biodiversity Conservation in South Africa. *Strelitzia* 17. South African National Biodiversity Institute, Pretoria
- DICKENS, C.W.S., & GRAHAM, P.M., 2002: The South African Scoring System (SASS), version 5, rapid bioassessment methods for rivers, *African Journal of Aquatic Science*, 27, 1 10.
- DRIVER, A., MAZE, K., LOMBARD, A.T., NEL, J., ROUGET, M., TURPIE, J.K., 2004. South African National Spatial Biodiversity Assessment Summary Report.
- DRIVER, A., NEL, J.L., SNADDON, K., MURRAY, K., ROUX, D.J., HILL, L., SWARTZ, E.R., MANUEL, J., & FUNKE, N., 2011. Implementation Manual for Freshwater Ecosystem Priority Areas. Water Research Commission Report. Pretoria.
- DRIVER, A., NEL, J.L., SNADDON, K., MURRAY, K., ROUX, D.J., HILL, L., SWARTZ, E.R., MANUEL, J., & FUNKE, N., 2011. Implementation Manual for Freshwater Ecosystem Priority Areas, WRC.
- DU PREEZ, L., & CARRUTHERS, V., 2009. A Complete Guide to the Frogs of Southern Africa. Struik Nature, Cape Town.
- DWAF, (DEPARTMENT OF WATER AFFAIRS AND FORESTRY) 1996. South African Water Quality Guidelines, Volume 7: Aquatic Ecosystems. Department of Water Affairs and Forestry. Pretoria, South Africa.

DWAF, (DEPARTMENT OF WATER AFFAIRS AND FORESTRY) 1996b. South African Water Quality Guidelines, Volume 8: Field guide. Department of Water Affairs and Forestry. Pretoria, South Africa.

 DWAF, (DEPARTMENT OF WATER AFFAIRS AND FORESTRY) 1999. (Resource Directed Measures for Protection of Water Resources. Volume 4. Wetland Ecosystems Version 1.0 by H. MacKay, A. Duthie, M. de Lange, Department of Water Affairs and Forestry, Pretoria.

DWAF, (DEPARTMENT OF WATER AFFAIRS AND FORESTRY) 2005. Environmental Best Practice Guidelines: Planning. *Integrated Environmental Management Sub-Series* No. IEMS 1.6. (Third Edition). Pretoria, South Africa

EKZN, (EZEMVELO KWAZULU-NATAL WILDLIFE). 2010b. Biodiversity Impact Assessment Handbook for KwaZulu-Natal, Beach, Bush & Berg. Final Draft, July 2010.

ENGELBRECHT, J., BILLS, R., & CAMBRAY, J., 2007. Varicorhinus nelspruitensis. In: IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2. <u>www.iucnredlist.org</u>. Downloaded on 01 May 2012.

EUROBATS. http://www.eurobats.org

FERRAR, T.A., & LÖTTER, M.C., 2007. Mpumalanga Biodiversity Conservation Plan. Mpumalanga Tourism and Parks Agency.

FILMER, M.R., 1995. Southern African spiders. An identification guide. Struik Publishers, Cape Town.

- Final Report. http://www.sanbi.org/. Accessed September 2006

FRIEDMANN, Y., & DALY, B., (eds). 2004. Red Data Book of the Mammals of South Africa: a conservation assessment. CBSG Southern Africa, Conservation Breeding Specialist Group (SSC/IUCN), Endangered Wildlife Trust, South Africa.

- GAMMETER, S., & FRUTIGER, A., 1990. Short-term toxicity of ammonia and low oxygen to benthic macroinvertebrates of running waters and conclusions for wet weather water pollution control measures. *Water Science and Technology*, 22:291–296.
- GDARD, (GAUTENG DEPARTMENT OF AGRICULTURE AND RURAL DEVELOPMENT) 2012. Requirements for Biodiversity Assessments, Version 2. GDARD, Johannesburg.
- GDARD, (GAUTENG DEPARTMENT OF AGRICULTURE AND RESOURCE DEVELOPMENT)
 2012. Minimum Requirements for Biodiversity Assessments Version 2. Directorate Nature Conservation, Johannesburg
- GERMISHUIZEN, G., & MEYER, N.L., (eds.). 2003. Plants of Southern Africa: An annotated checklist. Strelitzia 17, SANBI, Pretoria.

GOOGLE EARTH, 2013. <u>www.google.com/earth</u>. Google Earth (6.0) satellite imagery of the study area. Accessed July 2013.

GOOGLE EARTH., 2011. <u>www.google.com/earth</u>. Google Earth (6.0) satellite imagery of the study area. Accessed 2011.

HART, B.T., ANGEHRN-BETTINAZZI, C., CAMBELL, I.C., & JONES, M.J., 1992. Australian water quality guidelines. Australian & New Zealand Environmental & Conservation Council.

NSS

- HEDIN, R.S., 2002. Recovery of marketable iron oxide from mine drainage. National Meeting of the American Society of Mining and Reclamation (ASMR). ASMR, Lexington, America. http://www.hedinenv.com/pdf/Recovery%20of%20Marketable%20Iron%20Oxide%20from%20 Mine%20Drainage.pdf
- HENNING, G.A., TERBLANCHE, R.F., & BALL, J.B., (eds) 2009. South African Red Data Book: Butterflies. SANBI Biodiversity Series 13. South African National Biodiversity Institute, Pretoria.
- HILL, M.O. 1979. TWINSPAN. A Fortran Program for Arranging Multivariate Data in an Ordered Two-way Analysis. Cornell University, Ithaca, NY
- HILTON-TAYLOR, C., 1996. Red Data List of Southern African plants. *Strelitzia 4*. National Botanical Institute, Pretoria.
- HOCKEY, P.A.R., DEAN, W.R.J., RYAN, P.G., (eds.) 2005. Roberts Birds of Southern Africa VIIth ed. The Trustees of the John Voelcker Bird Book Fund, Cape Town.
- HURFORD, & SCHNEIDER., 2007. Monitoring Nature Conservation in Cultural Habitats: A Practical Guide and Case Studies. Springer. Netherlands.
- ILEH, 2013. Ysermyn Underground Coal Mine: Numerical Groundwater Model: Draft Report. July 2013 iLEH-WSPYSE 06-13. Accessed July 2013.
- IUCN (INTERNATIONAL UNION FOR CONSERVATION OF NATURE AND NATURAL RESOURCES) 2012. IUCN Red List Categories and Criteria: Version 3.1. IUCN, Gland, Switzerland.
- IUCN 2013. The IUCN Red List of Threatened Species (2013.1). <u>www.iucnredlist.org</u>. Accessed July 2013.
- JAMES, K.R., CANT, B., & RYAN, T., 2003. Responses of freshwater biota to rising salinity levels and implications for saline water management: a review. Australian Journal of botany, 51:703–713.
- JOHNSON, S., & STARKE, L., (eds.) 2006. ICMM, (INTERNATIONAL COUNCIL ON MINING AND METALS). Good Practice Guidance for Mining and Biodiversity. London, UK.

KARR, J.R., 1981. Assessment of biotic integrity using fish communities. Fisheries 66: 21-27

- KLEYNHANS, C.J., & LOUW, M.D., 2007. Module A: EcoClassification and Ecostatus determination in River EcoClassification: Manual for ecostatus determination (Version 2). Pretoria, South Africa: Joint Water Research Commission and the Department of Water Affairs and Forestry. Pretoria, South Africa.
- KLEYNHANS C. J. & LOUW M. D., 2008. Module A: EcoClassification and Ecostatus determination in River EcoClassification: Mannual for ecostatus determination (version 2). Pretoria, South Africa: Joint Water Research Commission and the Department of Water Affairs and Forestry.
- KLEYNHANS, C.J., 1996. A qualitative procedure for the assessment of the habitat integrity status of the Luvuvhu River (Limpopo system, South Africa). *Journal of Aquatic Ecosystem Health 5*: 41-54.

- KLEYNHANS, C.J., 1997. Threatened fishes of the world: *Chiloglanis emarginatus* (Jubb & Le Roux, 1969) (*Mochokidae*). *Environmental Biology of Fishes*, 49:206.
- KLEYNHANS, C.J., 1999. The development of a fish index to assess the biological integrity of South African rivers. *Water SA* 25: 265-278
- KLEYNHANS, C.J., 2008. River Eco Classification manual for ecostatus determination (version 2) Module D: Volume 1, Fish Response Assessment Index (FRAI). Pretoria, South Africa: Water Research Commission no TT 330/08.
- KLEYNHANS, C.J., LOUW, M.D., & MOOLMAN, J., 2008. Reference frequency of occurrence of fish species in South Africa. Pretoria. DWA and WRC Report no. TT 331/08. Department of Water Affairs and Forestry. Water Research Commission. Pretoria, South Africa.
- KNNCS, (KWAZULU NATAL NATURE CONSERVATION SERVICES). 1999. Nomination Proposal for the Drakensberg Park alternatively known as Ukhahlamba Park to be listed as a World Heritage Site. Kwazulu-Natal Nature Conservation Service. Amafa Akwazulu Natali - Heritage Kwazulu Natal
- KOTZE, P. 2001. The Ecological Integrity of the Klip River (Gauteng) and the development of a Sensitivity-Weighted Fish Index of Biotix Integrity (SIBI). PhD thesis. Rand Afrikaans University. Johannesburg. South Africa.
- KOTZE, D.C., MARNEWECK, G.C, BATCHELOR, A.L., LINDLEY, D.S., & COLLINS, N.B., 2008. WET-EcoServices: A technique for rapidly assessing ecosystem services supplied by wetlands. WRC Report No TT 339/08, Water Research Commission, Pretoria.
- KOTZE, D.C., MARNEWECK, G.C., BATCHELOR, A.L., LINDLEY, D.S., & COLLINS, N.B., 2007. WET-EcoServices: A technique for rapidly assessing ecosystem services supplied by wetlands. WRC Report No TT 339/08, Water Research Commission, Pretoria
- KUNTONEN-VAN'T RIET., 2007. Strategic Review of the Status of Biodiversity Management in the South African Mining Industry. This report was prepared at the request of the South African Mining and Biodiversity Forum, the Chamber of Mines of South Africa and the World Conservation Union (IUCN) South African Office. Matrix+ Consulting (Pty) Ltd.

LEEMING, J., 2003. Scorpions of Southern Africa. Struik Publishers, Cape Town.

LENNTECH, 2012. (website). Technical University of Delft, Netherlands. http://www.lenntech.com/periodic/elements/cd.htm

LONG, R.F., SIMPSON, T., DING, T., et al. 1998. Bats feed on crop pests in Sacramento Valley. Cal Ag 52(1):8-10.

- LOTTER, M., 2013. Mpumalanga Biodiversity Sector Plan. Mpumalanga Tourism and Parks Agency.
- LOW, A.B., & REBELO, A.G., (Eds.) 1996. Vegetation of South Africa, Lesotho and Swaziland. A Companion to the Vegetation Map of South Africa, Lesotho and Swaziland. Dept of Environmental affairs and Tourism, Pretoria.
- MACFARLANE, D.M., KOTZE, D.C., ELLERY, W.N., WALTERS, D., KOOPMAN, V., GOODMAN, P., GOODMAN P. AND GOGE C. 2008. Wetland Tools Assessment. WRC Report.

MANGOLD, S. 2001. National Aquatic Ecosystem Biomonitoring Programme: An Implementation Manual for the River Health Programme - a hitch hiker's guide to putting the RHP into action. NAEBP Report Series No 15. Resource Quality Services, Department of Water Affairs and Forestry, Pretoria.

MBSP (MPUMLANGA BIODIVERSITY SECTOR PLAN) 2013. MTPA

- MCKEE, J.E., & WOLF, H.W., 1963. Water quality criteria. The Resource Agency of California (2nd edition). *State Water Quality Control Bd.*, Publication 3A. 584pp.
- MEADOR, M.R., CUFFNEY, T.F., & GURTZ, M.E., 1993. Methods for sampling fish communities as part of the natural-water quality assessment programme. U.S Geology survey. Open-file Report 93-104. Carolina.
- MIGDOLL, I. 1994. Butterflies of Southern Africa. Struik Publishers, Cape Town.
- MINTER, L., BURGER, M., HARRISON, J.A., BRAACK, H.H., BISHOP, P.J., & KLOEPFER, D., (Eds.) 2004. Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland. SI/MAB Series #9. Smithsonian Institution, Washington, DC.
- MITCHELL-JONES, T., & CARLIN, C., 2009. Bats and onshore wind turbines, Interim guidance, Natural England Technical Information Note TIN051, 9pp accessed from www.naturalengland.org.uk in April 2010.
- MONADJEM, A., TAYLOR P.J., COTTERILL, F.P.D., & SCHOEMAN, M.C., 2010. Bats of southern and central Africa – A biogeographic and taxonomic synthesis. Wits University Press, Johannesburg
- MTPA, (MPUMALANGA TOURISM AND PARKS AGENCY). 2013. Mpumalanga Biodiversity Sector Plan. MTPA.
- MUCINA, L., & RUTHERFORD, M.C., (eds). 2006. The vegetation map of South Africa, Lesotho and Swaziland. *Strelitzia 19*, South African National Biodiversity Institute.
- MUELLER-DOMBOIS, & ELLENBERG., 1974. Aims and Methods of Vegetation Ecology. New York: *John Wiley and Sons*, pp 93-120.
- NEL, J., MAREE, G., ROUX, D., MOOLMAN, D., KLEYNHANS, N., SILBERBAUER, N., & DRIVER, A., 2004. South African National Spatial Biodiversity Assessment Technical Report, Volume 1. South African National Biodiversity Institute. Pretoria, South Africa.
- NEMA, 1998. National Environmental Management Act, 1998 (Act No. 107 of 1998): An Act to provide for co-operative environmental governance by establishing principles for decisionmaking on matters affecting the environment, institutions that will promote cooperative governance and procedures for co-ordinating environmental functions exercised by organs of state; to provide for certain aspects of the administration and enforcement of other environmental management laws; and to provide for matters connected therewith.
- NEMBA, 2007. National Environmental Management: Biodiversity Act, 2004 (Act No. 10, 2004): Publication of lists of Critically Endangered, Endangered, Vulnerable and Protected Species. February 2007.
- NEWMAN, K., 2002. Newman's Birds of Southern Africa. Struik Publishers, Cape Town.

O'FARRELL, P., 2006. Ecosystem Services and Benefits to Farmers. Conservation Farming Project

- OLLIS, D.J., SNADDON, C.D., JOB, N.M., & MBONA, N., 2013. Classification System for Wetlands and other Aquatic Ecosystems in South Africa. User Manual: Inland Systems. SANBI Biodiversity Series 22. South African National biodiversity Institute, Pretoria. RAMSAR, 1999.
 People and Wetlands: The Vital Link, 7th Meeting of the Conference of the Contracting Parties to the Convention on Wetlands (Ramsar, Iran, 1971), San José, Costa Rica.
- OLSON, D.M., DINERSTEIN, E., WIKRAMANAYAKE, E.D., BURGESS, N.D., POWELL, G.V.N., UNDERWOOD, E.C., D'AMICO, J.A., ITOUA, I., STRAND, H.E., MORRISON, J.C., LOUCKS, C.J., ALLNUTT, T.F., RICKETTS, T.H., KURA, Y., LAMOREUX, J.F., WETTENGEL, W.W., HEDAO, P., & KASSEM, K.R., 2001. Terrestrial Ecoregions of the World: a new map of Life on Earth. *BioScience* 51: 933-938.
- PATTERSON, R. 1987. Reptiles of Southern Africa. Struik, Cape Town
- PFAB, M.F., & VICTOR, J.E., 2002. Threatened plants of Gauteng, South Africa. South African Journal of Botany 68:370-375.
- PICKER, M., GRIFFITHS, C., & WEAVING, A., 2002. Field Guide to Insects of South Africa. Struik Publishers, Cape Town.
- PICKETT, S.T.A., OSTFELD, R.S., SHACHAK, M., & LICKENS, G.E., 1997. The Ecological Basis of Conservation: Heterogeneity, Ecosystems, and Biodiversity. Chapman & Hall. N.Y.
- REBELO, A.G., DOLD, A.P., VAN WYK, A.E., HELME, N.A., HOLMES, P.M., FORSHAW, C.N.,
 RICHARDSON, S.H., RAIMONDO, D., EUSTON-BROWN, D.I.W., VICTOR, J.E., FODEN,
 W., EBRAHIM, I., BOMHARD, B., OLIVER, E.G.H., JOHNS, A., VAN DER VENTER, J., VAN
 DER WALT, R., VON WITT, C., LOW, A.B., PATERSON-JONES, C., ROURKE, J.P.,
 HITCHCOCK, A.N., POTTER, L., VLOK, J.H. & PILLAY, D. 2009. *Protea subvestita* N.E.Br.
 National Assessment: Red List of South African Plants version 2013.1. Accessed on
 2013/08/05
- RIVERS DATABASE 2007. (Version 3). The River Health Programme in conjunction with the Department of Water Affairs and Forestry and the Water Research Commission. Pretoria, South Africa.
- RUTHERFORD, M.C., & WESTFALL, R.H., 1994. Biomes of southern Africa: an objective characterization. Memoirs of the Botanical Survey of South Africa.
- SA EXPLORER 2013. Wakkerstroom climate <u>http://www.saexplorer.co.za/south-africa/climate/wakkerstroom.asp</u>. Accessed July 2013.
- SABAP 2 (SECOND SOUTHERN AFRICAN BIRD ATLAS PROJECT) 2013. http://sabap2.adu.org.za/. Accessed 2013.
- SABCA (SOUTHERN AFRICAN BUTTERFLY CONSERVATION ASSESSMENT) 2010. http://sabca.adu.org.za. Accessed 2010.
- SARCA (SOUTH AFRICAN REPTILE CONSERVATION ASSESSMENT) 2010. http://sarca.adu.org.za/index.php. Accessed 2010.

- SCOTT, L.E.P., SKELTON, P.H., BOOTH, A.J., VERHEUST, L., HARRIS, R., & DOOLEY, J., 2006. Atlas of South African Fishes. Grahamstown: SAIAB., (The South African Institute for Aquatic Biodiversity).
- SKELTON, P., 2001. A complete guide to the freshwater fishes of southern Africa, (2nd edition). Halfway House: Southern Publishers. Cape Town, South Africa. 395pp.
- SOIL CLASSIFICATION WORKING GROUP, 1991. Soil Classification: A taxonomic systems for South Africa (Reprinted 2006). Department of Agricultural Development, Pretoria.
- SOUTH AFRICAN BIRD ATLAS PROJECT (SABAP2).

http://birds.sanbi.org/sabap/sabap_select1.php. Accessed 2013.

SAWS (SOUTH AFRICAN WEATHER SERVICES) 2013. <u>www.weathersa.co.za</u>. Accessed 5 August 2013

SOUTHERN AFRICAN BIRD ATLAS PROJECT (SABAP2) database

- STUART, C., & STUART, T., 1998. Field Guide to the Mammals of Southern Africa. Struik
- TABACCHI, E., CORRELL, D.L., HAUER, R., PINAY, G., PLANTY-TABACCHI, A., & WISSMAR, R.C., 1998. Development, maintenance and role of riparian vegetation in the river landscape. *Freshwater Biology*, 40:497–516.
- TAINTON, N., 1999. Veld management in South Africa. University of Natal press, Pietermaritzburg.
- TARBOTON, W.R., 2001. A Guide to the Nests and Eggs of Southern African Birds. Struik Publishers (Pty) Ltd. Cape Town.
- TARBOTON, W.R., KEMP, M.I., & KEMP, A.C., 1987. Birds of the Transvaal. Transvaal Museum, Pretoria
- THIRION, C., 2007. Module E: Macroinvertebrate Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry report. Pretoria, South Africa.
- THIRION, C., 2008. EcoClasification manual for ecostatus determination (version 2) Module E. Macro-invertebrate response assessment index in river eco-classification manual for ecostatus determination. Pretoria, South Africa: Water Research Commission no TT 330/08.
- TICHY, L., & HOLT, J., 2006. JUICE Program for Management, Analysis and Classification of Ecological Data. Vegetation Science Group, Czech Republic. Upgraded December 2009 from: <u>http://www.sci.muni.cz/botany/juice</u>
- TWEDDLE, D., BILLS, R., SWARTS, E., COETZER, W., DA COSTA, L., ENGELBRECHT, J., CAMBRAY, J., MARSHALL, B., IMPSON, D., SKELTON, P.H., DARWALL, W.R.T., & SMITH, K.S., 2009. The status and distribution of freshwater fishes. In: The status and distribution of freshwater biodiversity in Southern Africa. *IUCN*: 118 pp.
- VAN WYK, B.E., 2002. <u>www.sawac.co.za</u>. Grassland: the most threatened biome in South Africa. SAWAC (South African Water Crisis).
- WIKUM, D., & G., SHANHOLTZER. 1978. Application of the Braun-Blanquet cover-abundance scale for vegetation analysis in land development studies. *Environmental Management* 2:323-329.

- WILLIAMS, K.A., GREEN, D.W.J., & PASCOE, D., 1986. Studies on the acute toxicity of pollutants to freshwater macro-invertebrates. *Archiv fuer Hydrobiologie*, 106:61–70.
- WSP 2013a. Yzermyn Underground Coal Mine. Specialist study: Geohydrologogy Impact Assessment. WSP Environment & Energy, Johannesburg.
- WSP 2013b. Proposed Yzermyn Underground Coal Mine Land Use, Soil and Land Capability Assessment. WSP Environment & Energy, Durban/Johannesburg.
- YETMAN, C.A., ROBERTSON, M., & FERGUSON, J.W.H., 2012. Conservation implications of habitat preference and geographic range of the giant bullfrog (*Pyxicephalus adspersus*) at two spatial scales. PhD thesis. University of Pretoria.
- ZOCCHE, DIMER LEFFA, PAGANINI DAMIANI, CARVALHO, ÁVILA MENDONÇA, IOCHIMS DOS SANTOS, APPEL BOUFLEUR, FERRAZ DIAS, MORAES DE ANDRADE 2010. "Heavy metals & DNA damage in blood cells of insectivore bats in coal mining areas of Catarinense coal basin, Brazil"

