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Abstract.—The rate of molecular evolution is not constant across the Tree of Life. Characterizing rate discrepancies and
evaluating the relative roles of time and rate along branches through the past are both critical to a full understanding of
evolutionary history. In this study, we explore the interactions of time and rate in filmy ferns (Hymenophyllaceae), a lineage
with extreme branch length differences between the two major clades. We test for the presence of significant rate discrepancies
within and between these clades, and we separate time and rate across the filmy fern phylogeny to simultaneously yield
an evolutionary time scale of filmy fern diversification and reconstructions of ancestral rates of molecular evolution. Our
results indicate that the branch length disparity observed between the major lineages of filmy ferns is indeed due to a
significant difference in molecular evolutionary rate. The estimation of divergence times reveals that the timing of crown
group diversification was not concurrent for the two lineages, and the reconstruction of ancestral rates of molecular evolution
points to a substantial rate deceleration in one of the clades. Further analysis suggests that this may be due to a genome-wide
deceleration in the rate of nucleotide substitution. [Bayesian analysis; divergence time estimates; molecular clock; molecular
rate heterogeneity; monilophyte phylogeny; penalized likelihood; rbcL.]

Phylogenetic branch length, as estimated from DNA
sequence data, is a function of both the rate of nucleotide
substitution and time. Length differences among indi-
vidual branches within a phylogeny can therefore result
from discrepancies in substitution rate, time, or a combi-
nation of these factors. All of life’s extant diversity, how-
ever, ultimately shares a common ancestor, and thus a
common age. Any significant differences among cumula-
tive evolutionary path lengths, from the root of the Tree
of Life to the many extant species, must purely be the
result of net rate discrepancies. This holds for any phylo-
genetic tree, as the sampled extant taxa will always share
a common root.

Phylogenetic trees with a combination of long and
short cumulative evolutionary paths are common, and
the phenomenon of unequal net rates of nucleotide sub-
stitution among lineages is widespread and well recog-
nized (Britten, 1986; Bromham and Penny, 2003; Gaut
et al., 1993; Langley and Fitch, 1974; Wolfe et al., 1987).
Significant deviations from the constant rate of a molecu-
lar clock have been identified across the Tree of Life (ver-
tebrates: Adachi et al., 1993; Bleiweiss, 1998; Bromham,
2002; Bulmer et al., 1991; Cantatore et al., 1994; Hoegg
et al., 2004; Krieger and Fuerst, 2002; Li et al., 1987, 1990;
Martin and Palumbi, 1993; Martin et al., 1992; Mooers
and Harvey, 1994; Springer and Kirsch, 1989; Wu and Li,
1985; invertebrates: Castro et al., 2002; Hebert et al., 2002;
Moranetal., 1995; Schon et al., 2003; seed plants: Bousquet
et al.,, 1992, Gaut et al., 1992; Nickrent and Starr, 1994;
ferns: Des Marais et al., 2003; Schneider et al., 2004b; liv-
erworts: Lewis et al., 1997; fungi: Lutzoni and Pagel, 1997;
Zoller and Lutzoni, 2003; algae: Zoller and Lutzoni, 2003;
bacteria: Moran et al., 1995).

An analysis of net rate differences, although capable
of providing an informative summary, cannot possibly
reveal all the intricacies involved in the evolution of the
rate of evolution. Any given phylogenetic path from root
to tip comprises many individual branch segments, with
rate and time together determining the length of each.

Time intervals between successive divergences can vary
along a path, as can rates of molecular evolution, and
early changes in rate in one direction (either an acceler-
ation or a deceleration) can be masked by subsequent
changes in the other direction. Characterizing the net
amount and direction of change in the rate of molecu-
lar evolution is important in understanding the evolu-
tionary history of a lineage, but equally important is an
evaluation of the interaction of rate and time on individ-
ual branches through the past.

Within filmy ferns (Hymenophyllaceae), phylogenetic
analyses of plastid rbcL sequences have revealed consid-
erable cumulative path length differences (Pryer et al.,
2001b), but the significance of these differences has not
yet been addressed nor the factors responsible identi-
fied. Filmy ferns compose one of the earliest diverg-
ing families of leptosporangiate ferns (Hasebe et al.,
1995; Pryer et al., 2001a, 2004; Schneider et al., 2004a).
The more than 600 described species all have extremely
thin leaves, with blades generally only a single cell
thick, that bear unique marginal sori—reproductive
structures consisting of a short to elongate sporangia-
bearing receptacle subtended by a protective indusium
(Iwatsuki, 1990). The species otherwise exhibit consid-
erable levels of both morphological and ecological di-
versity (Dubuisson, 1996, 2003b). Recent molecular phy-
logenetic studies have resolved two major lineages of
filmy ferns, largely corresponding to the two tradition-
ally recognized genera—Trichomanes and Hymenophyl-
Ium (Pryer et al.,, 2001b). The primary and most con-
sistent morphological differences between these groups
are related to the morphology of the sori, but other
less generalized differences also exist. The Trichomanes
clade is generally characterized by having sori with
campanulate (bell-shaped) indusia and exserted re-
ceptacles, tends to inhabit lower latitudes and lower
altitudes, and comprises terrestrial, climbing, and epi-
phytic species. The Hymenophyllum clade usually has
bivalved indusia and included receptacles, tends to be

485



486

SYSTEMATIC BIOLOGY

VOL. 55

more successful at higher latitudes and altitudes, and
is composed mostly of epiphytic species, many of which
are present high in the forest canopy. The aforementioned
path length discrepancies are also manifested between
the two major filmy fern clades, with the Trichomanes
clade comprising species with relatively long path
lengths and the Hymenophyllum clade comprising species
with relatively short path lengths (Pryer et al., 2001b).

The major lineages of filmy ferns, as sister taxa, share
a common age. Therefore, the path length differences
observed in analyses of rbcL data, if significant, must ul-
timately be the result of net rate change at this locus in
one or both of the filmy fern groups. Relative to the an-
cestral rate of molecular evolution there was either (1) a
net acceleration in the Trichomanes lineage, (2) a net de-
celeration in the Hymenophyllum lineage, or (3) both a net
acceleration in Trichomanes and a net deceleration in Hy-
menophyllum. However, a consideration of both time and
rate through the evolutionary history of filmy ferns—
rather than simply net changes in rate—yields count-
less plausible evolutionary scenarios, each of which has
unique implications.

In this study, we explore the roles of time and rate in
the evolutionary history of filmy ferns. We evaluate the
significance and nature of rate differences at the rbcL lo-
cus and we separate time and rate across the filmy fern
phylogeny to yield an evolutionary time scale of filmy
fern diversification, as well as reconstructions of ances-
tral rates of molecular evolution.

METHODS
Taxonomic Sampling and Sequence Alignment

Fifty species were selected from the Hymenophylla-
ceae—25 species each from Trichomanes and Hymeno-
phyllum—representing all of the major filmy fern lineages
(Dubuisson et al., 2003a; Hennequin et al., 2003). To place
this family within a broader context, 60 other vascu-
lar plant species were selected: 42 additional ferns from
across the leptosporangiate phylogeny, nine species rep-
resenting the four major eusporangiate fern lineages
(Pryer et al., 2004), six seed plants, and three lycophytes
(outgroup). DNA sequences of the plastid rbcL gene were
obtained for each included species from GenBank (for
voucher information and GenBank accession numbers,
see Table 1) and aligned manually using MacClade 4.06
(Maddison and Maddison, 2000). The 5" and 3’ ends of
the resulting alignment that contained copious amounts
of missing data were cropped, yielding a data matrix
of 1206 base pairs (402 codons) for 110 species with no
missing data (only 13 ambiguities were present within
the matrix). The resulting alignment is available in Tree-
BASE (http://www.treebase.org; study accession num-
ber S1449).

Phylogenetic Analyses

The rbcL data were analyzed using a Bayesian Markov
chain Monte Carlo (B/MCMC) approach, as imple-
mented in MrBayes 3.0b4 (Ronquist and Huelsenbeck,
2003), to simultaneously yield a distribution of trees, a

consensus phylogenetic hypothesis, and support values
for resolved nodes. Four independent B/MCMC analy-
ses were conducted using the model of sequence evolu-
tion most applicable to the data (GTR+TI'+1, as selected
using ModelTest 3.06; Posada and Crandall, 1998), flat
priors, and four chains. Chains were run for 10 million
generations, and trees were sampled every 1000 genera-
tions. Following completion of each analysis, we plot-
ted the output parameter estimates through time us-
ing Tracer 1.3 (Rambaut and Drummond, 2005) in order
to recognize the point of convergence to the stationary
distribution. All generations prior to this convergence
(1,000,000 generations, 1000 trees, for each of the four
analyses) were discarded, conservatively, as the “burn-
in” phase. Through the superimposition of the parameter
plots from the four analyses and a comparison of the trees
resulting from these analyses, we confirmed that all four
independent runs had converged to the same stationary
distribution. Therefore, we pooled the post burn-in trees
from each analysis (36,000 total trees), and computed a
plurality consensus (using the command: sumt contype
= allcompat) to obtain a fully resolved topology with
average branch lengths, as well as posterior probability
estimates for all nodes.

Significance Tests for the Presence of Rate Differences

To determine whether observed branch length differ-
ences were the result of a significant departure from rate
constancy (i.e.,amolecular clock), two models were com-
pared. In the simpler (null) model, a molecular clock
was applied such that the rates of molecular evolution
for each of the branches were constrained to be equal.
In the more complex (alternative) model, each branch
was allowed its own unique rate of molecular evolu-
tion. These two models were contrasted across the en-
tire Bayesian consensus tree, as well as across several
partitions pruned from this tree: filmy ferns plus their
resolved sister group, filmy ferns, Hymenophyllum, and
Trichomanes. For each comparison, likelihoods were cal-
culated using the program Baseml (part of the PAML
3.14b package; Yang, 1997) with the appropriate models
of sequence evolution (GTR+T; either with or without
a molecular clock constraint). The resulting likelihoods
were compared using the likelihood ratio test statistic
(Felsenstein, 1981).

In addition to these tests for the presence of molec-
ular clocks, several tests were performed to determine
whether significant differences in rate were present be-
tween (as opposed to within) partitions. For these anal-
yses, the pruned tree comprising filmy ferns plus their
resolved sister group was utilized and comparisons were
again made between simple (null) and more complex (al-
ternative) models. Three comparisons were made: (1) a
two-rate model in which Hymenophyllum and Trichomanes
had the same rate but the resolved filmy fern sister group
had a different rate versus a three-rate model in which all
three included partitions (Hymenophyllum, Trichomanes,
and the resolved filmy fern sister group) had different
rates; (2) a two-rate model in which the filmy fern sister
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group and Hymenophyllum had the same rate but Tri-
chomanes had a different rate versus the three-rate model
described above; and (3) a two-rate model in which the
filmy fern sister group and Trichomanes had the same rate
but Hymenophyllum had a different rate versus the three-
rate model described above. Again, likelihoods were de-
termined using the program Baseml (part of the PAML
3.14b package; Yang 1997) with the appropriate mod-
els (GTR+T; branch rates as described above), and com-
pared using the likelihood-ratio test statistic (Felsenstein,
1981).

To further characterize rate differences, pairwise rel-
ative rate comparisons were conducted. All included
filmy fern species, as well as all species in the resolved
sister lineage to filmy ferns, were evaluated relative to
one another. For each pairwise comparison (3916 to-
tal), a three-taxon tree was constructed (outgroup = Os-
munda cinnamomea) and two models were compared—
one with (null) and one without (alternative) the con-
straint of equal rates between the two ingroup species.
The likelihoods corresponding to each of these models
were compared using the likelihood ratio test statistic
(Felsenstein, 1981). All 3916 pairwise comparisons were
made in an automated fashion using the program Hy-
Phy 0.99 beta (Kosakovsky Pond et al., 2005), with the
GTR+T +I model of sequence evolution and globally es-
timated parameters; no correction for multiple compar-
isons was incorporated.

Estimation of Divergence Times and Ancestral Rates

Ancestral rates of molecular evolution and diver-
gence times were estimated using penalized likelihood
(Sanderson, 2002). This semiparametric method sepa-
rates rate and time from branch length by combining
a likelihood model in which each branch has its own
rate parameter with a roughness penalty that penalizes
excessive rate change from branch to branch. The inter-
play between the likelihood model and the roughness
penalty is controlled by a smoothing parameter thatis ob-
jectively identified from the data using a cross-validation
procedure (Sanderson, 2002). Penalized likelihood anal-
yses of the Bayesian consensus tree as well as of the
100 randomly sampled trees from the Bayesian poste-
rior (to evaluate the effects of phylogenetic uncertainty
due to both topological and branch length estimation er-
ror) were conducted using the program r8s version 1.60
(Sanderson, 2003). In all analyses, the three lycophyte
outgroup taxa were pruned, and the resulting root—
the divergence of monilophytes (ferns) from spermato-
phytes (seed plants)—was used as the fixed calibration
point (380 Ma, node 001, Table 1) based on the earliest
appearance of fossils belonging to each of these lineages
in the Middle Devonian. In addition to this fossil cali-
bration point, 16 minimum fossil age constraints from
a previous reassessment of the fern fossil record (Pryer
et al., 2004; Schneider et al., 2004a) were incorporated
(Table 1; fossil constraints were applied only to nodes re-
ceiving high posterior probability support, >0.99). The
appropriate smoothing value was independently identi-
fied for each of the 101 trees (100 randomly sampled trees

plus the consensus tree) using cross validation (smooth-
ing values from 1 to 10,000 were considered; for most
trees, a value of 100 was found to be the most appropri-
ate). Searches for solutions that optimized the penalized
likelihood function were conducted using the truncated
Newton algorithm with 10 random starts, each with 10
random perturbations.

Examining the Influence of Selection

To identify whether significant selectional differences
existbetween the Hymenophyllum and Trichomanes clades,
or between either of these lineages and the filmy fern sis-
ter group, a series of tests was conducted using a subtree
pruned from the Bayesian plurality consensus (compris-
ing filmy ferns plus their resolved sister group). A total of
three comparisons were made, analogous to those used
to test for rate differences between partitions: (1) a two-
ratio model in which Hymenophyllum and Trichomanes
had the same nonsynonymous/synonymous substitu-
tion (dn/ds) ratio but the filmy fern sister group had a
different ratio versus a three-ratio model in which all three
included partitions (Hymenophyllum, Trichomanes, and
the resolved filmy fern sister group) had different dn/ds
ratios; (2) a two-ratio model in which the filmy fern sis-
ter group and Hymenophyllum had the same dn/ds ra-
tio but Trichomanes had a different ratio versus the three-
ratio model described above; and (3) a two-ratio model
in which the filmy fern sister group and Trichomanes had
the same dn/ds ratio but Hymenophyllum had a different
ratio versus the three-ratio model described above. Like-
lihoods were calculated for each of these models using
the program Codeml (part of the PAML 3.14b package;
Yang, 1997). Codon frequencies were estimated from the
average nucleotide frequencies at the three codon po-
sitions and equal dn/ds ratios and rates were assumed
among sites. Resulting likelihoods were compared using
the likelihood ratio test statistic (Felsenstein, 1981).

RESULTS AND DISCUSSION
Phylogeny

Phylogenetic analysis of the plastid rbcL data yielded
a reasonably well-supported hypothesis of relationships
(Fig. 1); 60 of 107 nodes received high posterior probabil-
ity (PP) support (>0.99). In the Bayesian consensus tree,
monilophytes (MON) are strongly supported as mono-
phyletic (PP = 1.00), consistent with earlier analyses of
morphological and multigene DNA sequence data sets
(Kenrick and Crane, 1997; Renzaglia et al., 2000; Nickrent
etal., 2000; Pryer et al., 2001a, 2004; Wikstrom and Pryer,
2005). Within monilophytes, whisk ferns (WHI) and
ophioglossoid ferns (OPH) form a well-supported clade
(PP =1.00), sister to the remaining monilophyte lineages.
Subsequently, marattioid ferns (MAR) are resolved as
sister to a clade consisting of horsetail ferns (HOR) and
leptosporangiate ferns (LEP). These basal monilophyte
relationships based on analyses of rbcL alone are not in
complete agreement with those identified in other stud-
ies (Pryer et al., 2001a, 2004), but are also not supported
by high posterior probability values (Fig. 1). This region



492 SYSTEMATIC BIOLOGY

VOL. 55
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FIGUREL. Phylogeny resulting from Bayesian analysis of rbcL data (plurality consensus with average branch lengths). Thickened lines identify
high posterior probability support (>0.99). Major lineages are indicated: LYC = lycophytes; MON = monilophytes (ferns); SPE = spermatophytes
(seed plants); WHI = whisk ferns; OPH = ophioglossoid ferns; MAR = marattioid ferns; HOR = horsetail ferns; LEP = leptosporangiate ferns;
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of the monilophyte phylogeny has proven difficult in
the past; even multigene analyses have so far failed to
fully clarify these relationships (Pryer et al., 2001a, 2004;
Wikstrém and Pryer, 2005).

Within leptosporangiate ferns (LEP), osmundaceous
ferns (OSM) are sister to a large, well-supported clade
(PP = 1.00) containing all other leptosporangiate lin-
eages: gleichenioid (GLE), schizaeoid (SCH), tree (TRE),
heterosporous (HET), polypod (POL), and filmy (FIL)
ferns (Fig. 1). Each of these lineages, with the exception
of gleichenioid ferns, is strongly supported as mono-
phyletic by our analyses (PP = 1.00). Tree, heterosporous,
and polypod ferns form a clade of core leptosporangiates
(COR; PP = 1.00) sister to schizaeoid ferns (PP = 1.00);
and gleichenioid ferns are paraphyletic to this core lep-
tosporangiate + schizaeoid fern clade. Filmy ferns are re-
solved as sister to the assemblage of gleichenioid, schiza-
eoid, tree, heterosporous, and polypod ferns (Fig. 1).
These results are mostly consistent with earlier analy-
ses of leptosporangiate fern relationships (Hasebe et al.,
1995; Pryer et al., 2001a, 2004), with the areas of uncer-
tainty in this study also equivocal in the earlier studies.

Two major filmy fern lineages are resolved and well
supported (PP = 1.00), corresponding to the two tra-
ditionally defined filmy fern genera: Hymenophyllum
(HYM) and Trichomanes (TRI). The composition of these
two clades is identical to that found in previous studies
(Dubuisson et al., 2003a; Ebihara et al., 2002; Hennequin
et al., 2003; Pryer et al., 2001b), with the monotypic
segregate genera (Cardiomanes, Hymenoglossum, Rosen-
stockia, and Serpyllopsis) and species of Microtrichomanes,
all nested within the Hymenophyllum clade. High pos-
terior probability support is present for 9 of 23 nodes
resolved within the Hymenophyllum clade and 12 of 23
nodes within the Trichomanes clade. The relationships

of species within each of these two major clades are
essentially in agreement with previous studies (Dubuis-
son et al., 2003a; Ebihara et al., 2002; Hennequin et al.,
2003; Pryer et al., 2001b).

Significant Rate Differences

Considerable branch length differences were evident
between the two major filmy fern lineages, as well as
within each of these lineages and across the phylogeny
as a whole (Fig. 1). Likelihood ratio test comparisons of
null models of rate constancy versus alternative mod-
els with unique rates of molecular evolution for each
branch revealed statistically significant departures from
rate constancy across the entire tree and within all parti-
tions examined (comparisons 1to 5, Table 2). Even within
the Hymenophyllum clade, where branch lengths appear
to reflect clock-like evolution (Fig. 1), a molecular clock
could be rejected (P < 0.001). Nevertheless, although
these tests do indicate that the branch length differences
observed are ultimately the result of significantly dif-
ferent rates of molecular evolution, they do not iden-
tify particular branches with aberrant rates. Within filmy
ferns specifically, these tests alone do not reveal where
an acceleration or deceleration in rate occurred, nor do
they even distinguish between inter- and intrageneric
differences.

Likelihood ratio tests to identify significant differ-
ences in rate among, as opposed to within, partitions
yielded more meaningful results (Table 2). A significant
rate difference between the Trichomanes and Hymenophyl-
Ium clades (P < 0.001; comparison 6, Table 2) was un-
covered when we compared a null two-rate model in
which filmy ferns were assigned a single rate of evolution
(and their sister lineage a second rate) versus an alterna-
tive three-rate model in which the two filmy fern genera

TABLE 2. Summary of likelihood ratio test comparisons made in this study. To test for the presence of rate differences within various tree
partitions, comparisons 1 to 5 evaluate null models of evolutionary rate constancy versus alternative models with unique rates of molecular
evolution for each branch. To test for the presence of evolutionary rate differences among partitions, comparisons 6 to 8 evaluate two-rate models
versus three-rate models. Comparisons 9 to 11 evaluate models with two nonsynonymous/synonymous substitution (dn/ds) ratios versus
three-ratio models to test for significant selectional differences among partitions.

Comparison (null model versus alternative model) Tree and data set utilized InL (null) InL (alternative) LRT df P
1  One-rate model versus many-rate model Entire tree —27407.69 —26948.11 919.16 108 <0.001
2 One-rate model versus many-rate model Filmy ferns + sister lineage = —20876.41 —20595.67 56150 87 <0.001
3 One-rate model versus many-rate model Filmy ferns —9317.59 —9221.21 192.76 48 <0.001
4 One-rate model versus many-rate model Hymenophyllum —3551.30 —3523.36 55.89 23 <0.001
5  One-rate model versus many-rate model Trichomanes —7302.39 —7229.28 14623 23 <0.001
6  Two-rate model (Hymenophyllum = Trichomanes ~ Filmy ferns + sister lineage =~ —20876.05 —20867.06 17.99 1 <0.001
# sister lineage) versus three-rate model
7 Two-rate model (Hymenophyllum = sister Filmy ferns + sister lineage = —20872.18 —20867.06 10.24 1 0.001
lineage # Trichomanes) versus three-rate
model
8 Two-rate model (Trichomanes = sister lineage Filmy ferns + sister lineage =~ —20867.08 —20867.06 0.05 1 0.830
# Hymenophyllum) versus three-rate model
9  Two-ratio model (Hymenophyllum = Trichomanes  Filmy ferns + sister lineage = —20618.73 —20608.49 20.48 1 <0.001
# sister lineage) versus three-ratio model
10  Two-ratio model (Hymenophyllum = sister Filmy ferns + sister lineage =~ —20669.00 —20608.49 121.03 1 <0.001
lineage # Trichomanes) versus three-ratio
model
11  Two-ratio model (Trichomanes = sister lineage Filmy ferns + sister lineage = —20657.68 —20608.49 98.39 1 <0.001

# Hymenophyllum) versus three-ratio model
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were each allowed to have a unique rate (and their sis-
ter lineage a third rate). Comparisons of two additional
two-rate models (one in which Hymenophyllum was as-
signed the same rate as the filmy fern sister lineage and
Trichomanes a unique rate; the other in which Trichomanes
was assigned the same rate as the filmy fern sister lin-
eage and Hymenophyllum a unique rate) versus the three-
rate model described above, further clarified the nature
of the rate differences. These tests revealed that the rate
within Hymenophyllum is significantly different from that

of the filmy fern sister lineage (P = 0.001; comparison 7,
Table 2), whereas the rate within Trichomanes is not (P =
0.830; comparison 8, Table 2).

Pairwise relative rate comparisons among all included
filmy fern species and all species in the lineage re-
solved as sister to filmy ferns were consistent with
the above results. Of the 3916 total comparisons, 1875
were significant (P < 0.05; colored boxes in Fig. 2),
many at higher significance thresholds (P < 0.01 or P <
0.001; darker colors in Fig. 2). Clearly, rates vary across

v
v X

FIGURE2. Results of pairwise relative rate comparisons among all included filmy fern species and all species in the lineage resolved as sister
to filmy ferns. Each square in grid represents a comparison between a species in the left tree (portion of consensus tree resulting from Bayesian
phylogenetic analysis, names omitted due to size) and a species in the right (mirrored) tree. A cool colored (blue) square indicates that the left
taxon has a significantly slower rate than the right taxon (dark blue, P < 0.001; medium blue, P < 0.01; light blue, P < 0.05). A warm colored
(orange) square indicates that the left taxon has a significantly faster rate than the right taxon (dark orange, P < 0.001; medium orange, P < 0.01;
light orange, P < 0.05). White squares indicate that differences between the taxa were not statistically significant. Lineage abbreviations are as

in Figure 1.
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the phylogeny. Significant differences were observed
within the Trichomanes and Hymenophyllum clades, as
well as among species in the sister group to filmy ferns
(Fig. 2). The most striking differences, however, were
found in comparisons between the Hymenophyllum and
Trichomanes clades (537 of 625 comparisons were sig-
nificant, P < 0.05). These differences were consistently
unidirectional; when a significant difference existed, the
Hymenophyllum lineage evaluated was always slower
than the Trichomanes lineage. This result indicates that
considerable intergeneric rate differences exist. It does
not, however, inherently reveal the phylogenetic extent
of the rate differences (i.e., whether a rate discrepancy
was maintained throughout a filmy fern clade or only
present along the branch leading to it), nor does it reveal
which of the two lineages contains the aberrant rate.

In theory, relative rate comparisons between species
in the sister group to filmy ferns and species in the Tri-
chomanes and Hymenophyllum clades could be used to
identify the aberrant filmy fern lineage. This assumes
that one filmy fern lineage would show a large number
of significant differences in just one direction relative to
the filmy fern sister group, but the other filmy fern lin-
eage few. Our pairwise comparisons between the filmy
fern and sister lineage taxa did result in a relatively large
proportion of significant outcomes—876 of 1950 compar-
isons were significant. These differences, however, were
not entirely unidirectional or restricted to a single filmy
fern lineage. Of the 975 comparisons between species of
Hymenophyllum and species from the sister group to filmy
ferns, 537 were significant; all but one of the significant
comparisons indicated that the net rate along the branch
leading to the species of Hymenophyllum was slower. Of
the 975 comparisons between species of Trichomanes and
species from the sister group to filmy ferns, 339 were
significant; most of these significant comparisons (261)
indicated that the net rate along the branch leading to
the Trichomanes species examined was faster, but others
(78) indicated that this rate was slower. Although there
are more significant comparisons relative to the Hymeno-
phyllum clade, and the vast majority of these are in one
direction, the lack of a uniform background rate (as evi-
denced by the results relative to filmy ferns and compar-
isons among the sister group taxa) makes it difficult to
definitively identify the aberrant filmy fern group using
pairwise comparisons alone.

Divergence Time Estimates and Reconstructions of Ancestral
Rates of Evolution

In identifying the aberrant filmy fern lineage, ances-
tral rate reconstructions can be considerably more in-
formative than the previous tests. These reconstructions
more realistically assign a unique rate of molecular evo-
lution to each branch in the phylogeny and incorporate
time. Therefore, they can provide an absolute rate esti-
mate for each internal branch, including the filmy fern
stem branch (i.e., the branch immediately subtending the
initial divergence between the Hymenophyllum and Tri-
chomanes clades), that is indicative of the ancestral filmy

fern rate. Such reconstructions can thus also supply a
distribution of the rates outside of filmy ferns, as well
as a rate distribution for each of the two filmy fern lin-
eages for comparison. The simultaneous estimation of
divergence times provides additional insight. However,
it should be noted that, as with reconstructing phylo-
genetic relationships, reconstructing ancestral rates and
divergence times are dependent on models, and the re-
sults are contingent on the use of an appropriate model
with valid assumptions. Because filmy ferns themselves
lack a solid fossil record to constrain our analyses, the
reconstructions of rates and dates within this group are
especially dependent on the penalized likelihood model
of rate change. Although this model is biologically plau-
sible, and without a doubt more realistic than simply
assuming a molecular clock, the results below should be
interpreted with caution.

The chronological results of our penalized likelihood
analysis of the Bayesian consensus tree are presented as
a chronogram (i.e., a tree in which internode lengths are
proportional to time) in Figure 3. For allnodes resolved in
the Bayesian consensus tree, age estimates from the anal-
ysis of the consensus phylogeny, as well as mean ages
and standard deviations resulting from the 100 repli-
cate analyses, are presented in Table 1. Because not all
nodes resolved in the consensus phylogeny were present
in each of the 100 randomly sampled trees, some mean
ages and standard deviations are based on fewer than
100 samples. According to our analyses, the initial di-
vergence among monilophyte lineages (node 007, Fig. 3)
occurred in the Late Devonian (ca. 360 Ma). The whisk
fern (WHI), ophioglossoid fern (OPH), marattioid fern
(MAR), horsetail fern (HOR), and leptosporangiate fern
(LEP) lineages were all present by the end of the Car-
boniferous (290 Ma). Within leptosporangiate ferns, we
estimate the earliest divergences to have occurred in the
Carboniferous and Permian. These divergences gave rise
to the osmundaceous (OSM), filmy (FIL), gleichenioid
(GLE), and schizaeoid (SCH) ferns, as well as to the
core leptosporangiate lineage (COR, node 033, Fig. 3).
A Late Triassic diversification gave rise to the three ma-
jor lineages of core leptosporangiates—heterosporous
ferns (HET), tree ferns (TRE), and polypod ferns (POL)
(Fig. 3). Our estimates for the temporal origins of the ma-
jor fern lineages are largely in accord with previous ideas
(Collinson, 1996; Pryer et al., 2004; Rothwell, 1987, 1996;
Skog, 2001; Soltis et al., 2002; Tidwell and Ash, 1994).
The major diversification of polypod ferns is estimated
to have occurred in the Cretaceous, also consistent with
recent analyses (Schneider et al., 2004a).

Within filmy ferns, the initial divergence (node 058,
Fig. 3), yielding the Hymenophyllum and Trichomanes
clades, is estimated to have occurred near the Triassic-
Jurassicboundary (206 Ma). The oldest of the scarce filmy
fern fossils, which are not definitively assignable to one
of the two extant clades, are from the epoch immediately
preceding this boundary (Late Triassic) (Axsmith et al.,
2001). Based on our analyses, the major diversification
within the two extant filmy fern clades was not concur-
rent. The initial divergence within the Trichomanes clade
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FIGURE 3. Chronogram (internode lengths are proportional to time; note scale in Ma) resulting from penalized likelihood analysis of the
Bayesian consensus tree. Black ovals identify nodes with high posterior probability support (>0.99), whereas white ovals identify nodes not
receiving high support in our analysis. Circled black ovals indicate the positions of fossil constraints. Age estimates for all nodes, including means
and standard deviations resulting from 100 replicate analyses, and fossil constraint information are presented in Table 1. Lineage abbreviations
are as in Figure 1.
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(node 083) is estimated to have occurred in the Middle
Jurassic, with major diversification in the Late Jurassic
and throughout the Cretaceous. Diversification within
the Hymenophyllum clade, however, appears to be amuch
more recent phenomenon. The initial divergence within
this clade (node 059) is estimated to have occurred in the
Early Cretaceous, with subsequent major divergences in
the Late Cretaceous and Tertiary.

Reconstructions of ancestral rates of molecular evo-
lution for the rbcL locus are presented graphically as
a ratogram (i.e., a tree in which internode lengths are
proportional to rate) in Figure 4. The rate estimates
for all internodes, including means and standard de-
viations resulting from the 100 replicate analyses are
presented in Table 1. As was previously suggested by
the significance tests for the presence of rate differences
and the pairwise relative rate comparisons, considerable
differences in absolute rate are present across the re-
solved phylogeny, ranging from about 0.00005 to 0.00150
substitutions/site/Ma (Table 1). Some groups are con-
sistent in their relatively slow rate of molecular evo-
lution, including osmundaceous ferns (OSM) and tree
ferns (TRE). Others are consistent in their relatively fast
rate, including schizaeoid ferns (SCH) and polypod ferns
(POL). Within filmy ferns (FIL), a clear difference in
rate can be observed between the Trichomanes (TRI) and
Hymenophyllum (HYM) clades, with the rate within Tri-
chomanes estimated to be about twice that of Hymeno-
phyllum (Fig. 4). Rate heterogeneity is of course present
within each of these lineages, but is much less pro-
nounced than the resolved intergeneric differences.

When rates within the Hymenophyllum and Trichomanes
crowns (i.e., for each clade, the set of branches subse-
quent to the initial divergence) and along the Hymeno-
phyllum and Trichomanes stems (i.e., for each clade, the
branch immediately subtending the initial divergence)
are compared to the rates outside of filmy ferns, and to
the rate of the filmy fern stem (i.e., the branch imme-
diately subtending the initial divergence between Hy-
menophyllum and Trichomanes), it appears as though the
rates within Hymenophyllum are aberrant (see ratogram,
right side of Fig. 4). The rates within Trichomanes, on the
other hand, appear to be rather consistent with the rates
outside of filmy ferns and those along the filmy fern
stem. The similarities and differences among the var-
ious partitions become even more apparent when the
pools of estimates corresponding to each of the parti-
tions (resulting from analyses of the 100 sampled trees)
are graphed (left side of Fig. 4). Rates outside of filmy
ferns, while varied from slow to fast, form a distribution
centered at about 0.00053 substitutions/site/Ma, with
50% of the estimates falling between about 0.00036 and
0.00075 substitutions/site/Ma (Fig. 4). The distributions
of rates along the filmy fern stem, the Trichomanes stem,
and within the Trichomanes crown, do not show a sub-
stantial deviation from the centrality displayed in the
distribution of rates outside of filmy ferns (medians of
0.00057, 0.00055, and 0.00055 substitutions/site/Ma, re-
spectively). The rates along the Hymenophyllum stem and
within the Hymenophyllum crown, however, are consid-

erably slower (medians of 0.00035 and 0.00023 substitu-
tions/site/Ma, respectively). The Hymenophyllum clade
(including its stem), with a substantially different rate
of molecular evolution, clearly represents the aberrant
filmy fern lineage, as suggested by the tests for rate dif-
ferences and the pairwise relative rate comparisons.

Based on the results of this study, the overall path
length differences observed between the two major filmy
fern lineages are inferred to ultimately have resulted
from a rate deceleration in the Hymenophyllum lineage.
However, to fully appreciate individual branch length
similarities and differences, a consideration of both time
and rate is necessary. Following the initial divergence
within filmy ferns and the origin of the two extant lin-
eages, there was maintenance of the ancestral rate of evo-
lution along the Trichomanes stem, but a deceleration in
rate along the Hymenophyllum stem (Fig. 4). Yet, because
a greater amount of time elapsed between the origin
of the Hymenophyllum lineage (node 058) and the first
divergence among extant Hymenophyllum species (node
059) than between the origin of the Trichomanes lineage
(node 058) and the first divergence among extant Tri-
chomanes species (node 083, Fig. 3), there is only a minor
length difference between these two branches (Fig. 1).
The discrepancy between the initial divergence times in
Hymenophyllum and Trichomanes had the opposite effect
on branch lengths within the two crowns. Less time for
the accumulation of substitutions in the Hymenophyllum
crown (relative to the Trichomanes crown, Fig. 3), com-
bined with the slower rate of molecular evolution (Fig. 4),
resulted in strikingly shorter branches in the crown of
Hymenophyllum (Fig. 1).

Factors Influencing Evolutionary Rate

The slowed rate of rbcL sequence evolution in the Hy-
menophyllum clade may have resulted from intensified
purifying selection, relaxed positive selection, or simply
a genome-wide deceleration in the rate of nucleotide sub-
stitution (at either the plastid or organismal level). The
rbcL gene is protein coding, and selection would act on
nonsynonymous amino-acid replacement substitutions
but not on synonymous silent substitutions. Therefore,
if either intensified purifying selection or relaxed posi-
tive selection were responsible for the rate deceleration
in the Hymenophyllum clade, we would expect to find a
lower frequency of nonsynonymous substitutions in Hy-
menophyllum relative to Trichomanes and the filmy fern
sister group, but no difference among these clades in the
frequency of synonymous substitutions. This bias would
result in a significantly smaller nonsynonymous to syn-
onymous (dn/ds) ratio in Hymenophyllum, relative to Tri-
chomanes and the filmy fern sister group.

To determine whether a significant difference in selec-
tion was present between the two filmy fern lineages, or
between either of these lineages and the filmy fern sis-
ter group, we conducted a series of three tests. Specif-
ically, we compared three two-ratio models in which
two of the clades were constrained to have the same
dn/ds ratio to a three-ratio model in which each clade
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likelihood analysis of the Bayesian consensus tree; and rate distributions for critical tree partitions (left side). Lineage abbreviations in ratogram
are as in Figure 1; rate estimates for all internodes, including means and standard deviations resulting from 100 replicate analyses, are presented
in Table 1. Distributions of rate estimates (resulting from analyses of the 100 sampled trees) for the filmy fern stem (the branch immediately sub-
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the initial divergence in Hymenophyllum), the Hymenophyllum crown (the set of branches subsequent to the initial divergence in Hymenophyllum),
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was allowed a unique dn/ds ratio. The results of these
tests revealed that dn/ds ratios were significantly differ-
ent among the three clades (P < 0.001; comparisons 9 to
11, Table 2). However, the Hymenophyllum clade had the
highest dn/ds ratio, contrary to what would be expected
if selection were responsible for the deceleration in rate.
Within Hymenophyllum, the deceleration in synonymous
substitution rate appears to have been more substan-
tial than the deceleration in nonsynonymous substitu-
tion rate. For this reason, a genome-wide deceleration
of nucleotide substitution rate (at either the plastid or
organismal level) seems more probable.

Several factors have been generally proposed to pos-
sibly influence the genome-wide rate of DNA substitu-
tion, including: (1) generation time or replication rate—
more frequent replication will yield an increased num-
ber of mutations (Brunsfeld et al., 1994; Conti et al., 1993;
Gaut et al., 1992, 1996, 1997; Kohne, 1970; Laird et al.,
1969; Laroche and Bousquet, 1999; Laroche et al., 1997;
Lietal., 1987, Wu and Li, 1985; but see Whittle and John-
ston, 2003); (2) replication/repair efficiency—a less effi-
cient system will allow more mutations to occur (Britten,
1986; Friedberg et al., 1995; Schon et al., 1998; Wu and Li,
1985); (3) exposure to mutagens—increased exposure to
DNA-damaging mutagens will result in a higher mu-
tation rate (Friedberg et al., 1995; Hebert et al., 2002;
Lutzoni and Pagel, 1997; Martin and Palumbi, 1993); (4)
population size—lineages with smaller effective popula-
tion sizes will experience faster rates of evolution due to
the amplified effects of genetic drift (Moran, 1996; Ohta,
1972, 1992); and (5) speciation rate—increased cladoge-
nesis will result in more genetic change due to rapid
evolution associated with speciation events (Barraclough
and Savolainen, 2001; Bousquet et al., 1992; Mayr, 1954;
Mindell et al., 1989; Webster et al., 2003). Although some
of these factors involve the supply of DNA mutations,
others center on the fixation of introduced mutations;
many of the factors are intrinsic to evolutionary lineages,
but a few are extrinsic. Overall, the hypothesized mech-
anisms are confounded and their contributions poorly
understood.

Almost any of the proposed factors could ultimately
provide an explanation for the evolutionary rate decel-
eration detected in Hymenophyllum. A slower replica-
tion rate, a more efficient replication/repair system, de-
creased exposure to mutagens, or larger population sizes
in Hymenophyllum, relative to Trichomanes, are all plausi-
ble. However, with our current knowledge of filmy fern
life history, it is impossible to even begin to discrimi-
nate among the possibilities. Filmy ferns are primarily
tropical in distribution and have not been the focus of
intensive ecological studies more common for plants of
temperate regions. It is known that members of both
the Trichomanes and Hymenophyllum clades possess long-
lived gametophytes capable of vegetative reproduction
(rare in ferns; usually only the sporophyte is long-lived
and capable of vegetative reproduction); some popula-
tions in North America and Europe exist exclusively as
gametophytes (Farrar, 1967; Rumsey et al., 1998). How-
ever, the relative contributions of the gametophyte and

sporophyte stages in filmy fern life cycles have not been
explored. Life history differences related to these relative
contributions may certainly exist between the clades, but
none have yet been described. With regard to potential
mutagens, ultraviolet (UV) radiation, a leading candi-
date for mutagenesis (Lutzoni and Pagel 1997), cannot
be invoked as being responsible for the rate discrepancy
in filmy ferns. Because Hymenophyllum comprises species
that generally inhabit more exposed niches, one would
expect it to be more susceptible to UV mutagensis; yet,
as we have shown here, it displays a deceleration in
evolutionary rate. A speciation rate effect is also diffi-
cult to justify, as the two major extant filmy fern clades
are approximately equally diverse (Pryer et al., 2001b).
Virtually nothing is known about the replication/repair
systems or even population size in filmy ferns.

CONCLUSIONS AND PROSPECTS

The cumulative rbcL branch length differences ob-
served between the major lineages of filmy ferns are
the result of significant differences in molecular evolu-
tionary rate. Significance tests for the presence of rate
differences and pairwise relative rate comparisons both
revealed substantial disparity between the Trichomanes
and Hymenophyllum clades, and suggested that the rate of
evolution within Hymenophyllum is aberrant. The estima-
tion of divergence times indicated that the Hymenophyl-
Ium clade diversified much more recently than did the
Trichomanes clade, and the simultaneous reconstruction
of ancestral rates of molecular evolution supported the
notion that the rate of rbcL evolution slowed in the evo-
lutionary history of Hymenophyllum. Thus, the extremely
short branches in the Hymenophyllum crown are the result
of a short duration combined with a slow evolutionary
rate. Further analyses indicated that selection was not
responsible for the decreased rate of rbcL evolution in
Hymenophyllum, and instead implied that this observed
slow-down might be due to a genome-wide deceleration
in the rate of nucleotide substitution. If this decelera-
tion is truly genome-wide, additional molecular mark-
ers, both in the chloroplast and in the other genomic
compartments, should yield similar results to those of
rbcL in this study. Although data are not currently avail-
able to properly address the universality of this hypothe-
sis, additional studies to examine molecular evolution of
the plastid, mitochondrial, and nuclear genomes in filmy
ferns are underway. These, combined with detailed eco-
logical, morphological, and ecophysiological studies to
identify rate-influencing mechanisms, will provide even
greater insight into the evolutionary history of this group
of plants.
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Four representative species of Hymenophyllum. Note extremely thin leaves, only a single cell thick between the veins, with marginal sori
consisting of sporangia-bearing receptacles subtended by protective, bivalved indusia. Members of this filmy fern clade show evidence of a
genome-wide deceleration in nucleotide substitution rate. Photographs by Eric Schuettpelz.



