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ABSTRACT 

Biodiversityis unequally distributed between higher taxa; for example a 

small n~mber of angiosperm genera contain the majority of angiosperm species. 

Begonia is one of the largest angiosperm genera with ca. 1400 species. Studies of 

such genera can give insights into the processess that cause diversification. 

A number of features of the spatial distribution of biodiversity in Begonia 

suggest gene flow between populations is poor and has affected larger-scale 

patterns of diversity in the genus. These are (i) sporadic distribution of 

populations, which are usually restricted to a specific micro-habitat, (ii) a high 

degree of narrow endemism at the species level, (iii) widespread species being 

rare and also highly morphologically variable unless they show atypical 

adaptations that promote gene flow, and (iv) geographical restriction of 

monophyletic groups. 

Restricted gene flow betwee~ populations allows them to diverge in 

response to weaker selection pressures than they would be able to respond to in 

the face of gene flow from other populations. In order to examine population 

structure (micro-evolution) in Begonia and its congruence to higher patterns of 

diversity (macro-evolution), nuclear microsatellite markers have been isolated 

and applied to two Begonia species, B. socotrana and B. sutherlandii. 

Begonia socotrana is endemic to the Haggeher Mountains of the island of 

Socotra in the Indian Ocean, where it has a total range of less than lOx 15 km. 

PopUlation surveys have highlighted the need for its conservation status to be re

assessed, and it is proposed to reduce its status from 'endangered' to 'least 

concern'. Population genetic analyses using microsatellite data show a significant 

degree of population structure (Rsr 0.081, P<O.Ol; 9=0.096, P<O.Ol) and 

significant isolation by distance, even over small spatial scales. The pattern of 

isolation by distance could be due to restricted gene flow, or the result of small 

. scale vicariance events in the fragmented peaks of the Haggeher Mountains 

during climate change and resulting altitudinal migration. 

Begonia sutherlandii is native to eastern and southern Africa, where it is 

restricted to shaded, moist banks in indigenous forest. A high degree of 

Population structure was found (9=0.482, P<O.OOl; RsrO.634, P<O.OOl), which 



along with a high number of private alleles reflects the severe isolation of 

populations in a patchily distributed forest habitat. Population relationships 

appear to be strongly governed by the history and continuity of forest cover in 

the region. 

The population genetic studies of B. socotrana and B. sutherlandii show a 

stnmg correlation of genetic variation with geography which reflect patterns seen 

at larger scales. The correlation of micro and macro evolutionary patterns is 

congruent with a hypothesis of restricted gene flow promoting speciation in 

Begonia. 



ACKNOWLEDGEMENTS 

Without the philanthropy of the late Mr and Mrs Macintyre in setting up the 

M.L. MacIntye Begonia Trusts, I would not have been able to spend three years 

studying Begonia evolution. I am extremely grateful to them and to the trustees, in 

particular Prof. Malcolm Wilkins and Dr. Chris Wheeler, for giving me this 

opportunity. 

My supervisor, Pete Hollingsworth, deserves thanks (and no doubt a drink) 

for writing the initial project proposal and for guiding it through its subsequent 

changes, and for reading through this entire thesis, giving helpful comments and 

pointing out mildy amusing double entendres where relevant. 

This research involved some interesting fieldwork, and I am grateful to 

Tony Miller and Miranda Morris for organising the expedition to the Socotra 

archipelago, which was no mean feat; Roger Hyam and Diccon Alexander for being 

amiable travelling companions; and the people of Socotra for their hospitality and 

for killing dozens of goats for us. My collecting trip in South Africa was assisted by 

many people, particularly Tracy McLellan who provided air-conditioned transport 

and company; Trevor Edwards and Christina Potgeiter who looked after me in 

Pietermaritsburg when I arrived sans luggage and slightly the worse for wear from 

in-flight tranquilisers; Chris Randle for driving to Tygerskloof; Tony Abbott for a 

splendid stay in Umtamvuna, and Dirk Bellstedt for being a mine of information 

and for getting me to some very interesting forest patches. I also received a great 

deal of help on localities, transport and accomodation from the KZN parks board, 

particularly Sharon Luow, Barry, Dennis Eckhart (contacts kindly given to me by 

Michael Moeller), and Neil Crouch. Olive Hilliard and Bill Burtt also provided 

helpful advice and maps during the planning of the trip. 

The large amount of living material resulting from the fieldwork was 

carefully tended to in quarantine by Fiona Inches and Andrea Fowler, apd 

maintained in excellent condition upon its release by Steve Scott, Neil Watherston 

and Fred Mobeck among others. Becky Govier patiently went through the mess that 



was my collectors book and got most of it on BG BASE. The staff at Glasgow 

Botanic Garden also deserve a mention for maintaining the national Begonia 

collection, which made any trip through to Glasgow worthwhile. 

This project also involved a great deal of labwork, which was made less of a 

chore due to the excellent lab facilities at RBGE, provided by Michelle 

Hollingsworth and Alex Ponge, who risked boredom and dermatitis in making up 

the dozens of polyacrylamide gels I got through. Joanne Russell (SCRI) and Jane 

Squirrell were both of great assistance in the tricky development of the 

microsatellite markers. Ruth Hollands patiently dealt with the dozens of orders for 

oligos and consumables. Thanks also to Jill Harrison for looking after me whilst I 

invaded her bench space at Edinburgh University, and for being elsewhere when I 

started a not inconsiderable fire in the PhD office. I would also like to thank 

everyone in the lab and herbarium at RBGE for making it such a pleasant place to 

work. 

Assistance during the writing up phase came from many sources, including 

Rod Page and Richard Ennos for providing data analysis advice, and Neil Brummitt 

for heated debates on species-area relationships. All the RBGE library staff (in 

particular Graham Hardy) have been very helpful in finding material and sorting 

out copies and loans with spectacular efficiency. The latter stages of writing were 

carried out whilst also working on a post doctoral project on Streptocarpus at 

RBGE; Michael Moeller deserves a special mention for (i) employing me and (ii) 

for being a very understanding boss during a busy time. 

This project would not have been half as enjoyable were it not for the two 

other Begonia students Laura Forrest and Vanessa Plana. Thanks especially to 

Vanessa for knowledge of African Begonia, and to Laura for continuous and 

welcome distraction by email, (including the odd academic one) and both for drinks 

and good humour. I hope the two current Begonia students, Will Goodall

Copestake and Sophie Neale, enjoy their projects as much as I have. 

Thanks also, of course, to my family and RG for their continuing support. 



PREFACE 

This thesis is an investigation of population structure in Begonia, and its 

relevance to evolution and speciation in the genus. There are four introductory 

chapters. The first is a general discussion of large scale patterns of biodiversity, 

and possible causes for the unequal distribution of biodiversity between higher 

taxa. The second is an account of the ecology and systematics of the 

Begoniaceae, and aspects of Begonia biodiversity that may be of relevance to 

popUlation structure and speciation processes. The third chapter is a discussion of 

the effects of gene flow on population differentation and speciation, and the 

fourth is a review of methods of analysing and interpreting population genetic 

data obtained from micro satellite markers. 

The next chunk of the thesis consists of five parts that are written as 

papers intended for pUblication. As each is a complete paper in its own right, this 

inevitably involves a small amount of repetition. The formatting for the 

submitted papers in terms of tables, figures and references is according to the 

format of the journal to which they were submitted. The first paper is a 

monograph of two species of Begonia from the Socotra archipelago, and an 

assessment of their conservation status. This has been accepted for publication by 

the Edinburgh Journal of Botany. Papers two and three are technical papers 

which describe the isolation and development of nuclear micro satellite markers 

from two Begonia species, B. socotrana and B. sutherlandii. These have been 

accepted for publication by Molecular Ecology Notes. The fourth paper is an 

investigation of population differentiation and conservation genetics of Begonia 

socotrana. This has been submitted to Biological Conservation. The fifth and 

final paper is an account of the population structure of Begonia sutherlandii in 

South Africa, and its relevance to broader scale patterns of biodiversity and 

speciation in the genus as a whole. This paper will be submitted for pUblication 

to Molecular Ecology. Each paper has its own self-contained reference list, and a 

bibliography for the rest of the chapters is presented at the end of the thesis. 

In the light of the findings of the preceeding chapters, the last chapter (5) 

discusses the relevance of population structure and evolution in the Datiscaceae 

(the sister family to the Begoniaceae) and in the angiosperms as a whole. 
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CHAPTER 1. The unequal distribution of biodiversity 

1.1. Some taxa are bigger than others 

Lower taxa are unequally distributed between higher taxa. For example, there are 

many monotypic genera, and far fewer larger ones. Within flowering plants, 50% of 

species diversity is contained in only 550 (out of over 12,000) genera. This pattern is 

famously illustrated by Willis' 'hollow curve' (Figure 1.1; Willis, 1922). 

Number 
of 

genera 

Many small genera 

. Number of species per genus 

Few large genera 

Figure 1.1. The hollow curve of genus size distribution. 

The hollow curve is exhibited at all levels in the taxonomic hierarchy (Dial 

and Marzluff, 1989); for example plotting the number of angiosperm genera per 

family produces the same pattern (Clayton, 1974). This pervasive phe~omenon 

(Figure 1.2) begs the question: What causes some taxa to become much larger than 

others? Before tackling this question, though, it is necessary to look at possible 

artefactual causes of the hollow curve, and assess how likely it is to be due to natural 

processess. 

1.2. Is the hollow curve reai or imagined? 

The possibility has been raised that the hollow curve has artifactual origins. 

Walters (1961, 1986) thinks the distribution of plant species among genera of 
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different sizes is a human construct, caused largely by a Euro-centric VIew of 

taxonomy. He suggests that large genera are those first created by Linnaeus and 

added to by 'chaining', as many taxonomists tend to add to existing taxa rather than 

create new ones, whilst monotypic genera are those created later for exotic plants 

which do not fit easily with their European allies. Raikow (1986; oft quoted but 

rarely agreed with) is of a similar mind, and states that the most likely reason for 

there being so many kinds of passerine birds compared to a larger number of smaller 

bird orders is an 'artefact of their classificatory history'. These arguments stem from 

the subjectivity involved in delimiting higher taxa. 

L 

Jl 
E 
i 

MIXED 

CURVES 

The I"~ dols represent the Origin&. 

-------.,..-
Number of ~pecies( or size of am.) 

.. 
Figure 1.2. Taken from Willis' classic 1922 work (p. 237), this figure shows a range 
of hollow curves derived from generic sizes of plants and animals at a variety of 
scales, from local to national. 

There is no accepted definition of the genus or family, and although many of 

the higher taxa defined are likely to have a biological reality (i.e. monophyly), 

ranking them could be said to be rather arbitrary and hence using them as 

comparable units questionable. However, this does not completely weaken the case 

against the pattern being a product of natural causes, as it still appears in within 

family analyses where the generic concept is likely to be more comparable. Also, 

given the number of genera, the signal to noise ratio in the data must be quite 

considerable. Cronk (1989) gives a slightly more moderate view than Walters or 

. 2 



Raikow, and suggests that the pattern of generic size distribution is due to real and 

artefactual components in approximately equal measure. The pervasiveness of the 

pattern in the distribution of biodiversity between taxa is a strong case for it being a 

product of natural phenomena, and it seems an artefactual cause is unlikely. Its 

reality has been broadly accepted by many authors, from Willis who stated (1922, p. 

185); "It is idle ·to suggest that further work will alter the form of this curve" to 

Minelli (1991) who regards the pattern as a result of evolutionary processess, and 

who deemphasises the role of taxonomic bias. 

1.3. Causes of the pattern 

Although the pattern of unequal distribution of lower taxa between higher taxa is 

obvious, the cause is not (assuming that the pattern has at least some basis in reality). 

There are two main schools of thought on why some taxa are more diverse then 

others; one sees it as the result of stochastic events in a complex system, the other as 

the result of key innovations and adaptive events. 

1.3.1. Stochastic and neutral models 

The 'hollow curve' becomes a straight line if presented as a log-log plot. 

Such a graph would be an expression of the equation log N(s) = -t log s, where s 

would be the size of a genus and N(s) would be the number of genera with that size; 

the straight line of gradient t is the result of the relationship being a power law, as 

one quantity N can be expressed as some power of another quantity s. Such power 

law relationships can be found over and over in the natural world and in man made 

complex systems, such as the distribution of earthquake size (N(s) would be the 

number of earthquakes of energy s) or fjord lengths (where N(s) would be the 

number of fjords of length s), or the size of avalanches in a sand pile prodded by a 

researcher at the University of Michigan (Bak, 1997). The distribution of genus size 

follows the pattern shown by complex or fractal systems, but does it share a common 

cause? Bak (1997) suggests that there is a common principle underlying all 
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phenomena which can be expressed as a straight line log-log plot, which is called self 

organised criticality (SOC). Self-organised critical systems are poised in a state of 

perpetual instability, and a disproportionate amount of the change that takes place in 

such a system is due to a few large events rather than gradual change. Although not 

explicitly applied to the hollow curve distribution by Bak, SOC is thought to be 

behind much of the complex behaviour exhibited by natural systems, and 

evolutionary models based on it produce patterns of punctuated equilibrium 

matching those seen in nature (Bak and Sneppen, 1993). Kauffman (1995, p. 129) 

suggests that ecosystems and possibly the whole biosphere may exist in a critical 

state, where evolutionary novelty would come in large bursts and small trickles that 

would conform to a power law distribution. 

Neutral models in which speciation events follow a simple set of underlying 

principles rather than a more deterministic niche based theory can also produce 

patterns of biodiversity remarkably similar to those found in the real world (Hubbell, 

2001; Solbrig, 1994). These models also predict an underlying fractal nature to 

biodiversity. This idea is supported by Green (1991) who highlights the strong 

parallels between systems showing non-linear dynamics and the evolution of life, 

both of which involve changes over time (i.e. evolution) that are inherently historical, 

being non reversible and non repeatable. Burlando (1990) also suggests the hollow 

curve is the result of an underlying fractal nature-to biodiversity; the self similarity of 

the curve at all levels and scales is indicative of its fractal nature (Mandelbrot, 1982) 

and supports this view. 

1.3.2. Key innovations and adaptation 

Is there a reason for the existence of disproportionately large taxa or clades 

other than them being random blips in a complex system? Just because the 

distribution of biodiversity follows a pattern that suggests it is caused by stochastic 

events does not mean these events themselves lack an underlying biological reality, 

and many authors have looked for links between taxon size or diversification rate and 

underlying biological attributes, The appearance of key _ innovations or other 

biological properties in a lineage that may increase diversification rate is likely to be 
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a random process, so the two schools of thought are perhaps not as exclusive of one 

another as it might seem. 

Willis (1922, p. 193) suggests that the size of genera is accounted for by their 

age, holding the theory that monotypic and small genera are young and are derived 

from larger, older genera, and have "not yet had time to expand their range or 

speciate. Cronk (1989) holds the opposite view, that monotypic genera are relics of 

possibly once larger genera, and that contemporary large genera are the result of 

recent 'blooming' of a particular lineage. The latter view certainly seems to apply to 

some cases in the light of phylogenetic investigations, for example Richardson et al. 

(2001) found that the massive diversity in the legume genus Inga had arisen during 

the late Pleistocene. This 'diversity is recent' view intuitively makes more sense than 

Willis' argument in that it has an explicit role for extinction in shaping contemporary 

diversity, rather than having old taxa as ever-growing entities. An empirical 

investigation into angiosperm diversification based on molecular phylogenetic data 

(Magallon and Sanderson, 2001) supports Cronk's view, with basal l,ineages in the 

angiosperms being significantly species poorer than many of the highly nested clades 

(crown-groups). The Lamiales, Gentianales, Solanales, Apiales, Asterales and 

Cyperales were found to have significantly higher diversification rates than other 

angiosperm clades. The first five groups are core Asterids, and the Cyperales are a 

highly nested mono cot clade; all the orders are relatively young in terms of the age of 

the angiosperms as a whole, being less than 50 million years old. 

What would cause a taxon to enter a 'bloom' phase? Several authors have 

tried to examine the biology underlying the production of large higher taxa, by 

comparing their biological attributes with taxon size or diversification rate. 

Marzluff and Dial (1991) examined traits that could be responsible for the 

domination of a taxon by one or few large subtaxa, such as age of first reproduction, 

longevity and fecundity. They found the age of first reproduction was the life history 

trait most strongly correlated with high taxonomic diversity within some vertebrate 

taxa, but found no significant correlations for their limited sampling of vascular 

plants. 
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Eriksson and Bremer (1992) calculated the diversification rate, R, for a 

number of angiosperm families based on the contemporary family size and the first 

appearance of the family in the fossil record, and correlated this value with the 

pollination system, dispersal mode and life form that predominates in each family. 

They found a significant correlation of R with both animal pollination and the 

herbaceous habit; with insect pollinated families having a significantly higher R than 

wind pollinated ones, and herbaceous families having a significantly higher R than 

woody familes. No correlation was found between R and dispersal syndrome. 

Rickleffs and Renner (1994) re-examined the data gathered by Eriksson and 

Bremer, and concluded that the first appearance in the fossil record of a plant family 

has little bearing on its age, and regard the contemporary species richness of a plant 

family as a more reliable indicator of its propensity to diversify. They found that 

species richness is associated with dispersal mode, growth form and pollination 

mode, in descending order of statistical influence. These single factor correlations 

were weak when compared to the effects of families having v~,ned dispersal 

syndromes, growth forms and pollination systems. Rickleffs and Renner conclude 

that the capacity to diversify morphologically and physiologically has been a major 

factor responsible for high rates of species proliferation in flowering plants. 

Eriksson and Bremer (1991) looked for dispersal mode correlations of species 

richness in genera of Rubiaceae, and split their data set into herbaceous genera and 

woody genera. They found abiotically dispersed genera of herbs within the 

Rubiaceae were tended to be speciose, while biotically dispersed herbaceous genera 

were relatively depauperate. Conversely, biotically dispersed shrub genera tended to 

be highly speciose compared to the abiotica1ly dispersed shrub genera. Tiffney and 

Mazer (1995) further examined this hypothesis that a correlation of dispersal mode 

with diversification in angiosperms depended on whether growth form was taken into 

account. Their analysis showed a significant correlation between dispersal syndrome 

and diversification if growth form was taken into consideration. Herbaceous families 

with abiotic dispersal had higher taxonomic richness than herbaceous families with 

biotic dispersal, whilst the converse was true for woody families, where higher 

taxonomic richness was correlated with biotic dispersal; both of these correlations 

were significant at the 95% level. 
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Smith (2001) also looked for a correlation with dispersal mode and species 

richness, and compared ecologically similar sister clades with differing dispersal 

modes (small fleshy fruits dispersed by birds, and dry fruits). He found that in 

tropical understory plants, clades with fleshy fruit were significantly more diverse 

than clades with dry fruit. 

A robust examination of angiosperm diversification was carried out by 

Barraclough and Savolainen (2001), which used the molecular phylogeny of 

angiosperms (Soltis et al., 2000) to identify sister familes which by definition 

diverged at the same time from a common ancestor. This approach is free from the 

subjectivity involved in defining higher taxa. They found that diversification rates in 

angiosperms correlated with the neutral substitution rate in both plastid and nuclear 

genes. However, rates of non-synonymous substitution did not correlate with species 

numbers, even though they correlate with the neutral substitution rate. 

To sum up, the following correlations with increased diversification rate or 

higher taxon size were found to be significant to some degree: Insect pollination 

(Rickleffs and Renner, 1994; Eriksson and Bremer, 1992), the herbaceous habit 

(Eriksson and Bremer, 1992), varied dispersal mode within the taxon (Rickleffs and 

Renner, 1994), varied habit within the taxon (Rickleffs and Renner, 1994), abiotic 

dispersal (in herbaceous taxa; Tiffney and Mazer, 1995; Eriksson and Bremer, 1991), 

biotic dispersal (in woody taxa; Tiffney and Mazer, 1995; Eriksson and Bremer, 

1991; in forest understory taxa; Smith, 2001) and the rate of neutral substitution 

(Barraclough and Savolainen, 2001). What could be the effect of these attributes on 

increased diversification? 

Many authors found correlations with factors affecting gene flow (dispersal 

and pollination syndromes). The effect of dispersal syndrome on angiosperm 

diversification could be due to one of two effects. Firstly, an increase in the overall 

diversification rate could be caused by a reduction in the extinction rate mediated by 

animal dispersal, which would allow species to disperse to new areas of suitable 

habitat and so reduce the risk of extinction through range expansion. This hypothesis 
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has been presented by Tiffney and Mazer (1995) to explain the correlation they 

found between vertebrate dispersal and the diversity of woody angiosperms. 

Conversely, it has been suggested that the correlations found between the 

various pollination and dispersal syndromes and diversification could be caused by 

them producing pbpulation structures ctmdusive to speciation. Eriksson and Bremer 

(l992), Crepet (1984) and Smith (2001) support this view, and propose that local 

seed and pollen movement by animal vectors can produce small genetically isolated 

populations in which evolution can proceed rapidly. 

Barraclough and Savolainen (2001) put forward two mam hypotheses to 

explain the correlations they found. Firstly, they suggest that rates of phyletic change 

and speciation are increased by smaller generation times or with small population 

sizes. Secondly, it is argued that increased mutation rates could drive diversification, 

and so be a cause rather than an effect, with higher mutation rates increasing the rate 

of divergence of populations and contributing to the development of hybrid 

incompatability and eventual speciation. Variation of morphology and physiology 

within a taxon is perhaps the easiest correlation to explain, as the production of 

novelty is one of the key aspects of speciation and this would permit radiation into 

new habitats and environments. 

Although many hypotheses have been suggested to explain the correlations, 

most of the authors suggest that the causes of radiations are likely to be complex and 

multi-factorial. A problem with interpreting many gene-flow related correlations is 

that the categories used to classify dispersal and pollination syndromes can be said to 

be somewhat meaningless, as both animal and abiotic dispersal and pollination cover 

a wide range of overlapping gene flow capabilities; the abiotic dispersal category 

covers plants with very short range passive dispersal mechanisms to plants with 

extremely long range wind dispersal mechanisms. This is the case in Smith (2001), in 

which fleshy fruited clades were compared to 'dry fruited' clades. The fleshy fruited 

clades were quite uniform in dispersal mode, but the dry fruited clades possessed a 

range of dispersal mechanisms ranging from hooked fruit to light seeds with papery 

wings. The different effects of abiotic dispersal on diversification depending on 

growth form (Erksson and Bremer, 1991, 1992; Tiffney and Mazer, 1995) present a 
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contradictory picture, as it correlates with increased diversification of herbaceous 

lineages, but not of woody ones. It is possible to conceive that abiotically dispersed 

woody plants (e.g. wind dispersed trees) can disperse further than abiotically 

dispersed herbs (passive dispersal), so the 'population structure conducive to 

speciation' hypothesis may apply in both cases, with abiotic dispersal hindering the 

speciation of tree"'forms but aiding the speciation of herbaceous forms. However, 

without a better understanding of the dispersal capability of different genera in terms 

of some directly comparable unit, it is difficult to do anything but speculate. 

1.4. Begonia as a large genus 

The largest angiosperm genera are considered to be Euphorbia L., Piper L., 

and Carex L., containing about 2000 species each, followed by Astragalus L. (1750), 

Solanum L. (1700) and Psychotria L. (800-1500) (figures taken from Mabberiy, 

1997). Begonia contains ca. 1400 species (Doorenbos et al. 1998), and so is 

comfortably placed within the largest ten angiosperm genera. Give~ the light of 

phylogenetic information (Wagstaff and Dawson, 2000; Forrest, 2000) it does seem 

that Begonia is a morphologically distinct clade which has a far higher 

diversification rate than its neighbouring morphologically distinct clades, whether or 

not one considers genera to be directly comparable units. Figure 1.3 shows the 

position of Begonia in a phylogeny of the Cucurbitales sensu the Angiosperm 

Phylogeny Group (1998). Although there is no bootstrap support for the basal nodes 

in this tree, which are unresolved in the strict consensus, this topology reflects the 

accepted sister relationship of the Datiscaceae to the Begoniaceae (Swensen et al. 

1998), and places the Cucurbitaceae as sister to the rest of the order which reflects 

the appearance of the family in the fossil record before Tetramelaceae, Coriaricaeae 

and Corynocarpaceae (Wagstaff and Dawson, 2000). Given this topology, it does 

seem that Begoniaceae has a far higher diversification rate than other families in the 

Cucurbitales, with the possible exception of the Cucurbitaceae (l make family level 

comparisons here because they reflect monophyletic groups with obvious 

morphological synapomorphies, although it is perhaps rather a moot point as 

Begonia/Begoniaceae comes out as the largest clade independent of whether one 

looks at families or genera). 
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The huge difference in species number between the Begoniaceae and the 

Datiscaceae is consistent with the hypothesis of insect pollination driven 

diversification as mentioned previously. Most Begonia and Hillebrandia are thought 

to be insect pollinated (mainly by bees, Agren and Schemske, 1991), whilst Datisca 

is wind pollinated (Liston et aI., 1990). The presence of insect pollination in Begonia 

could lead to a higher degree of population structure than the wind pollinated 

Datisca, which may have influenced the difference in speciation rates between the 

two lineages. Although both families are abiotically dispersed, there is likely to be 

some difference in dispersal ability between them, as Begonia occurs in sheltered 

forest environments whilst Datisca occurs in more open riparian habitats. I present 

here the hypothesis that diversification in the Begonia lineage has been aided by a 

high degree of popUlation isolation, caused by localised pollen transfer by insects and 

passive seed dispersal mechanisms in a sheltered forest environment. Although it is 

likely that most radiations are complex in origin and may have several causal factors 

(Tiffney and Mazer, 1995; Magallon and Sanderson, 2001), and Begonia is probably 

no exception, several aspects of the ecology and biogeography of Begonia are 

congruent with this hypothesis, and a review of these is presented in chapter 2. 
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Figure 1.3. Phylogeny of the Cucurbitales inferred from rbeL sequences (one of 38 
equally most parsimonious trees; from Wagstaff and Dawson, 2000). The number of 
species in each clade is indicated on the right. This topology (with respect to 
Begoniaceae, Datiscaceae, Tetramelaceae and Cucurbitaceae) is congruent with an 
anlaysis using 18S and rbeL by Swensen et al. (1998). 

1.4.2. Why isn't Hillebrandia a large genus? 

Perhaps one of the most puzzling things about the Begoniacaeae is why 

Hillebrandia is monotypic. It appears to be ecologically and florally quite similar to 

Begonia, and is endemic to the Hawaiian archipelago which is the home of countless 

fascinating radiations, yet today exists as a single lineage. The Hillebrandia lineage 

may never have radiated in the Hawaiian islands, although another possibility is that 

Hillebrandia presently represents a taxon in decline, being the lone survivor of a 

once diverse clade. The relictuality of Hillebrandia is evident from the Begoniaceae 

phylogeny of Forrest (2000), as it is sister to Begonia and is likely to have been on 
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the Hawaiian archipelago for at least 55 million years. It is currently only found on 

the older islands of the archipelago and probably survived by 'island hopping'. If 

taxa go through 'bloom and bust' cycles as suggested by Cronk (1989), Hillebrandia 

may the last dying ember of a once spectacular botanical firework. 

1.5. Summary. 

Angiosperm biodiversity is unequally distributed among taxa (or clades). The 

observed pattern of the distribution of biodiversity between taxa is fractal in nature, 

and is possibly an emergent property of the complex nature of evolution. 

Investigation of unequal diversification between individual taxa suggests that 

ecological correlates such as gene flow capability may be one of the causal agents. 

It is conceivable that insect pollination, local seed dispersal and patchy 

population distributions have been important in the diversification of the Begonia 

lineage. 
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CHAPTER 2. The Begoniaceae C. Agardh. 

2.1. Introduction to the Begoniaceae 

This chapter is an overview ofthe biogoegraphy, ecology and reproductive biology 

of the genus Begonia, and much of the inforniation presented is background to the 

hypothesis that localised gene flow has influenced speciation. 

2.1.1 . Taxonomy and Distribution 

The Begoniaceae contains ca. 1400 species in three genera: Begonia L., 

Symbegonia Warb. and Hillebrandia Oliver. The vast bulk of the species belong to 

Begonia, which has a pan tropical distribution (Figure 2.1) and is classified into 63 

currently accepted sections (Doorenbos et al. 1998; all authorities of section names 

subsequently mentioned are as referenced therein). Each of the sections are limited to 

one continent and many of them were originally described as separate genera in 

Klotsch's pioneering treatment of the family (Klotsch, 1854). The name Begonia was 

first published in 1700 by J.P Tournefort, who named the six species he described 

from the French Antilles in honour of Michel Begon, the Intendent of the islands 

(Barkley, 1968). 

.-. 

Figure. 2.1. The distribution of Begonia (modified from Heywood, 1993). 
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Of the remaining two genera, Hillebrandia is a monotypic Hawaiian endemic, and 

Symbegonia has ca. 12 species in New Guinea. The latter is best regarded as a 

section of Begonia, as it is nested in section Petermannia according to a phylogenetic 

analysis by Forrest (2000) and has no molecular or morphological characteristics that 

warrant recognitio~ at the genus level ov~r other equally distinct sections of Begonia. 

The Begoniaceae belongs in the Cucurbitales (sensu APG 1998), and has the 

Datiscaceae Bercht. and J. Presl. as its sister group (Swensen, 1998), which is a 

ditypic family of perennial herbs with a disjunct distribution in California and central 

Asia. The affinity of the Begoniaceae with the Cucurbitaceae Juss. ex DC and the 

Datiscaceae has long been recognised, although the inclusion of previously 

taxonomically isolated families such as the Corynocarpaceae Engl., Coriariaceae 

Dumort and Anisophyllaceae Ridley in the Cucurbitales was unexpected. 

Begonia follows the distribution of wet tropical forest and tropical montane 

forest, with Asia and Central and South America having the bulk of the species (ca. 

600 spp. each), with diversity hotspots including the equatorial Andes and Malesia. 

Although Africa (including· Madagascar) has less species diversity in terms of 

number, at ca. 150 species, it has the greatest morphological diversity and the oldest 

lineages of the genus according to the phylogenetic work of Forrest (2000) and Plana 

(2002), with most diversity occuring in the Congo basin. 

The enigmatic presence of Hillebrandia on Hawaii is something of a puzzle, 

especially as African Begonia are the basal lineage within the genus. Given that 

Africa and Hawaii are on opposing sides of the planet, any biogeographic 

explanations short of plain long distance dispersal will be somewhat convoluted. 

2.1.2. Ecology 

Begonia and Hillebrandia both have marked tolerance of deep shade, and this 

can be interpreted as one of the ~ey innovations of the Begoniaceae. The family is 

also strongly hydrophilous, and throughout the tropics Begonia are found in wet and 
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shaded environments such as stream banks and vertical seep faces under a forest 

canopy, or the mist zone around forest waterfalls. 

Begonia leaves show several features that can be interpreted as adaptations 

for coping with shade (Sosef, 1994, p.38; Lee and Graham, 1986). Bullate leaves 

(e.g. Begonia .bullata and several other species in section Loasibegonia and 

Scutobegonia) may be an adaptation to catch light scattered at different angles by the 

overhead forest canopy, and may also encourage surface water to drain away from 

the leaf surface after rain and prevent it scattering light. An anthocyanin rich lower 

leaf surface as seen in Begonia brevirimosa (and many other species of Petermannia; 

it is also seen to some degree in most Begonia sections) also reflects 

photosynthetically useful red light back up into the leaf. On the upper leaf surface, 

some Begonia species show a blue iridescence (e.g. B. johnstonii) or 

satiny/glistening sheen (e.g. B. sutherlandii). The glistening is c&used by lens shaped 

surfaces of the leaf epidermal cells, which focus light onto the stacked chloroplasts 

below; the function of the blue iridescence is not known, but it is exhibited by other 

shade tolerant species (e.g. Selaginella .,sp.) and may reduce reflection of 

photosynthetically useful light. 

The asymmetric leaf is one of the most characteristic qualities of the genus, 

but its function remains rather enigmatic and no explanation is offered in the 

literature. However, it seems likely that it serves to create an efficient leaf mosaic, as 

alternate leaves have the enlarged lobe on the opposite side of the leaf. This has the 

effect of displacing the point of attachn1ent of the petiole to the side and hence nearer 

to the main stem, allowing the formation of a leaf mosaic which would require much 

larger investment in petioles if the point of attachment was at the 'top end' of the leaf 

(Figure 2.2). Some other shade tolerant plants show this adaptation (e.g. Gesnericeae 

sp.), but it is not common in plants, perhaps due to developmental constraints which 

guard against asymmetry. 
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Figure 2.2. A longer petiole is needed to give the same leaf mosaic in symmetrical 
(left) than asymmetrical leaves (right). 

2.1.3. Life cycle 

Annual lifecycles are comparatively rare in Begonia (limited largely to 

section Doratometra (8 species) and a few species in section Begonia and 

Rostrobegonia) with most species being evergreen through several seasons or having 

perenniating organs such as rhizomes, tubers, tubercles and bulbils (Badcock, 1998). 

Nineteen sections from all continents contain a greater or lesser number of tuberous 

species. Tubercles (corm like structures found in the leaf rudls) are found in a small 

number of species, including B. sutherlandii and B. wollastonii from east Africa, B. 

grandis, B. notata, B. pedunculosa and B. gemmipara from Asia and several species 

from the Mexican section Quadriperigonia. Bulbils are unique to section 

Peltaugustia (B. socotrana and B. samhaensis), and consist of a compressed shoot in 

which the leaves are reduced to small fleshy scales, the whole being encased in 

papery bracts. 

2.1.4. Pollination biology 

The vast majority of Begonia are monoecious, with a few species being 

dioecious (e.g. B. roxburghii and some other members of sect. Sphenanthera, also a 

few species in sections Mezierea and Tetraphila; Doorenbos et al. 1998). 

Monoecious plants show a range of sex separation; many are protandrous, for 

example B. glabra and many of the associated species in the 'Pritzelia' clade 

(Forrest, 2000), and some are protogynous, for example section Petermannia. Male 

and female flowers are commonly found on the same infloresecence (e.g. B. glabra) 

or more rarely on separate ones (e.g. B. herbacea). The number of male and female 
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flowers per infloresence varies enormously between species, from one (e.g. female 

infloresence of B. herbacea) to over 1000 (B. luxurians). 

The majority of Begonia species are pollinated by deceit (Figure 2.3). The 

male flowers offer pollen 'as a reward to insects, whilst the female flowers are 

rewardless. Vogel (1978) states that inthe case of the female flower the "voluminous 

yellow stylodia mimic the androecium of the male flowers and thus release gathering 

movements [in visiting insects] which affect pollination." 

Deceit pollination in Begonia has been confIrmed by Agren and Schemske 

(1991). Their study showed a marked preference of pollinating insects for male 

flowers (the bee Trigona grandipennis was the most frequent visitor to the species 

under study, B. involucrata). Male inflorescences received an average of 7.2 times 

more visits than female inflorescences, with the visiting insect spending about ten 

times longer on male flowers than on female ones. Begonia pollination has been 

further investigated by Schemske et al. (1996) and Le Corff et al. (1998). All three 

studies highlight (i) pollen is the only reward, (ii) visitors show a marked preference 

for male flowers, (iii) male flower visits last longer than visits to females, and (iv) 

seed set is pollen limited. 

Figure 2.3. Male (upper) and female (lower) flowers of B. socotrana, with the yellow 
stylodia of the female ,flower mimicking the pollen bearing anthers of the male. 
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Schemske and Agren (1995) demonstrated a preference of pollinators for 

larger flowers, by exposing them to different sized artificial flowers modelled on B. 

involucrata. However, the female flowers of the species are actually slightly smaller 

than the males, so there must be some other unknown ecological or genetic factor 

which limits flower size. Le Corff et aI. (1998) demonstrated the selection pressure 

for mimicry in female flowers in B. tonduzii, whose female and male flowers have 

six and two tepals respectively. A comparable species, B. urophylla, has male and 

female flowers which have the same number of tepals (two) and achieves a 

significantly higher level of seed set than B. tonduzii. This highlights the selection 

pressure for mimicry in the female flowers (Le Corff et aI., 1998). 

The majority of Begonia specIes have flat open faced flowers which are 

pollinated by small bees and other generalist pollinators. Some sections have 

developed tubular flowers, which are possibly adaptations to bird pollination; e.g the 

Andean section Casparya and the genus Symbegonia from New Guinea. Bird 

pollinated species represent pollination by double deceit, as neither male nor female 

flowers offer a nectar reward and· poll en is not taken as food by bird pollinators. The 

exception to this is B. ferruginea (sect. Casparya) which has been shown to produce 

nectar in female flowers (Vogel, 1998), the only known case of nectar production in 

the Begoniaceae. 

Wind may play a part in the pollination of some Begonia, particularly in 

South American species with large inflorescences such as the lianescent B. glabra, 

which produces large heads of male flowers that shed pollen when shaken, and 

possesses female flowers with small tepals and very prominent stigmas. 

The pollination syndromes of some species remain unknown, such as B. 

longirostris (sect. Semibegoniella, an Andean section allied to sect. Caspalya) which 

has campanulate male flowers and open faced female flowers, and B. maurandiae 

(sect. Gobenia) which has showy male flowers with prominent anthers and 

inconspicuous female flowers with very reduced tepals. In cases like these where the 

morphologies of the male and female flowers are so different, pollination is perhaps 

unlikely to be facilitated by straightforward deceit. 
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2.1.5. Dispersal biology 

2.1.5.1. Fruit morphology andfonction 

Tropical forest canopies offer shelter to the ground layer vegetation beneath, 

and sub-canopy wind dispersed plants are much rarer in closed forest than in more 

open habitats such as savanna (Hovestadt et aI., 1999). This suggests that wind 

dispersal in forest conditions is not very effective. Killeen et aI. (1998) found that 

true wind dispersal was limited to lianescent angiospenns in a survey of tropical 

semideciduous forest, with understory shrubs being largely zoochorous and the 

herbaceous layer being largely autochorous. The most common fruit type in Begonia 

is the three winged dehiscent capsule (Figure 2.4). This is alleged to disperse the 

seeds in an anemoballistic fashion (de Lange, 1998), although in the sheltered 

forested environments favoured by most Begonia species, wind dispersal is probably 

not very effective (Burt-Utley, 1985) and some have argued that Begonia seeds are 

passively dispersed, and do nbt travel far from the parent plant (Agren and 

Schemske, 1993; de Lange and Bouman, 1999; Matolweni, 2000). Some Begonia 

species show variation away from the 'standard' tri-alate fruit; one of the wings may 

be considerably enlarged, such as shown by members of sect. Platycentrum, in which 

the two smaller wings fonn a cup in the strongly recurved mature fruit and which 

allows splash dispersal of seeds by raindrops. The wings in species of sect. Casparya 

are reduced into three relatively strong hooks (Fig 2.5), fonning a rattle-bur type of 

fruit whichreleases seeds when knocked by passing animals (de Lange, 1988). 

Fleshy fruits are found mainly in Africa, in sections Baccabegonia, Mezierea, 

Squamibegonia and Tetraphila. The fruits may be either dehiscent, often with 

brightly coloured placentas (e.g. sect. Tetraphila) or indehiscent (e.g. B. oxlyoba). 

Although the fruits do not have a strong flavour or high sugar content, they are 

though to be vertebrate dispersed. Given the fragile nature of Begonia seeds, it is 

probable-that the seeds are dispersed ectozoochorously rather than internally and this 

could be facilitated by having the seeds loosely attached to the surface of the fleshy 

placentas rather than embedded in it. However, de Lange and Bouman (1991) 

suggest endozoocbory as a possibility, which they say could be facilitated by the 
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larger seeds with thicker exotesta found in some fleshy fruited species. They also 

suggest the some species in sect. Tetraphila may be myrmecochorous (ant

dispersed), as the seeds have an aril which could function as an elaiosome. The 

harvesting of seeds by ants has been observed in cultivated specimens of one of the 

species from this section, B. rhopalocarpa (de Wilde, 2002). The only other section 

to possess fleshy fruit is Spenanthera from Asia which has indehiscent green or 

white fruits lacking markedly fleshy placenatae. Interestingly all the fleshy fruited 

species also belong to sections with a high level of dioecy, which is a correlation 

noted among angiosperms in general by Muenchow (1987) and Bawa (1987) among 

others. Causes of this correlation are little more than speculation, but one possibility 

is a disproportionate increase in female reproductive fitness with increased female 

reproductive effort in fleshy-fruited animal-dispersed species, due to the 

effectiveness of animal dispersal in carrying seeds to suitable habitats away from the 

parent (Bawa, 1987). 

Figure 2.4. B. dregei possesses the three 
winged dehiscent fruit typical of the 
majority of Begonia species. 

Figure 2.5. The fruit of B. urticae 
possesses three horns and an extended 
apical column (scanned from Balls 
1939; herbarium specimen, E.). 

The African sections Loasibegonia and Scutobegonia are unusual in that they 

possess non-fleshy fruit that are also indehiscent. The seeds are released slowly when 

the fruit wall becomes papery and disintegrates (sect. Loasibegonia) or in the case of 

sect. Scutobegonia, the fruit walls remain slightly juicy and release the seeds upon 

rotting. Seed dispersal is thought to be through contact with animals, with the seeds 

sticking to mud on their legs, or via water running along the soil surface after heavy 
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rains (Sosef, 1994). The fruits are often hidden under the leaves, and sometimes the 

pedicels recurve towards the substrate, placing the fruits at soil level. The species in 

these two sections contain a high number of narrow endemics, and their poor long 

distance dispersal capability has led to them being used as likely indicators of 

Pleistocene forest refuges in Africa (Sosef, 1994). 

2.1.5.2. Seed morphology 

Begonia seeds are small, ranging in size from 220 !lm long (B. iucunda) to 

2240 !lm long (B. elbowensis), although are more commonly around 300-600 !lm 

long. They are characterised by the presence of longitudinally stretched cells (known 

as collar cells) which form a ring around the apical end of the seed, splitting open 

upon germination. 

A 'typical' Begonia seed is shown in Figure 2.6, and the vast majority of 

Begonia species conform to this type, with some variation in size and ornamentation. 

In contrast, a small number of species show seed morphologies w~ich can be 

interpreted as adaptations for more efficient wind dispersal, such as the African 

epiphyte B. thomeana (Figure2.7) 

Figure 2.6. A typical Begonia seed (B. 
palmeri). (a) operculum; (b) collar cells. 
From de Lange and Bouman, 1999. 

Figure 2.7. Seed of B. thomeana, showing 
the inflated cells at each end. From 
Doorenbos et al. 1998. 

whose seeds have air filled balloon cells at each end. Similar adaptations are shown 

by members of the neotropical sections Wagenaria, Solananthera, Rossmannia and 
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Gobenia, (de Lange, 1999) the vast majority of whose species are epiphytes or 

lianas. 

2.2. The distribution of Begonia biodiversity and reasons why limited gene flow 

may be important in Begonia speciation 

Several aspects of the distribution of Begonia biodiversity correlate with the 

suggestion that capacity for gene flow over more than local scales is poor for most 

Begonia species, and that this may be one of the factors leading to increased 

diversification of the genus through allopatric speciation. 

2.2.1. Species richness 

Begonia has over 1400 species. Are there any obvious adaptive features 

which could account for this? IUs relatively easy to speculate on factors affecting 

speciation in some large groups of angiosperms, depending on how their biodiversity 

is organised. For example the Orchidaceae has a great deal of floral diversity, whilst 

having comparatively little vegetative diversity. This could indicate that pollinator 

driven speciation has been important. The large genus Euphorbia has a great range of 

vegetative forms ranging from temperate forest herbs to massive desert stem 

succulents, whilst having comparatively little floral diversity. This could be 

interpreted as indicating a large physiological adaptive component to its radiation 

(Gill, 1989). 

For such a large genus, Begonia could be said to be fairly uniform in its 

ecology. There are a few aberrant species and sections, such as section Gireoudea 

which has some members that are adapted to quite xeric and sunlit habitats in 

Mexico, and B. princeae (sect. Augustia) which grows on the shaded side of termite 

mounds in East Africa. However, the majority of species are shade loving succulent 

hydrophilus herbs, to be found in a similar 'begonia habitat' throughout the tropics; 

seep faces, stream banks and waterfall splash zones. Looking at the collection details 

of Begonia herbarium specimens reveals a striking similarity of the habitats they 
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were collected from across the tropics. There is certainly ecological differentiation 

between species, but it appears to be of a subtle nature, with many species having 

apparently very narrow niches. 

No Begonia species are recorded as having fonned specific plant-pollinator 

relationships. Although pollinator observations are rare, the open faced flowers 

proauced by most species would not seem to offer much opportunity for this, instead 

attracting a variety of generalist pollinators. 

2.2.2. Geographical monophyly. 

Monophyletic groups in Begonia show strongly restricted geographical 

distributions, suggesting repeated adjacent allopatric speciation events. Prior to the 

ITS based phylogeny of the Begoniaceae produced by Forrest (2000), there was little 

information on the relationships of Begonia species and sections, but the phylogeny 

shows that in some cases geographical proximity is a better indicator of species 

relationships than morphology. This is exemplified by the monophyly both of the 

endemic Malagasy taxa and of the South Africa taxa, which were previously thought 

to have complex relationships with each other and with central African species. This 

pattern is also shown at much larger scales; American and Asian Begonia each form 

a monophyletic group, albeit on short and unsupported branches (Figure 2.8). 
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2.2.3. Narrow endemism 

The level of narrow range endemism of Begonia is very high, suggesting 

species' ranges may be dispersal limited. The extent of narrow endemism in the 

genus is evident from floristic accounts, and has been noted by many researchers 

(e.g. Tebbitt, 1997, p.l17; Sosef, 1994, p. 116). Kiew's account of the limestone 

Begonia of Sabah (Kiew, 2001) lists 14 species, only one of which is widespread in 

the study region, with 9 of them being endemic to single hills. In order to get a more 

objective measure of species endemism in Begonia I have plotted log-log species 

area graphs for the Begonia, Piper and Lepanthes of Ecuador (fig 2.9), obtained by 

noting the cumulative number of species in increasing nested areas within the 

country (using data from Jorgensen and Leon-Yanez, 1999). Lepanthes is a large 

(600 spp.) neotropical orchid genus with a high level of endemism in Ecuador (218 

out of288 are endemic). It has been hypothesised that small population size and poor 

gene flow between dispersed populations has been an important factor in generating 

species diversity in this and similar orchid genera (Tremblay and Ackerman, 2001) . 
. 

Piper (Piperaceae) is a genus oflianas and shrubs with bat dispersed fruits; it has 215 

species in Ecuador, with 75 of these being endemic. Begonia has 59 species in 

Ecuador, of which 33 are endemic. 

Hubbell (1997) states that the slope (z) and area (x-axis) intercept of nested 

log-log species area plots contain information on the spatial distribution of 

biodiversity. A low value of z indicates low j3-diversity (regional diversity), whilst a 

high value indicates high j3-diversity, i.e., the slope reflects the amount of diversity at 

the regional level. The maximum value for the slope of the log-log plot is unity, 

which means that a doubling of the study area would lead to a doubling of the 

number of species encountered. The area intercept reflects the level of a-diversity 

(local diversity), with a low value indicating high a-diversity (the area in which you 

only find one species is small) and a high value indicating Iowa-diversity (the area 

in which you only find one species is larger). Hence, a low value of z and a small 

area intercept would mean most of the diversity is present at a local level, with most 

of the species being widespread and having a high level of sympatry (as in Figure 

2.10 (b)). A high value ofz and a high area intercept would mean local (a) diversity 
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IS poor, but regional (P) diversity is high with most of the species being local 

endemics (as in fig 2.10 (a». 

The slopes for the Begonia and Lepanthes graphs are both unity, whilst the 

slope of the Piper graph is 0.64, and this is congruent with poorly dispersed species 

having higher levels of endemism and smaller ranges than animal dispersed species. 

It should be pointed out that the level of endemism for neither Begonia nor 

Lepanthes in Ecuador is 100 %, and so we would not expect a slope quite as high as 

1 for the log-log graph; there may be some skew to the study resulting from having 

started the nested species count in one of the drier provinces of Ecuador. This skew 

would have a similar effect in all three genera as they all inhabit a broadly similar 

habitat of tropical evergreen forest, and the comparison between the three genera 

used here will hold. The result reflects field observations of Begonia, where one to a 

few species may be encountered in anyone local forest area, but where regional 

species numbers are much higher. 
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A further interpretation from log-log species graphs at regional scales can be 

drawn according to Hubbell's unified theory of biogeography (Hubbell, 1997), who 

states that the intercepts and slopes of such graphs contain potentially useful 

information on speciation and dispersal rates. At large scales, the 'standing wave of 

biodiversity' is defined by rates of speciation, dispersal and extinction rather than 

simple relative species abundance which would affect biodiversity at more local 

scales. As one increases the area of study, one will encounter more and more species 

whose distribution in the study area is dispersal limited, and this factor becomes 

increasingly important in determining the rate of addition of new species with 

increased area. Low values for the slope indicate good dispersers, whilst high values 

such as those found for Begonia indicate species dispersing relatively poorly across 

the continental landscape relative to speciation rates. 

2.2.4. Rarity and variability of widespread species 

Widespread species are rare in Begonia, with most species being narrow 

range endemics. The relatively small number of species that are widespread tend to 

show marked morphological variation, suggesting low intra-specific gene flow over 

moderate to large scales. For example, B. sutherlandii has a wide afromontane 

distribution from Kenya southwards to the northern Transkei in South Africa. Now 

considered a single variable species, it was split by Irmscher in his 1961 monograph 

of sections Augustia and Rostrobegonia into 6 species, 5 varieties and 2 forms. B. 

urticae, which occurs along the Andes from Costa Rica to Peru, is another example 

of a morphologically highly variable species, as noted in the the Flora of Ecuador 

account (Smith and Wasshausen, 1986) which also gives 18 synonyms. 

There are some examples of widespread Begonia species which do not fit this 

pattern of being differentiated across their range, but these species show atypical 

adaptations which are likely to increase their capability for gene flow over longer 

distances. B. glabra is the most widespread Begonia species in South America, 

occuring from Mexico to Peru and eastwards into Brazil and the West Indies. It is a 

liana, which means its winged fruits can be exposed to air currents in the canopy 

(Figure 2.12), compared to terrestrial species which grow in the still conditions of the 

forest floor, also the seeds possess extended cells at the distal end of the seed which 
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may be inflated (de Lange and Bouman, 1999), thus further helping wind dispersal. 

The protogynous infloresences produced by B. glabra are quite large (Figure 2.12) 

and the species is likely to be pollinated to some extent by wind, as noted in 2.1.4. 

B. oxyloba is the most widespread Begonia species in Africa, extending from 

Liberia across tropical Africa to Tanzania and into Madagascar. This terrestrial 

species has fleshy fruit with orange, melon scented placentae which could be 

dispersed by a variety of small vertebrates and insects, and produces a very dry 

pollen freely released from the anthers upon slight movment (pers. obs.), so wind 

may playa part in its pollination. Other fleshy fruited species in Africa tend to have 

larger ranges than their counterparts with dry fruits. Figure 2.11 compares the 

distributions of the range sizes in the mainland species of sections Tetraphila, 

Mezeirea and Squamibegonia (fleshy fruited) and Loasibegonia and Scutobegonia 

(dry fruited). 

B. thomeana with its inflated seeds (Figure 2.7) and extended peduncle shows 

another correlation with dispersal-ability and range, as it occurs both on Sao Tome in 

the Gulf of Guinea and on the adjacent African mainland. Excell (1973) lists 15 

named Begonia species for the Gulf of Guinea islands, 11 of which produce fleshy 

fruits, suggesting that their origins on the islands stem from bird mediated dispersal. 

Apart from B. thomeana, there are three more dry fruited species which co-occur on 

both mainland and island situations; the remaining five species that show this pattern 

being fleshy fruited. The dry fruited species are B. sessilifolia (Filicibegonia), B. 

annobonensis (Sexalaria) and B. prismatocarpa (Loasibegonia); none of these show 

adaptations for dispersal which would set them aside from other members of their 

sections and their presence on the islands is probably due to chance long distance 

dispersal either by wind or animals. B. prismatocarpa exists as three subspecies, one 

of which (subsp. prismatocarpa) is endemic to Bioko (Fernando Po), which could 

indicate there is little of no gene flow between it and its mainland counterparts B. 

prismatocarpa subsp. delobata and subsp petrea. 
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2.3. Summary 

Begonia is one of the largest angiosperm genera, containing ca. 1400 

species. Most species are hydrophilous shade tolerators growing under the canopy of 

tropical montane or rain forests. They have small seeds which are likely to be 

passively dispersed in the vicinity of the parent plant in most cases, and the majority 

of species have open faced flowers pollinated by generalist insects. 

Begonia biodiveristy appears to exhibit a range limitation at all spatial scales. 

Within a species, populations are patchily distributed (Burt-Utley, 1985), with many 

small and dense populations being separated by some distance of unsuitable habitat. 

At the species scale, most Begonia species are narrow range endemics. At the 

regional scale, there is a trend towards domination by single monophyletic groups. 

This suggests that processess at the population level may be influencing the 

spatial distribution of biodiversity at the species level and above, with the lack of 

connectivity between dispersed pppulations leading to allopatric speciation occuring 

over relatively short distances. Little is known about the amount of gene flow 

between Begonia populations and over what distances it is effective. Only a single 

study has been carried out on Begonia population genetics (Matolweni et aI., 2000). 

This allozyme based study of the South African coastal forest endemics B. dregei 

and B. homonyma showed that over 90% of genetic variation was partitioned 

between populations. 

In order to speculate in a more informed manner on the role of limited gene 

flow on speciation patterns in the genus, it is necessary to measure gene flow in 

Begonia species from local scales to regional scales and to find out how connected 

populations are. Thus the goal of this thesis is to explore whether macroevolutionary 

patterns in Begonia are correlated with population level microevolutionary 

processess. 
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CHAPTER 3. Gene flow and speciation 

3.1 - Introduction 

The preceding chapter is a summary of biogeographic, phylogenetic and 

ecological factors that suggest restricted gene flow may have been one of the 

contributing factors to diversification in Begonia. Before going on to look for 

population level patterns that are congruent with this hypothesis, it is worth 

addressing the background theory on the influence of gene flow at the popUlation 

level upon divergence and eventual speciation. 

This chapter is a discussion on this aspect of speciation, and although it is 

very tempting to agree with Bush (1994) who said discussing species concepts before 

discussing speciation is putting tbe cart before the horse, I feel it is necessary to give 

at least some indication of what one means by 'a species'. As the importance of gene 

flow in the speciation process is the item under discussion, it will suffice for the 

purposes of this chapter to examine the relationship between gene flow and species 

unity, rather than disappearing into the semantic murk of a full-blown examination of 

the species problem. The following discussion, as do the vast majority of any 

discussions on species, will assume species have been delimited using a taxonomists 

species concept. This avoids any circularity which would be inherent using some 

concepts; if one defines species using a cohesion concept akin to Templeton (1989), 

in which species are united by cohesionary forces such as gene flow, then ipso facto 

species are united by gene flow and the argument becomes empty. In discussing the 

properties of species, it is helpful to have the reference to the real world that is the 

taxonomist's species concept. 
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3.2 Within-species gene flow 

There are two schools of thought on the maintenance of species unity. Erlich 

& Raven (1969) argue that species are not held together by gene flow, and are 

therefore not fundamentally different from higher taxa in that they are passive 

products of evolution rather than the largest units that participate in it. They suggest 

it is selection that is the primary cohesive and disruptive force in evolution, and that 

"at least in many cases, gene flow is of little or no importance in maintaining many 

of the phenetic units we call species". They give examples of species with disjunct or 

widespread distributions over which they assume gene flow to be ineffective, and 

suggest uniform selection is the reason for morphological cohesion in the species in 

question. The reason for this view is their belief that "distances of from 50 feet to a 

few miles may effectively isolate [plant] populations, and there is no evidence of 

longer range gene flow". Although they cite many examples to support their 

hypothesis, not all of these are based on empirical studies and in some cases they are 

purely anecdotal (e.g. the fact that "reef fishes are often remarkably similar 

throughout tropical seas" (and tlrerefore the product of uniform selection) is stated 

without a reference). 

Reiseberg and Burke (200 1) think the conclusion that species are passive end 

products of evolution is premature, largely because of many of the studies cited by 

Erlich and Raven grossly underestimate the amount of gene flow between 

popUlations. Estimates based on pollinator behaviour are problematic as they do not 

take into account pollen carry over and are likely to miss occasional long distance 

events. Direct observations of seed dispersal were also found to be likely to provide 

underestimates of between population dispersal. Reiseberg and Burke also disagree 

with the conclusions drawn by Erlich and Raven from widespread species or species 

with disjunct distributions. They suggest it is possible that species having large 

ranges or disjunctions could be the result of quite recent events, and that in these 

cases there may have been insufficient time for populations to diverge. Population 

ranges are likely to be dynamic in most species, and it seems plausible that 

popUlations presently out of contact may not have been in the recent past and may 

not be so in the near future. Also, some barriers may not be as impermeable as Erlich 

and Raven believe, especially if one takes into account the effects of sporadic longer 
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distance dispersal events. A further consequence of the Erlich and Raven view of 

species unity is that it would render the study of reproductive isolation mechanisms 

an unfortunate scientific detour, as populations would be free to evolve in splendid 

isolation without them. Also, populations usually represent a subsample of the 

genetic variation within a species. This difference in genetic makeup means that 

populations may respond differently to the same selection pressure due to the 

difference in available alleles, and so populations not experiencing gene flow are 

likely to diverge from one another under identical selection pressures (Levin, 2000, 

p.63). 

Reiseberg and Burke conclude that gene flow between populations of most or 

all plant species is sufficient to allow the efficient spread of favourable alleles, 

providing the fitness difference conferred by the alleles is fairly large (s>0.05). Such 

strongly favourable alleles may be the most likely.agents of collective evolution. 

Gene flow may not be high enough, however, to prevent divergence at loci where 

selection is weak or neutral, and Reiseberg and Burke put forward the idea that we 

should view species as groups of populations which are collectively evolving at some 

loci, but which may be diverging at others. 

Levin (2000) also takes a more reasoned view of the relationship between 

gene flow and species unity. He states that answering if species are wedded by 

contemporary gene flow depends on the continuity of the species distribution, the 

distance between the populations and the pollen / seed dispersal curves of the species 

in question. 

Despite Bush (1975) stating that Erlich and Ravens paper is "part of a 

growing body of evidence that suggests the effect of gene flow on differentiation 

may be small", it seems that this is now a minority view, with the consensus being 

that gene flow is important in maintaining species unity. 
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3.3 Speciation concepts 

The following will deal with speciation in functionally diploid outcrossing 

organisms, rather than with the complexities of evolution in selfing or apomictic 

lineages. It has' been suggested that selfing may be an evolutionary dead end 

(Stebbins, 1957) and that selfing lineages continually go extinct with new lineages 

being formed from outcrossing progenitors. An analysis of phylogenetic studies of 

mating system evolution by Takebayashi and Morrell (2001) found most were in 

accordance with this hypothesis, so it seems likely that selfing lineages are primarily 

the products of biodiversity rather than producers of it. 

When a new species forms, through whatever process, it must possess some 

kind of mechanism that will prevent it from interbreeding with its progenitor or sister 

should they occur in the same geographical area, either during or after the speciation 

process. In plants, reproductive isolation mechanisms can be classified as: 

I. Prezygotic 

• Ethological - pollinators may discriminate between the two forms 

• _ Genetic - failure of pollen and ovule to produce a zygote 

11. Postzygotic 

• Zygotic inviability - the embryo may not survive 

• Hybrid inviability - the hybrid may be weak or unfit 

• Hybrid sterility - the hybrid may fail to set seed either through selfing or 

crossing with other hybrids or the parents 

The way reproductive isolation becomes established may differ depending the 

mode of speciation. 

3.3.1 Sympatric speciation 

In sympatric speciation, new species arise and diverge whilst occupying the 

same range as their progenitor lineage. This requires the evolution of mechanisms 
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which restrict or prevent gene flow between the diverging entities. Such mechanisms 

may arise rapidly, in the case of novel gross mutations or polyploid speciation, or 

more gradually when one or more polymorphic loci are subjected to disruptive 

selection. 

3.3.2 Geographic speciation 

Most models of primary speciation have a geographic component, in which 

the differences in selection, drift and gene flow due to geography are the factors 

causing divergence. It is generally thought that most speciation involves some degree 

of aUopatry (Mayr, 1963; Lynch, 1989), and this fact has been obvious to observers 

even in pre-Darwinian times, as eloquently stated by Leopold von Buch (1825; 

translated in Mayr, 1963, p. 483): "The individuals of a genus strike out over 

continents, move to far-distance places, form varietieR (on account of the differences 

of the localities, of the food, and the soi!), which owing to their segregation cannot 

interbreed with other varieties and thus be returned to the original main type. Finally 

these varieties become constant and tum into separate species. Later they may again 

reach the range of the other varieties which have changed in a like manner, and the 

two will no longer cross and thus they behave as two very different species". 

There are several different models of allopatric or geographic speciation, 

which vary in terms of the size of the speciating entity and the amount of contact it 

has with its progenitor or sister. 

3.3.2.1 Parapatric speciation 

In this model, sister species evolve while adapting to contiguous spatially 

segregated habitats across a narrow contact zone. Reproductive isolation mechanisms 

arise simultaneously with the exploitation of a new habitat (Bush, 1975, 1994). 

3.3.2.2 Vicariant speciation 

This is the classic model of geographic speciation, and relatively simple in its 

conception. A parent species becomes divided by some kind of barrier, such as a 
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mountain range, desert or large river. In this model, the resulting two populations are 

assumed to be large enough for drift and inbreeding to not be a major factor in the 

speciation process, with divergence being caused mainly by differences in selection. 

3.3.2.3 Peripheral isolate speciation 

In this model, the speciating entity is a small population at the edge of the 

parent species range. Bush (1975) and Mayr (1963) regard peripheral isolates as 

important in the evolution of new species. Founder effect speciation is an extreme 

form of the peripheral isolate model, in which the founding population goes through 

a fairly rapid and extreme genetic change leading to reproductive isolation. Forms of 

founder effect speciation have been proposed by Mayr (1954), Templeton (1980) and 

Grant (1971) among others. The genetic changes occurring during founder effect, or 

'quantum', speciation (Grant, 1971, p.114) are brought about through drift and 

'genetic revolution' (Mayr, 1954) rather than the more gradual processes of 

conventional divergence through selection. 

3.4 Frequency of speciation modes 

3.4.1 Sympatric speciation 

Although thought to be important in speciation through host shifts in some 

animals, as. exemplified by the celebrated Rhagoletis work by Bush (Feder et aI., 

1988), there is little concrete evidence for primary sympatric speciation in other 

organisms. Some examples of speciation in animals have been suggested to be 

sympatric due to the size of the area the speciation events have occurred in (e.g., the 

endemic beetle fauna of St Helena; White, 1978, p. 245). However, it is 

acknowledged that microgeographic barriers could have provided isolation and aided 

speciation in this and similar cases; whether sympatric speciation has occurred 

depends on ones defmition of sympatry. 

Grant (1949) suggested that a conspicuous mutation affecting flower colour 

or morphology could result in sympatric reproductive isolation in plants due to a 
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switch to a different pollinator that avoided the original type. However, there is a 

lack of evidence for primary sympatric speciation in plants and it is not considered to 

be of general importance (Grant, 1971; White, 1978; Mayr, 1963). 

There are several documented cases of allopolyploid speciation m 

angiosperms (e.g. Spartina anglica, Marchant 1967; Senecio cambrensis, Abbott et 

aI., 1983) so it is certain that secondary speciation through hybridisation can occur; 

this is the only generally accepted form of sympatric speciation in plants. 

Autopolyploidy is likely to be far less significant than allopolyploidy in speciation, 

as combining the genomes of two different species affords a greater probability of 

ecological differentiation (Macnair, 1989). There is more debate about the 

importance of allopolyploid speciation than its feasibility, with some authors 

suggesting it has played a major role in the evolution of some plant groups (e.g. ferns 

and grasses; White 1978, p. 285). 

3.4.2 Geographic speciation 

There is a consensus that some kind of geographic speciation is the prevailing 

mode in most animals and plants (Mayr, 1963; Rice & Hostert, 1993). What forms of 

geographic speciation are possible and what their frequencies are is a matter of 

greater debate. 

3.4.2.1 Paraptric speciation 

The importance of parapatric speciation rests on the interpretation of the 

hybrid zones seen so often in nature. There is some debate over whether these zones 

are the results of incompletely speciated previously allopatric populations coming 

into secondary contact, or whether they are of primary origin. Mayr (1963) regards 

the secondary contact explanation as the most likely, although White (1978) gives 

several examples of hybrid zones in which there is no evidence for the populations 

ever having been separated. It is certainly possible for populations that have 

parapatric distributions to diverge if selection pressure is sufficient. Jain & Bradshaw 

(1966) showed that selection can cause very localised patterns of microgeographic 

structure despite high gene flow (although the examples they give involve very high 
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selection pressures). It seems the parapatric mode of speciation may be feasible, 

although other things being equal is likely to be less frequent than forms of vicariant 

speciation, given the higher rate of gene flow between populations that are 

contiguous. 

3.4.2.2. Vicariant speciation 

Straightforward vicariant speciation in which a species is split into two large 

reproductive communities requires, depending on the species range, a substantial 

barrier. This barrier must also persist for a considerable period of time, especially as 

this model does not invoke strong differences in selection pressure either side of the 

barrier as a prerequisite. Speciation is likely to be slower in large populations due to 

the time it would take for the spread of new favourable alleles throughout the entire 

range of the reproductive community, so the 'dumb-bell' model of vicari ant 

speciation is likely to be a very gradual process. In a large population, there is also a 

lack of opportunuity for drift to play any part in divergence. 

3.4.2.3 Peripheral isolate speciation 

Although not denying the existence of vicariant allopatric speciation, many 

authors feel that some kind of peripheral isolate model may allow speciation to 

proceed more rapidly and occur more frequently. 

There are several factors that suggest this may be an important mode of 

speciation: 

• The gene pool of a population at the edge of a species range is likely to be 

different from that at the centre, possibly representing an extreme of any 

clinal variation. 

• Small populations are prone to drift. 

• Selection pressures are likely to be different at the edge of a species 

range. 
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• The formation of peripheral isolates may be more frequent than larger 

scale vicariance events. 

Within the broader concept of the peripheral isolate model, there is a further 

debate on the processes that cause the ecological divergence and reproductive 

isolation of the isolate. There are essentially two extreme views, which centre on the 

relative importance of gradual divergence through Darwinian natural selection and 

the more rapid effects of non-adaptive evolution caused by drift and extreme genetic 

change resulting from founder events. 

The latter view has been espoused in various forms by several authors and is 

encapsulated by Wright's shifting balance theory (SBT) (Wright, 1932). He argued 

that populations tend to occupy an adaptive peak, and that to move to another 

adaptive peak requires them to cross a maladaptive valley. Small populations are able 

to drift off an adaptive peak, with the new allele combinations possibly putting a 

neighbouring peak within reach. Three phases can be identified in the shifting 

balance theory: (i) drift causes -populations to lose fitness and move towards a 

maladaptive valley; (ii) selection pushes the population to a new adaptive peak 

summit; (iii) the adaptations that allow the occupation of the fitter peak spread 

throughout the entire species. 

Mayr (1954) put forward a founder effect model of peripheral isolate 

speciation, in which the speciating entity is very small at the outset. The reSUlting 

bottleneck following a founding event would lead to increased levels of inbreeding, 

which Mayr argued could lead to selection of unusual combinations leading to a new 

and different genetically stable combination. Mayr considered chromosomal changes 

as important in this model, and the evolution of reproductive isolation to be rapid. 

Models based around founder events and bottlenecking have been proposed by 

Carson (1975; the flush-crash-founder cycle) and Carson & Templeton (1984; the 

founder-flush model) 

The alternative view is that adaptations occur through relatively simple mass 

selection, without the need for invoking founder processes and drift. This gradualist 

position was taken by Fisher (1930), and is supported by Coyne et al. (1997 & 2000). 
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Coyne et al. (1997) accept that although each of the three stages of the SBT may 

occur in nature to some degree, many empirical observations are better explained by 

the more parsimonious theory of simple mass selection. It is suggested that phases 

one and two of the SBT do not need to be invoked in order to move from one 

adaptive peak 10' another, as fitness peaks may be connected by ridges that require no 

loss -of fitness to traverse, or environmental conditions may change the fitness 

requirements needed and a new peak may be reached by selection alone. The third 

phase is criticised on the grounds that a fitness adaptation which required isolation 

and drift for its fixation is unlikely to spread by gene flow. 

Gavrilets & Hastings (1996) carried out a model-based study on the 

plausibility of founder effect models of speciation. The aim was to find out if founder 

effects could be important in the evolution of reproductive isolation in a neospecies. 

They found that drift to fixation at one major locus could completely change the 

selection pressure on other major loci, and this change in selection pressure caused 

the population to evolve to a new genetic state (similar to the genetic revolution of 

Mayr (1954)). With a model including change at many minor loci, drift becomes 

more important than selection and can allow the population to move to a new 

adaptive state (similar to the founder-flush model of Carson (1984)). Reproductive 

isolation in these models depended upon the initial variables used, but could 

theoretically occur in several hundred or even several dozen generations with quite 

high probability. However, despite the theory, the experimental evidence for the 

rapid evolution of reproductive isolation in outcrossers through founder effects alone 

remains equivocal, with some reviews having completely opposing conclusions as to 

the presence of this phenomena in experimental populations (Rice & Hostert, 1993; 

Templeton, unpublished manuscript, cited in Gavrilets & Hastings (1996). 

Although there is much theoretical debate about the relative importance of the 

Fisherian and Wrightian schools in evolution, experimental studies have mostly 

failed to indicate a large role for founder events in the rapid evolution of 

reproductive isolation (Rice & Hostert, 1993). Evolution and speciation may be 

better explained by relatively simple mass selection. 
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3.4.3 Evidence from phylogenetic data 

In terms of a human lifespan, speciation is likely to be an imperceptible 

process (allopolyploidy excepted), and so judging the plausibility and frequency of 

different speciation modes in a group of taxa is a difficult task that relies mostly on 

the interpretation of present day biodiversity patterns or the use of experimental 

populations. 

Lynch (1989) examined the phylogenies of a number of vertebrate groups, 

and estimated the frequencies of speciation modes (vicari ant, peripheral isolate and 

sympatric) by comparing distributional data with phylogenetic relationships. From 

66 cases of speciation, Lynch arrived at figures of 71 % for vicariance, 15% 

peripheral isolate and 6% sympatric. 

Barraclough et al. (1999) have developed a method for inferring the 

geography of past speciation events from species level phylogenies. In plots of node 

height in a phylogenetic tree versus degree of sympatry between taxa, different 

patterns are expected depending on whether speciation has been allopatric or 

sympatric, and whether there have been range changes after speciation has occurred. 

Node height is calculated as the relative distance of a node from the tips of a 

phylogeny, and the degree of sympatry is calculated as the mean of the proportion of 

each clade's area overlapped by the other. 

range 
changes 

no subsequent 
range changes 
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Sympatry 

n.b. 
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5 

Fig. 3.1. Expected patterns betWeen degree of sympatry (s) and node height (n.h.) 
under alternative geographical models of speciation. 
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The expectations of the plots depend on the geography of speciation, and 

whether range changes have occurred subsequent to speciation. If speciation is 

allopatric, then we expect an intercept of zero as very recently diverged species 

should have no overlap in their ranges. This would be followed by an increase in 

sympatry the deeper one goes down the phylogenetic tree, if species ranges expand 

and 'overlap through time. If speciation is entirely sympatric, then we expect an 

intercept of greater then 0.5, as one of the species of a diverging pair must be 

completely contained within its progenitor/sister species range at the time of 

formation. This would be followed by a decline in sympatry with node height if the 

species expand from their natal range. 

Outliers in such plots can expose sympatric events (when a high degree of 

sympatry exists between two recently diverged species) and historical vicariance 

events (when complete allopatry persists between taxa despite very long divergence 

times). An analysis of a species level Rhagoletis phylogeny suggests that most of the 

speciation in the clade examined was allopatric, with only a single sympatric event 

being identified. 

3.5 Gene flow and speciation theory 

Section 2.4 was a discussion of largely verbal speciation models, in which 

there appeared a consensus view that some form of geographic speciation 

predominates. This indicates that reduction or cessation of between population gene 

flow is of great importance in the speciation process. In order to further investigate 

the likelihood of the various allopatric scenarios, we need to know the effects gene 

flow and population size have on divergence. Mathematical models can be useful in 

determining the plausibility of speciation theories (Turelli et aI., 2001). 

Haldane (1930) was among the first to formalise a model including the 

interaction of gene flow and speciation in the divergence of populations. To prevent 

local differentiation at a given locus, the fraction of immigrants, m, must exceed the 

strength of selection, s (the fitness difference between alleles in term of survival 
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probability). This means that the fewer migrants a population receives from non

local populations, the weaker the selection pressure it can respond to. 

Barton (200 I) took this further, with more detailed models on the interaction 

of population adaptation and gene flow. He found gene flow to be an important 

factor in inhibiting local adaptation, and that gene flow from the centre of a species 

distribution could effectually limit the range of the species due to the failure of 

peripheral populations to adapt to conditions to those at the centre. 

The same result of gene flow inhibiting peripheral populations from evolving 

to their local ecological optima was found by Garcia-Ramos & Kirkpatrick (1997). 

Their models also found that response to local selection pressure can cause rapid and 

substantial evolution when a peripheral population is isolated from gene flow. A 

further outcome of the model is that this rapid evolutionary divergence can occur in 

the absence of drift. 

Gavrilets et al. (2000) developed a model of parapatric speciation. If all else 

is equal, increasing population size should result in greater geographic structure and 

likelihood of subdivision, increasing the probability of speciation. However, range 

size can be correlated with dispersal ability, so in general increasing population size 

(and hence migration rate) significantly decreases the probability of speciation in the 

model. Gavrilets et al. (2000) suggest species with smaller range sizes (characterised 

by small population sizes and reduced dispersal ability) should have higher 

speciation rates. 

3.6 Summary 

Gene flow can have a creative role in evolution, allowing the spread of 

advantageous mutations throughout a species range. It can also have a conservative 

role, with popUlations being held back from localised adaptive optima by gene flow 

from neighbouring populations growing under differing conditions. 
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Disruption of gene flow between diverging entities is crucial to all speciation 

theories, and this is obvious from verbal models and explicit in mathematical ones. 

There is a consensus view that geographic speciation predominates in nature, 

with some theories favouring a prominent role for small populations at the edge of 

the parent species range. The relative roles of Darwinian natural selection and non 

adaptive evolution or extreme genetic change are contested, although many examples 

of speciation in nature only require selection as an explanation. 

Although many authors fiercely defend their own models, it is perhaps best to 

take a more moderate view, and remember that the different theories are not mutually 

exclusive. Coyne et al. (1997) concur with this, and state that 'given the multifarious 

nature of evolution, almost every conceivable scenario must eventually occur'. 
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CHAPTER 4. Microsatellites and data analysis 

4.1 Introduction 

For investigations of population structure and recent evolutionary history, 

micro satellites are now the markers of choice. They are DNA sequences made up of 

repeats of a motif one to six base pairs long arranged in a tandem fashion. These 

sequences have been found in the genomes of all organisms that have been analysed 

so far, and are present in numbers much greater than would be expected by chance 

(Rose and Falush, 1998). Microsatellites can be simple, where the repeat motif is the 

sole feature of the microsatellite; compound, where two or more types of repeat 

motif form adjacent sequences; or interrupted, where the microsatellite region has 

small sections of non-repetitive DNA. 

Microsatellites show high levels of length polymorphism, are co-dominant, are 

spread throughout genomes and in many cases are thought to be selectively neutral. 

These factors and the ease with which microsatellite alleles can be scored using peR 

has led to them becoming popular as genetic markers. 

4.2 Mutation of microsatellite sequences 

Microsatellites have some of the highest mutation rates observed at molecular 

loci. Estimates vary from 10-2 in E. coli (Levinson and Gutman, 1987a), 10-3 in 

humans (Weber and Wong, 1993) and 10-4 to 10-5 in yeast (Henderson and Petes, 

1992), with point mutations for comparison thought to be in the range of 10-9 to 10-1°. 
Most of the variability observed at microsatellite loci is due to length changes, 

hypothesised to be the result of two processes, namely slipped strand mispairing 

(SSM) and unequal crossing over (UCO). SSM occurs during DNA replication when 

the template and the newly forming strand dissociate. When the DNA has a repetitive 

nature, as in micro satellite sequences, the strands may reanneal out of phase, with 

either the template or nascent strand forming a loop. If replication continues, then the 
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new strand will be either longer or shorter than the template by the number of repeats 

contained in the loop. The mechanism of SSM is reviewed by Levinson and Gutman 

(1987b). DCO occurs during recombination, where repetitive areas in the DNA 

helices become misaligned, which results in a deletion in one chromosome and an 

insertion in the other. 

The relative role of these two mechanisms in micro satellite evolution has been 

the subject of some debate, although much evidence points towards SSM as being 

the most important in generating the observed patterns of length variation. Dca is 

not thought to playa major role, as microsatellite stability is not affected in mutants 

which show a decreased frequency of recombination events (Levinson and Gutman 

1987b; Henderson and Petes 1992), and rates of microsatellite mutation are similar in 

mitotic and meiotic yeast cells, despite recombination being much more frequent in 

the- latter (Strand et aI. 1993). Also, many of, the observed mutations in 

microsatellites involve loss or gain of a single repeat unit, whilst recombinational 

events would be expected to give rise to a greater range of length differences 

(Hancock, 1996). There is also more direct evidence in support of the SSM model, 

mainly from mutants which have defects in their DNA repair mechanisms (Sia et aI., 

1997). Flores and Engels (1999) showed that Drosophila mutant for spellchecker 1, 

which promotes the correction of DNA mismatches, had highly increased instability 

of dinucleotide repeats, with over 90% of observed mutations in these regions being 

of a single repeat. 

The mutation rate of microsatellites has been linked to several variables, 

including the orientation of the sequence in the genome (Freudenreich et al., 1997), 

the length of the repeat unit (Chakraborty et aI., 1997), the base composition of the 

repeat unit (Bachtrog et al., 2000) and the total length of the microsatellite (Wierdl, 

1997). 

Freudenreich et aI. (1997) found that the stability of a CTG repeat in yeast 

was lower when it formed the lagging strand template, which was hypothesised to be 

due to the higher stability of loops formed from the CTG repeat compared to its 

reverse complement. Also, the lagging strand is single stranded for longer then the 

leading strand, and may have more opportunity for forming secondary structures. 
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(The fonnation of loops on single stranded template DNA is also likely to be the 

cause of the stutter banding patterns seen in PCR products generated from 

microsatellite DNA; stutter bands are usually shorter than the template). There is also 

evidence from studies in E. coli (Veaute and Fuchs, 1993) that leading and lagging 

strand polymerases have different mutation rates. The dependence of mutation rate 

on repeat unit length (inversely related) and composition is possibly related to the 

ability of the sequence to fonn secondary structures, although the biological basis 

remains unclear (Estoup and Cornuet, 1996). Bachtrog et al. (2000) suggested the 

different mutation rates of GT, CT and AT (in order of decreasing rate) 

micro satellites could be due to DNA mismatch repair enzymes having efficiencies 

which are sequence dependent. 

The increase of mutation rate with micro satellite length has been suggested by 

Rose and Falush (1998) as a mechanism for the high abundance of longer 

microsatellites in genomes over that which would be expected by chance alone. They 

postulate micro satellites are 'born' when a section of repetetive DNA exceeds about 

8 nucleotides in total length, when ~it becomes prone to expansion mutations. There is 

some evidence for a directional bias in micro satellite mutation, with the tendency 

being for them to increase rather than decrease in length (Primmer et aI., 1996; Amos 

et aI. 1996), although whether this occurs in all types of micro satellite and what the 

mechanistic basis could be is, again, unclear. If the observed mutation bias is real, 

then there must be some upper constraints for microsatellite length, otherwise 

mutation would theoretically drive them towards infinite size; this is also consistent 

with the observation that most microsatellites are around the order of a few tens of 

repeats in length. Several hypotheses have been put forward to explain the apparent 

constraint to microsatellite size, including selection against large alleles (reviewed by 

Estoup and Cornuet, 1996) and the increasing instability of micro satellite DNA with 

increasing length, which makes it prone to large deletions (Wierdl et aI., 1997). A 

recombinational mechanism for such deletions has not been ruled out (Hancock, 

1996). 
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4.3 Function of micro satellite sequences 

Although micro satellites are usually thought of as useful, polymorphic neutral 

genetic markers, there is evidence that in some cases at least they do have a 

functional role in the genome. Perhaps the most obvious role they possess is in 

coding regions; where they code for homopolymeric stretches in a protein. This is 

perhaps more likely for three or six base pair repeat motifs (e.g. Hughes et aI., in 

press; paper 2), where stepwise mutations would not cause a frameshift. Two 

interesting cases of coding region tri-nucleotide microsatellite polymorphism are 

worthy of comment; one by Sawyer et al. (1997) in which a (Thr-Gly) repeat of 

either 17 or 20 units was associated with maintaining an accurate circadian rhythm at 

different temperatures in Drosophila, and another by Ebstein et al. (1996), which 

found a correlation of extroversion and novelty seeking scores in humans with 

variation in the length of a 16 amino acid region in a dopamine receptor gene. 

Microsatellites may also have a role as regulatory elements, as they are often 

found in upstream promoter regions of coding sequences, and numerous proteins 

have been found that selectively bind to di and tri nucletide repeats (Kashi and 

Soller, 1999; Epplen et aI., 1993). The presence of microsatellites as functional 

elements in both promoter and coding regions gives the possibility that they may be a 

major source of genetic variation and phenotypic novelty, and hence of great 

importance in evolution. 

This does not mean to say that assuming most micro satellites are neutral markers 

is wrong, however. Rose and Falush's (1998) model explains how microsatellites 

could arise throughout the genome, and it is possible to see a scenario where 

micro satellites are 'born' by chance, expand through mutation and are lost either 

through catastrophic deletions or through gradual accumulation of point mutations. 

Assuming micro satellites to be neutral debatably requires less of a suspension of 

disbelief than assuming allozymes to be neutral. 
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4.4 Analysis of microsatellite allele data 

Microsatellite data can be used to make inferences about population structure or 

differentiation using a number of classical genetic distance measures, or methods 

developed specifically for microsatellite allele data. 

This section will attempt to review some of these methods and discuss their 

relative merits and shortcomings. In covering such a large topic, it is helpful to set 

out some kind of taxonomy for these concepts, which can be broadly divided into 

two main types, namely F-statistics, which detect deviations from Hardy Weinberg 

equilibrium and can provide a summary of population substructure in a single figure, 

and distance measures, which compare the similarity (or difference) of individuals 

or populations, often in some kind of multi dimensional space. Within both of these 

ways of looking at population structure, there are two· main types of model, namely 

the infinite alleles model (lAM) and the stepwise mutation model (SMM). 

The lAM was developed by Kimura and Crow (1964); they derive the expected 

number of alleles in a population at equilibrium for mutation and drift when each 

mutation produces a unique allele. This model makes no assumptions about the 

relatedness of different alleles, and there is assumed to be no homoplasy. 

Ohta and Kimura (1973) further developed the model to account for homoplasy 

m isozyme data, when base changes to not give rise to a distinguishable 

electromorph. This gives rise to the SMM, in which alleles evolve in a random 

stepwise fashion. This means that allele identity carries information about allelic 

relationships, and also that homoplasy is expected, where there is a chance that 

alleles identical in state may not be identical by descent. 

4.4.1 F-statistics and relatives 

This group of estimators are related through their use of comparing some 

parameter of a subpopulation (s) to the parameter of a more inclusive population (T); 

they can provide a measure of population structure as a single figure, but PST and its 
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analogues can also be used in population pairwise comparisons and so can also be 

used as distance measures. 

F-statistics themselves are the cornerstones of much of population genetic theory 

and were orginally developed by Sewall Wright (1951), becoming widely used with 

the advent of protein electrophoresis in the 1960s. They are derived from measures 

of deviation from panmixia based on three measures or estimations of 

heterozygosity, namely 

• HI The average observed heterozygosity within subpopulations 

• Hs The average expected heterozygosity estimated from each subpopulation 

• BT The expected heterozygosity estimated from the entire system 

From these three measures of heterozygosity, the different F statistics (Fixation 

statistics) can be derived. 

F[s is the inbreeding coefficient, and is represented by the ratio FIS=(Hs-HI)/Hs. 

An excess of homozygotes over Hardy Weinberg expectations indicates mating is not 

random, and this lowering of HI forces the ratio towards unity. Fls=1 indicates no 

outbreeding, whilst Fls=O indicates mating is random. The value of F IS can range 

between -1 and 1, with -1 indicating fixed heterozygosity. FIS can be estimated for 

single subpopulations as well as for the entire system. 

F ST is similar to F IS in that it measures inbreeding like effects, but between rather 

than within subpopulations. It is represented by the ratio Fsr=(HT-HS)/HT. For a di

allellic locus in which two sub populations are homozygous for different alleles, Hs 

would be zero and thus FST would be unity. Increased allele sharing between the two 

subpopulations would increase Hs, and reduce the value of FST accordingly; the 

value for this estimator lies between 0 (no population differentiation) and I 

(maximum population differentiation). 
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FIT is a measure of deviation from panmixia due to the effects of inbreeeding and 

subdivision across the entire study system, and is represented by the ratio Frr=(HT-

HI)IHT. The three coefficients are related by the equation (l-FIT)=(1-FIS)(1-FsT). 

Estimates of' F IS and F ST provide an indication of how much deviation from 

panmlxia there is within and between populations respectively, and so are 

biologically relevant figures. FST is of greater interest from the perspective of 

population connectivity and history, which is what many population studies aim to 

investigate. There are several methods used to provide estimates of FST, and two 

which are frequently used are Nei's (1987) GST and Weir and Cockerham's (1984) 

variance based method eST. 

GsT, an estimate of FST for use with multi-allelic loci was developed by Nei 

through extending Nei's genetic distance between a pair of populations to the case of 

a hierarchical structure of populations (Excoffier, 2001). It is equivalent to Wright's 

(1951) F ST when there are only two alleles at a locus; in the case of multiple alleles 

GST is equivalent to the weighted average of FST for all alleles (Culley et al., 2002). 

Nei's estimate GST is calculated from Gsr=DsTIHT, where DST is the average gene 

diversity between populations (Nei, 1987, pp. 188-189). 

Weir and Cockerham's variance method uses the observation that, if there is 

population substructure, then alleles found within a sub population should be found 

together more often than would be expected given the frequencies of the alleles in 

the entire population. Slatkin and Barton (1989) describe Weir and Cockerham's 

estimator as 'algebraically complicated'. The full derivation of their estimator, based 

on partitioning of variance of allele frequency, can be found in Weir and Cockerham 

(1984). 

Wrights F-statistics and the estimators of them discussed above (GST and 8) are 

based on the lAM, in which every mutation gives rise to a distinguishable allele (i.e., 

no homoplasy) and no relationship between alleles is inferred. Although analysing 

allozymes electrophoretically may lead to hidden homplasy where an 'electromorph' 

consists of two or more alleles, the lAM has nontheless been widely and successfully 
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used in the interpretation and explanation of allozyme data. With the use of 

micro satellites becoming more widespread, a method of estimating FST using a SMM 

was developed (Slatkin, 1995) to account for the higher levels of homoplasy which 

would exist under a scheme of stepwise mutation, and to make use of the information 

present in the lengths of microsatellite alleles. Slatkin's estimator is RST, and is equal 

s-s -
to RST = W ,where Sw and S are the average sums of squares of the difference 

S 

in allele size within a subpopulation and the entire population respectively. This has 

been shown using coalescent theory to be equivalent to FST when applied to loci 

evolving under a SMM (Slatkin, 1995). 

The utility and accuracy of these measures depends on the type of data one has 

and over what timescale the taxa being observed have diverged. This will be 

discussed in section 4.4.3. 
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4.4.2 Genetic distance measures 

There is a diversity of genetic distance measures, based on both the lAM and 

SMM as well as purely geometric measures not explicitly linked to a model of locus 

evolution. 

4.4.2.1 Geometric distances 

The following genetic distances are based solely, in various ways, on the 

difference in allele frequencies between taxa (e.g., individuals or populations). 

A. Proportion of shared alleles 

The proportion of shared alleles or PSA is equal to' the number of shared alleles 

summed over loci divided by 2n, where n is the number of diploid loci (Bowcock et 

al., 1994). PSA is a measure of similarity, and can be converted to a distance measure 

(DSA ) by subtracting it from unity or taking its logarithm. The first use of this 

measure is usually referenced to Bowcock et al. (1994), although how the 'number of 

shared alleles' is calculated is unclear as no equation is given in the paper. 

Goldstein et al. (1995a) use an allele sharing method called D AS which they refer 

to Bowcock et al. (1994) and calculate it as 
, 

D AS = 1-(1I2Nt2
LLI(i,i') 

i ,. 

which is equal to 1-(the average number of shared alleles), where the first and second 

sums are over all alleles in the first and second population, N is the number of diploid 

individuals, and I (i, i') is an indicator variable that equals 1 if the alleles are the same 

and 0 if the alleles are not, with i and i' being the alleles sampled from a locus in the 

first and second populations. 

The software package MICROSAT (Minch et al., 1995) calculates PSA as 'the 

mean of the minima of the relative frequencies of all alleles in the taxonomic units 

being compared': 
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where n is the total number of alleles for all loci. 

Stephens' et aI. (1992) calculates the average percentage difference m 

bandsharing, which is the average between all pairwise comparisons of 

(bx - bX),) + (by - bx)') 
PD = ----'---'---'-

bx +by 

where bx is the number of bands observed in individual x, by is the number of bands 

observed in individual y, and bxy is the number of bands shared between x and y. 

(Used for dominant marker data in this case). It is difficult to see if this is equivalent 

to the DAS attributed to Stephens (discussed below, under chord distances) by 

Goldstein and Pollock (1997), and how the 'proportion of shared alleles' measure 

used by Bowcock et aI. (1994) is distinct. 

B. Fuzzy set similarity 

The fuzzy set similarity FS is calculated from the set of alleles found in each 

of two populations, and dividing the cardinality of their intersection by the 

cardinality of their union 

FS =IX ny/+IXuyl 
The fuzzy set similarity is related to the other allele sharing measures, but differs in 

considering the entire set of alleles at once. It can be converted to a distance by 

subtracting it from unity or taking its logarithm, and the measure 1-FS is equal to the 

proportion of alleles unique to either of a pair of taxa and hence bounded between 0 

and 1. There has been no published use of this measure for microsatellite data, 

although it is an option in MICROSA T (Minch et aI., 1995). 

C. Chord distance 

The chord distance of Cavalli-Sforza and Edwards (1967) involves 

transformation of the data into an angular distance e, so all populations can be 

conceptualised as points in an m-dimensional Euclidean space, where m is the 

number of allele frequencies being compared (equal to the total number of alleles in 
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both populations). From this, the chord distance DCH is calculated as the straight line 

distance in space between the two points. This is a geometric distance and not based 

on any biological assumptions, and is similar to Stephens et al. (1992) allele sharing 

distance DAS and to Nei's (1987) DA (Goldstein and Pollock, 1997). All three 

measures are based around the product of allele frequencies between two 

populations, and take the form 

where Xi is the frequency of allele i in population x. For DCH, a and b equal 0.5 and 

c = 2/ 7r ; for DA a=O.5 while band c equal one; for DAS a,b and c are equal to one. 

For multiple loci, the results are averaged. Nei created DA in order to scale the chord 

distance between 0 and 1 (Nei, 1987, p. 216). All these distances vary between some 

non-zero positive number and c. Goldstein and Pollock (1997; box B) recommend 

bootstrapping over loci as the between locus variance for these measures can be 

large. 

Also belonging here is Ca'{alli-Sforza's kinship coefficient (Cavalli-Sforza, 

1971), which is defined as the probability that an allele taken at random from a given 

locus will be identical by descent in the two taxa being examined, although it is 

calculated in a similar way to the geometric distances above. The probability of 

drawing an allele i from a locus is equal to its frequency, and the probability of 

drawing the same allele from two taxa is equal to the product of its frequencies in 

each population. KF is a similarity measure, and the distance 

DKF = -lnIxiYi , 

which is equivalent to Stephens DAS sensu Goldstein and Pollock (1997). It can be 

calculated over multiple loci and averaged. 

D. Rogers' distance 

Rogers' distance, DR, has been widely used with allozyme data. It is a 

geometric distance, bounded between 0 and 1, estimated by representing the 

populations or individuals under consideration in an m-dimensional space, where m 

is the total number of alleles. The calculation is based around the difference in allele 

frequencies between populations, and is given by 
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1 

DR =[kL(Xi-YiYY 

This was produced by Rogers (1972) with the division by 2 bounding the distance 

between 0 and 1. With many loci, the average is used. 

It is very similar to a measure used by Provosti et al. (1975), C p = ~ L Ixi - yil. 
2 

DR is not proportional to either evolutionary time or to the number of mutations. It 

also suffers from being mislead by high gene diversity, as two populations fixed for 

different alleles give a value of less than 1 when the number of alleles is high (for 

five non-shared alleles, DR=0.45) (Nei, 1987, p. 211) 

E. Likelihood ratio distance 

The genotype likelihood ratio distance, DLR, was developed by Paetkau et al. 

(1997). 

where nx and ny are the number of individuals in populations X and Y, and Lux and 

LiXY are the likelihood of finding the an individual with genotype i (from population 

X) in population X and Y respectively. The likelihoods are derived from the 

observation that the probability of drawing a single locus genotype from a population 

is P=XiXi (or p=x/ in the case of a homozygote), where Xi and Xi are the frequencies of 

alleles i and j in the population. This measure performed very well in an analysis of 

data from bear populations by Paetkau et al. (1997), where it had a far lower variance 

than SMM derived measures, and was very successful in highlighting geographic 

structure. 

4.4.4.2 lAM based measures 

In contrast to the geometric distances discussed above, these are based on a 

model of locus evolution which incorporate the fact that allele distributions are 

affected by mutation and drift to a greater or lesser extent. They are designed to 

increase linearly with time when used for loci that are evolving under an lAM. 
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A. Latter's FST and Reynold's co ancestry 

These measures are essentially estimators of Wright's FST, but derived 

specifically for population pairwise comparisons. The two are equivalent when 

sample sizes are large; Latter's estimate is given here (Latter, 1972; see also 

Take?:aki and Nei, 1996): 

F _(Jx+ J y)/2-Jxy 
ST - I-J xy 

where Jxy is the average over all loci of ixy= L XiYi, with Xi and Yi being the 

frequencies of allele i in populations X and y respectively, and Jx is the average over 

all loci of ix = LX/ . This estimator is based on a drift only model (Weir, 1996; p. 

195), and therefore should not be used with loci that have a high mutation rate or 

over long time scales. 

B. Nei's standard distance. 

Nei's standard genetic distance (Nei, 1987) 

The expression in brackets is equivalent to I, which is Nei's standard genetic identity 

(Nei, 1987, p. 221). This is bounded between 0 and 1, hence Dsvaries between 0 and 

00. 

In contrast to the lAM based co ancestry coefficients discussed above, this 

model used for this distance incorporates both drift and mutation, and so will have a 

wider applicability. 

Ds is expected to be linear with respect to time for evolution under an lAM, 

as long the same balance between drift and mutation is maintained (Takezaki and 

Nei, 1996). 
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4.4.4.3 SMM distance methods 

The following methods were all developed within a very short time of one 

another, with micro satellite data becoming more widely obtainable in the mid 1990s. 

They were designed to overcome perceived shortcomings of either geometric or lAM 

based distances when used for loci which are evolving at a high rate under a SMM. 

All make use of the information that is present in the length difference between two 

alleles assuming stepwise evolution has occurred, and are designed to mcrease 

linearly with time when loci are evolving according to the SMM. 

A. Shriver's Dsw 

Shriver (1995) stepwise weighted genetic distance measure is an extension of 

Nei's minimum genetic distance (Nei, 1987; p. 219). It weights the components of 

the measure (the products of allele frequencies) according to the number of steps 

between the two alleles. Its uses the absolute value function of the difference 

between allele sizes which is 0 ij = Ii - jl ' where i and i are the number of repeats in 

the two alleles. 

D sw = d XYW - (d xw + d yw ) / 2 , 

where dxw = LLx;x j 8ij' dyw = LLy;y j 8ij and dxyw = LLx;y j 8ij 
;'¢) ;'f-j ;'f-j 

B. Slatkin's ASD 

Slatkin's Average Square Distance (1995; see also Goldstein et al. (1995a». 

This and Goldsteins (OJ1 y discussed below use the square of the number of repeats 

between alleles rather than the absolute value. 

for r loci, where i and j are the number of repeats in the two alleles. 

Goldstein et al. (1995a) state that this distance is dependent on the data 

following a SMM quite. closely, and will perform progressively worse as the 

mutation model becomes more like the lAM. This is due to the ASD incorporating 
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the length of alleles and assuming this information is related to time since common 

ancestry, which under a strict lAM actually bears no relation at all. The linearity of 

the measure also depends upon whether micro satellite mutation is related to repeat 

length, for which there is considerable evidence (Wierdl et al. 1997). These 

limitations also apply to Dswand (Of.1 Y . 

C. Goldstein's (Of.1 Y 

Goldstein et al. (1995b). This measure uses the difference of the mean of the 

repeat lengths in alleles between taxa. 

2 1*,2 
(Of.1) =- L,.(f.1Xi -f.1y) 

r j J 

where f.1 x i = L!x ij is the average allelic state at the jth locus in population x, and 

xij is the frequency of allele i in population x. This measure was developed by 

Goldstein et al. in order to improve on the average square distance (ASD) by 

removing its dependence on population size and decrease its variance. They show 

that the ASD includes the variance in allele size within populations, and that 

ASD = VA + VB + (f.1 A + f.1 B) 2 , where VA, VA and f.1A, f.1B are the variances and means, 

respectively, of allele size in populations A and B. With the assumption that 

populations are at mutation-drift equilibrium this variance does not change over time, 

and the growth in ASD is solely due to the squared difference between the means. 

(Of.1 Y is based only this difference, and is averaged first within populations which 

standardises the distance with respect to "'the variation within populations without 

estimating additional parameters. 

D. Range restricted 

Developed by Goldstein and Pollock (1997) using a model based on the 

SMM, but which has reflecting upper and lower boundaries for allele size in an 

attempt to mimic the actual evolution of micro satellite loci more realistically. 

DL =IOg[l- ~(0f.1)211 LMJ 
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where L is the number of loci and M is the average value of (8)1)2 at maximal 

divergence. Two further measures were developed from DL in order to account for 

differences in range size and mutation rate between loci; see Goldstein and Pollock 

(1997) for the derivations. 

4.4.3 Which measure to use? 

F-statistics are useful for generating instantly comparable figures of 

population structure. The estimators of Nei (1987) and Weir and Cockerham (1984) 

were derived using an lAM, and assume a primary role for drift, and so would be 

inn accurate under conditions of high stepwise mutation. They are not strictly 

applicable to microsatellite data except when divergence times are very short. 

Another reason for the limited applicablity of lAM estimators of F-statistics to 

microsatellite data is that they bias the estimates downwards when gene diversity is 

high, even when populations may be fixed for mutually exclusive alleles. 

This effect is demonstrated in fig 4.1. RST performs far better than FST in 

estimating the degree of population substructure when there is a high level of gene 

diversity. Conversly RST, developed using a SMM is not suitable when drift has 

played a large role relative to mutation. If population sizes have been small and drift 

strong, then the resulting allele data is likely to conform to a 'patchy' distribution one 

might expect to find under an lAM. If one considers two populations, one in Hardy

Weinberg equilibrium for alleles of length 1 and 3, and the other fixed for an allele of 

length 2, then RST approaches zero, despite the populations having no alleles in 

common (whilst estimates for FST are 0.75). As data departs from a stepwise 

mutation model (as is often the case with plant microsatellite data) then the 

expectation of estimators of FST and RST converge (Balloux and Goudet, 2002). As 

estimators of RST retain a larger variance than estimators of FST (Excoffier, 2001), the 

latter remains the statistic of choice for many studies. The shortcomings of these and 

similar estimators when data deviates from the assumed model is also relevant when 

they are used as genetic distance measures between two taxa. 
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Figure 4.1. The relationship between F ST, RST and the number of exclusive alleles at 
a single locus in two populations. (Population pairs with differing numbers of 
mutually exclusive alleles were created using EASYPOP (Balloux 1999). Each 
population (500 individuals) has a single locus which has either 2,4,6, 8, 10, 12 or 
20 alleles which are all private to that population and are at Hardy Weinberg 
equilibrium. The alleles are are consecutively numbered, e.g. for 10 mutually 
exclusive alleles, population 1 has alleles 1 to 10 and population 2 has alleles 11 to 
20. FST and RST were calculated for each population pair using FST AT (Goudet 
2001». 

There is some confusion in the literature about the difference between 9 and 

GST which are the two commonly used estimates of F ST. Nei's (1973) GST is 

calculated from the average gene diversity between sub populations, D ST. DST is 

calculated using comparison of sub-populations with themselves, and so is sensitive 

to the number of sub-populations. A modification to remove this dependence on sub

population number is given by Nei (1973), and the estimator GST ' is calculated using 

a measure of absolute gene differentiation. This modification is not considered 

entirely theoretically satisfactory by some (Excoffier, 2001, p. 289; Nei and Kumar, 

2000, p. 249). In practice the two estimators GST and GST ' do not differ greatly as 

long as the number of sub-populations is greater than five. Weir and Cockerham's 9 

(1984) is calculated using a method derived from ANOV A. It is independent of the 

number of sub-populations, and has shown to be a less biased estimator (Ouborg et 

al., 1999). Excoffier (2001) also states the ANOV A based approach is preferable 

because of its clear statistical foundations. The two statistics are related by the 

equation 9=GsT/[1-(I- GST)/d] where d is the number of locations sampled. Because 

of the way it is defined, GST is always >0 for any set of allele frequencies; this is not 

the case for 9, which is intended as an unbiased estimator (Slatkin and Barton, 1989). 
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In the real world however, there is little to choose between estimates. In 

practice both give similar estimates of FST (as long as the study includes more than 5 

populations), and the confidence one has in the result is influenced far more by the 

number of loci, the number of individuals in a sub-population and the number of sub

populations in ones data set than the minutae of the mathematics. 

If one wants to infer a phylogeny of taxa (e.g. populations) then it will be 

necessary to produce a pairwise distance matrix using one of the many genetic 

distance measures. A distance that is linear with time is obviously best if any 

estimates of divergence times are to be made from the tree. The geometric distances 

such as DCH and its relatives are all based on the overlap of allele frequencies in 

some form, so cannot measure an increasing divergence between taxa when they 

have no alleles in common. This means they plateau as time increases, and only 

reflect divergence times accurately when the taxa are very closely related. With more 

divergent taxa, the methods developed using the SMM will continue to detect 

divergence at increasing timescales. 

An extensive study into the reliability of reconstructing phylogenetic trees 

using micro satellite data was carried out by Takezaki and Nei (1996). They modelled 

the evolution of a single ancestral population into eight derived ones using both a 

SMM and an lAM, and assessed the accuracy of various genetic distance measures 

by noting the percentage of times the correct phylogeny was recovered from 200 

simulations. They found that Nei's DA and Cavalli-Sforza's DCH were the most 

efficient in obtaining the correct tree topology. This is despite the fact that both of 

the distances are geometric and essentially ignorant of the model of locus evolution. 

As expected, the values of (8J-l) 2 and Ds increased linearly with time under the SMM 

and lAM respectively, although they were poor at reconstructing the correct tree 

topology. This is because the model derived measures have a much larger variance 

than than the simple geometric ones. Goldstein et al. (1995a) also compared the 

accuracy and variance of geometric and SMM based genetic distances. At short 

divergence times, allele sharing methods outperformed the ASD in producing correct 

, tree topologies. At longer divergence times, ASD became more accurate than allele 

sharing despite its larger variance, as the geometric distance could not track the 
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increasing divergence in allele size. Takezaki and Nei (1996) recommend using 

either DA or DCH for reconstructing phylogenetic trees, and using (8.u) 2 and Ds to 

estimate the branch lengths. Allele sharing methods were used by Goldstein et al. 

(1999) and Bowcock et al. (1994) to produce trees of individuals (foxes and humans 

respectively) with very strong geographic clustering in which the authors had very 

high confidence. Goldstein (199 5b) re-analysed the human, chimp and gorilla data 

from Bowcock (1994) using (8.u) 2 
• With the human-only data, bootstrap values were 

far lower than obtained in the original analysis based on allele sharing, although deep 

nodes in the tree (between African and non-Africans) had significant bootstrap 

support. With more divergence, Goldstein's measure became more powerful, as it 

outperformed both allele sharing and Nei's standard distance in resolving a human

chimp clade with significant bootstrap support. 

The most intensive investigation of genetic distance measures using real rather 

than simulated data was carried out by Paetkau et al. (1997), with the data coming 

from population samples of three b~ear species. In line with the findings of other 

studies, non-model based distances with low variances gave the most realistic results 

at the intra-specific level, despite their non linearity over time. None of the distances 

were able to resolve the between species phylogeny, however, which reflects a 

limitation of micro satellite data at this level rather than limitations of data analysis. 

SMM based measures such as (8.u) 2 should theoretically be linear over timespans of 

millions of years if micro satellite evolution conforms to the boundless SMM, which 

in this case it obviously does not. So, it seems that SMM based measures are also 

non linear with respect to time, which combined with their large variances 

(especially at small timescales) severely limits their utility. 

4.5 Biological interpretation of population structure 

F -statistics are widely used because they give comparable figures of population 

connectivity that are directly linked through theory with the number of migrants 

exchanged between populations. However, many urge caution when interpreting 

estimates of F-statistics, as they are influenced by several factors which are not 
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linked to population connectivity (Balloux and Lugon-Moulin, 2002; Bossart and 

Prowell, 1998). 

4.5.1 Interpretation of FST 

- Interpreting an extreme value of FST is relatively straightforward. A value of 

one means there is no diversity within subpopulations, and that at least two of the 

sub-populations are fixed for different alleles. A value of zero means the samples are 

taken from a single panmictic unit. Values between zero and one can be interpreted 

as representing intermediate levels of population structure, and this is where the 

trouble starts. 

Infinite-allele based estimates of population differentiation depend strongly 

on the allelic diversity of the loci used. This effect is clearly shown in fig. 4.1, where 

loci with high mutation rates and gene diversity can give low measures of 

differentiation. Conversely, differentiation measures based on a stepwise model of 

mutation can be misleading when drift has been strong relative to mutation. Thus, in 

interpreting estimates of population structure one must be aware that they are 

affected, in some cases quite strongly, by factors other than the biology of the study 

organIsm. 

4.5.2 Calculating number of migrants 

Given an estimated FST value it is tempting to calculate the biologically 

interesting figure of the number of migrants per generation (Nm). This is fraught with 

pitfalls. Not only will the result be biased due to the performance of the estimator as 

described above, but in reality populations never conform to the assumptions of the 

underlying island model (Whitlock and McCauley, 1999). Furthermore, FST and RST 

are non-linear functions of Nm, and hence estimates of the number of migrants will 

have very large confidence intervals when the values of population structure 

estimates are low, rendering the results of little use (Balloux and Lugon-Moulin, 

,2002). Population differentiation can also be affected by factors other than migration, 

which can also lead to erroneous results of estimates of Nm. 
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4.5.3 Inferring isolation by distance 

Bossart and Prowell (1998) state that a geographic correlation of genetic 

structure can arise through two distinct processes. Structure can arise through 

vicari ant events which stop gene flow between populations, and also by gene flow 

following an isolation by distance model, with nearby populations exchanging more 

migrants than distance ones. Isolation by distance can be detected by perfOITIling a 

regression of FST/(1-FsT) on the natural log of geographic distance if populations 

have a two dimensional distribution, or on the non-logged geographic distance if the 

populations are arranged in a linear fashion (Rousset, 1997). Distinguishing vicariant 

events from differentiation caused through isolation by distance can be difficult. The 

two are likely to be confounded as vicariance is more likely to be detected with 

increasing geographic distance, meaning some samples that contribute to a 

significant isolation by distance pattern may in fact be 'completely isolated. Bossart 

and Prowell (1998) recommend checking whether a single population or group of 

populations is resonsible for producing a significant pattern, and if this is the case 

then vicariance should be considered as a possible explanation. 
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A new endemic species of Begonia (Begoniaceae) from the Socotra 

archipelago. 

M. Hughes & A.G. Miller. Edinburgh Journal of Botany, in press. 

Abstract 

The new species Begonia samhaensis in section Peltaugustia (Warb.) 

Barkley is described from the island of Samha in the Socotra archipelago. It differs 

from the other member of the section, B. socotrana Hook. f., in a number of gross 

morPhological characters and is likely to be a relict taxon rather than the result of 

more recent dispersal and divergence. A revision of section Peltaugustia is 

presented. 

Detailed surveys have been carried out on both Begonia. The new species has 

a restricted distribution and a total population of less than 1000 individuals, and is 

recommended to be placed in the IUCN category VU D I, 2. B. socotrana has been 

found in new sites, and is locally common in parts of its range. Its current placing in 

the IUCN 'Vulnerable' category is considered to be unwarranted, and it is 

recommended that the species should be listed as 'Least Concern'. 

Keywords. Begonia, Socotra, conservation. 
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Introduction 

The first Begonia to be described from the Socotra archipelago was B. 

socotrana Hook. f., discovered by Isaac Bayley Balfour during a British Association 

expedition to the island of Socotra in 1880 whilst he was Regius Professor of Botany 

at the~ University of Glasgow. Upon his return, living material of the plant was 

donated to the Royal Botanic Gardens, Kew, where it was described by Hooker 

(1881: 8), who noted that Socotra was 'one of the last places in the world in which a 

Begonia could have been expected to occur', as the island suffers a prolonged and 

severe dry season during the summer months. Upon its introduction to cultivation the 

plant was an immediate horticultural success (Gleed, 1961) because, being a strictly 

short day plant, it made possible the production of the first winter-flowering 

cultivars. It is endemic to the granitic Haggier mountains and adjacent high limestone 

plateaus of eastern Socotra. 

Hooker considered B. socotrana to be closely allied to B. geranioides Hook. 
. 

f. of South Africa and placed it in the same section, Augustia (Klotzsch) A. DC.: 

'From the geographical position of the island, the affinity of this discovery may be 

considered to be either Asiatic or African, and, upon the whole, though referable to 

none of the sixty sections of the genus founded by Klotsch [1854] and De Candolle 

[1864], it must, I think, be placed in the African one of Augustia, from the character 

of which it differs chiefly in the male perianth having four segments, in the shorter 

filaments, rounded top of the anther, the six lobes of the female perianth (instead of 

five), and the intwisted arms of the style, characters all of which, except the last, 

occur in the Natal B. geranioides, to which B. socotrana is unquestionably closely 

allied' (Hooker, 1881: 8). 

Warburg (1894: 140) considered the species to be distinct enough to warrant 

the creation of a subsection within Augustia to accommodate it: (translated from 

German) 'B. socotrana has been placed in a separate subsection Peltaugustia due to 

it having peltate leaves, one winged fruit and bulbils on a swollen rootstock. This 

-subsection is transitional with section Reichenheimia'. Although Peltaugustia was 

not recognized by Irmscher in his monograph of Augustia (lrmscher, 1961), it was 
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elevated to sectional status by Barkley (1972), reflecting its unusual anatomy and 

isolated position within the genus. 

A second species of Begonia from the archipelago was discovered on the 

island of Samha by an expedition from the Royal Botanic Garden, Edinburgh in 

1996.·Until more recently (1999) the species was known only from a single plant 

found on the northern side of the highest point of the island, which is a limestone 

outcrop approximately 50 m2
. Only bulbils were seen as the plant had died back for 

the dry season, and it was thought to be B. socotrana. The bulbils were cultivated at 

the Royal Botanic Garden, Edinburgh, where it became apparent the collection 

represented a new species. Samha could be considered an even less likely place than 

Socotra in which to find a Begonia, as it only reaches an altitude of 779 m. It 

therefore attracts a reduced amount of moisture in the form of mist and lacks the lush 

montane vegetation associated with B. socotrana. The new species (B. samhaensis 

M. Hughes & A.G. Miller, described below) has been placed in sect. Peltaugustia 

with B. socotrana as it possesses bulbils and peltate leaves which are the definitive 
. 

characters of the section, although it is distinct from B. socotrana in a number of 

gross morphological characters, summarized in Table 1. 

B. socofrana B. samhaensis 

Tuber absent present 

Leaf shape orbicular ovate 

Male tepals sub equal unequal 

Male bud conical purse-shaped 

Stigmatic surface helical irregular 

Capsule wings one enlarged equal 

TABLE 1. Morphological differences between B. socotrana and B. samhaensis. 
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Samha 
<~ 

B. samhaensis 50 km 

FIG. 1. The distribution of Begonia sect. Peltaugustia on the Socotra archipelago. 

The morphological differences and the marked divergence in nuclear 

ribosomal ITS sequences (M. Hughes, unpublished data) suggest the species is relict 

on the island rather than the result of more recent dispersal and divergence. The 

distribution of both species is shown in Figure 1. 

Conservation status 

Begonia socotrana has been rumoured to be very rare in the wild since an 

expedition to Socotra in 1967 by Lavranos and Radcliffe-Smith. In their list 

(Lavranos & Radcliffe-Smith, 1969: 3) the plant was recorded only from two of the 

highest peaks of the Haggier mountains, and was described as 'not common, but not 

in immediate danger owing to virtual inaccessibility to man and goat.' In the 1978 

IUCN Plant Red Data Book (Lucas & Synge, 1978: 79) it is listed as 'endangered', 

based largely upon the information from the 1967 expedition but stating 'the 

population of this island endemic has reached critically low levels' and citing grazing 

as the probable cause of its decline. The fact that it was found on only two high 

peaks in 1967 is highlighted, although reference is made to an earlier expedition by 

Popov (1957) who found B. socotrana on the Reiged limestone plateau to the west of 

the Haggier. The listing of B. socotrana in the IUCN red data book (1978) has 

caused it to be highlighted in other publications on threatened plants. Koopowitz & 

Kaye (1983: 63) suggested that 'the population of begonias has steadily eroded' and 

Belousova & Denisova (1992: 323), described the plant's populations as at a 
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'critically low level.' Both cite overgrazing by goats as the main threat. The latest 

IUCN Red list of threatened plants (Walter & Gilliet, 1998: 73) lists the species as 

'vulnerable', a category one step below the 'endangered' status that the species was 

awarded in 1978. 

~ Observations during RBGE expeditions in 1989, 1990, 1992, 1993, 1996, and 

1998 suggested that B. socotrana was more common than the previous publications 

state, and this prompted detailed surveys of both Begonia species in Spring 1999 and 

2000. These surveys confirmed that B. socotrana is locally common and has a far 

wider distribution in the Haggier than stated by Lavranos and Radcliffe-Smith 

(1969), and still occurs in sizeable populations on the limestone plateaus of Reiged 

and Rewged, as found by Popov (1957). Part of the reason for the apparent scarcity 

of the species in 1967 is likely to be the timing of the trip, which occurred in March 

and therefore coincided with the start of the dry season and the die-back of low 

altitude populations of Begonia. The threat of grazing seems to have been overstated, 

given the large size of some of the populations found growing within potential reach 

of livestock. Goats will eat the leaves, but they are quite acidic and during the wet 

season there is plenty of other more palatable fodder, which is eaten in preference. 

Even if grazing pressure were to increase, many of the populations of B. socotrana 

grow on inaccessible cliffs and outcrops, making it less vulnerable than many other 

Socotran endemics. Although the area of occupancy for the species is less than 50 

km2
, given the negligible impact of livestock and of collecting by locals and the fact 

that many populations are inaccessible it is not especially 'prone to the effects of 

human activities (or stochastic events whose impact is increased by human activities) 

within a very short period of time in an unforseeable future' (IUCN 1994). Thus, B. 

socotrana does not meet the criteria for 'Vulnerable' as defined in either the current 

(IUCN, 1994) or the recommended changed version (IUCN/SSC Criteria Review 

Working Group, 1999) of the IUCN red list criteria and we recommend that it should 

therefore be placed in the Least Concern category. 

B. samhaensis was also surveyed in detail during Spring 1999, and was found 

, to be growing in quite dense groups where conditions were suitable at the original 

collection site (i.e., north to north-east facing vertical limestone faces or more 

southern aspects with shading overhangs), and possibly numbering up to 200 
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individuals. The increase in the number of plants compared to the single specimen 

seen in 1996 is due in part to the earlier timing of the 1999 trip, which managed to 

catch the end of the wet season. Approximately 30 more plants were found growing 

in two new sites on the northern edge of the island's limestone plateau at an altitude 

of 650 m, over 100 m lower than the original collection site. This raised the 

possibility that the vertical cliffs on the northern side of the island might also harbour 

B. samhaensis, though these are very difficult to survey. However, during the 

January 2000 expedition, an examination of these cliffs using binoculars failed to 

reveal any new sites, and it now seems likely that the total area of occupancy is 

restricted to the three known sites, in an area of 2 km by 500 m, which probably 

harbour less than 1000 plants. This small total population size and the fact that B. 

samhaensis exists only in a specific microclimate at the very highest parts of Samha 

do make the plant prone to the effects of human activities (e.g. livestock herders 

cheWing the leaves) and stochastic events such as those" due to climate change. This 

species should therefore be listed under the IUCN red list criterion VU Dl, 2. 

A revision of sect. Peltaugustia is presented here, in order to include a 

modified description of the section and to allow comparison to be made between the 

two species. 

Sect. Peltaugustia (Warb.) Barkley, Phytologia 24: 156 (1972). Begonia sect. 

Augustia subsect. Peltaugustia Warb., in Engler & Prantl, Nat. Pflanzenfam., ed. 1,3 

(6a): 140 (1894). Type: B. socotrana Hook. f. 

Perennial herbs. Tuber present or absent; bulbils crowded around stem bases, 

encased in papery bracts, inner scales fleshy. Stipules boat-shaped, persistent. Leaves 

peltate, ovate to orbicular, crenate-dentate, funnel-shaped around the insertion of the 

petiole, edges recurved, hypodermal layer present, stomata in clusters of 2-15. 

Infloresence a dichasial cyme, bracts boat-shaped, tepals pink. Male flower: tepals 

four, subequal to unequal; anthers distinctly hooded; filaments free. Female flower: 

bracteolate, tepals (5) 6, persistent, subequal; styles 3, bifid, stigmatic surface 

" papillose and helically twisted or irregularly lobed; ovary 3-locular, 3-ribbed, one rib 

sometimes developed into a beak; placentae entire, triangular. Endemic to the 

Socotra archipelago. 
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Key to Begonia section Peltaugustia. 

1 a. Leaves ovate, male tepals unequal 1. B. samhaensis 

1 b. Leaves orbicular, male tepals subequal 2. B. socotrana 

1. Begonia samhaensis M. Hughes & A.G. Mill., sp. nov. Figs. 2 & 3. 

B. socotranae Hook. f. similis sed foliis late ovatis; floribus masculis tepalis non 

aequalibus; capsula alis aequalibus haud rostratis. 

Type: Samha. Highest point of the island, shady north-facing cliffs, frequently mist 

covered, c. 750m, 16 ii 1999, Miller 17092 (E). 

Perennial caulescent herb to 30 cm tall. Tuber irregular, pink in cross section, upper 

surface covered with bulbi Is encased in papery bracts. Stipules boat-shaped, not 

keeled, persistent, c. 13 x 13 mm, tip retuse to rounded, entire, with scattered short 

glandular hairs and longer (c. 1.5 mm) simple hairs present around the margin, 

papery when old. Leaves peltate; petiole centrally inserted perpendicular to the leaf 

blade, up to 6 cm long, fleshy, deep pink, with scattered short glandular hairs; leaf 

blade fleshy and succulent, brittle, asymmetric, ovate, base rounded, apex acute, up 

to 8 cm wide x 12 cm long, more commonly c. 5 cm wide x 7 cm long, with 6-8 

palmate main nerves, funnel-shaped near the insertion of the petiole, hypodermal 

layer present; margin recurved, slightly undulate, crenate; the upper surface 

uniformly green, matt, glabrous, primary and secondary nerves distinctly sunken; the 

under surface p~ler green with scattered short glandular hairs, primary and secondary 

nerves prominent, the stomata in clusters of 5-15. Inflorescence a dichasial cyme; 

bracts persistent, in pairs, subtending each branching point, boat-shaped, not keeled, 

retuse to rounded, entire, with scattered short glandular hairs. Male flowers: buds 

purse-shaped; tepals 4, unequal, pink, glabrous; outer broadly orbicular, rounded at 

base, the edges slightly recurved, apressed, 15-22 mm long x 17-25 mm wide; 

inner obovate elliptic, 14-20 mm long x 8-14 mm wide, cuneate at base; stamens 

30-45 in a globose cluster; anthers c. 1.5 mm long, hooded, narrowing towards their 

. bases; filaments c. 1.5 mm long, free. Female flowers: tepals (5) 6, persistent, 

subequal, pink, glabrous, obovate, 10-18 mm long x 10-17 mm wide; styles 3; 

stigmatic surface irregularly lobed, bright yellow; ovary triangular in cross section, 
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3-locular, bracteolate, the bracteoles linear; wmgs 3, reduced, fleshy, sub equal, 

semicircular, cordate at apex and base; placentae entire, thickened, triangular. Fruit 

pendulous, dehiscent either side of the wings. 

Additional specimens examined. SAMRA. Summit of limestone plateau, sheltered cliffs c. 

700m,~16 iii 1996, Miller & Plana 14208, (spirit material from cultivated specimen, E). 

Notes. Endemic to Samha. B samhaensis has a restricted distribution, its entire range 

being the north western part of the high plateau on Samha in an area no more than 2 

Ian by 500 m. It occurs in shaded cracks or pockets in north-facing vertical 

limestone faces from altitudes of 650 m up to the highest point on the island at 779 

m. Its local name is 'seberbeher'. Local uses are as listed under B. socon'ana. 
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FIG. 2. Begonia samhaensis M. Hughes & A.G. Miller., x 0.7. Photograph of a 

painting by Liziie Sanders. 
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FIG. 3. Begonia samhaensis M. Hughes & A.G. Miller. (a), leaf, x 1; (b), cross

section of ovary, x 2; (c), stigma, x 4; (d), female flower, x 1; (e), anther, x 6; (t), 

androecium, x 4; (g), male flower, xl; (h), part of inflorescence, xl; (i), bulbil, X 2. 
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2. B. socotrana, Hook. f., Gard. Chron. 15: 8, fig. 1. (1881) & Bot. Mag. CVIl, t. 

6555 (1881); IrmscherBot. Jahrb. 81: 123 (1962). 

Type: Socotra, I.B. Balfour B.C.S. 419 (K). 

Perennial caulescent herb, with contracted internodes at the base of the stem, to 45 

cm tal-l. Tuber absent, bulbils encased in papery bracts crowded around stem base. 

Stipules shallowly boat-shaped, not keeled, persistent, c. 9 x 9 mm, tip rounded, with 

scattered short glandular hairs and longer (c.l.5 mm) simple hairs present around the 

margins, papery when old. Leaves peltate, basal ones appearing pseudo-rosulate; 

petiole centrally inserted perpendicular to the leaf blade, up to 20 cm long, fleshy, 

green, covered in short glandular hairs; leaf blade fleshy, orbicular, up to 20 cm 

diameter, most commonly around 10 cm diameter, sometimes shallowly lobed, 7-8 

palmate main nerves, funnel-shaped near the insertion of the petiole, hypodermal 

layer present; margin recurved, crenate to crenate::-dentate; the upper surface 

uniformly green, matt to slightly glossy, glabrous; the under surface paler green, with 

short glandular hairs, longer hairs present on the veins, the primary and secondary 

nerves distinctly sunken, the stomata in clusters of 2-8. Inflorescence a dichasial 

cyme; bracts persistent, in pairs, subtending each branching point; bracts shallowly 

boat-shaped, not keeled, apex rounded, margin shallowly denticulate to entire, 

covered in short glandular hairs with longer hairs present at tip. Male flowers: buds 

conical; tepals 4, imbricate, sub equal to equal, deep pink, obovate to broadly 

obovate-orbicular, cuneate at base, 18-20 x 13-19 mm; stamens 25-35 in a 

globose cluster; anthers c. 1.5 mm long, hooded; filaments c. 1.5 mm long. Female 

flowers: tepals 6, persistent, subequal, obovate, 14--17 x 7-10 mm, deep pink, 

glabrous; styles 3, forked; stigmatic band helically twisted, bright yellow; ovary 

triangular trilobed in cross section, 3 locular, bracteolate, the bracteoles linear; wings 

3, not fleshy, cordate to rounded at base with dorsal wing beaked, the beak 

sometimes reduced; placentae entire, thickened, triangular. Fruit pendulous, 

dehiscent either side of the wings. 

Additional specimens examined. SOCOTRA. Reiged plateau, 4km SW of Hadiboh, thickets 

with grassland clearings on slightly north-dipping limestone plateau, dominated by Boswellia 

ameero, Commiphora sp., Dracaena, Trichocalyx sp., and Croton socotranus, shady cracks 
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in cliffs, flowers pink, bulbils at base, 740m, 21 ii 1989, A. G. Miller et al. M 8335 (E); 

Aduno Pass, small cliffs by spring, scrub dominated by Cephaiocroton & Hypericum spp., 

flowers pink, leaves fleshy, 175m, 6 iii 1989, A.G. Miller et ai. M 8667 (E); Muqadrihon 

Pass, c. 10 km SW of Hadiboh, granite slopes south of pass, deciduous woodland with 

Buxus, Boswellia eiongata, Commiphora eiongata, Dracaena, Acacia pennivenia, growing 

in shady damp cracks by spring, flowers pink, stems bulbiferous at base, very common in the 

area, 700m, 26 i 1990, A.G. Miller et ai. M 10061 (E). 

Notes. Endemic to the Haggier mountains and adjacent high limestone plateaus in the 

north east of Socotra. It occurs at altitudes from c. 700 m to 1500 m, growing mainly 

in shaded north-facing sites around the bottom of boulders and in crevices in rock 

faces, but also occurs terrestrially under the cover of montane shrub land. Its local 

name is 'seberbeher', with two variants, 'seberbeher sa'alhul' and 'seberbeher 

kikehe', for large-leaved and small-leaved plants respectively. The leaves and 

succulent petioles are eaten for their acidic taste and are considered a good tonic and 

stomach cleanser. The crushed leaves are used to make sour milk in the absence of a 

starter culture from a previous batch. 
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Abstract 

Six polymorphic microsatellite markers have. been developed to examine 

population structure and outcrossing rates in the narrow range endemic Begonia 

socotrana. Only two of the markers amplify products in its recently discovered sister 

species B. samhaensis. All of the loci amplify in winter flowering Begonia hybrids 

derived from B. socotrana, revealing little polymorphism and demonstrating the 

narrow genetic base of the material used in their production. 

Keywords: Begonia, microsatellites, Socotra 



Begonia soeotrana (sect. Peltaugustia) is a bulbiferous herb endemic to the 

island of Socotra in the northern Indian Ocean, where it grows in sheltered north 

facing crevices in the Haggier mountains. It is listed by the IUCN as 'vulnerable' 

(Walter & Gilliet 1998). To investigate patterns of population genetic structure and 

outcrossing rates .in this species, we have developed 6 polymorphic microsatellite 

markers. 

DNA enriched for microsatellites hybridising to an (AC)13 oligomer was 

isolated from B. soeotrana following the method of White & Powell (1997), with the 

modification that no size selection was performed on the initial genomic DNA digest 

or on the post enrichment PCR fragments. 

The enriched DNA was ligated into a ZAP Express EeoRI vector, followed 

by packaging using a ZAP Express Predigested Gigapack III Gold cloning kit 

(Stratagene). Plaques were lifted from a plating of the library using pasteur pipettes, 

placed in 500 III ofSM buffer (30 mM NaCl, 1 mM MgCh, 50 mM Tris pH 7.5, 0.01 

% gelatin) with 20 III of chloroferm and left to diffuse overnight at 4°C. The 

resulting recombinant phage suspensions were screened for microsatellites using a 

three primer PCR as follows: 1 III of the phage suspension was combined in a total 

volume of 10 III with 1 11M M13 F primer, 1 11M M13 R primer, 1 11M of (AC)13 

oligomer, Ix PCR buffer (16 mM (NH4hS04, 67 mM Tris-HCl (PH 8.8), 0.01% 

Tween-20), 2.5 mM MgCh, 0.2 mM dNTPs and 0.5 units of BioTaq (Bioline). An 

initial denaturing step at 94°C for 5 minutes was followed by 35 cycles of 94°C for 

30 seconds, 5SoC for 30 seconds and not, for 1 minute, carried out in a GeneAmp 

9600 thermocycler (Perkin Elmer). The PCR products were run on a 2% agarose gel; 

positive clones were indentified by the presence of more than one band. Plasmids 

were extracted from positive plaques following the manufatcurers protocol, and the 

sequence of the insert determined using a Thermosequenase II dye terminator cycle 

sequencing kit (Amersham) and an ABI 377 DNA sequencer. 

Approximately 25% of the colonies screened contained microsatellites, and 

24 (out of 75) were chosen for primer design, which was carried out using Primer-3 

(Rozen & Skaletsky 1998) with the modified parameters of Beasley et al. (1999) as 
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the starting point. Three clones were discarded due to the possibility of them being 

chimeric, as they showed varying combinations of identical flanking regions around 

different microsatellites; these products may be the result of premature strand 

termination and subsequent priming off other micro satellites during the PCR bulking 

of the enriched DNA. 

The primers were tested in 10 J.lI PCR reactions containing lOng genomic 

DNA, Ix PCR buffer (16 mM (NH4hS04, 67 mM Tris-HCI (PH 8.8), 0.01% Tween-

20),2.5 mM MgC}z, 0.2 mM dNTPs, 0.5 J.lM of each primer and 0.5 units of BioTaq 

(Bioline). The reactions were denatured at 95°C for 7 minutes, followed by 30 

cycles of 95°C for 30 seconds, 55°C for 15 seconds, nOc for 30 seconds, using a 

GeneAmp 9600 thermocycler (Perkin Elmer). 

Of 24 primers pairs tested, 6 gave no product, the remaining 18 amplified 

products which were close to the size of the cloned sequence when run on a 2% 

agarose gel. Initial population screens of these 18 primer pairs were undertaken by 

including 4J.lM TAMRA labelled dCTP (PE Applied Biosystems) in the PCR and 

analysing the products on an ABI 377 DNA sequencer. Twelve primer pairs gave 

banding patterns which could not be interpreted as single loci, and one was 

monomorphic. The remaining 6 loci produced one or two bands per individual and 

were polymorphic; one primer from each pair was fluorescently labelled for use in 

further population genetic surveys (Table 1). 

Although an (AC»)3 oligomer was 'used for the pre-cloning enrichment, other 

repeat motifs were found in the cloned products, such as (CT)n repeats (e.g. locus 

B17b) and a (CTCACA)6 repeat located in an open reading frame (locus BI28). 

Primers for one of the loci (B 125) amplified products ca 120 bases shorter than 

expected, and sequencing of the products obtained from population samples showed 

this was due to a drastic shortening of the microsatellite region. 

Of the six loci, only two amplified products (both monomorphic) from the 

sister species of Begonia socotrana which occurs on the neighbouring island of 

Samha (Begonia samhaensis; M Hughes & A.G Miller, in press). All loci amplified 
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products in the winter flowering Begonia Hiemalis cultivars, which are derived from 

a cross between B. socotrana and Begonia x Tuberhybrida. Only two of the loci were 

polymorphic in the cultivars (B 17b and B226), both of which showed two alleles, 

present only in the homozygous state (Fig. 1). No products were amplified from the 

other Begonia species tested (B. sutherlandii, B. geranioides, B. dregei and B. 

fal/ax). 
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1. Barkos ~_~ _____ _ 

2. Betulia 

~A~_ 
3. Dark Anja 

-----.JA _____ _ 
4. Fresco 

------~.~~--------------
5. Yellow 

Melody A _________ __ 
6. Dark 

Neije ~ ~ 
~~Vl~_ 

7. White 
Neije ~ ~ 
_~Vl-__ 

Figure 1. Locus B 17b showing allellic variation among seven wild individuals of 
Begonia socotrana (left) and among seven Begonia Hiemalis cultivars (right), 
representing the main four groups in cultivation (1 & 2, Barkos group; 3, Rosanna 
group; 4 & 5 Schwabenland group; 6 & 7 Ilona group). 
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Table 1. Characterisation of six microsatellite primers in Begonia socotrana. Ho, observed heterozygosity; HE, expectyd heterozygosity; n, 
number of individuals genotyped. 

Locus Repeat in clone Primer sequence Size range No. Ho HE (n) GenBankno. 
(5'-3') (bp) alleles 

Bl7b (CTh6·.(CT)\O .. (CT)13 TCCCCGATATTCCAACATATCAC 300-386 31 0.809 0.895 133 AF403057 
ATGATTGGACCCCGTATCACAT* 

B63 (ATMAC)g CTTAAGCTTCATACTCCAATCAC* 176-190 4 0.099 0.137 94 AF403054 
GTTTTGAACTTGAGAATACTAGTGAG 

B128 (CTCACA)6 TTCCCTTTGACAGTTTGTTGTT* 148-172 6 0.502 0.524 143 AF403052 
AATTTCGGTAATCAGCAGACAGG 

B130 (ACh4 GCACCTCCTTTTGATGATACACC* 105-125 11 0.680 0.704 140 AF403053 
CCTAGTCTCTTCACTTATCACAAGGT 

, 

B215 (ACb(AT)6 CGCGTTAAAAATATGTGAAGCAC 73-81 6 0.520 0.547 143 AF403055 
TACTATGTQGCAAGCCTCAAACA* 

B226 (AC)9 GGACGGTGTTTAGGCCTTTCTAT* 163-181 7 0.688 0.685 140 AF403056 
CAATAGTTGTGGATGCAAGGTGA 

*Fluorescently labelled primer. 
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Abstract 

Seven polymorphic micro satellite loci have been characterised for 

investigating population structure in the patchily' distributed herb Begonia 

sutherlandii. Two loci (BSU3 & BSU4) exhibited population specific null alleles; 

primer redesign and allele sequencing for one of these loci showed two transition 

mutations in the original primer site. Two loci exhibited imperfect repeat 

polymorphisms due to single base pair indels in the flanking region (locus BSU6) 

and in the microsatellite region itself (BSU7). Transversion mutations were also 

found in the microsatellite region of locus BSU7. The remaining three loci amplified 

in all individuals tested and appeared to conform to a simple stepwise mutation 

pattern. 

Keywords: Begonia, microsatellites, Kwazulu-Natal 
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Begonia sutherlandii is one of the most widespread Begonia specIes m 

Africa, with an east Afromontane distribution from Tanzania to the northern part of 

the Transkei in South Africa. It occurs in a narrow habitat range, on wet and shaded 

steep slopes, especially in proximity to rivers or waterfalls in forested areas. Given 

its habitat preference and the naturally fragmented distribution of montane forest in 

eastern and southern Africa (Eeley et al. 1999; Lawes 1990), B. sutherlandii occurs 

sporadically, often with considerable distances of unsuitable semi-arid habitat 

separating populations. 

The amount of gene flow between disjunct populations is an important factor 

in determining to what extent and how quickly populations can become adapted to 

local conditions, as gene flow from 'foreign' populations can retard differentiation 

(Barton, 2001). Species of Begonia appear to have poor powers of pollen and seed 

dispersal, leading to the expectation that populations may become isolated over 

relatively short distances. This may be one of the factors leading to the evolution of 

high species diversity in the genus (Begonia contains about 1400 species). 

Microsatellite markers have been d.eveloped to examine population genetic structure 

in B. sutherlandii, to establish over what scales population differentiation occurs. 

DNA enriched for microsatellite sequences was obtained following a method based 

on Edwards et al. (1995) and Squirrell & Wolff (2001), with the modifications that 

Tsp509I restriction enzyme (AA TT; New England Biolabs Inc.) and the Tsp509I 

PCR adapters of White & Powell (1997) were used. The nylon membranes to which 

the genomic DNA was hybridised were prepared with 6 /-lg each of (GA)J3, (CA)J3 

and (AAG)s per single piece of 8 x 8 mm Hybond® N+ membrane. 

The enriched DNA was cloned using a PCR-Script™ Amp Cloning Kit 

(Stratagene), and the sequence of the insert in recombinant clones was determined 

using a Thermosequenase II dye terminator cycle sequencing kit (Amersham) and an 

ABI 377 sequencer. 110 clones were sequenced, and ca. 70 % contained 

microsatellites of 8 or more repeat units. (AC)n was the most common motif, 

accounting for approximately 70% of the microsatellites found. 33 sequences were 

chosen for pnmer design, which was carried out usmg Primer-3 
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(http://www.path.cam.ac.uk/cgi-binlprimer3.cgi) with the modified parameters of 

Beasley et al. (1999) as the starting point. 

The primers were tested in 1 0 ~l PCR reactions containing: lOng genomic 

DNA, Ix PCR buffer (16 mM (NH4hS04, 67 mM Tris-HCl (PH 8.8), 0.01% Tween-

20), 2.5 mM MgCh, 0.2 mM dNTPs, 0.5 ~M of each primer and 0.5 units of BioTaq 

(Bioline). The reactions were denatured at 95°C for 7 minutes, followed by 30 cycles 

of 95°C for 30 seconds, Tannealing °c for 20 seconds, nOc for 30 seconds, finishing 

with a final extension step at nOc for 15 minutes, using a GeneAmp 9600 

thermocycler (Perkin Elmer). The products were visualised on a 2% agarose gel. Out 

of 33 primer pairs,S gave no product, 1 gave several bands and 27 gave a product 

consisting of one or two bands of size similar to that in the clone. Of these 27 loci, 

only 7 produced one or two bands per individual and were polymorphic when the 

profiles were examined in detail by including 4~M TAMRA labelled dCTP (PE 

Applied Biosystems) in the PCR and analysing the products on an ABI 377 

sequencer. One of each of these primer pairs was labelled using either F AM, 

TAMRA or JOE (PE Applied Biosystems) for use in screening populations. 

Loci BSU4 and BSU3 exhibited population specific null alleles, where none 

of the individuals in one (BSU4) or two (BSU3) popUlations gave a PCR product. 

The primers for BSU4 were redesigned (5'-3': forward AATCTCTTGAGATG

GAGGAAACA, reverse GTTGGT AACTTGGT A TGGTGGA; original primer 

sequences are shown in table 1) to anneal outside the original primers, and these 

successfully amplified products in the population previously exhibiting nulls. 

Sequencing the product showed two transition (C-T) mutations 2 and 12 bases from 

the 3' end of the original reverse primer binding site. The clone from which the 

primers for BSU3 were designed was too short to permit the design of further 

primers. The products of two loci (BSU6 and BSU7) showed alleles with single base 

pair length differences; sequencing alleles from homozygous individuals showed this 

was due to an extension of one base pair in a Ts region adjacent to the (TC)IS 

microsatellite in locus BSU6, and the loss of one cytosine from the CC motif in locus 

BSU7; this locus also showed two transversion mutations (C-A) in the microsatellite 

region in some individuals. 
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Table 1. Characterisation of seven microsatellite primers in Begonia sutherlandii . . Ho, observed heterozygosity; HE, expected heterozygosity; 
n, number of individuals genotyped. 

Locus Repeat in clone Primer sequence Tan Size range No. HE Ho (n) GenBankno. 
(5'-3') (bp) alleles 

BSUI (CT) 10 AAAAGCCTTACTATATAATGACAA 55 100-122 10 0.531 0.428 245 AF467454 
CGACCAAGAAAATAAATGAAAT 

BSU2 (AG)14 CCCTTTCTCTTACCCGTTTCCTT 55 114-140 14 0.539 0.458 256 AF467455 
TCATAACCAAACCCAATCTCACC 

BSU3 (CT)lS CATGGCTCTAGTAGTTTCTTCCATTT 55 79-105 11 0.441 0.403 156 AF467456 
GTAGTGCAACGGCAATGATGAC 

BSU4 (CT)14 TGGAGGAAACATATCACGAAGAAA 55 120-144 14 0.230 0.141 224 AF467457 
CCAAGTCTTATGGAAGGATGAACA 

BSU5 (AG) 12 GTCTTTCTCAACCCCACAGACAA 55 148-199 22 0.382 0.356 257 AF467458 
GACCTGTCCATTTGCAAAATCTC 

BSU6 (TC)lS CTCTGGGCTAATAACCATACC 53 162-198 21 0.623 0.588 237 AF467460 
CTAGTAAGATCATTTACAGATACGA 

BSU7 (CT)sCCCTC)s TGTCTCTGCAGAATATGTTCACT 53 134-163 9 0.231 0.186 210 AF467459 
TTTAACCAGGCCATGAATGTT 
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Population genetic structure in the island endemic Begonia socotrana 

M. Hughes, P.M. Hollingsworth & A.G. Miller 

Abstract 

Begonia socotrana is a bulbiferous perennial herb endemic to the Haggeher 

Mountain region on the island of Socotra in the Arabian Sea. Its total distribution 

falls within an area of only ca. IS km x 10 km. Population genetic surveys were 

carried out to investigate patterns of reproduction anq dispersal to provide baseline 

data for conservation programmes. A total of 158 individuals was sampled from 10 

populations and screened for variability at 5 nuclear microsatellite loci. The species 

is not panmictic across its range (Rs'FO.081, P<O.OI; 9=0.096, P<O.OI) and there 

was evidence for significant isolation-by-distance. Despite the plants producing 

prolific bulbils, the vast majority of samples had distinct multilocus genotypes 

suggesting that sexual rather than asexual reproduction is the major means of 

reproduction. Estimates of outcrossing rates from progeny arrays (multilocus 

t=0.83 ± 0.10), coupled with estimates of the inbreeding coefficient from field 

popula,tions (j = 0.051±0.01?) suggest that the species is predominantly outcrossing. 

Keywords: Begonia; Socotra; microsatellites; SSRs; conservation genetics 

94 



1. Introduction 

The Socotra archipelago is a group of four islands of continental origin in the 

Arabian Sea that possess a remarkable relictual flora with high levels of endemism. 

Approximately 8~0 species of vascular plant occur on the islands of which 297 

(35%) are endemic (Miller and Morris, 2001). This degree of endemism is 

comparable to that found on the Canaries (26%; Nieves et at., 1986) and the 

Galapagos (39%; Wiggins and Porter, 1971), and the Socotra archipelago has been 

declared a 'Special Protected Area' by the Yemeni government. It is also in the 

process of being declared a 'Man and Biosphere Reserve' and 'World Heritage Site' 

by UNESCO (United Nations Educational, Scientific and Cultural Organisation). 

The main island in the group is Socotra, which lies some 380 km south of 

mainland Arabia and 210 km east of Somalia (Fig. 1). The island is approximately 

135 km long by 42 km wide and has an area of some 3799 km2
, with three main 

physiographic zones being recognisable: coastal plains, limestone plateaux (ranging 

from 300-800m in altitude) and th~ Haggeher mountains (750-1550m). The granitic 

Haggeher are thought to represent land which has been above sea level since the 

Cretaceous, with the surrounding limestone areas dating to the mid-Tertiary 

(Beydoun and Bichan, 1970). The climate is strongly monsoonal, with the north

easterly winter monsoon bringing most of the islands rainfall. The summer monsoon 

brings rain to the Haggeher and higher south-west facing slopes, and these areas also 

receive moisture during the summer in the form of mist and heavy dews. The 

vegetation on Socotra ranges from spart'e scrub in coastal areas through succulent 

shrub lands to more mesic montane vegetation in the Haggeher and high limestone 

plateaux. 

Island floras are notoriously fragile and can be decimated by the 

introduction of grazing animals. An expedition to Socotra by Lavranos and Radcliffe 

Smith in 1967 (Lavranos and Radcliffe-Smith, 1969) suggested that this was an 

immediate threat with many plant species considered in danger of extinction due to 

vast uncontrolled grazing by goats which were being allowed to roam freely over the 

island. 
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Begonia socotrana Hook. f. is one of the flagship plants of the archipelago 

and serves as a symbol for conservation awareness. It is a monoecious perennial herb 

endemic to Socotra, where it has been recorded from the higher regions of the 

Haggeher mountains (Balfour, 1888). The species is also known from the adjacent 

limestone plateau of Reiged, where it was recorded as being among the commonest 

of th~ plants restricted to soil pockets in rock crevices (Popov, 1957). Since these 

early records, however, B. socotrana has been considered to be very rare in the wild. 

The 1967 expedition of Lavranos and Radcliffe-Smith recorded the plant from only 

two of the highest peaks of the Haggier mountains (Lavranos and Radcliffe-Smith, 

1969 p3). Based largely on the reports from this expedition, the 1978 IUCN Plant 

Red Data Book (Lucas and Synge, 1978) lists B. socotrana as 'endangered'. Lucas 

and Synge (1978, p. 79) noted that "the population of this island endemic has reached 

critically low levels .. .it is now confined to high altitude, mountain pinnacles 

virtually inaccessible to man and goat". Koopowitz and Kaye (1983, p. 63) stated 

that "the population of begonias has steadily eroded" and Belousova and Denisova 

(1992, p. 323), described the plant's populations as at a "critically low level." Lucas 

and Synge (1978), Koopowitz and"Kaye (1983) and Belousova and Denisova (1992) 

all cite overgrazing by goats as the main threat to the species. The latest IUCN Red 

list of threatened plants (Walter and Gilliet, 1998, p. 73) lists B. socotrana as 

'vulnerable' . 

In 1999 the Socotran islands were the subject of a GEF (Global 

Environment Facility)/UNOPS (United Nations Office for Project Services) funded 

biodiversity inventory exercise in preparation for the delimitation of conservation 

areas. As part of this biodiversity inventory, a detailed study of Begonia socotrana 

was undertaken. One of the goals of this work was to undertake general population 

surveys to determine its current distributional range and abundance (Hughes and 

Miller, 2002). An additional goal, and the subject of this paper, was to gain some 

insights into the reproductive biology and population structure of Begonia socotrana. 

An understanding of how populations reproduce and maintain themselves, and the 

spatial scales over which gene flow occurs, is important for both in situ and ex situ 

conservation programmes. Begonia socotrana is monoecious, although fully self

fertile in cultivation. The species also produces bulbils at the base of the plant, which 

represent a potential vegetative mechanism for perpetuation and dispersal. Our goal 
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was to establish whether the plants are predominantly inbreeding or outbreeding, 

whether they reproduce predominantly sexually or asexually, and to what extent 

populations are connected with one another. 

Fig. 1. The location of the Socotra archipelago (left). Topographic map of Socotra 
(right). The area within the box is the location of the Haggeher mountains and 
adjacent plateaux Reiged and Rewged, which are shown in detail in Fig. 2. 
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2. Materials and methods 

2.1. Population sampling 

Populations of B. socotrana were sampled in February 1999, with further 

sampling undertaken in February 2000. All samples consisted of either single leaves 

immediately placed in silica gel, or one or two bulbils detached from the base of the 

plant. Bulbils were later grown under quarantine at the Royal Botanic Garden 

Edinburgh. 

A total of 158 individuals was sampled from 10 populations: Adho de 

Melus, 11; Reiged, 19; Rewged, 7; Mugudrihon, 12; Dicksam, 16; Skand route, 17; 

Shihali A, 20; Shihali B, 17; Shihali C, 18; Shihali D, 21 (Fig. 2, Table 1). Plants 

growing as part of a group in the same crevice were e~amined to ensure that discrete 

individuals were sampled. 

Fig. 2. Detailed map of the location of sampled populations of B. socotrana shown in 
Fig. 1. The population pairs from Shihali (A+B and C+D) are 500 m apart in altitude. 
The estimated entire range of Begonia socotrana is indicated by a dashed line. 
Shading indicates topography, ranging from sea level to 1500 meters in altitude with 
contours at approximately 200 m intervals. 
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Single ripe fruits were collected from 5 selected plants to provide progeny 

arrays for estimates of outcrossing rates (mean of 12.8 progeny per maternal plant; 

range 10-15). The only populations that had fruits at the right stage of development 

during the fieldwork were Reiged (4 maternal plants) and Rewged (l maternal plant). 

2.2. DNA extraction and microsatellite analysis 

DNA was extracted from silica dried leaf material using a method modified 

from Doyle and Doyle (1987). Approximately 1 cm2 of leaf was ground in 800 !J.I of 

CTAB buffer with 2.5 % ~-mercaptoethanol, 0.5 % PVPP and a pinch of acid 

washed sand, and then incubated at 65°C for 30 minutes. After washing with 500 !J.I 

of 24: 1 chloroform:isoamylalcohol, the aqueous layer was removed and DNA 

precipitated with 600 !J.I of freezer-cold isopropanol.. DNA isolated from Begonia 

species can contain PCR-inhibiting levels of co-isolated salts and carbohydrate, so 

the crude extract was redissolved in 100 !J.I of water and cleaned using QIAquick 

PCR purification columns (Qiagen), eluting in 50 !J.I of warm (65°C) EB buffer to 

ensure recovery of high molecular weight DNA. 

Five polymorphic micro satellite loci were used for the population genetic 

surveys, using fluorescently labelled primers (B17b, B128, B130, B215, B226) and 

PCR conditions as detailed by Hughes et al. (2002). The PCR products were 

analysed on an ABI 377 DNA sequencer, followed by gel image analysis using ABI 

Genescan® software (version 3.1.2) and· allele size scoring using ABI Genotyper® 

software (version 2.0). 

2.3. Data analysis 

Any samples with identical multi-locus genotypes at all five loci (e.g. 

samples that may have been ramets of the same genet) were only represented by a 

single sample in all population genetic analyses. Microsatellite data were formatted 

for input into various population genetic software programmes using the 

Microsatellite Toolkit (Park, 2001). Basic descriptive population genetic statistics (A 
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= mean number of alleles per locus; HE = expected heterozygosity (or gene diversity) 

and Ho = observed heterozygosity) were calculated using GDA (Lewis and Zaykin, 

2001). 

Population genetic structure was assessed using Weir and Cockerham's 

(1984) estimates of Wright's F-statistics. Estimates of F ls if; deviation from panmixia 

attributable to non-random mating within populations), FST (9; deviation from 

panmixia attributable to non-random mating among populations), and the inclusive 

measure FIT (F; deviation from panmixia attributable to non-random mating within 

and between populations) were estimated using FSTAT (Goudet, 2001). Pennutation 

tests (> 10 000 pennutations, random ising alleles) were used to test whether the 

estimates of Fls and FIT were significantly different from the null hypothesis of 

panmixia. Per locus estimates of FST were tested for significance by jackknifing 

across populations; the global estimate of FST w~s tested for significance by 

jackknifing across loci. Per locus and species wide estimates of RST (Slatkin, 1995), 

an analogue of FST, were carried out using RST CALC (Goodman, 1997). RST 

incorporates infonnation on allele size differences into estimates of population 

differentiation and was derived for loci such as microsatellites that evolve under a 

stepwise mutation model. Pennutation tests (10 000 pennutations, randomising 

alleles) were used to test whether the global and per locus estimates of RST were 

significant. 

Significance values were corrected for multiple tests using the sequential 

Bonferroni test (Rice, 1989). 

Arlequin v2.000 (Schneider et at., 2000) was used to carry out a Mantel test 

to test for isolation by distance, with the distance matrices being natural log of direct 

geographic distance (calculated from GPS data) and FST/I-FsT (Rousset, 1997) or 

RSTIl-RsT. Microsat (Minch et at., 1995) was used to create a population pairwise 

distance matrix for the genetic distance measure I-Dps (Bowcock et at., 1994); a 

neighbour joining tree was constructed from this matrix using PAUP* 4.0 (Swofford, 

1998). 
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Outcrossing rates were estimated from progeny array genotypes usmg 

ML TR version 1.1. (Ritland, 1996) using the expectation-maximisation option. The 

outcrossing rate was also estimated from the global estimate of FIs using the equation 

t=(1-FIS)/(l +FIS) (Allard et ai., 1969) 
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3. Results 

3.1. Descriptive statistics 

All microsatellite loci were polymorphic in all populations. At the species 

level the number of alleles at each locus ranged from A = 5-32, with the mean gene 

diversity per locus ranging from HE = 0.61-0.93 (Table 1). Within populations the 

mean number of alleles per locus ranged from A = 4-7.2, and the mean gene diversity 

ranged from HE = 0.6-0.84 (Table 2). 

3.2. Sexual versus asexual reproduction 

Individuals with identical multi-locus genotypes were detected at three sites 

(A<;iho, 5 out of 11 individuals; Mugudrihon, 2 out of 13 individuals; Rewged, 2 out 

of 8 individuals). However, the vast majority of individuals possessed distinct 

multilocus genotypes (149 out of 158). 

3.3. Estimation of breeding behaviour 

A species wide estimate of F)s if = 0.051 ± 0.017, P<0.05) revealed a small 

but significant deficit of heterozygotes due to deviations from random mating within 

populations. Within individual populations, estimates of the inbreeding coefficient 

range from f = -0.185 to 0.313 (Table 2). Of these, only one, (Shihali B) showed an 

inbreeding coefficient estimate that was significantly different from zero. 

Estimates of the multi locus outcrossing rate, t, ranged from 0.48 to 1.00, 

with a mean of 0.86 (Table 3). These values are similar to the value of t estimated 

from F)s , t = 0.90. 

3.4. Population genetic structure 

There was significant population structure in B. socotrana, with a moderate 

amount of diversity being partitioned between populations (9 = 0.096, RST = 0.081; 

Table 1). A Mantel test revealed significant isolation by distance (P<O.O 1, R2 = 0.12 
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for the FST/I-FsT matrix; P<0.05, R2 = 0.04 for the RST/I-RsT matrix) (Fig. 4). 

Evidence for a geographical component to the distribution of genetic variation is also 

evident from a Neighbour joining analyses of inter-population genetic distances; 

geographically proximal populations tend to cluster together in the tree (Fig. 3). 
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Table 1. 

Per-locus population genetic statistics of Begonia socotrana. A, mean number of 
alleles per locus; HE, expected heterozygosity; Ho, observed heterozygosity; J and F, 
Weir and Cockerham's (1984) estimates of the inbreeding coefficients F ls and FIT; 
RST, Slatkin's (1995) stepwise mutation model estimate of FST; e, Weir and 
Cockerham's (1984) estimate of F ST• 

Locus A 

B128 

B130 

B226 

B17b 

B215 

All loci 

** P<O.OI 

*P<0.05 

Table 3 

5 

12 

7 

32 

8 

12.8 

0.68 

0.73 

0.72 

0.93 

0.61 

0.74 

Ho J RST e F 

0.53 0.044 0.111 ** 0.202** 0.238** 

0.66 0.050 0.102* 0.062* 0.109* 

0.68 0.008 0.046* 0.066* 0.073 

0.81 0.094* 0.025 0.050* 0.139** 

0.52 0.037 0.120** 0.132** 0.164** 

0.64 0.051 * 0.081 ** 0.096** 0.143** 

Estimates of the outcrossing rate (t ± S.E.) in B. socotrana. 

Array number Multilocus outcrossing rate (± S.E.) 

Family 1 t = 0.48 ± 0.13 (n = 13) 

Family 2 t = 0.98 ± 0.08 (n = 12) 

Family 3 t = 0.84± 0.11 (n = 10) 

Family 4 t = l.00± 0.00 (n = 14) 

Family 5 t = 1.00 ± 0.00 (n = 15) 

Over all families t = 0.83 ± 0.10 
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Table 2 

Population level statistics of Begonia socotrana. n, mean number of individuals sampled per locus after removing individuals with identical 
genotypes; A, mean number of alleles per locus; HE, expected heterozygosity; Ho, obeserved heterozygosity;J, Weir and.Cockerham's (1984) 
estimate of the inbreeding coeffiecient F1s. 

Population Latitude Longitude Altitude n A HE Ho f 

Adho 12.573 54.048 950 7 4.0 0.60 0.66 -0.095 

Reiged 12.619 54.001 750 19 7.2 0.73 0.78 -0.064 

Dicksam 12.543 53.994 1050 10.4 6.8 0.84 0.77 0.093 

Skand 12.573 54.020 1300 16.8 6.6 0.76 0.71 0.072 

Mugud 12.606 54.006 700 11.6 5.6 0.66 0.63 0.049 

Rewged 12.582 53.994 700 6.6 4.2 0.62 0.74 -0.185 

ShihaliA 12.572 54.104 800 17.4 5.0 0.59 0.55 0.096 

ShihaliB 12.569 54.105 1300 14.6 4.4 0.49. 0.35 0.313* 

ShihaliC 12.584 54.114 800 11 4.2 0.66 0.58 0.130 

ShihaliD 12.584 54.111 1300 16 5.8 0.67 0.66 0.020 

Mean 13.7 5.38 0.66 0.64 

(*P<0.05) 
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Western Haggeher and 
limestone plateaux 

-- 0.1 changes 

Dicksam 

Central and eastern Haggeher 

Skand 

Southern Haggeher 

Fig. 3. Neighbour joining tree generated from pairwise I-Dps distances of Begonia 
socotrana microsatellite data. 
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Fig. 4. Evidence for isolation by distance in B. socotrana. A Mantel test shows the 
relationship to be significant (P<O.OI for FSTIl-FsT; P<0.05 for RsT/I-RsT) 
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4. Discussion 

4.1. Population structure 

During the field work for the current study our population surveys revealed 

that fl. socotrana is more abundant within its range than previous records suggested 

(Hughes and Miller, in press). The apparent rarity of the species appears to be 

attributable to the 1967 Lavranos and Radcliffe Smith expedition taking place during 

the dry season when the plants die back to inconspicuous bulbils. In the course of our 

work the plant was found at a new site (Dicksam), and in healthy populations at 

previously recorded localities. Within the area of its range (ca. 15 km x 10 km) the 

plant is relatively continuously distributed (at least in the sense that the maximum 

gaps between populations are about 1 km). It is largely restricted to north facing 

crevices between boulders and on cliffs, although the aspect becomes less critical 

with altitude and at ca. 1400 m plants grow in quite exposed south facing sites. It 

also occurs terrestrially under the cover of montane shrubland, and forms patches 

where in some cases it is the dominant ground cover. Despite this relatively 

continuous distribution within a small total range, the estimates of population genetic 

structure indicate a significant deviation from panmixia (8= 0.096, Rsr 0.081; Table 

1). There is a degree of genetic/geographic clustering in the neighbour joining tree 

(Fig. 3), and evidence for significant isolation-by-distance (Fig. 4). 

There are three possible contributing factors that might explain these 

patterns of genetic variability. Firstly, IJ. socotrana produces seeds ca. 0.4 mm long 

in a dehiscent capsule, and in this respect is similar to most other Begonia species 

which are though to release their seeds passively, leading to localised dispersal 

patterns (Agren and Schemske, 1993; Matolweni et al., 2000). Restricted gene flow 

due to local seed dispersal is likely to contribute towards population differentiation. 

Secondly, the concept of 'continuous distribution' in B. socotrana is of course open 

for discussion. The plants often occur in crevices and cracks; these microhabitats will 

naturally restrict dispersal abilities compared to growth in open exposed habitats. 

Thirdly, it is possible there is an historical component to the distribution of the 

genetic variability. While long term historical climatic data is sparse for Socotra, 
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there is some evidence that suggests the island may have previously been through 

periods of increased aridity. Studies of the southern Arabian highlands suggests there 

was a markedly dry period during the mid Holocene between 5000 and 2500 years 

ago (Cole et al., 200 I). Begonia socotrana occurs in a high-altitude zone of 

mountains and, inter-connecting plateaus. These currently attract mist and cloud 

cov~r and receive rainfall in the winter and summer monsoons (Miller and Morris, 

2001). However, in periods of increased aridity the moisture belt will migrate 

upwards, potentially creating 'mountain peak islands' fragmenting species ranges that 

are more continuously distributed during wetter periods. Under these conditions 

differentiation is likely to occur, and this may leave a genetic signature that persists 

when species' ranges expand as aridity decreases. It is thus possible that the current 

distribution of population genetic variability in Begonia socotrana reflects a 

combination of contemporary dispersal patterns overlaid onto historical localised 

vicariance. 

4.2. Sexual versus asexual reproduction 

Despite the proliferous production of bulbils, there was no evidence for 

clonal growth in most of the popUlations of B. socotrana. The only site where more 

than two individuals shared the same genotype was terrestrial rather than a cliff, and 

the plants occurred in a space of about 1 metre growing in loose soil in a gully. They 

are likely to be the result of a single cluster of bulbils becoming washed apart during 

heavy rain. In the other two sites that had individuals with identical genotypes 

(Mugudrihon and Rewged) the plants were growing adjacently in horizontal rock 

clefts and probably represent clonal growth over a very limited area. The bulbils 

appear to be quite firmly attached to the base of the plant, and their major role 

appears to be perenniation rather than dispersal. The major means of dispersal thus 

appears to be via sexually derived seeds. 

4.3. Inbreeding versus outbreeding 

Most Begonia speCIes are thought to be deceit pollinated. The female 

flowers are rewardless and attract pollinator visits by having bright yellow stylodia 

which mimic the pollen bearing anthers of the male (Agren and Schemske, 1991). 
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Pollinator observations are rare in Begonia, but they are thought to be visited by 

generalist pollinators such as bees. Published data on outcrossing rates in Begonia 

are available from only two out of the ca. 1400 species in the genus. Both of these 

species (B. hirsuta and B. semiovata) were found to have very low outcrossing rates, 

consistent with reproduction being predominantly via self-pollination. B. hirsuta and 

B. s,!miovata are both annuals, and have many-flowered infloresences with proximal 

male and female flowers which promotes self-pollination (Agren and Schemske, 

1993). In contrast our estimates of breeding behaviour in B. socotrana suggest that 

cross-pollination is important in this species. 

B. socotrana has fewer flowered infloresences than B. hirsuta and B. 

semiovata. Its infloresences are cymose, with 1-3 female flowers being subtended by 

several male flowers. This spatial separation of the flowers, coupled with some 

degree of protandry, presumably contributes towards the observed evidence for 

outcrossing. Nevertheless it is interesting to note that 'the species is fully self fertile in 

cultivation, and that the temporal separation of male and female flower maturity is 

not absolute; male and female flowering times overlap considerably. The lack of 

inbreeding in the wild could be facilitated if the male flowers are harvested of their 

pollen by the time the female flowers open; genetic factors such pollen competition 

and/or early acting inbreeding depression may also contribute. 

4.4. Future conservation oj Begonia socotrana 

The conservation status of B. socotrana has been reduced to the IUCN 

category of 'Least Concern' based on our recent surveys (Hughes and Miller, in 

press). Nevertheless, the species has been recognised as a 'Flagship' species - a 

symbol of conservation awareness and also an indicator of the health of cliff 

vegetation in Socotra's mountains (Miller and Morris, 2001). The genetic surveys 

undertaken here represent a baseline from which any changes in this flagship species 

can be monitored. Furthermore, the basic insights gained into the species' 

reproduction and population structure can facilitate the formulation of informed 

management plans in the event of an increasing level of threat, and also contribute 

towards sampling strategies and the management of ex-situ collections. Despite the 

remarkable level of endemism and the global importance of the Socotran flora, this 
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study represents the first investigation into natural population genetic structure of any 

Socotran plant. 
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Addendum to Population genetic structure in the island endemic Begonia 

socotrana. M. Hughes, P.M. Hollingsworth & A.G. Miller. 

Begonia socotrana has a sister species Begonia samhaensis M. Hughes & 

A.G. Miller on the nearby island of Samha in the Socotra archipleago. B. 

samftaensis is morphologically very distinct from B. socotrana, and is endemic 

to the highest altitude parts of the limestone plateau at the summit of Samha. 

5 km 

Figure 1. Contour map of Samaha island showing the collection sites of B. 
samhahensis (.) which also represent its entire distribution. The contours are at 
100m intervals, with the collection sites being adjacent to or above the 700m 
contour whiCh delimits the two highest parts of the island. 

Leaf samples dried in silica gel were taken from three populations of B. 

samhaensis in February 1999. Forty individuals were sampled, nine from the two 

slightly lower altitude sites (site numbers 1 and 2; ca. 690m) and the remainder 

from the highest point of the island which is a limestone torr at (site number 3; 

ca. 750m). The torr is the main stronghold of the species, with a population of 

around 200 plants. The majority of these are in a single sheltered rock cleft about 

1 metre wide and six metres long. A flowering specimen of B. samhaensis 

growing at the summit is shown in Figure2. 
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Microsatellite analysis was carried out on the samples of B. samhaensis 

using the primers and protocols as listed in Hughes et al. (2002). Only two of the 

microsatellite loci isolated from B. socotrana amplified products from B. 

samhaensis (B215 and B226). 

Figure 2. Begonia samhaensis growing on a sheltered limestone cliff at the 
summit of Samha. 

The poor transference of loci developed from B. socotrana to B. 

samhaensis indicate the species have a considerable genetic distance between 

them and that they are likely to have been evolving separately for some time; this 

is consistent with a hypothesis of both species being relics on their respective 

islands rather than having a more recent progenitor-derivative relationship. This 

is supported by the relatively long branches the species have in the nuclear 

ribosomal ITS phylogeny by Forrest (2000). The sequences of the two species 

differ by 72 transition mutations and 27 transversion mutations, with an overall 

uncorrected pairwise sequence divergence of 11 % (as estimated using PAUP 4*). 

ITS has been shown not to conform to a molecular clock in Begonia (Forrest, 

2000), so a divergence time cannot be estimated from this data. However, this 
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degree of divergence is remarkable and indicative that both species have been 

separate for a timescale measured in millions of years. 

The two species can be hybridised successfully, with full seed set and 

rapid germinati9n, which indicates a degree of hybrid vigour. The F I offspring 

are _ morphologically intermediate between the parents with respect to both 

vegetative and floral morphology, although several times larger. The rapid 

germination and much larger size indicate a high level of heterosis in the F I 

generation, which may reflect a high genetic load in one or both the parent 

species. Attempts to self the F I plants did not produce any seed set. 

There is a trend of microsatellite loci that are transferable tending to be 

less variable in the species one transfers them to (e.g. Glenn et al. 1996). One of 

the possible causes of this is that primer sites are more likely to be maintained if 

they are under some functional constraint, and this constraint may also apply to 

the micro satellite region itself. There may also be ascertainment bias, as studies 

suggest the median allele length ,~f microsatellites is longest in the species from 

which the markers were derived (Crawford et al., 1998). In this case however, 

the results are likely to reflect a true lack of diversity because preliminary 

investigations using ISSR and AFLP loci shown to be polymorphic in B. 

socotrana were completely monomorphic in B. samhaensis (data not shown). 

Also, the allele sizes observed in B. samhaensis were of a sirpilar range to that 

observed in B. socotrana, so ascertainment bias does not seem to be operating. 

The 40 individuals analysed (from all three popUlations) were 

homozygous for allele 3 at locus B215 and allele 9 at locus B226. B. socotrana 

posesses an allele equivalent in length to the allele (3) observed in B. samhaensis 

at locus B215. An allele corresponding to length 9 at locus B226 is not found in 

B. socotrana, but the allele falls within the size range observed in the species at 

that locus. The fact that allele sizes are of a similar range in the two species 

despite their very long isolation is congruent with size limitation acting on the 

loci. Thus the microsatellite data, with the allele lengths found in B. samhaensis 

being nested inside the size range found in B. socotrana, fails to reflect the 

divergence .shown by the ITS sequence data. This highlights the limit of the 
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utility of microsatellite markers, which are only applicable to more recently 

diverged taxa. 

The fixation for single alleles at the two amplifiable loci in B. samhaensis 

is likely to be the result of inbreeding and drift due to the small total population 

size_ of this species, which is estimated as no more than a few hundred 

individuals. In dryer periods, altitudinal migration is not an option as it is for 

Begonia socotrana as the mist zone will simply reduce in size due to it already 

being limited to the highest 50-60m of the island. It is in fact quite surprising B. 

samhensis is not extinct, as it is possible that its population size has been reduced 

even further in the past given the narrow range of the mist zone habitat the 

species is restricted to and the susceptibility of this habitat to climatic changes. 
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Extreme population differentiation in the sporadically distributed herb, 

Begonia sutherlandii Hook. f. 

M. Hughes & P.M. Hollingsworth 

Abstract 

Begonia sutherlandii is native to eastern and southern Africa, where it is 

restricted to shaded, moist banks in indigenous forest. Nine populations were 

sampled from the forests of Kwazulu-Natal, South Africa and analysed for variation 

at seven microsatellite loci in order to investigate population structure and 

relationships. A high level of population differentiation was found (8=0.482, 

P<O.OO 1; RsrO.634, P<O.OO 1), which along with a high number of private alleles 

reflects the severe isolation of populations in a patchily distributed forest habitat. 

A pattern of significant isolation by distance was found within the 

populations from the mist belt forests in the Kwazulu-Natal midlands. This 

correration between genetic and geographic distance was primarily due to 

comparisons between northern and southern populations, and it seems likely that 

vicariance events rather than contemporary gene flow are reponsible for the patterns 

of divergence seen. Population relationships appear to be strongly governed by the 

history and continuity of forest cover in the region. 

The high degree of popUlation isolation and divergence in B. sutherlandii is 

discussed in the light of macro evolutionary patterns in the genus as a whole. It 

seems probable that restricted gene flow between Begonia populations has been a 

contributing factor to the large radiation of the genus, which contains ca. 1400 

species. 

Keywords: Begonia; microsatellites; forest distribution; Kwazulu-Natal. 
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Introduction 

Begonia L. is a genus containing ca. 1400 species (Doorenbos et al. 1998). It 

occurs throughout the tropics, with the greatest diversity occurring in the montane 

and- evergreen forests of the Andes and Malesia. The majority of Begonia species are 

shade tolerant hydrophilic herbs, growing in damp and sheltered environments such 

as seep faces and waterfall mist zones under a forest canopy. The Begoniaceae 

(comprising Begonia, Symbegonia Warb. and Hillebrandia Oliver) is classified in the 

Cucurbitales (Angiosperm Phylogeny Group, 1998), where it is the largest family. 

Begonia itself accounts for nearly 99% of the species in the Begoniaceae; in terms of 

species number, it is one of the ten largest angiosperm genera. 

Large genera or clades are likely to possess. some property that make them 

prone to speciation, so their study may give insights into the causes of 

diversification. Biodiversity in Begonia exhibits a range limitation at all spatial 

scales. This is congruent with gene flow within most Begonia species being of an 

extremely local nature, and suggests they may be prone to forming isolated 

populations and speciating by some kind of allopatric model. Several aspects of the 

distribution of Begonia biodiversity are congruent with a hypothesis of speciation 

being aided by restricted gene flow. These are (i) populations having restricted 

distributions, often being restricted to sporadic patches of suitable microhabitat; (ii) a 

high level of narrow endemism; (iii) widespread species being rare and highly 

morphologically variable unless they have atypical dispersal adaptations; (iv) 

monophyletic groups of species showing geographic clustering. 

Patchy occurrence of populations 

Begonia species usually form populations with a very small range (Burt

Utley, 1985). They are limited to areas of specific microhabitat, which is due to their 

demand for deep shade and moist conditions, often coupled with a requirement for a 

steeply banked substrate. This means populations are often separated by considerable 

distances of unsuitable habitat. Dispersal in most Begonia species is thought to be 

passive, with seeds being dispersed by gravity a short distance from the parent plant 
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(Matolweni et aI., 2000). The patchy population distribution arising from the narrow 

niche of Begonia species means that seed dispersal via gravity dispersed seeds 

between distant populations is likely to be sporadic. Gene flow through pollen may 

also be limited if the between population distances exceed pollinator movement 

distances. 

Narrow endemism 

Many Begonia species are narrow endemics. Sosef (1994) found the species 

of the African Begonia sections Loasibegonia and Scutobegonia to be useful as 

indicators of Pleistocene forest refuges due to their severely restricted ranges and 

poor dispersal mechanisms. A monograph by Kiew (2001) of the limestone Begonia 

of Sabah lists fourteen species, only one of which is widespread in the study region 

with nine of the species being endemic to single hills. Narrow endemism could 

indicate dispersal limitation of species ranges, and local gene flow could favour the 

evolution of a larger number of locally adapted species rather than fewer widespread 

species with broader ecological tolerance. 

Variability of widespread species 

Although most Begonia species have quite narrow distributions a few are 

relatively widespread, and these species (e.g. B. urticae, Costa Rica to Peru; B. 

sutherlandii, Tanzania to South Africa) are usually highly morphologically variable. 

This variability is often reflected in extensive taxonomic synonomy, and in the case 

of B. urticae and B. sutherlandii many single populations were originally described 

as unique species. The variability of widespread Begonia species could be due to a 

lack of gene flow at the regional scale; this would permit individual populations to 

evolve to their local ecological optima without being swamped by alleles from 

'foreign' populations adapted to slightly differing conditions (Barton & Clarke, 

1990). 

In rare cases, widespread species of Begonia do show a relative 

morphological uniformity across their range. These species tend to have unusual 

adapations which may allow populations to remain in genetic contact over longer 

distances than most Begonia species. For example, B. oxyloba occurs across tropical 
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Africa from Liberia to Tanzania and into Madagascar. This species has relatively 

large sweetly scented fleshy fruit, and is likely to be animal dispersed. As it occurs 

on Madagascar as well as the African continent, it seems likely that birds are one of 

the dispersal vectors. The lianescent B. glabra has the widest range of any Begonia 

species in the neotropics, and occurs from Costa Rica south to Peru and east into 

Brazil. This species is likely to be wind pollinated to a large extent as it produces 

flowers with small tepals; the female flowers have elongated and protruding stigmas, 

and the male flowers are borne in large infloresences and produce a very dry pollen 

that is freely released from their anthers. Wind dispersal of pollen and seed at the 

height of the forest canopy is likely to favour longer distance gene flow than insect 

pollination and passive seed dispersal in the the sheltered conditions of the forest 

floor. 

Geographical restriction of monophyletic species groups 

The restriction in the range of diversity is also seen above the species level in 

Begonia, as the members of monophyletic groups within the genus tend to occur in 

the same region. A phylogeny of Begonia by Forrest (2000) based on nuclear 

ribosomal ITS sequence data and including 160 species from throughout the tropics 

showed that in some cases geographical proximity was a better indicator of species 

relationships than the accepted taxonomy. Previously unsuspected monophyly of 

South African and endemic Malagasy Begonia was uncovered, and at a larger scale 

Asian and Neotropic species each formed separate clades. A phylogeny of Begonia 

by Plana (2002) using the chloroplast .. trnL intron also recovered the monophyly of 

the endemic Malagasy species and South African species. The correlation of 

phylogeny and geography is congruent with a hypothesis of restricted long distance 

dispersal. 

A recurrent pattern of geographical and genetic correlation at all levels in a 

phylogeny indicates that the same evolutionary process (restricted gene flow) is the 

cause (Templeton, 1998). Despite Begonia being one of the largest angiosperm 

genera, there is little known about the geographical distribution of population genetic 

variation within Begonia species. In order to investigate intra-specific patterns of 

diversity in Begonia in detail, this paper presents a study of the widespread African 
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species B. sutherlandii using nuclear micro satellite markers. 

The study species 

B. sutherlandii has an east Afromontane distribution, from northern Tanzania 

to the Transkei in South Africa. It occurs in primary forest on steep substrates, 

usually shaded banks or boulders, and always in wet conditions. Given the 

preference of B. sutherlandii for a specific microhabitat with a favourable aspect 

(facing south to south-easterly in South Africa), the species has a sporadic 

distribution within its main primary forest habitat. Its forms discrete populations 

which can number up to several hundred plants in favourable conditions. Typically 

for the genus, B. sutherlandii has asymmetric leaves, which are lanceolate and vary 

in size from 2 to 30 cm long, though are most commonly around 5-10 cm long. The 

leaves show a range of outlines, ranging from shallowly dentate to being dissected 

almost to the midrib. In common with many other east African Begonia, it is a 

perennial which survives the mild seasonality of the' Afromontane climate as a tuber. 

It also produces small bulbils in the leafaxils, which are derived from a compressed 

shoot and provide futher means of perenniation and possibly limited dispersal. It is 
.-

monoecious, with bisexual axillary or terminal dichasial inflorescences, bearing from 

a few to around twenty flowers, and is unusual in Begonia in having orange flowers 

(occasionally brick red or yellow). The female flowers in Begonia are rewardless, 

and attract pollinator visits by deceit, with the yellow stylodia mimicking the pollen 

bearing anthers of the male flower (Agren & Schemske, 1991). The seeds of B. 

sutherlandii are around 400-500 ~m long, which are contained in a dehiscent fruit 

with three wings. In common with manY Begonia species the seeds are likely to be 

passively dispersed in the vicinity of the parent plant (Agren & Schemske, 1993; de 

Lange & Bouman, 1999; Matolweni et aI., 2000). 

The study area 

The indigenous forest which is the main habitat of Begonia sutherlandii 

covers only 0.56% of the land area in South Africa, and is the country's smallest 

biome. It has a highly fragmented distribution, with most of the forest occurring in 
2 

patches of less than 1 km (Eeley et aI., 1999). One-sixth of this forest cover is found 

within Kwazulu-Natal (Figure 1, page 129), where two main forest types can be 

distinguished, Afromontane forest and Indian Ocean coastal belt forest. These can be 
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divided in a number of subtypes according to Eeley et aI. (1999), with the 

Afromontane forest comprising montane and mist belt forests. The montane forests 

are largely restricted to the Drakensberg escarpment, with the mist belt forests being 

the dominant forest type over most of the Kwazulu-Natal midlands. Both types are 

restricted to south and south-eastern facing hills and slopes. The Indian Ocean 

coastal belt forests comprise dune forest, swamp forest, sand forest, riverine forest, 

coastal lowland forest and coastal scarp forest. Indian Ocean coastal belt forests are 

restricted to the flat coastal plain, with swamp, sand and riverine forest being 

confined to the north of the province. Dune and lowland forests form a fragmented 

belt along the coast to the south of Durban. Scarp forests are restricted to gorges and 

south to south-eastern facing slopes on the escarpment to the west of the coastal 

plain. 

The highly fragmented nature of the forest cover in Kwazulu-Natal could be 

the result of either human clearance (Acocks, 1998) or environmental factors 

(Geldenhuys, 1992). Although anthropogenic clearance has undoubtedly occurred, 

there is some evidence that the current forest distribution is related to climate. Rather 

than having a random distribution as might be expected from wholesale clearances, 

forest is restricted to south and south easten facing slopes and sheltered gorges. This 

is due to the spread of grassland at the expense of forest during dryer and colder 

periods, leading to a fire dominated landscape which restricts forest to sheletered 

pockets. Forest cover is likely to have expanded and contracted during the climatic 

cycles experienced by South Africa throughout the Pleistocene, and the current 

distribution probably reflects the latest contraction of forest range since the warmer 

and wetter conditions during the Holocene altithermal ca. 7000 years ago (Eeley et 

aI., 1999) 

Aims of the study 

The fragmented distribution of forest produces a corresponding fragmented 

distribution of B. sutherlandii, and represents an ideal system for investigating the 

connectivity of populations over a range of distances. The aims of this study are to 

examine the geography of the distribution of genetic diversity within B. sutherlandii, 
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and look for congruence between the microevolutionary patterns seen in this species 

and the macroevolutionary patterns seen in the genus Begonia. Populations of B. 

sutherlandii have been sampled from throughout Kwzulu-Natal in order to 

investigate the geographic patterns of genetic structure and their cause. 

Specifically, we aim to (i) to examine the amount of genetic diversity and its 

partitioning within and between populations, (ii) to look for evidence of genetic 

isolation by distance through restricted dispersal, and (iii) to examine the relatedness 

of populations in relation to the forest cover in Kwazulu-Natal and its recent history. 
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Materials and methods 

Sampling 

Leaf samples (dried in silica gel) and voucher specimens were collected from 9 

populations of Begonia sutherlandii in February 2001 from forest patches in 

Kwazulu Natal (KZN) , South Africa (Fig. 1). Three main forest types were visited 

for collection, which are classified as (i) mist belt, (ii) montane and (iii) scarp 

following Eeley et al. (1999). The locality details and the number of samples 

collected is shown in Table 1. All individuals in a population were collected within 

500m of each other, with the exception of the Kokstaad population, which consists of 

four sub samples collected within 3.8km of one another. 

The mist belt forests of Ferncliffe, Hoha, Dulini and Kokstaad are in the 

southern KZN midlands. This is an area of relatively high altitude and varied 

topology, which contains a network of numerous small forest patches. The mist belt 

forests of Tygerskloof, Nkandla and Qudeni are in northern KZN, and are restricted 

to peaks which rise to 1600m in altitude. These forests are more isolated than their 

counterparts in the southern KZN midlands, being separated by the hotter and dryer 

lowland areas of the Tugela basin. 

Rainbow gorge is a patch of montane forest near Cathedral Peak in the 

Drakensberg mountains. This forest patch is relatively isolated from other 

Drakensberg escarpment forests, and also from the KZN midlands mist belt forests. 

The region is surrounded by extensive grasslands which are subjected to frequent 

fires (Geldenhuys, 1992). 

Umtamvuna is a forested gorge in southern coastal KZN, which lies near the 

middle of the Pondoland centre of endemism (White, 1983). The scarp forest which 

covers the sheltered ravine has a disproportionately rich flora (Geldenhuys, 1992), 

and is among the sheltered coastal forest patches that may have been important 

refugia during glacial maxima (Lawes, 1990). 

128 



'. 

Africa 

32.00"E 

KwaZulu-Natal I 
~-"/ -"'" 

0 50 
i 

Rainbow Gorge 

,..,...,,.--
,., . 
: • .. J 

~ 

~ ... :. . 
.. ~ ... ....:: 

: ~ .. ,.- .~ -
,.r 

.' 
. ~ 

100 
! 

< 

: 

Kilometers 

Qudeni 

Ferncliffe 

• 

~ha 
DUlini Q 

2 
; .... '"tI> 3 - 4 . 

1 Ngome 
2Qudeni 
3 Nkandhla 
4 Dhlinza 
5 Ongoye 

Tygerskloof 

• 

Forest subtype 
_ Montane 
_ Mistbelt 
_ Dune 
_ SWamp 
_ Sand 
_ Riverine 
_ Lowland 

_ Scarp 

•• Nkandla 
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Microsatellite loci genotyping 

DNA was extracted from silica dried leaf material using a method modified 

from Doyle and Doyle (1987). Approximately 1 cm2 of leaf was ground in 800 III of 

CT AB buffer with 2.S % ~-mercaptoethanol, o.s % PVPP and a pinch of acid 

wa.shed sand, and then incubated at 6SoC for 30 minutes. After washing with SOO III 

of 24: 1 chloroform:isoamylalcohol, the aqueous layer was removed and DNA 

precipitated with 600 III of freezer-cold isopropanol. DNA isolated from Begonia 

species can contain PCR inhibiting levels of co-isolated salts and carbohydrate, so 

the crude extract was redissolved in 100 III of water and cleaned using QIAquick 

PCR purification columns (Qiagen), eluting in SO ml of warm (6S0C) EB buffer to 

ensure recovery of high molecular weight DNA. 

Seven polymorphic micro satellite loci were used for the population genetic 

surveys, using fluorescently labelled primers (BSUI-7) and PCR conditions as 

detailed in Hughes et al. (in press, 2002; paper 3). The PCR products were analysed 

on an ABI 377 DNA sequer.!cer, followed by gel image analysis using ABI 

Genescan® software (version 3.1.2) and allele size scoring using ABI Genotyper® 

software (version 2.0). 

Data analysis 

Microsatellite allele data was formatted for analysis using the Microsatellite 

Toolkit (Park 2001). Descriptive parameters (A=mean number of alleles per locus; 

HE=expected heterozygosity and Ho=observed heterozygosity) were calculated using 

GDA (Lewis & Zaykin 2001). 

Weir & Cockerham's (1984) estimates of Wrights F-statistics F)s if; 

deviation from panmixia attributable to non-random mating within populations), F ST 

(8; deviation from panmixia attributable to non-random mating among populations), 

and the inclusive measure FIT (F; deviation from panmixia attributable to non

random mating within and between populations) were estimated using FSTAT 

(Goudet, 2001). The per locus estimates of FST were tested for sigificant difference 
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from the null hypothesis of panmixia by jackknifing over populations. The global 

estimate of FST was tested for significance by jackknifing across loci. Permutation 

tests (1000 permutations, randomising alleles) were used to assess the significance of 

FJS and FIT estimates. The outcrossing rate, t, was estimated from the global estimate 

of FJS using the equation t=(1-FJs)/(1+FJs) (Allard et ai., 1969). Per locus estimates 

of the stepwise-mutation model analogue of FST, RST (Slatkin, 1995) were calcuated 

using RST CALC (Goodman, 1997), testing for significance using permutation tests 

(1000 permutations). Due to missing data for all individuals in one or two 

populations for two of the loci (locus BSU3 was scored as missing from all 

individuals in Nkandla and Qudeni; locus BSU7 was scored as missing from all 

individuals in Umtamvuna), permutation tests to assess the significance of a global 

estimate of RST using all loci could not be completed using RST CALC. A global 

estimate of RST using a reduced data set of five loci was instead used to assess 

significance. A global estimate using all 7 loci was carried out using FSTAT, which 

can accommodate missing data. 

A Mantel test to assess the significance of isolation by distance patterns was 

carried out using Arlequin version 2.000 (Schneider et ai., 2001), with the two 

matrices being the natural log of straight-line geographic distances or straight line 

geographic distances (calculated from GPS data) and FSTIl-FsT or RSTIl-RsT 

(Rousset 1997). The natural log of geographic distance was used when comparing all 

populations. The direct distances in kilometres were used for analysing a subsample 

of populations which approximated a linear distribution; Rousset (1997) showed that 

for elongated habitats, popUlation differentiation is a linear function of geographic 

distance. 

Microsat (Minch et ai., 1995) was used to create pairwise genetic distance 

matrices for both individual plants and populations using chord distance (Cavalli

Sforza, 1967). This geometric distance measure was found to be more accurate in 

tree reconstruction than higher variance stepwise-mutation model based measures by 

Takezaki & Nei (1996). Population pairwise matrices were also created for Nei's 

standard genetic distance (Nei, 1987) and 1-PSA (Bowcock et ai., 1994) using 

Microsat. PAUP* (Swofford, 1998) was used to create neighbour joining trees from 

these distance matrices. Bootstrap values (exhaustive sampling over loci) were 
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calculated for the population level chord distance neighbour joining tree using 

Populations 1.2.24 (Langella, 2002) 

As B. sutherlandii produces bulbils, it has the potential to grow clonally. 

Where two leaf samples from separate individuals within a population provided 

identical genotypes at all loci, the probability of the genotypes being the result of 

clonal growth rather than random sexual mating was calculated following Parks & 

Werth (1993). The probability that a zygote aquires a given multilocus genotype 

(Pgen) can be calculated from the product of its allele frequencies in the source 

population as 

where Pi is the frequency of each allele in the population (two per locus) and h is the 

number of loci that are heterozygous in that particular genotype. Allele frequencies at 

each locus for each popUlation were calculated using only individuals in the same 

population that had different multilocus genotypes at the other loci, in order to avoid 

circularity and upward bias of the frequency of rare alleles (Parks & Werth, 1993). 

For a given sample size G (estimated as the number of different multilocus genotypes 

following Parks & Werth, 1993) the probability of coming across the same genotype 

an nth time as a product of random mating can be calculated as 

f G! f__ )x( )G-X 
~ x! ( G _ x). \p gen 1 - P gen 

The above expression was calculated for increasing values of n up to the number of 

individuals sharing the same multilocus genotype. If the probability of n encounters 

through random mating was found to be unlikely at the 0.05 level, then for that 

particular genoptype (n-l) individuals were assumed to be the product of random 

mating and any further encounters were assumed to be the result of clonal growth 

and removed from further popUlation genetic analyses. 
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Results 

Microsatellite scoring 

Microsatellite null alleles can be caused by mutations in the PCR priming 

sites, and can be identified by a failure to amplify a PCR product in individuals that 

are homozygous for the null allele. Nulls were found for locus BSU3 in the 

populations sampled from Nkandla and Qudeni, and for BSU4 in Tygerskloof. No 

PCR product could be reliably amplified using the PCR primers for this locus in any 

of the individuals from these populations, whilst the remaing 6 loci amplified without 

difficulty. Data for Nkandla and Qudeni at locus BSU3 was scored as missing. Locus 

BSU4 could be amplified in individuals from Tygerskloof with a set of redesigned 

primers that annealed outside two transition mutations (unique to this population) in 

the primer site of the original primers (Hughes et aI., 2002). 

Locus BSU7 gave profiles that could not be interpreted as diploid from 

individuals sampled from Umtap:lVuna (i.e. more than two bands per individual were 

present), and all data was scored as missing for this population at this locus. 

Despite being di-nucleotide loci, three of the loci (BSU5, BSU6 and BSU7) 

showed single base pair length polymorphisms in populations from Tygerskloof 

(BSU5 and BSU6), Qudeni and Kokstaad (BSU7). The cause of this in the case of 

BSU6 and BSU7 was determined by allele sequencing (Hughes et aI., 2002). The one 

base-pair shift in some BSU6 alleles. in the Tygerskloof population was due to an 

expansion mutation in a Tg region adjacent to the di-nucleotide repeat. The presence 

of single nucleotide step mutations in individuals from the Qudeni population was 

due to a loss of a cytosine base in a CC motif in the middle of the microsatellite; no 

individuals homozygous for odd-numbered alleles (and hence easily sequenceable) 

were found from the Kokstaad popUlation and so the homology of the mutation with 

respect to the Qudeni population is unknown. 
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Descriptive statistics 

Within populations the mean number of alleles per locus ranged from A=1.9 

to 5.0 (mean 3.7), with the proportion of polymorphic loci ranging from P=0.57 to 

1.00. The gene diversity within populations ranged from HE=0.254 to HE=0.603 

(mean 0.459). The number of private alleles in a population ranged from 1 (Hoha) to 

13 (Tygerskloof) (Table 1). At the species level the number of alleles per locus 

ranged from A=9 to 22 (mean 14.4), with the mean gene diversity per locus ranging 

from HE=0.752 to 0.928 (mean 0.833) (Table 2). 

Clonal growth 

All populations except Dulini contained at least one individual which had a 

significant probability of being the result of clonal growth (P<0.05). The percentage 

of clonal individuals in the population samples ranged from zero in Dulini up to 11 % 

in Qudeni, with the mean across all populations being 7%. The population sample 

sizes adjusted for the removal o( clonal individuals are shown in Table 1. 

In six out of the nine populations, after the removal of all probable clonal 

individuals, every plant could be identified with a unique multi-locus genotype. The 

three populations with the lowest gene diversity, Umtamvuna, Rainbow Gorge and 

Kokstaad, each contained a small number of individuals that shared a multi-locus 

genotype but which were likely to be the result of random sexual mating rather than 

clonal growth (P<0.05). 

Population structure 

There is significant population structure in B. sutherlandii, with a high degree 

of differentiation between populations (Rsr=0.634, P<O.OOI; e =0.482, P<O.OOI; 

Table 2). The estimate of RST was calculated using a reduced data set of 5 loci, as 

two loci with missing data for at least one population were removed. A global 

estimate using all 7 loci gives a value of Rsr=0.689. There was significant 

differentiation even between closely situated populations; the Kokstaad population 
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can be subdivided into 4 sub populations which were sampled within 3.8 km of each 

other; these sub populations gave values of RsrO.238 (P<O.Ol) and e =0.220 

(P<O.Ol). 

Estimates of FIS, the inbreeding coefficient, ranged from /=0.060 to /=0.271 

within populations, with six out of the nine estimates being significantly different 

from zero. The species wide estimate was j=0.154 (P<O.O 1) indicating a small but 

significant deficit of heterozygotes. Calculating the outcrossing rate from the FIS 

estimate according to Allard et al. (1969) gave a value of t=0.73. 

Isolation by distance 

The neighbour joining tree constructed using chord distance between 

individuals (Fig. 2) shows individuals clustering together with all the other 

individuals from the same population (with the exception of one individual which 

clusters between its source population, Dulini, and the nearest neighbouring 

population, Hoha). The neighpour joining tree constructed using chord distance 

between populations has an identical population level topology (Fig. 3) and indicates 

a geographic correlation with genetic distance, with spatially proximal populations 

tending to cluster together. The exceptions to this are Rainbow Gorge and 

Umtamvuna, which do not cluster with their geographic nearest neighbours. 

Umtamvuna is geographically closest to Kokstaad in southern KZN, but in 

the neighbour joining tree takes up an isolated position and shows no obvious 

affinity; it clusters next to Tygerskloof but on a very short internal branch. Although 

the clustering of the Umtamvuna and Tygerskloof populations has no bootstrap 

support, the population in Umtamvuna certainly differs from the nearby mist belt 

forest populations of B. sutherlandii, which together form a group with 75% 

bootstrap support (comprising Ferncliffe, Dulini, Hoha and Kokstaad). 

Rainbow Gorge clusters with Nkandla, although this pairing has no bootstrap 

support. The clustering of the Nkandla, Rainbow Gorge and Qudeni populations has 

55% bootstrap support. The relationship is also found in neighbour joining trees 

constructed from Nei's standard distance and allele sharing. Despite the apparent 
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close relationship of the Rainbow Gorge and Nkandla populations, it should be noted 

that the null allele fixed at locus BSU3 in Nkandla and Qudeni is not present in 

Rainbow Gorge, where the locus amplifies normally. 

Using all the populations, a Mantel test based on Slatkin's linearised FST and 

the natural log of geographic distance showed there to be no significant pattern of 

isolation by distance (P=O.063, R2=O.06; Fig. 4). The plot shows a scattered 

distribution, with all the extreme outlying comparisons involving comparisons with 

Umtamvuna and Rainbow Gorge. These population comparisons are highlighted in 

Fig. 4. Removing the Umtamvuna and Rainbow Gorge populations from the dataset 

leaves only the populations from the mist belt forests. A Mantel test on this reduced 

data set was significant at the P<O.OOI level (R2=O.62) when natural log distance was 

used as the geographic matrix. As the populations in this reduced dataset 

approximate a linear distribution, a Mantel test was repeated out using non-logged 

geographic distance. This was also highly significant (P<O.OO 1, R2=O.79; Fig. 5). 

Using RST/I-RsT and n~~ural log of geographic distance as the matrices in a 

Mantel test involving all populations gives a result which is just significant at the 

P<O.05 level (P=O.047, R2=O.07; Fig. 6). Using this stepwise mutation model based 

measure of genetic distance, only Umtamvuna appears to provide outlying points in 

the plot of genetic and geographic distance (Fig. 6), with comparisons between it and 

neighbouring populations giving higher degrees of genetic difference than the main 

trend. The pairwise comparisons of Rainbow Gorge to other populations do not 

provide markedly abberrant results J1S with the FST based plot, and appear to fit 

within the main trend. 

Removing the Umtamvuna population and repeating the Mantel test (using 

natural log of distance as the geographic matrix) increases the significance (P=O.009) 

and decreases the scatter (R2=O.21). Removing both the Umtamvuna and Rainbow 

Gorge populations (leaving the mist belt populations only) further increases the 

significance and decreases the scatter, although less markedly (P=O.003, R2=0.30). 

This is similar to the result obtained using non-logged distance as the geographic 

matrix for this reduced population data set (P=O.003, R2=O.30). 
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Bossart & Prowell (1998) and Slatkin (1993) advocate examining the effect 

of different clusters of populations on significant patterns of isolation by distance. In 

the plot of Slatkins linear FST against geographic distance for the mist belt 

populations (Fig. 5), the comparisons within the northern populations (Tygerskloof, 

Nkandla and Qudeni) and within the southern populations (Ferncliffe, Hoha, Dulini 

and Kokstaad) are highlighted. None of the within-northern or within-southern 

groups of pairwise comparsons give a significant pattern of isolation by distance 

when considered alone or combined. 

137 



Table 1. Descriptive statistics by population. N g, number of individuals genotyped; Nadj, number of individuals includyd in the population 
genetic analysis after the removal of probable clonal individuals; Nd, number of distinct multilocus genotypes; n, mean sample size over all 
polymorphic loci; P, number of polymorphic loci/number of loci applicable; A, mean number of alleles per locus; Ap, number of private 
alleles; HE, expected heterozygosity; Ho, observed heterozygosity 

Population 

Tygerskloof 

Qudeni 

Nkandla 

Femcliffe 

Hoha 

Dulini 

Kokstaad 

Rainbow Gorge 

Umtamvuna 

Mean 

** P<0.01 

* P<0.05 

Forest type 

Mist belt, N 

Mist belt, N 

Mist belt, N 

Mist belt, S 

Mist belt, S 

Mist belt, S 

Mist belt, S 

Montane 

Coastal scarp 

Latitude longitude Ng Nadj Nd n 

31.314 27.846 21 19 19 16.7 

30.904 28.649 56 50 5,0 44.8 

31.135 28.729 43 41 41 32.8 

30.340 29.547 28 27 27 27.0 

29.575 30.128 23 21 21 19.6 

29.556 30.187 13 13 13 13.0 

29.647 30.585 39 36 34 30.3 

29.226 28.960 26 24 22 21.9 

30.173 31.002 45 43 36 34.7 

33 30 29 27 

P A Ap HE Ho f 

6/7 5.0 13 0.603 0.555 0.082ns 

6/6 4.7 3 0.551 0.492 0.108** 

6/6 4.3 9 0.561 0.457 0.193** 

7/7 4.3 5 0.572 0.471 0.179** 

5/7 3.1 1 0.415 0.437 _0.054ns 

5/7 3.4 3 0.455 0.429 0.060ns 

7/7 3.7 6 0.401 0.294 0.271 ** 

4/7 1.9 3 0.254 0.208 0.186* 

4/6 2.5 6 0.323 0.241 0.265** 

3.7 5.4 0.459 0.398 0.143 
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Table 2. Descriptive statistics by locus. The sample size for locus BSU3 is reduced 
due to null alleles present in all individuals of populations from Nkandla and Qudeni, 
and the sample size for locus BSU7 is reduced due to unscorable profiles in all 
individuals from Umtamvuna. (n=number of individuals after removal of probable 
clonal individuals; Np=number of populations; A=number of alleles per locus). 

Locus 

BSU1 

BSU2 

BSU3 

BSU4 

BSU5 

BSU6 

BSU7 

All 

-**P<O.OOI 

*P<O.OI 

n 

241 

242 

164 

237 

243 

238 

208 

ns - not significant 

Np A 

9 10 

9 14 

7 11 

9 14 

9 22 

9 21 

8 9 

14.4 

HE Ho RST e f 
0.832 0.386 0.629** 0.382** 0.275* 

0.869 0.467 0.656** 0.454** 0.091 ns 

0.847 0.317 0.784** 0.562** 0.260* 

0.795 0.215 0.932** 0.667** 0.202ns 

0.812 0.412 0.622** 0.480** 0.093ns 

0.928 0.630 0.334** 0.294* 0.073ns 

0.752 0.293 0.810** 0.569** 0.128ns 

0.833 0.389 0.634**1 0.482** 0.154** 

1. This estimate of RST was calculated using a reduced data set of 5 loci that had no 
missing data. 
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-- 0.05 changes 

• • • 
Coastal scarp forest 

Mist 6elt forest, northern KZN 

Mist belt forest, southern KZN 

Montane forest 

1. Femcliffe 
2. Kokstaad A, B, C, 0 
3.Dulini 
4. Hoha 
5. Tygerskloof 
6. Umtamvuna 
7. Nkandla 
8. Rainbow Gorge 
9. Qudeni 

Figure 2. Neighbour joining tree of individuals based on chord distance. 
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Nkandla 

Rainbow 
Gorge 

Qudeni 

Kokstaad 

__ 0.1 changes 

Umtamvuna 

Tygerskloof 

Ferncliffe 

Dulini 

Coastal scarp forest 
Mist belt forest, northern KZN 
Mist belt forest, southern KZN 
Montane forest 

Figure 3. Neighbour joining tree of populations based on chord distance. Bootstrap 
values of greater than 50 are shown. 
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In pairwise geographic distance 

Fig. 4. Geographic (In kIn) distance against genetic distance (FsT/I-FsT) for all 
populations. (D =Umtamvuna comparisons; X=Rainbow Gorge comparisons; 

b. =UmtamvunalRainbow Gorge comparison) 

1.0 - ~=O.79 
P=O.OOO5 • 0.9 
within south (0) • • 0.8 within north ) • • 
between north and south (.) • • 0.7 • • f-

u:: • , 
0.6 ..... 

t::- O • u:: • 0 0.5 0 ~ • 0.4 • 0 

0.3 ,n 

0 50 100 150 200 250 300 
Pairwise geographic distance, km 

Fig. 5. Geographic (km) distance against genetic distance (FsT/I-FsT) excluding the 

populations from Rainbow Gorge and Umtamvuna (mist belt populations only). 
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Fig. 6. Geographic (In km) distance against genetic distance (RsT/I-RsT) for all 
-populations. (D =Umtamvuna comparisons; X=Rainbow Gorge comparisons; 

t::,. =UmtamvunalRainbow Gorge comparison) 
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Fig. 7. Geographic (km) distance against genetic distance (RsT/I-RsT) excluding the 
populations from Rainbow Gorge and Umtamvuna (mist belt populations only). 
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Discussion 

Population differentiation 

There is a high degree of population genetic structure observed between 

p~pulations of B. sutherlandii (R
ST 

=0.634, P<O.OO 1; 8=0.482, P<O.OO 1) which 

indicates a marked and highly significant deviation from panmixia. These values are 

high compared to the average values of popUlation differentiation found in other 

short-lived outcrossing perennials (mean GsT=0.218; Hamrick & Godt, 1996). The 

marked divergence of the four sub-populations from Kokstaad (R
ST 

=0.238, P<0.01 

8=0.220, P<0.01) indicates that distances of the order of a few kilometres can 

represent substantial barriers to gene flow. Estimates of the inbreeding coefficient FIS 

showed a deviation from random mating within populations, with a small but 

. significant deficit of heterozygotes if =0.154, P<O.OO 1) Within population values 

ranged from f =-0.054 (Hoha) to f =0.271 (Kokstaad). The high f value for the 

Kokstaad population is likely to be due at least in part to the sampling of four 

separate sub populations. The Qutcrossing rate calculated from F IS estimates (t =0.73) 

is likely to be deflated by within-population genetic structure to some extent, so this 

figure perhaps represents a minimum value for the outcrossing rate in B. 

sutherlandii . 

The distribution of null alleles, which have been found to be restricted to 

either a single population (Tygerskloof for the original primers for locus BSU4) or to 

geographically close pair of populations (i.e., Nkandla and Qudeni for locus BSU3) 

is further evidence for the lack of gene flow between populations. This is also backed 

up by the presence of single-nucleotide length mutations, which in the case of locus 

BSUS and BSU6 were restricted to a single population (Tygerskloof). Limited gene 

flow is also supported by the distribution of private alleles, which were present in all 

populations. Hoha and Dulini have 1 and 3 private alleles respectively, despite being 

only 5.4 km apart. Tygerskloof has 13 private alleles, which reflects the isolated 

geographical position of this population. Eight of the private alleles in this popUlation 

were due to the two loci that showed single base pair polymorphisms; BSUS 

contributed 7 of these and BSU6 contributed 1. 
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Causes of differentiation: isolation by distance, dispersal or vicariance 

It is obvious from these results that the distribution of genetic variation within 

B. sutherlandii in Kwazulu-Natal is strongly linked to geography. Templeton (1998) 

lists three major biological factors that can cause spatial association with genetic 

variation. These are (i) restricted gene flow leading to isolation by distance; (ii) range 

expansion (dispersal) and (iii) range fragmentation. 

The first pattern is due to contemporary gene flow, whilst the latter two 

patterns are effects of population history rather than population structure. The 

estimators of FST and RST indicate that there is a high degree of correlation between 

geography and genetics, but further analysis is needed to identify the cause of this 

correlation. 

Plots of pairwise geographic distance against pairwise genetic distance can 

detect patterns of isolation by distance, using a the natural log of distance for a 2-

dimensional array of populations or the non-logged geographic distance for a 1-

dimensional (linear) array of popUlations (Rousset, 1997). Outliers on such plots 

show larger or smaller genetic distances than would be expected from their 

geographic proximity to other populations. Such outliers can be useful in 

highlighting populations that are the result of either dispersal or vicari ant events, i.e., 

historical events as opposed to contemporary population structure. 

The plots of the mantel tests based on F ST show two populations that deviate 

from an otherwise highly significant correlation of genetic and geographic distance, 

namely Umtamvuna and Rainbow Gorge. Both show higher genetic differentiation 

from their nearest popUlation neighbours than would be expected under a pattern of 

isolation by distance. Removing these two populations from the analysis reveals a 

highly significant pattern of isolation by distance in the remaining mist belt 

populations. 

The plots of the mantel tests based on RST show some of the genetic

geographic comparisons of the Umtamvuna population as conspicuous outliers, but 

in contrast to the plot using FST all the pairwise comparisons of Rainbow Gorge 

appear to be within the main trend of isolation by distance. Although Umtamvuna 
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appears as aberrant on both plots irrespective of the genetic distance measure used, 

Rainbow Gorge only lies outwith the main trend if FST is used. 

This discrepancy may be due at least in part to the behaviour of FST under 

conditions of varying gene diversity (Charlesworth, 1998; Balloux & Lugon-Moulin, 

2002). Under high gene diversity, heterozygosity within populations is more likely to 

be high. Hence, the value of FST can be reduced due to the high value of Hs, even if 

populations have very few alleles in common. Conversely, under conditions of low 

gene diversity, the value of Hs can be very small and hence FST can be very high if 

the populations have few alleles in common. Rainbow Gorge has the lowest gene 

diversity of any of the populations of B. sutherlandii in this study, and this has 

possibly inflated the values of FST obtained during population pairwise comparisons 

relative to the other populations which have higher gene diversity. The highest 

pairwise FST value between populations was between Rainbow Gorge and 

Umtamvuna (Fig 4); Umtamvuna also has markedly low gene diversity compared to 

the rest of the populations in this study and this could account in part for the high 

value observed. RST is unaffected by gene diversity and relies instead on the 

comparing the size of alleles; using this stepwise mutation based measure Rainbow 

Gorge does not appear as mark"edly outwith a trend of isolation by distance with the 

other populations of B. sutherlandii from the mist belt forests. 

In common with the mantel test plots, the neighbour joining trees of 

populations based on a geometric measure of genetic distance (Cavalli-Sforza's & 

Edward's Chord distance, 1967) hint at a strong geographical-genetic relationship, 

and the same two populations that are outliers on the mantel plots (Umtamvuna and 

Rainbow-Gorge) also show non-geographic clustering on the neighbour joining tree, 

clustering instead with populations that are not their nearest neighbour. The 

Umtamvuna population clusters with Tygerskloof, although this is on very short and 

unsupported branch. Both Tygerskloof and Umtamvuna show the largest measures of 

pairwise distance to other populations on the neighbour joining tree. Rainbow Gorge 

clusters next to Nkandla in a group including Qudeni; the grouping of these three 

populations has 55% bootstrap support. Aside from Nkandla, which is 170km away 

from Rainbow Gorge, the other mist belt populations of B. sutherlandii are only 

marginally nearer (Qudeni is 150km away; Femcliffe llOkm; Hoha 107km; Dulini 

110km), so there is not a great deal to choose between the prospective geographic 
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nearest neighbours of Rainbow Gorge. However, given the proximity of the southern 

mist belt forests to Rainbow Gorge relative to the more isolated northerly patches, 

(Fig. 1, top) one might expect a relationship to populations from these southern 

forests to be more likely. 

Of the three possible causes of genetic and geographical patterns being 

correlated, only the central populations of B. sutherlandii from the mist belt forests 

are differentiated according to a pattern that corresponds to one of isolation by 

distance. Umtamvuna shows no genetic similarity to its nearest populations, and 

indeed shows no obvious affinity for any other of the populations sampled. Rainbow 

Gorge shows more differentiation than would be expected under a pattern of 

isolation by distance from its nearest neighbours when compared using FST, but not 

with RST. Using a geometric measure of genetic distance, Rainbow Gorge appears 

most similar to a population from the Kwazulu-Natal midlands mist belt forests, 

Nkandla. 

Although the remaining populations show a highly significant pattern of 

isolation by distance when considered together, this is no longer the case when the 

northern and southern mist belt populations are considered alone (Fig. 5). In such 

cases where only a sub set of comparisons is responsible for a pattern of isolation by 

distance, then vicariance should be considered as an alternative explanation (Bossart 

& Prowell, 1998). This is likely to be the case in this study, especially as one is likely 

to encounter vicari ant events at larger sampling scales (Bossart & Prowell, 1998), 

such as between the northern and southern mist belt forests. It should be noted that 

the population groups within either the northern or southern forests are quite small, 

and probably not large enough to test for isolation by distance within these areas; 

further sampling is required to test for isolation by distance at this scale. 

Tygerskloof especially seems to be markedly divergent from the other mist 

belt population samples, as it possesses the highest number of private alleles, unique 

mutations in the primer sites for BSU4, and unique single-step mutations at BSU5 

and BSU6. It also shows a lack of similarity to any other population in the neighbour 

joining tree based on chord distance. Nkandla and Qudeni also possess null alleles 

that are not found in any other population. 
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Population isolation in relation to forest history in Kwazulu-Natal 

It seems that the majority of the population differentiation in Kwazulu-Natal 

populations of Begonia sutherlandii is due to historical isolation rather than isolation 

by distance. This is likely to be linked to the history of forest cover in the province, 

as B. sutherlandii is largely confmed to this habitat. 

Tygerskloof 

• 

Tugela basin 

Fig. 8. Schematic map of Kwazulu Natal. 

The population from Umtamvuna shows strong genetic divergence from all 

other populations. The Umtamvuna nature reserve is a forested ravine located on the 

coast of Southern Kwazulu-Natal near Port Edward. Such coastal forests have been 

suggested as being important as refugia during the last glaciation (Lawes, 1990), and 

this is likely to be the case with the forests in Umtamvuna. The Umtamvuna reserve 

lies in the Natal Pondoland sandstone complex, and this area has a remarkably high 

number of endemic species (Van Wyk, 1981). In a study of 14 forests spread 

throughout South Africa, the flora ofUmtamvuna was found to be disproportionately 

rich, and contains several taxa for which Umtamvuna is their only locality in 

Kwazulu-Natal (Geldenhuys, 1992). This opens the possibility that the B. 

sutherlandii populations in the reserve are relics older than the populations from the 

scarp forests further inland, and this is congruent with them being genetically more 
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divergent from their geographically closest populations than other population pairs 

the same distance apart. The Umtamvuna plants are also distinct morphologically, as 

they have leaves with a distinct oblong shape which are also densely pubescent. All 

the other plants sampled for this study were sub-glabrous; the only known locality of 

pubescent B. sutherlandii is in the Transvaal to the north of Kwazulu-Natal (Hilliard, 

1967). 

During the last glacial maximum, the distribution of forest over all of 

Kwazulu-Natal was even more reduced and fragmented than at present. Eeley et al. 

(1999) found two main areas that were of potential importance at this time as forest 

refugia, namely the plateau that is currently occupied by the Ngome forest and which 

is the collection site of the Tygerskloof population, and the highland region that 

parallels the Tugela river and the location of the Qudeni and Nkandla forests. The 

genetic distinctiveness of the B. sutherlandii populations in these localities are 

congruent with a refugial past rather than current isolation by distance equilibrium. 

It is unlikely that any there would have been any forest refugia in the 

Drakensberg region during glacial maxima. This region follows the western border 
-, 

of Kwazulu-Natal, and includes the Rainbow Gorge collection site. Montane forest 

currently exists along this border in small fragments in sheltered valleys, but would 

probably have been eliminated during the last glacial due to the intense cooling at 

higher altitudes. Cold and desiccating winds emanating from the Drakensberg are 

likely to have also cause the retreat of forest from the Tugela drainage basin (Lawes, 

1990), which is an area of fairly flat topography to the south and west of the higher 

altitude Nkandla and Qudeni (Fig. 8). This suggests that there may have been no 

suitable habitat for B. sutherlandii in the Drakensberg region during the last glacial, 

and hence the lack of correlation between genetic and geographic distance cannot be 

explained in terms of relicuality. It is more likely that the population of B. 

sutherlandii in Rainbow Gorge is the result of a more recent long distance dispersal 

event, and it is tempting to speculate that the founder may have come from a 

population in the Kwazulu-Natal midlands near the Nkandla area. This is congruent 

with the genetic similarity between Nkandla and Rainbow Gorge as shown by results 

from the neighbour joining analysis of chord distances, and also with the low gene 

diversity of the population which could indicate a bottleneck during the founding of 

the population. Further sampling is needed from Drakensberg populations north of 
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Rainbow Gorge to ascertain whether the montane forests extending along the 

Drak~nsberg escarpment have been colonised once or many times from different 

sources. 

The forest cover in the Southern Kwazulu-Natal midlands was reduce to a 

small number of tiny fragments during the last glacial maximum, although this 

region currently has a high density of forest compared to the rest of the province. The 

forest cover was even more extensive and less fragmented under the conditions of the 

Holocene altithermal ca. 7000 years ago (Eeley et aI., 1999). The strong relationship 

of all the popUlations of B. sutherlandii sampled from the southern mist belt forests 

(Fig. 3) reflects the relative continuity of the forest in this area relative to the rest of 

Kwazulu-Natal, and a more recent common ancestry of these populations. 

Population isolation in Begonia and implications for speciation 

The high degree of population structure and the complete isolation of B. 

sutherlandii in many of the forest patches in K wazulu-Natal suggests successful long 

distance dispersal is rare. This is likely to be due to the passive dispersal mechanism 

of the species. Most Begonia species, including B. surherlandii, have a dehiscent, tri

alate fruit. The wings on the fruit have been suggested as assisting in anemochory, 

with patterning on the surface of the tiny seeds causing micro-turbulence which helps 

the seeds stay airborne (de Lange & Bouman, 1999). However, may authors on 

Begonia suggest that dispersal is largely passive, with the seeds being dispersed by 

gravity a short distance from the parent plant, (Burt-Utley, 1985; Agren & Schemske, 

1993; de Lange & Bouman, 1999; Matolweni et aI., 2000) and this study would seem 

to confirm this. Also, wind dispersal is not effective in the sheltered conditions of the 

forest floor habitat that Begonia species grow in; true wind dispersal mechanisms are 

very rarely found in ground-layer forest plants (Hovestadt et aI., 1999; Killeen et aI., 

1998). 

The narrow niche of B. sutherlandii will also hamper successful colonisation, 

as suitable habitat exists as very small and highly sporadic patches, even within a 

forested area. The fragmented distribution of populations is also likely to prevent 

effective population connection by pollinators. As a result of the lack of connectivity 
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between populations, within species genetic diversity shows a very strong correlation 

with geography. This is matched by the distribution of monophyletic groups of 

species in Begonia which tend to have regional distributions (e.g., south Africa, 

Madagascar) and deeper clades of monophyletic groups, which are bound within 

continents according to Forrest (2000). Templeton (1998, p.135) suggests the same 

pattern of restricted geographical clustering on the tips relative to the interiors of 

clades occurring repeatedly at many clade levels is strong evidence for a recurrent 

evolutionary force, such as restricted gene flow. 

Geographic structure in phylogenetic trees can also be caused through 

hybridisation of plants that grow in the same region. This is perhaps unlikely to be 

the case in Begonia, where hybrids are rarely encountered under natural conditions 

(Teo & Kiew, 1999). Two hybrids have been documented from Taiwan (Peng & 

Chen, 1991; Peng & Chiang, 2000), Begonia x taipensis and Begonia x buimontana. 

Both exist in the wild only as sterile F 1 hybrids. Teo & Kiew (1999) found five 

hybrid populations between B. decora and B. venusta in the Cameron highlands in 

Malaysia, which are both in section Platycentrum. In this case, the hybrid was fertile 

and there was evidence for introgression. The only other well documented case of a 

fertile hybrid in a natural Begonia population is by Sosef (1994), which involved two 

sister species (B. susaniae and B. villari/olia) from section Scutobegonia in the 

Crystal Mountains, Gabon. Hybridisation is possible in cultivation even between 

quite distantly related species, although such crosses can be of very low fertility (e.g. 

Gleed, 1961) and are usually only successful if the two parents have the same 

chromosome number (McGregor, 1969). Despite the crosses achieved with cultivated 

material, Begonia species in nature seem to successfully maintain their integrity. 

How much of this is due to genetic barriers to hybridisation and how much is due to 

other factors such as niche differentiation or temporal differences in flowering is 

open to speculation. 

The same patterns of population isolation as found in B. sutherlandii have 

been found in two recent studies on Begonia population genetics. Matolweni et al. 

(2000) estimated FST to be 0.901 in the B. dregei species complex which is endemic 

to the coastal forests of eastern South Africa. A study of B. socotrana by Hughes et 

al. (in press; paper 4) found significant population structure within the species, 

despite its range being only ca. lOx 15 km. B. socotrana showed a significant 
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pattern of isolation by distance, due to either restricted dispersal or local vicariance 

events in its small native range of the Haggeher mountains on Socotra. 

Poor dispersal can be a highly adaptive trait. Cody and Overton (1996) found 

very high pressures for the evolution of reduced dispersal in Lactuca (Asteraceae) on 

small islands off the Pacific coast of Canada. Island populations quickly evolved 

seeds with a reduced pappus in response to the fatal consequences for propagules that 

were dispersed into the sea. Such pressures are likely to operate on any species which 

occupies an archipelago-like habitat outside which it cannot survive, such as B. 

sutherlandii which is restricted to a specific micro-habitat in indigenous forest 

patches. Although highly localised dispersal can be advantageous, it can increase the 

risk of extinction in changing conditions if new patches of suitable habitat cannot be 

colonised (Cain et aI., 2000). Given the wide range of B. sutherlandii, the species is 

undoubtedly capable of long distance dispersal and colonisation, although this does 

not appear to be frequent enough to prevent the genetic isolation of populations 60 

km apart. 

The narrow endemism exhibited by most Begonia species could be a result of 

responses to local selection pressures in the absence of gene flow from neighbouring 

populations growing under different conditions. Gene flow between populations can 

homogenise allele frequencies and prevent local adaptation (Barton, 2001). The 

strength of selection a population can respond to is dependent on the number of 

migrants it receives from populations not experiencing the same environmental 

conditions. The less the gene flow between populations the weaker the selection 

pressure they can respond to (Barton & Clarke, 1990). Widespread Begonia species 

that show atypical adaptations for dispersal or pollination that would enhance gene 

flow between populations tend to show a higher degree of uniformity across their 

range than other widespread species of Begonia. Gene flow may be preventing local 

adaptation in these cases, and if one considers range size a reflection of niche width 

(Brown & Lomolino, 1998), then these can be thought of as more uniform, 

ecologically tolerant species rather than a collection of a number of locally adapted 

isolates as is the case for B.sutherlandii. 

The current distribution of forest in K wazulu-Natal (Eeley et aI., 1999) means 

that other angiosperms with a similar ecology to Begonia will also have a highly 
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fragmented distribution. StreptocaTpUS species are largely limited to forest patches, 

and like Begonia have a preference for shaded and damp conditions. In many cases 

they show a high degree of morphological differentiation between populations 

(Hilliard & Burtt, 1971). Present day forest refugia in Kwazulu-Natal and the 

resulting vicariant events may be important in driving differentiation in other 

angiosperm taxa. 

Gene flow, population differentiation and speciation are undoubtedly linked. 

Although species radiations are complex in origin and due to the interplay of many 

factors, it seems plausible that the high degree of population structure seen in 

Begonia has been instrumental in allowing the genus to produce over 1400 species. 
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CHAPTER 5. Population structure and speciation: perspectives from 

other species. 

5.1 Introduction 

This thesis has investigated microevolutionary patterns at the population 

level in Begonia, which reveal a high degree of correlation between genetic 

variation and geography. These patterns are congruent with those seen at the 

macroevolutionary scale, and thus it seems reasonable to suggest that restricted 

gene flow between populations has contributed to the high number of species and 

the high degree of narrow endemism seen in the genus (Hughes et aI., 2002, paper 

4; Hughes and Hollingsworth, 2002, paper 5). This chapter will review data on 

population differentiation for the sister family to Begoniaceae, the Datiscaceae, and 

for the angiosperms as a whole, to examine whether similar forces have been 

relevant to the evolution of these groups as well as Begonia. 

5.2 Population structure and the evolution of Datisca. 

The Datiscaceae is a ditypic family of wind-pollinated, tall, long-lived 

perennials which occur in riparian habitats. D. cannabina is native to south-western 

and central Asia, whilst D. glomerata is distributed from northern California to 

Baja California in northern Mexico. The seeds of both Datisca species are broadly 

similar to those of Begonia in size and ornamentation, and are shed from dehiscent 

capsules. Both species are wind pollinated (Liston et aI., 1989),with D. cannabina 

being dioecious and D. glomerata being androdioecious. 

Despite being wind pollinated, there is a very high degree of population 

isolation in both Datisca species, as determined in an allozyme study by Liston et 

aI. (1989); GsrO.975 for D. cannabina and Gsr O.896 for D. glomerata. These 

high levels of differentiation may be due in part to the wide range over which the 

species were sampled, which included some very disjunct populations. This lack of 
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gene flow between populations, however, has not promoted differentiation or high 

levels of speciation in Datisca, and contrasts markedly with the situation seen in 

Begonia. Both Datisca species are morphologically and anatomically quite similar 

to each other (Davidson, 1973) with young plants of the two species being virtually 

indistinguishable and differing as adults only in breeding system; D. cannabina is 

strictly dioecious, whilst D. glomerata is androdioecious and exists as 

hermaphrodite and male individuals. This represents a degree of morphological 

stasis, as there is evidence that the two species have been separate for at least 10 

million years (Liston et al., 1989). They also show a high degree of intra-specific 

morphological uniformity (Liston et al., 1989). Such evolutionary stasis can be 

considered to be the result of either stabilising selection or genetic constraints 

(Williamson, 1987). Liston et al. suggest that stabilising selection has been 

important in maintaining uniformity within and between Datisca species, as there is 

a high degree of differentiation at neutral allozyme loci which they would not 

expect if there were strong genetic constraints .. However, a more objective and 

comparable measure of genetic change over time can be obtained from molecular 

phylogenetic trees, and within the Cucurbitales, Datisca has the shortest branches 

(57 changes from the basal node) and Begonia the longest (136 changes from the 

basal node; APG, 1998). This suggests that there is also a degree of genetic stasis in 

the Datiscaceae, which may be a contributing factor to the lack of evolutionary 

change observed in the family. 

5.3 Population structure and the evolution of angiosperm biodiversity 

There is a considerable amount of speculation in the literature on the effect 

of dispersal and pollination syndromes have on population structure and speciation 

(Crepet, 1984; Sytsma and Schaal, 1985; Eriksson and Bremer, 1991, 1992; Bawa, 

1992; Oakwood et al., 1993; Rickleffs and Renner, 1994; Tiffney and Mazer, 1995; 

Goldblatt, 1997; Smith, 2001). If a high degree of population isolation promotes 

speciation as a general rule, then this should be visible in a correlation of FST and 

speciation rate. Fig 5.1 represents a comparison between the estimates of FST for 

clades of angiosperms that were defined as being extremely species rich or having 

expected diversity (compared to the background diversification rate) by Magallon 
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and Sanderson (2001); this companson is more objective than using family of 

genus size as a measure of diversification rate. The FST estimates were obtained 

from Hamrick and Godt (1996); for each clade type n= 10 (including several 

estimates obtained from the world wide web). No FST estimates could be found for 

any species in the clades that were determined to be extremely species poor. 
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Figure 5.1. Estimates of FST~in angiosperm clades, defined as 'extremely species 
rich' or 'expected diversity ' in Magallon and Sanderson, (2001). 

There is no evidence for a correlation between population structure and 

diversification rate in the angiosperms as a whole. The average values for FST in the 

two clade types are similar, and as can be seen from the standard errors, there is a 

wide range of values within each clade type. The clades are as defmed by the APG 

(1998), and many of these clades contain families and genera that are 

physiologically very different. It is conceivable (although perhaps unlikely) that 

this broad analysis of diversification may be concealing a pattern that would 

become evident at a finer scale. 
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5.4 Conclusions 

If one thing is evident from nature, it is that every radiation is different. The 

lack of an indication that population structure and speciation are linked either in 

Datisca or in the angiosperms as a whole emphasises there is more to evolution 

than gene flow. Selection is also of prime importance, and can lead to cases where 

little phenotypic differentiation has occurred despite persistent allopatry (Schneider, 

1999) or where variation in habitats and hence selection pressures leads to 

divergence even when geographic isolation is not marked (Smith, 2001; Moritz, 

2000). However, in Begonia the correlations between micro- and macro

evolutionary patterns are strong, and it seems likely that a high degree of population 

structure has contributed to the large radiation of the genus. 

5.5 Further work 

5.5.1 Transplant experiments 

Given the strong evidence for population isolation having played a large 

role in the evolution of Begonia biodiversity, it would be interesting to examine 

population evolution and divergence in more detail. Begonia sutherlandii shows a 

great range of leaf size and shape. Each population is uniform for a given leaf 

morphology, with the majority of the variation being partitioned between 

populations. Fig. 5.2 shows representative leaf shapes and sizes from some of the 

populations sampled in Kwazulu":Natai. Initial common-garden experiments with 

plants grown from wild-collected seed show that much of this variation is genetic, 

although leaf size shows a degree of plasticity. This is in agreement with 

observations by Hilliard (1967) in her account of Begonia for the Flora of South 

Africa. It is interesting to note some convergences in the leaf shapes of South 

African Begonia. B. dregei also shows a high degree of variation in leaf shape 

between populations, with one popUlation mimicking very closely the leaf shape of 

a fern which co-occurs in the same habitat (T. McLellan, pers. com., 2000). B. 

sutherlandii has some populations with highly dissected, feathery leaves which 

were originally· described as different species (B. dissecta Irmsch., B. buttonii 
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Innsch.). Some such populations in coastal forest patches just south of Durban have 

a leaf shape which is remarkably similar to B. dregei from the same area. This 

suggests that leaf shape is a highly adaptive trait in South African Begonia, with 

local selection favouring different leaf fonns in different areas. This hypothesis of 

local adaptation in Begonia populations could be tested with reciprocal transplant 

experiments. 

5.5.2 Pollination ecology 

Accounts of pollination in Begonia are rare, and nothing is known about the 

influence of pollinator behaviour on between-population gene flow. It would be 

useful to identify the pollinators of B. sutherlandii and study their ecology and 

range size; this would give some idea of the distance that would isolate two 

populations from pollen-mediated gene flow. 

Given the self compatibility of B. socotrana and B. sutherlandii, the high 

degree of outcrossing achieved by both these species is perhaps surprising. The 

effect of pollen competition (~ould be tested by applying a self/non-self mixture of 

pollen to receptive female flowers, and paternity testing the offspring to see which, 

if any, was more successful. The opening times of male and female flowers on 

individuals plants and the development of stigma receptivity could be examined to 

see if temporal events are instrumental in reducing the amount of selfing. 

5.5.3 Reproductive isolation 

How do Begonia species maintain their identity in nature? The relative 

influences of genetic, ecological and ethological reproductive barriers are unknown. 

There is some evidence for incipient genetic isolation in the B. dregei complex 

(T.McLellan, pers. com., 2000), with crosses between some B. dregei populations 

and populations that were originally described as B. rudatisii showing reduced seed 

set. Also, crosses between B. dregei populations with markedly different leaf 

shapes produce offspring with malfonned leaves. Hybridisation experiments were 

attempted with B. sutherlandii plants grown from seed from different populations in 

Kwazulu-Natal, in order to look for reduced seed set between distantly related 
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populations which had not exchanged genes for a considerable time. Unfortunately, 

an outbreak of mildew caused the plants to die back and no results could be 

obtained. It would be worth repeating these crossing experiments, and following 
r 

them through to an F2 generation, as genetic reproductive isolation may take more 

then one generation to reveal itself. 
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Figure 5.2. Leaf shapes of wild-collected material of B. sutherlandii in Kwazulu
Natal. 
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